Proceedings of the 15th International Conference
on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2015

6-10 July, 2015.

A New High Level Parallel Portable Language for
hierarchical systems in Trasgo

Ana Moreton-Fernandez!, Arturo Gonzalez-Escribano! and Diego R.
Llanos'

L Departamento de Informdtica, University of Valladolid

emails: ana.moreton@alumnos.uva.es, arturo@infor.uva.es, diego@infor.uva.es

Abstract

Currently, the generation of parallel codes which are portable to different kinds of
parallel computers is a challenge. Many approaches have been proposed during the last
years following two different paths. Programming from scratch using new programming
languages and models that deal with parallelism explicitly, or automatically generating
parallel codes from already existing sequential programs. Using the current main-trend
parallel languages, the programmer deals with mapping and optimization details that
forces to take into account details of the execution platform to obtain a good per-
formance. In code generators from sequential programs, programmers cannot control
basic mapping decisions, and many times the programmer needs to transform the code
to expose to the compiler information needed to leverage important optimizations.

This paper presents a new high-level parallel programming language named CMAPS,
designed to be used with the Trasgo parallel programming framework. This language
provides a simple and explicit way to express parallelism in a highly abstract level. The
programmer does not face decisions about granularity, thread management, or interpro-
cess communication. Thus, the programmer can express different parallel paradigms in a
easy, unified, abstract, and portable form. The language supports the necessary features
imposed by transformation models such as Trasgo, to generate parallel codes that adapt
their communication and synchronization structures for target machines composed by
mixed distributed- and shared-memory parallel multicomputers.

Key words: parallel languages, parallel programming models

1 Introduction

It is increasingly interesting to generate application programs with the ability of automati-
cally adapt their structure and load to any given target system. Using current main-trend

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

HicH LEVEL PARALLEL PORTABLE LANGUAGE

parallel programming technology for this purpose is challenging. One of the most promising
techniques for frameworks which automatically generate optimized lower-level parallel code
from existing sequential programs is the polyhedral model. It provides a formal frame-
work to develop automatic transformation techniques at the source code level [3]. The
polyhedral model is applicable to codes based on sequential static loops with affine expres-
sions. However, it does not support dynamic loops dependent on information not known or
parametrizable at compile-time. On the other hand, many successful parallel programming
models and tools that explicitly deal with parallelism have been proposed. environments.
Message-passing paradigms (e.g. MPI libraries) have been shown to be very efficient for
distributed-memory systems. Global shared memory models, such as OpenMP, Intel TBBs,
or Cilk, are commonly used in shared-memory environments to simplify thread and memory
management. Many parallel programming models like PGAS (Partitioned Global Address
Space) languages (Chapel, X10, or UPC), present a middle point approach by explicitly
managing local and global memory spaces. The PGAS language more related to our work
is Chapel [1]. It proposes a separation of domain and mapping modules to generate dis-
tributed arrays. But, the best communication aggregation methods presented so far for
Chapel abstractions are restricted to specific operations, or domain mapping properties.

Thus, the application programmer still faces many important decisions not related with
the parallel algorithms, but with implementation issues that are key for obtaining efficient
programs. For example, decisions about partition and locality vs. synchronization/commu-
nication costs; grain selection and tiling; proper parallelization strategies for each grain level;
or mapping, layout, and scheduling details. Moreover, many of these decisions may change
for different machine details or structure, or even with data sizes. Productive parallel-
software development needs a common approach at the programming level, to simplify the
tasks of implementing, testing, and debugging, independently of the machine details.

In this paper we present CMAPS, a new high-level parallel programming language for
the Trasgo framework [2]. This language supports a wide range of parallel structures and
applications. The programs express coordination at an abstract level. The programmer
reasons in terms of logical processes using a global memory space, not facing decisions
about granularity, thread management, or interprocess communication. CMAPS approach
presents several advantages with regard to: (1) polyhedral frameworks which work from
sequential codes [4, 5, 6], as it supports dynamic loops with conditions dependent on ex-
pressions involving data-values or runtime parameters and, (2) explicit parallel languages,
because it makes transparent to the programmer the details related to the lower-level pro-
gramming model, to integrate mapping techniques or to adapt the code to the architecture
and details of the execution platform, managing only a global memory space and, reducing
the code complexity.

We present the design guidelines of CMAPS in terms of the requirements and capabili-
ties of the Trasgo framework to generate lower-level code that adapts their communication

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

MORETON-FERNANDEZ, ANA

Program representations Transformations

High level source code
e.gcSPC

Front-end translator

XML

SPC-XML specification

Expression builder
+ plug-in transformation

XML

Mapped program

Back-end

SMP Code + HIT calls

. C + runtime HITmap Shared memory

Polyhedral model: Pluto

Multilevel code

.9 C + runtime HiTmap + OpenMP
_______________ Native compilator

Binary executable <

. HITmap library

(L

Figure 1: Structure of the Trasgo transformation framework.

and synchronization structures to the target machine. In particular, these guidelines impose
the inclusion of information needed to automatically generate code that computes exact ag-
gregated communications for target machines including distributed-memory architectures.

The rest of the paper is organized as follows: Section 2 presents the Trasgo model and
their tools. Section 3 describes the new programming parallel language. Section 4 presents
the conclusions and future work.

2 Trasgo framework

The Trasgo model [2] proposes the use of a high-level structured and abstract representation
of the parallel algorithms. It uses a restricted synchronization model (nested-parallelism)
at the higher level, letting the transformation system to generate more efficient and less
synchronized parallel structures at the lower level. The original model is based on the
SP (Series-Parallel) process model [7], and data-distribution algebras, providing clear and
well-defined semantics [8], and allowing hierarchical compositions. The model is free of
race conditions, and unexpected stochastic behaviors or dead-locks. The high-level code
uses a global view approach in hierarchical decompositions. The semantics provide clear
synchronization points and hierarchical global states that simplify testing and debugging.
Figure 1 shows the structure of the Trasgo transformation framework. The left column
shows the program representations, and the right columns the transformation layers. A
front-end translates the input language to an internal representation in XML. An XML
representation has been chosen due to the standard and powerful tools that exist to identify
and locate document features (XPath), and to apply document transformations (XSLT).

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

HicH LEVEL PARALLEL PORTABLE LANGUAGE

These technologies can be used to write in a compact form code transformation modules.
The main part of the transformation layer is oriented to convert the global address space
into a partitioned address space. It analyses data dependencies and builds expressions to
compute at run-time the communications needed across virtual processes, in terms of the
results of mapping and layout functions. The transformed code is rewritten by a back-end
that generates C code with calls to the Hitmap run-time library [9]. The resulting sequential
code generated for the local distributed process is finally filtered through polyhedral tools
(Pluto compiler [10]) to generate tiled and optimized parallel code for shared-memory using
OpenMP (the methodology used to integrate these techniques at the Hitmap level was
described in [11]). Finally, the code is compiled with a native C compiler.

3 The new parallel programming language CMAPS

In this section we describe the proposed parallel language that will be used as input in the
Trasgo framework. This language will allow the programmer to express parallel algorithms
in terms of abstract decomposition and mapping techniques.

3.1 Design principles
We present bellow guidelines for the design of an input language for the Trasgo framework.

1. The input language will be a coordination language. Sequential code will be expressed
with a traditional programming language and using runtime library calls (Hitmap [9])
to manage the access to the data structures. Extensions of a traditional sequential
language (new primitives, structures and modifiers) should be used to express the
coordination between sequential tasks. Functions containing coordination primitives
will be annotated using a new modifier. Inside them, it will be only possible to execute
data modifications through calls to sequential functions.

2. The input language will use a primitive (with clauses) to annotate each section that
we will be executed in parallel. The primitive should allow to indicate an arbitrary
number of logical processes, in terms of constants or expressions, including those
expressed in terms of the number of elements in data structures. This primitive
could be nested as many times as needed, even in a recursive way. Inside the scope
of the primitive, a mechanism to associate calls to other coordination or sequential
functions to logical processes should be provided. This primitive will imply a logical
synchronization point of the processes after the computation performed in parallel.

3. The sequential functions will be designed to deal with elements of arbitrary grain.
Thus, it avoids the programmer to take decisions about the problem granularity ac-
cording to the machine capabilities.

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

MORETON-FERNANDEZ, ANA

4. The language should provide a mechanism to invoke modules that implements parti-
tion policies. The inputs will be index spaces. The output will be a map of indexes to
virtual processes. This map can be used to: (1) perform a partition, distribution and
allocation of data structures or, (2) group and schedule logical processes into virtual
processes. The code should be independent of the mapping (partition, distribution,
allocation) policies. With this technique it will be possible to change the partition or
allocation policy without modify any other part of the code.

5. The computation will have a single global state and a unique logical process before
the parallel primitive. When the parallel tasks are launched, each one has a local
copy of the global state. In the logical synchronization point at the end of the parallel
computation the global state is consolidated again. To generate this global state the
parallel primitive must provided a way for reducing correctly different values, found
in the replicated variables of each logical process, into the global state.

6. The language should provide a mechanism to analyse the data dependences between
the function calls which are into the scope of different parallel parts. To find data
dependencies can be a complex task at compile time. The language should use annota-
tions in the function definition to indicate the input/output role of each parameter in
the function interface. This information will be used to obtain the data dependencies.

3.2 Study cases

To show the features of CMAPS in real programs we will use four cases of study. The
Jacobi solver is a PDE solver using a Jacobi iterative method to compute the heat transfer
equation in a discretized two-dimensional space. It is implemented as a cellular automata.
On each iteration, each matrix position or cell is updated with the previous values of
the four neighbors. See CMAPS code in Fig.2 The Gauss-Seidel program computes the
same heat transfer equation described above, but using a Gauss-Seidel iterative method.
In this method, the convergence is accelerated using values already computed during the
current time-step iteration following sequential semantics. The method simply uses one
matrix, with no copy for the old values. Thus, when using the neighbor values of the upper
and left matrix positions, values already updated are used. See CMAPS code in Fig.2
The Classical Matriz Multiplication is the typical sequential implementation of the matrix
multiplication with three nested loops. See CMAPS code in Fig.3 Cannon’s Algorithm for
matrix multiplication works with a partition of the matrices in k x k pieces, requiring no
more than one local piece of the same matrix at the same time, and using a simple circular
block shift pattern to move data across processes. Each matrix-block product is computed
using the classical sequential algorithm. See CMAPS code in Fig.3

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

HicH LEVEL PARALLEL PORTABLE LANGUAGE

1 /* Jacobi Solver (Poisson equation): Function to update one cell element */

2 void updateCell(in double up, in double down, in double left, in double right,
3 inout double result, out double diff) {

4 double old = *result;

5 sresult = (up + down + left + right) / 4 ;

6 *diff = fabs(*result - old);

7}

8

9 /* Jacobi Solver (Poisson equation): Parallel solver */

10 coordination void jacobiSolver(inout tile double M[][],

11 in int limit, in double threshold) {

12 double inside[1[] = M[1:$-1]1[1:$-1];

13 Map distribution = Map(inside.shape, blocks, rectangular2D));

14 ArrayMap(inside, distribution);

15

16 double diff, maxDiff;

17 loop(i in [1:1imit] and maxDiff > threshold) {

18 resetDiff (maxDiff);

19 parallel (distribution) {

20 do: updateCell(M[pidx(0)-1][pidx(1) 1,

21 M[pidx(0)+1 1[pidx(1) 1, M[pidx(0) 1[pidx(1)-11,

22 M[pidx(0) 1[pidx(1)+1 1, M[pidx(0) 1[pidx(1) 1,

23 diff);

24 reduce: MAX(diff, maxDiff);

25 } } }

1 /* Poisson equation: Function to update one cell element */

2 void updateCell(in double up, in double down, in double left, in double right,
3 out double result) {

4 *result = (up + down + left + right) / 4 ;

5 }

6

7 /% Gauss-Seidel Parallel Solver */

8 coordination void gaussSolver(inout tile double M[]1[], in int limit) {

9 double inside[][] = M[1:$-1]1[1:$-1];

10 Map distribution = Map(inside.shape, blocks, topRectangular2D));

11 ArrayMap(inside, distribution);

12

13 loop(i in [1:1imit]) {

14 parallel (distribution) {

15 do : waitflow(M[pidx(0)-1 J[pidx(1) 1, M[pidx(0)][pidx(1)-11)
16 updateCell(M[pidx(0)-1 1[pidx(1) 1, M[pidx(0)+1 1[pidx(1) 1,
17 M[pidx(0) 1[pidx(1)-1 1, M[pidx(0)][pidx(1)+1 1,
18 ML pidX(O) 1L pidx(l)]);

19

20

21} } }

Figure 2: CMAPS code for two Stencils algorithms: Jacobi solver and Gauss-Seidel

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

MORETON-FERNANDEZ, ANA

1 /* Parallel Block Matrixz Multiplication: Classical algorithm */

2 coordination void mmProductClassical(in tile double A[][], in tile double B[1I[],
3 out tile double C[I1[]) {

4 Map mC = Map(C.shape, blocks, topRectangular2D));

5 ArrayMap(C, mC);

6 ArrayMap(A, Map(A.shape, blocks, topRectangular2D)));
7 ArrayMap(B, Map(B.shape, blocks, topRectangular2D)));
8

9 parallel (mC) {

10 do: mmProductSeq(A[:][@0:@$], B[@0:@$][:1, C[:1[:]1);
11} %

12

13 /* Parallel Block Matriz Multiplication: Cannon’s algorithm */
14 coordination void mmProductCannons(in tile double A[][], in tile double B[I[],

15 out tile double C[I1[]) {

16 Map mC = Map(C.shape, blocks, topSquare));

17 ArrayMap(C, mC);

18 ArrayMap(A, Map(A.shape, blocks, topSquare)));

19 ArrayMap(B, Map(B.shape, blocks, topSquare)));

20

21 loop(i, [O : max(mC.size(0), mC.size(1)) 1) {

22 parallel (mC) {

23 do: mmProductSeq(dmap(A, mapidx(0),cyc((mapidx(1) - mapidx(0) - i))),
24 dmap(B, cyc((mapidx(0) - mapidx(1) - i)),mapidx(1)),
25 dmap(C, mapidx(0), mapidx(1)));

26} } }

27

28 /* Parallel Block Matriz Multiplication: Hierarchical composition */
29 coordination void mmProductCannons(in tile double A[][], in tile double B[][],

30 out tile double C[I1[]) {

31 Map mC = Map(C.shape, blocks, topSquare));

32 ArrayMap(C, mC);

33 ArrayMap(A, Map(A.shape, blocks, topSquare)));

34 ArrayMap(B, Map(B.shape, blocks, topSquare)));

35

36 loop(i, [0 : max(mC.size(0), mC.size(1)) 1) {

37 parallel (mC) {

38 do: mmProductClassical(dmap(A, mapidx(0),cyc((mapidx(1) - mapidx(0) - 1))),
39 dmap(B, cyc((mapidx(0) - mapidx(1) - i)),mapidx(1)),
40 dmap(C, mapidx(0), mapidx(1)));

41 } } }

Figure 3: CMAPS code for a multilevel Matrix Multiplication.

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

HicH LEVEL PARALLEL PORTABLE LANGUAGE

3.3 Notations and definitions

A Trasgo input programming language can be designed in several ways, as far as it complies
with the Trasgo model semantic (which derives in the guidelines of the section 3.1). We
have designed a coordination language extension of classical C language named CMAPS.
CMAPS has been created to express parallel algorithms in a simple, explicit and intuitive
way for C programmers.

3.3.1 Domains, mapping policies and data structures

The CMAPS language provides the native data types of the original sequential language
(C), and tile types for more complex data structures, such as arrays. Manipulation of
native data types is direct. Data in tiles will be managed at run-time using the Hitmap
library [9]. Domain declarations and subselection of tile domains, are expressed with an
extended C array notation similar to the Fortran90 colon notation inside square brackets
[begin:end:stride].

The language provides a Map constructor. It receives three parameters: An index
domain to be mapped, the name of a partition and layout technique, and the name of a
virtual topology building policy. Layout and topology techniques are plug-in modules in
the run-time system [9]. Map objects transparently map an index domain to the devices
of a target system (guideline 4). The ArrayMap function is used to map a tile to virtual
processes according to the results in the Map object. A mapped array can only be used
into a parallel section. Selections of a mapped array uses indexes relative to the local
index space of the part assigned by the map to the virtual process in the parallel section.
The language supports a symbol to represent the last index of the local index space in a
dimensional domain (§). In the Jacobi and Gauss example in Fig. 2, the inner part of
a matrix (without the border rows and columns) is selected. The language also supports
a symbol to express data accesses using the index space of the original tile (@). See an
example in line 10 of the Classical matrix multiplication in Fig. 3. To perform the classical
dot product multiplication, we need the data of the whole row a A and of a whole column
of B. We can express data accessed related with the global array using the symbol @.

3.3.2 CMAPS Functions

CMAPS supports two different kinds of functions, sequential and coordinated. Both will
use a compulsory modifier for the formal parameters that makes explicit their input/out-
put behaviour. These modifiers will be used to derive the dependencies between parallel
tasks (guideline 6). All data modification statements should be encapsulated into classical
sequential C functions, that are called from the coordination code. Each call to a sequen-
tial function is done in a logical process. The system could group several logical processes
together to build a single process that executes the code in the corresponding function calls

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

MORETON-FERNANDEZ, ANA

efficiently. Coordination functions are the functions where parallelism and synchronization
can be expressed. They are specified adding the coordination modifier in its definition.
Nested parallelism is exploited by encapsulating each parallelism level in a coordination
function (guideline 1).

Trasgo allows to generate codes with several levels of parallelism. Figure 3 shows the
implementation of the two matrix-multiplication algorithms. Cannon’s algorithm [12] can
be used at the upper level to reduce the memory usage, and the classical one at the shared
memory level for reducing synchronizations time. Making a hierarchical composition of the
two algorithms in CMAPS is trivial. Simply substituting the name of the sequential function
in the Cannon’s algorithm (see Fig.3 line 38) by the name of the Classical’s algorithm.

3.3.3 Coordination primitives

CMAPS supports into the coordination functions several kind of primitives. An unified
parallel primitive and iterative (loop, while) and conditional primitives (if, else). Statements
such as assignments are not allowed in the predicates of the coordination primitives. The
loop primitive substitutes the functionality of classical for primitive with a restricted syntax
for typical counter-controlled loops (see line 17 of Jacobi solver in Fig 2).

The parallel primitive performs computations in parallel (guideline 2). The parallel
primitive receives a Map object as parameter. It spawns as many logical processes as
indicated in the domain used to build the Map object and they are assigned to virtual
processes according to the information contained in the Map object. Virtual processes are
automatically scheduled to real processors following the policies used to build the Map
object. The primitive contains do clauses. In their scope we can write coordination code
with function calls to be executed by the logical processes (see line 20 of Jacobi solver in
Fig.2). They can be followed by optional reduce clauses. Each logical process works in a
virtual copy of the tiles. The transformation system is responsible of generating copies of
data parts, and temporal buffers, if needed to preserve the parallel semantics; even when
several logical processes are mapped to the same real process, and consequently should be
executed sequentially in the same real process scope (guideline 5). The do clauses may
be followed by waitflow(...) clause to express data-flow restrictions. For example, in the
Gauss-Seidel study case each logical process needs to wait to the data produced by its upper
and left logical processes (see line 15 of Fig. 2).

The calls in the do clauses of a parallel primitive can use two types of indexes to build
subdomains expressions and select the subtiles used as real parameters in the function calls,
that lead to locality. First, pidz(<dim>), which is the dimensional index of the logical pro-
cess. Logical processes are grouped automatically in virtual processes by Trasgo framework,
avoiding the programmer to take decisions about the problem granularity (guideline 3). The
second is midx(<dim>). The expression midz(<dim>) represents the index of the virtual
process in the active processes topology in a chosen dimension. It is possible use the function

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

HicH LEVEL PARALLEL PORTABLE LANGUAGE

void updateCell(double up, double down, double left, double right, double *result, double *diff){
double old= *result;
*result = (up + left + right + down)/4;
*diff = fabs(*result - old);
}
/** Sequential Jacobi solver */
void jacobiSolver(double a[][], double b[]1[], int limit){
int maxDiff, t, i, j;
for (t=0; t<limit && maxDiff < threshold; t++) {
maxDiff=0;
for (i=1; i<N-1; i++)
for (j=1; j<N-1; j++)
alil [j1=b[i]1[j1;
for (i=1; i<N-1; i++)
for (j=1; j<N-1; j++) {
updateCell(ali+1][j1, ali-11[j1, alil[j+11, alil[j-11, &(bI[il[j1), &diff);
if (diff > maxDiff) maxDiff=diff;

© 0 N O U e W N

T Ty
© 0 N O U W N = O
—

13

N
[=}

Figure 4: Sequential code of Jacobi solver

cyc() in expressions built with midz(<dim>). It returns the virtual process dimensional
index in a periodic way in the active processes topology. The function dmap returns the
subdomain of the tile specified as the first parameter, which is mapped to the virtual process
indicated as the second parameter (see line 23 of Cannon’s matrix multiplication CMAPS
code). Loop indexes and invariant parameters can also be used in expressions involving the
pidz(<dim>) and midz(<dim>) functions.

3.4 Example

This section describes the way to use CMAPS to derive a parallel code from a given algo-
rithm already expressed in sequential C code. To accomplish this task we use an illustrating
example, the Jacobi 2-D solver. We show the sequential code of Jacobi solver in Fig. 4. The
first step in the sequential code is to declare the necessary variables. Thus, in CMAPS (code
of Jacobi solver of Fig. 2) we will do the same. We have to distribute the arrays to perform
a parallel computation. To distribute the domain of the array, we use the Map constructor.
We have to choose the index domain that we want distribute. In this case it is the domain
of the whole array except its borders (1 : $ — 1). Then, we choose a plug-in layout that
performs a classical partition by balanced two-dimensional blocks, and a plug-in to generate
a rectangular 2D topology. We use the ArrayMap function to allocate the domain resulting
of the Map across the processor topology for the array.

The sequential program executes some loop iterations until achieve a limit or until it
reaches the convergence criteria (line 9 of Fig. 4). CMAPS follows the same way using in

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

MORETON-FERNANDEZ, ANA

this case the loop primitive. In each iteration, each position in the array will be updated
with the previous values of its neighbors. The sequential code first updates a copy of the
original array values. Then, the inner array elements are traversed. The sequential function
updateCell is executed for each element using the old values contained in the copy of the
array and checking if the element has converged.

On the other hand, CMAPS does not need copy due to in CMAPS logical processes work
with a virtual copy of the global state. So, we only have to perform the computation (using
the updateCell function) on one element of the array in each logical process. We accomplish
this using the parallel primitive. We launch as many logical process as indicated by the
shape or domain used to build the Map object. In this case, we launch a logical process
for each element in the array except for the borders (see line 12 of code CMAPS of Jacobi
solver). Each logical process executes the updateCell function updating an element, using
its four neighbours (see line 20-22 of code CMAPS of Jacobi solver). The convergence
check is performed using the reduce clause. This reduce chooses the maximum value of the
evaluated convergence check of each element. The copy internal copy management will be
performed automatically by Trasgo.

4 Conclusions

This paper describes a new high level parallel programming language, CMAPS. It is designed
to be a front-end language for a parallel code generation framework named Trasgo. It
allows to express coordination at a highly abstract level, supporting a wide range of parallel
structures and applications. We describe the design principles needed in a Trasgo input
language and we present our approach to create CMAPS, an extension of the classical C
language that complies with the required principles. We review the syntax of CMAPS
showing examples of real study cases that show the features of the language how it manage
domains, mappings and data structures in parallel in an abstract way.

Acknowledgements

This research has been partially supported by the Ministerio de Economia y Competitividad
(Spain) and the ERDF program of the European Union: CAPAP-H5 network (TIN2014-
53522), MOGECOPP project (TIN2011-25639), HomProg-HetSys project (TIN2014-58876-
P); the Junta de Castilla y Leén (Spain): ATLAS project (VA172A12-2).

References

[1] B. Chamberlain, S. Deitz, D. Iten, and S.-E. Choi, “User-defined distributions and
layouts in Chapel: Philosophy and framework,” in 2nd USENIX Workshop on Hot

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

HicH LEVEL PARALLEL PORTABLE LANGUAGE

Topics in Parallelism, June 2010.

[2] A. Gonzalez-Escribano and D. Llanos, “Trasgo: A nested-parallel programming sys-
tem,” The Journal of Supercomputing, vol. 58, no. 2, pp. 226234, 2011.

[3] C. Bastoul, “Code generation in the polyhedral model is easier than you think,” in
Proc. PACT’04. ACM Press, 2004, pp. 7-16.

[4] U. Bondhugula, “Compiling affine loop nests for distributed-memory parallel architec-
tures,” in Proc. SC’2014. Denver, CO, USA: ACM, 2013.

[5] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J. Garzaran,
D. Padua, and C. von Praun, “Programming for parallelism and locality with hierar-
chically tiled arrays,” in Proc. of the ACM SIGPLAN PPoPP. New York, New York,
USA: ACM, 2006, pp. 48-57.

[6] M. Kong, A. Pop, L.-N. Pouchet, R. Govindarajan, A. Cohen, and P. Sadayappan,
“Compiler/runtime framework for dynamic dataflow parallelization of tiled programs,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 11, no. 4,
p. 61, 2015.

[7] A. v. Gemund, “The importance of synchronization structure in parallel program op-
timization,” in Proc. 11th ACM ICS, Vienna, Jul 1997, pp. 164-171.

[8] K. Lodaya and P. Weil, “Series-parallel posets: Algebra, automata, and languages,”
in Proc. STACS’98, ser. LNCS, vol. 1373. Paris, France: Springer-Verlag, 1998, pp.
555-565.

[9] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. Llanos, “An extensible system
for multilevel automatic data partition and mapping,” IEEE TPDS, vol. 25, no. 5, pp.
1145-1154, 2013, (doi:10.1109/TPDS.2013.83).

[10] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical auto-
matic polyhedral program optimization system,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Jun. 2008.

[11] A. Moreton-Fernandez, A. Gonzalez-Escribano, and D. Llanos, “Exploiting distributed
and shared memory hierarchies with Hitmap,” in Proc. HPCS’201/, Bologna (Italy),
2014, pp. 278-286.

[12] L. Cannon, “A cellular computer to implement the kalman filter algorithm,” Doctoral
dissertation, Montana State University Bozeman, 1969.

©CMMSE ISBN: XXX=XX-XXX-XXXX-X

