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Abstract

The induced electron density at the position of a single point charge Z embedded in a three-

dimensional degenerate electron gas is studied at high densities. The perturbative, plane-wave-

based treatment developed within the framework of idempotent density matrices by March and

Murray [Phys. Rev. 120, 830 (1960)] is applied here up to second order in Z. Comparison with the

result obtained by considering the exact scattering enhancement in a bare Coulomb field is made.

The small numerical difference found in the second-order term of the induced density at contact

is analyzed following Wigner’s [Phys. Rev. 94, 77 (1954)] similar perturbative treatment of the

proton field in the hydrogen atom. The impact of the many-body screening and nonidempotency

of the host system on the perturbative results found are discussed as well.

PACS numbers: 02.30.Mv, 03.65.Nk, 03.75.Sc
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I. INTRODUCTION

The effect of charged impurities on the properties of a metal is of considerable physical

interest, both because of the possibility of deliberately introducing them so as to study

the physics of electron-atom interaction in metals, and because most real materials contain

impurities which affect their physical properties. By using modern experimental techniques,

such as STM and STS, one is able to consider in detail the modulations in the local density

of states at the Fermi level. One can probe the induced density in the many-electron system

of metals via positron annihilation or Knight-shift measurements with muons. Furthermore,

one might consider in calculating the life-time of an added electron in a cold electron gas, the

screening of the electron-electron interaction, needed to avoid the divergence in the electron,

or intruder charge, self-energy close to the Fermi energy.

There are several instances in which simple approximation methods yield correct results

even though the conditions for the applicability of those methods are not fulfilled. The best

known example is the calculation of the Rutherford cross section in three dimensions by first-

order Born approximation, i.e., by using plane-wave states. Apart from this case, however,

one should check the adequacy of this familiar approximation in potential scattering. Such

a check is, surprisingly, particularly important in the case of short-range forces [1].

In the present work as a first step the electron gas is assumed to be noninteracting ,but

perturbed by the potential of an embedded point charge. Thus, the problem is one of quan-

tum mechanical scattering of a single electron by the potential of an external charge. The

thermodynamics then follows by filling up the new set of energy levels according to Fermi-

Dirac statistics corresponding to an ideal momentum distribution function, i.e., with unit

occupation numbers for one-electron states up to the invariant Fermi level. The continuous

spectra of the electron gas Hamiltonian and the perturbed Hamiltonian coincide.

The method applied rests on the well-known paper by March and Murray [2] where the

idempotent density matrices, Dirac and canonical, were discussed in reference to imper-

fections (central fields) in metals. Concretely, we apply March and Murray’s second-order

prescription, Eq.(6.5) of their paper, to calculate the total electron charge at the position

of the embedded point charge in a high-density electron gas. Notice that the corresponding

low-density limit was treated earlier [3] by us using their Eq.(4.12), i.e., a third-order differ-

ential equation, with a Hulthen-type potential. Since in the present paper we use plane-wave
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states and find a close similarity with the second-order term based on the exact Coulomb

enhancement of scattered waves, we are tempted to refer for analogy to Wigner’s second-

order perturbational calculation of the energy of the hydrogen atom. Remarkably, in order

to provide a physical interpretation, Wigner pointed out that the finite result for the binding

energy in his second-order treatment is due to the form (∼ r−1) of the Coulomb potential

[4].

II. THEORY AND RESULTS

According to Eq.(6.5) of March and Murray [2], the second-order perturbation expression

for the total density n(r = 0) = n0 + n1(r = 0) + n2(r = 0) at the position of a charge Z

embedded in a paramagnetic electron gas at zero temperature is

n0 =
1

π2

∫ kF

0

dk k2 =
k3F
3π2

(1)

n1(r = 0) =
2

π2

∫ kF

0

dk k

∫ ∞
0

ds V (s) sin(2ks) (2)

n2(r = 0) =
4

π2

∫ kF

0

dk

∫ ∞
0

ds V (s) sin(2ks)

∫ ∞
s

dt V (t) sin(2kt), (3)

where the ideal momentum distribution function f0(0 ≤ k ≤ kF ) = 1 for occupied one-

electron momentum eigenstates in a homogeneous degenerate system has been applied. V (r)

is the spherical central potential due to the point charge. In writing these equations the

expression x2j0(x)n̄0(x) = (1/2) sin(2x) is used for the product of the spherical Bessel (jl)

and Neumann (n̄l) functions..

Now, as in Wigner’s perturbation theory for binding with an 1/r potential, we consider

first the unscreened case in our problem, i.e., we take V (r) = Z/r. From Eq.(2) we get

n1(r = 0) = Z
k2F
2π

(4)

In dealing with the second-order term in Eq.(3), we change the order of integration and

introduce the new variable t = xs. Thus, we have

n2(r = 0) = Z2 4

π2

∫ kF

0

dk

∫ ∞
1

dx
1

x

∫ ∞
0

ds
sin(2ks) sin(2ksx)

s
. (5)

The integral with respect to s becomes I(x) = (1/2) ln[(x+ 1)/(x− 1)] independently of k.
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To perform the x-integration in Eq.(3), we employ a convergent (x ≥ 1) expansion

I(x) =
∞∑
m=0

1

(2m+ 1)x2m+1
(6)

by which the remaining integrations are elementary and finally we get

n2(r = 0) = Z2 4

π2
kF

∞∑
m=0

1

(2m+ 1)2
= Z2 kF

2
(7)

since the sum becomes λ(2) = (3/4)ζ(2) = π2/8 in terms of Riemann’s zeta-function.

Next, we turn to the exact treatment of scattering states. With Coulomb potential Z/r,

the important enhancement factor EC(η) is

EC(η) =
2πη

1− e−2πη
≡ 1 + πη + 2

∞∑
m=1

η2

m2 + η2
(8)

in terms of the Sommerfeld parameter η = Z/k. From this we get

n(0) =
1

π2

∫ kF

0

dk k2EC(k) = n0 + Z
k2F
2π

+ Z2 2

π2

∞∑
m=1

1

m2

[
kF −

Z

m
arctan

(
mkF
Z

)]
(9)

= n0 +
Z

2π
k2F +

Z2

3
kF −

Z3

π
ζ(3) +

π2Z5

45kF
+O(k−3F ).

In the high-density limit, where kF � 1, this expression tends to

n(0) = n0 +
Zk2F
2π

+ Z2 kF
3
− Z3

π
ζ(3) (10)

where we used ζ(2) = π2/6. Apart from its sign, the last term corresponds [5, 6] to the total

density of the entire spectrum of bound states of a hydrogen-like atom. This kF -independent

term is negligible when kF � 1.

By comparing the exact Eq.(10) with the perturbative Eq.(7), one can see a moderate

numerical deviation in the Z2-order term. This approximate agreement is one of the main

results of this work. We can say, following Wigner’s early observation, that the second-

order perturbation theory developed by March and Murray for charged imperfections in a

noninteracting, degenerate electron gas appears to be meaningful.

In the rest of this note, we turn to important subquestions on the role of screening and

non-idempotency of the host system. We focus on changes in the first-order term n1(0). By

substituting into Eq. (2) a Yukawa-type potential VY (r) = (Z/r) exp(−Λr) we get

n
(Y )
1 (r = 0) =

Z

π2

[(
k2F +

Λ2

4

)
arctan

2kF
Λ
− ΛkF

2

]
(11)
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which reproduces Eq.(4) when Λ = 0. However, this transparent closed expression allows

a deeper analysis of the kF -dependence of the parameter Λ(kF ). One can see that with

conventional, Thomas-Fermi scaling of Λ2 = 4kF/π the high density limiting value, Zk2F/2π

will not change. In other words, at that limit the screened potential is penetrable for a very

fast electron. One could reduce the numerical factor (1/2π) of the limiting form only with

an Λ ∝ kF -scaling. In this manner the high-density pair-correlation function at contact,

g(0) = 1 − |n1(0)/n0| becomes tunable. Indeed, there are theoretical arguments [7, 8] that

such scaling is the only one if the goal is to reproduce the exactly known asymptotic form

for this function g(0) = 1− (1.4/kF ).

We afinally come to the challenging problem of the non-idempotency encoded in the

reduced one-particle density matrix in momentum space. The diagonal of this matrix is the

one-particle momentum distribution function. Until now, we have used the ideal momentum

distribution function f0(0 ≤ k ≤ kF ) = 1. Due to the correlated electron motion, the

momentum distribution function f(k) describing the population of plane-wave states of real

particles (and not Landau’s quasiparticles) in the translationally invariant system differs

from the ideal momentum distribution function [9]. This is a crucial point since, for instance,

in a mean-field Kohn-Sham-like treatments of Density Functional Theory with auxiliary

orbitals the population of particles is still the ideal one. Therefore by that method one can

not calculate the exact kinetic energy. In fact, all relative-coordinate-dependent many-body

complications are hidden in an effective external field.

In order to appreciate the important role of non-idempotency (N) in our problem, we

take a simple [10] parametrized (x ≡ k/kF ) expression from the literature

f(0 ≤ x ≤ 1) = a(1) [1− a(2)x2]

f(x > 1) = a(3) e−a(4)(x−1) +
T

x8

Here a(4) = 4, a(3) = (32/13)δ, δ = (1/3)− a(1)[(1/3)− (1/5)a(2)]−T/5, a(2) = 0.048/kF ,

a(1) = 1 − 0.019/kF , and T = [2/(3πkF )]2g(0) in terms of the pair-correlation at contact.

By performing the integration in Eq.(2) with a Z/r potential, in leading order we get

n
(N)
1 (r = 0) ∼=

Zk2F
2π

[
1− 0.042

kF
+O(1/k2F )

]
(12)

As expected, n
(N)
1 (0) < n1(0) due to the nonideality of the momentum distribution function.

Relativistic effects [11, 12] which appear at extreme kF , are beyond the scope of this note.

5



III. SUMMARY

The induced electron density at the position of a single point charge Z embedded in

a three-dimensional degenerate electron gas is studied at high densities. The perturbative,

plane-wave-based treatment developed within the framework of idempotent density matrices

by March and Murray [Phys. Rev. 120, 830 (1960)] is applied here up to second order in

Z. Comparison with the result obtained by considering the exact scattering enhancement

in a bare Coulomb field is made. The small numerical difference found in the second-order

term of the induced density at contact is analyzed following Wigner’s [Phys. Rev. 94, 77

(1954)] similar perturbative treatment of the proton potential in the hydrogen atom.

The impact of many-body screening and non-idempotence in the host system on the

perturbative results found are considered as well. Specifically, the impact of a non-ideal

momentum distribution function could influence the two-term asymptotic results for the

induced density at contact in cases with V (r) = ±(1/r), i.e., with protons and antiprotons.

However, Thomas-Fermi screening modifies the results obtained with bare interactions in

a stronger manner. Clearly, further research on the combined effects of these ingredients

needed for a physically self-consistent model are still desirable to proceed along the path

marked out by the pioneering paper of March on charged imperfections.
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