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Abstract

Ordered qualitative scales formed by linguistic terms are frequently used for

evaluating sets of alternatives in different decision-making problems. These

scales are usually implicitly considered as uniform in the sense that the psycho-

logical proximity between consecutive terms is perceived as identical. However,

sometimes agents can perceive different proximities between the linguistic terms

of the scale, and an appropriate method is required for aggregating these per-

ceptions. In this paper we introduce the notion of metrizable ordinal proximity

measure, discuss some aggregation procedures and propose a method based on

metrics for aggregating experts’ opinions on proximities between linguistic terms

on ordered qualitative scales.
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1. Introduction

In many real problems in various disciplines (Economics, Management, Mar-

keting, Psychology, Sociology, and Tourism, among others) the use of Ordered

Qualitative Scales (OQSs) formed by linguistic terms is quite widespread as a

way of collecting the opinions given by a group of agents concerning a number

of alternatives. It is usually implicitly assumed that these OQSs are uniform, in

the sense that the psychological proximity between all the pairs of consecutive

terms of the OQS is perceived as identical.

Some OQSs with an odd number of linguistic terms are devised as uniform by

fixing a neutral central linguistic term and arranging the other terms around it

symmetrically (e.g. the 5-term OQS {‘very bad’, ‘bad’, ‘regular’, ‘good’, ‘very

good’}). However, not all OQSs with an odd number of linguistic terms are

necessarily uniform1.

OQSs with an even number of linguistic terms do not have a neutral central

linguistic term. Consequently, it is easier to find non-uniform OQSs in even

cases than in odd ones. For instance, the 4-term OQS {‘reject’, ‘major revision’,

‘minor revision’, ‘accept’} used by some scientific journals in evaluating papers

can be understood as non-uniform (see Garćıa-Lapresta and Pérez-Román [11,

2.4] for empirical evidence). Another example of an OQS with an even number

of linguistic terms is provided by Balinski and Laraki [1] when they introduce

the Majority Judgment voting system. These authors consider the 6-term OQS

{‘to reject’, ‘poor’, ‘acceptable’, ‘good’, ‘very good’, ‘excellent’} for evaluating

candidates in political elections. Again, it is not clear that this scale is uniform.

There are numerous contributions in the literature that deal with non-

uniform OQSs that follow fuzzy techniques involving cardinal approaches (see

Herrera-Viedma and López-Herrera [17], Herrera et al. [16], among others).

Other authors tackle non-uniform OQSs by means of ordinal ranges avoiding

either cardinal or ordinal measurements of the proximities between linguistic

terms (see Franceschini et al. [9]).

To deal with non-uniform OQSs in a purely ordinal way via psychologi-

cal proximities between linguistic terms of OQSs, Garćıa-Lapresta and Pérez-

Román [11] introduce the notion of ordinal proximity measure. This new ap-

1Question HS140 in the European Union Statistics on Income and Living Conditions (EU-
SILC) survey conducted by Eurostat uses the 3-term OQS {‘a heavy burden’, ‘somewhat a
burden’, ‘not burden at all’} for asking individuals about the financial burden of total housing
cost. In this OQS the central term is not neutral, so it is not clear that the scale is uniform.
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proach has some similarities with difference measurement within classical mea-

surement theory (see Krantz et al. [18, chapter 4] and Roberts [26, section

3.3]), and with non-metric multidimensional scaling, where only the ranks of

the psychological distances or proximities are known (see Bennett and Hays [2],

Shepard [27], Coombs [4], Kruskal and Wish [19], Cox and Cox [5] and Borg

and Groenen [3, chapter 9], among others).

Given an OQS, the behavior of some ordinal proximity measures is better

than others. This is why in this paper we introduce metrizable ordinal proximity

measures. They behave as if the ordinal comparisons between the terms of an

OQS were managed through a linear metric on the OQS2.

For instance, taking into account the above mentioned OQS {‘reject’, ‘ma-

jor revision’, ‘minor revision’, ‘accept’}, saying that ‘minor revision’ is closer

to ‘accept’ than to ‘major revision’ is equivalent to saying that the numerical

distance between ‘minor revision’ and ‘accept’ is shorter than the numerical dis-

tance between ‘minor revision’ and ‘major revision’, whatever the corresponding

linear metric that generates the ordinal proximity measure3.

Deciding whether a given OQS is uniform or not, and in the latter case

determining what the ordinal proximities are between the terms of the scale

is an important issue for constructing metrizable ordinal proximity measures.

This problem can be solved by a well-informed expert. However, sometimes the

corresponding metrizable ordinal proximity measure is not easy to construct.

In this paper we present an algorithm which generates a metrizable ordinal

proximity measure by means of appropriate sequences of questions about the

proximities between the terms of the scale.

If a group of experts is asked about these proximities, they may have differ-

ent opinions and different metrizable ordinal proximity measures may therefore

emerge. In these situations, it is advisable to find a collective metrizable ordinal

proximity measure that represents individual opinions as faithfully as possible.

Therefore, an appropriate aggregation procedure is needed. This aggregation

problem is not trivial, and different procedures can generate different outcomes

2A linear metric on an OQS is a metric satisfying the requirement that the distance between
two terms must be the sum of the distance between the first term and any intermediate term
between the two given terms and the distance between that intermediate term and the second
given term.

3Notice that this approach is similar to classical preference modeling of weak orders, where
one alternative is preferred to another if and only if the utility of the first alternative is
greater than the utility of the second, whatever the corresponding numerical utility function
that represents the weak order may be.
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and even inconsistencies.

To avoid these problems, we propose some solutions in this paper in the set-

ting of judgment aggregation theory (see Dietrich and List [6], List [22], Mongin

[24] and Grossi and Pigozzi [15], among others). In particular, we have devised a

weighted-metric-based procedure that provides the metrizable ordinal proximity

measure that minimizes the sum of distances (square distances) between itself

and the metrizable ordinal proximity measures of the experts. This procedure

solves the aforementioned problems. It is illustrated with two real case studies.

The rest of the paper is organized as follows. Section 2 introduces, analyzes

and generates metrizable ordinal proximity measures. Section 3 studies the

problem of how to aggregate experts’ opinions through certain voting systems in

order to generate metrizable ordinal proximity measures, and the inconsistencies

that can result. Section 4 presents some proposals for avoiding inconsistencies.

Section 5 contains some concluding remarks.

2. Ordinal proximity measures

Consider an OQS L = {l1, . . . , lg} whose terms are arranged from worst

to best, with granularity at least 3, i.e., g ≥ 3. In order to recall the notion

of ordinal proximity measure on L, introduced by Garćıa-Lapresta and Pérez-

Román [11], we shall use a linear order ∆ = {δ1, . . . , δh}, with δ1 � · · · � δh,

for representing different degrees of proximity (with no meaning) among the

terms of L, being δ1 and δh the maximum and minimum degrees, respectively.

As usual in the setting of linear orders, δr � δs means δr � δs or δr = δs;

δr ≺ δs means δs � δr; and δr � δs means δr ≺ δs or δr = δs.

Definition 1. ([11]) An ordinal proximity measure (OPM) on L with values
in ∆ is a mapping π : L2 −→ ∆, where π(lr, ls) = πrs means the degree of
proximity between lr and ls, satisfying the following conditions:

1. Exhaustiveness: For every δ ∈ ∆, there exist lr, ls ∈ L such that δ = πrs .

2. Symmetry : πsr = πrs , for all r, s ∈ {1, . . . , g}.
3. Maximum proximity : πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
4. Monotonicity : πrs � πrt and πst � πrt , for all r, s, t ∈ {1, . . . , g} such

that r < s < t.

We note that the previous conditions are independent (see Garćıa-Lapresta

and Pérez-Román [11, Prop. 1]).

Every OPM π : L2 −→ ∆ can be represented by a g× g symmetric matrix

with coefficients in ∆, where the elements in the main diagonal are πrr = δ1,
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r = 1, . . . , g: 
π11 · · · π1s · · · π1g

· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg

· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

 .

This matrix is called the proximity matrix associated with π.

Taking into account the conditions appearing in Definition 1, it is only nec-

essary to show the upper half proximity matrix

δ1 π12 π13 · · · π1(g−1) π1g

δ1 π23 · · · π2(g−1) π2g

· · · · · · · · ·
δ1 π(g−1)g

δ1


.

We note that the minimum proximity between linguistic terms is only reached

when comparing the extreme linguistic terms: πrs = δh ⇔ (r, s) ∈ {(1, g), (g, 1)}
(see Garćıa-Lapresta and Pérez-Román [11, Prop. 2]).

We also note that the cardinality of ∆ is located between the granularity

of L and a polynomial of degree 2 of that granularity (see Garćıa-Lapresta and

Pérez-Román [11, Prop. 4]):

g ≤ h ≤ g · (g − 1)

2
+ 1.

2.1. Linear metrics

The notion of metrizable OPM is based on linear metrics on OQSs. So, we

first introduce the notion of linear metric in the setting of OQSs.

Definition 2. A linear metric on an OQS L is a mapping d : L2 −→ R
satisfying the following conditions for all r, s, t ∈ {1, . . . , g}:

1. Positiveness: d(lr, ls) ≥ 0.

2. Identity of indiscernibles: d(lr, ls) = 0 ⇔ r = s.

3. Symmetry : d(ls, lr) = d(lr, ls).

4. Linearity : r < s < t ⇒ d(lr, lt) = d(lr, ls) + d(ls, lt).

As shown in the following remark, it is possible to generate a linear metric

from the distances between consecutive terms of the OQS.
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Remark 1. Given d(lr, lr+1) = ρr > 0 for r = 1, . . . , g − 1, there exists
a unique linear metric on L, d : L2 −→ R, satisfying the given conditions:
d(lr, lr+2) = d(lr, lr+1) + d(lr+1, lr+2) = ρr + ρr+1 for every r ∈ {1, . . . , g − 2}.
Iterating this process, we have d(lr, lr+t) = ρr + ρr+1 + · · · + ρr+t−1 for all
r, t ∈ {1, . . . , g− 1} such that r+ t ≤ g. It suffices to define d(ls, lr) = d(lr, ls)
and d(lr, lr) = 0 for all r, s ∈ {1, . . . , g}.

We now justify that the family of linear metrics is a proper subset of the

family of metrics.

Proposition 1. Every linear metric d : L2 −→ R satisfies the triangle inequal-
ity, i.e., d(lr, lt) ≤ d(lr, ls) + d(ls, lt) for all r, s, t ∈ {1, . . . , g}.

Proof. There exist 6 cases.

1. r ≤ s ≤ t : d(lr, lt) = d(lr, ls) + d(ls, lt).

2. r ≤ t ≤ s : d(lr, lt) ≤ d(lr, lt) + d(lt, ls) = d(lr, ls) ≤ d(lr, ls) + d(ls, lt).

3. s ≤ r ≤ t : d(lr, lt) ≤ d(lr, lt) + d(ls, lr) = d(ls, lt) ≤ d(lr, ls) + d(ls, lt).

4. s ≤ t ≤ r : d(lr, lt) ≤ d(lr, lt) + d(ls, lt) = d(ls, lr) ≤ d(lr, ls) + d(ls, lt).

5. t ≤ r ≤ s : d(lr, lt) ≤ d(lr, lt) + d(lr, ls) = d(lt, ls) ≤ d(lr, ls) + d(ls, lt).

6. t ≤ s ≤ r : d(lr, lt) = d(lt, lr) = d(lt, ls) + d(ls, lr) = d(lr, ls) + d(ls, lt). �

Consequently, every linear metric on L is a metric. The reciprocal is not

true, as shown in the following remark.

Remark 2. There exist metrics on L that are not linear metrics. For instance,
consider L = {l1, l2, l3} and d : L2 −→ R the mapping defined as d(l1, l1) =
d(l2, l2) = d(l3, l3) = 0, d(l1, l2) = d(l2, l1) = 2, d(l2, l3) = d(l3, l2) = 3 and
d(l1, l3) = d(l3, l1) = 4. It is easy to check that d is a metric on L. However, it
is not linear: 4 = d(l1, l3) < d(l1, l2) + d(l2, l3) = 5.

2.2. Metrizable OPMs

Before introducing the notion of metrizable OPM, we justify that every linear

metric on an OQS defines in a natural way an OPM.

Proposition 2. Let d : L2 −→ R be a linear metric. If π : L2 −→ ∆ is an
exhaustive mapping defined as πrs � πtu ⇔ d(lr, ls) < d(lt, lu), then π is an
OPM on L.

Proof.

1. Exhaustiveness: By hypothesis.

2. Symmetry: By symmetry of d.
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3. Maximum proximity: Since π is exhaustive, δ1 = πrs for some r, s ∈
{1, . . . , g}. If r 6= s, then d(lr, lr) = 0 < d(lr, ls). Then, πrr � πrs = δ1,

that is a contradiction. Consequently, r = s, i.e., δ1 = πrr . In order to

prove that πtt = δ1 for every t ∈ {1, . . . , g}, suppose that πtt 6= πrr for

some t ∈ {1, . . . , g}. If πtt � πrr , then 0 = d(lt, lt) < d(lr, lr), that is a

contradiction. Analogously, from πrr � πtt we obtain a contradiction.

4. Monotonicity: Consider r, s, t ∈ {1, . . . , g} such that r < s < t. Since

d(lr, lt) = d(lr, ls) + d(ls, lt), d(lr, ls) > 0 and d(ls, lt) > 0, we have

d(lr, lt) > d(lr, ls), i.e., πrs � πrt , and d(lr, lt) > d(ls, lt), i.e., πst � πrt .

�

Definition 3. An OPM π : L2 −→ ∆ is metrizable if there exists a linear
metric d : L2 −→ R such that πrs � πtu ⇔ d(lr, ls) < d(lt, lu), for all
r, s, t, u ∈ {1, . . . , g}. We say that π is generated by d.

Remark 3. If π : L2 −→ ∆ is a metrizable OPM generated by a linear metric
d : L2 −→ R and d′ : L2 −→ R is defined as d′(lr, ls) = λ · d(lr, ls) for some
λ > 0, then d′ is a linear metric and π is also generated by d′.

However, a metrizable OPM can be generated by non proportional linear
metrics. Consider L = {l1, l2, l3} and π : L2 −→ ∆ the OPM associated with
the matrix A32 (see Subsection 2.3). Let d : L2 −→ R be the mapping de-
fined as d(l1, l1) = d(l2, l2) = d(l3, l3) = 0, d(l1, l2) = d(l2, l1) = 2, d(l2, l3) =
d(l3, l2) = 1 and d(l1, l3) = d(l3, l1) = 3. Let d′ : L2 −→ R be the map-
ping defined as d′(l1, l1) = d′(l2, l2) = d′(l3, l3) = 0, d′(l1, l2) = d′(l2, l1) = 3,
d′(l2, l3) = d′(l3, l2) = 1 and d′(l1, l3) = d′(l3, l1) = 4. It is easy to see that d
and d′ are linear metrics and that π is simultaneously generated by d and d′.
Nevertheless, d′ 6= λ · d for every λ > 0.

2.3. Constructing metrizable OPMs

We now show the proximity matrices associated with all the metrizable

OPMs for g = 3, 4.

The subindices of the matrices A’s correspond to the subindices of the δ’s

appearing in the coefficients just over the main diagonal, π12, π23, . . . , π(g−1) g .

These ordinal proximities correspond to the comparisons between all the pairs

of consecutive linguistic terms.

For g = 3 there are three OPMs and all of them are metrizable. If an expert

declares π12 = π23 , π12 � π23 or π12 ≺ π23 , then the matrix associated with

the corresponding metrizable OPM will be A22 (see Figure 1), A23 (see Figure

7



2) or A32 (see Figure 3), respectively:

A22 =

 δ1 δ2 δ3

δ1 δ2

δ1

 , A23 =

 δ1 δ2 δ4

δ1 δ3

δ1

 , A32 =

 δ1 δ3 δ4

δ1 δ2

δ1

 .

Figure 1: Ordinal proximity measure with associated matrix A22.

l1 l2
δ2

l3
δ2

Figure 2: Ordinal proximity measure with associated matrix A23.

l1 l2
δ2

l3
δ3

Figure 3: Ordinal proximity measure with associated matrix A32.

l1 l2
δ3

l3
δ2

For g > 3, experts may find some difficulties in directly constructing the

OPM (or the associated proximity matrix) that reflects their own opinions about

the proximities between the terms of the OQS. This can be done through ap-

propriate sequences of questions, the answers to which lead to a metrizable

OPM.

For g = 4 there are 51 OPMs, but only 25 of them are metrizable. Figure

4 contains an algorithm for g = 4 that guides the sequence of questions, de-

pending on the answers provided by an expert, in order to obtain one of the

25 metrizable OPMs. This algorithm starts by asking the expert about ordinal

proximities π12 and π23 . The next question differs depending on whether one

of these ordinal proximities is greater than the other or they are the same. The

procedure continues with similar questions comparing the ordinal proximities

between the remaining pairs of terms of the OQS until the OPM is obtained.

It is interesting to note that 4, 12 and 9 matrices are achieved after answering

2, 3 and 4 questions, respectively (3.2 questions on average). Unfortunately, for

g > 4 the complexity of the algorithm dramatically increases.

The associated proximity matrices of these 25 metrizable OPMs are:
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Figure 4: Algorithm for g = 4.
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A222 =


δ1 δ2 δ3 δ4

δ1 δ2 δ3

δ1 δ2

δ1

 , A223 =


δ1 δ2 δ4 δ6

δ1 δ2 δ5

δ1 δ3

δ1

 ,

A′223 =


δ1 δ2 δ3 δ5

δ1 δ2 δ4

δ1 δ3

δ1

 , A224 =


δ1 δ2 δ3 δ6

δ1 δ2 δ5

δ1 δ4

δ1

 ,

A232 =


δ1 δ2 δ4 δ5

δ1 δ3 δ4

δ1 δ2

δ1

 , A233 =


δ1 δ2 δ4 δ6

δ1 δ3 δ5

δ1 δ3

δ1

 ,

A234 =


δ1 δ2 δ5 δ7

δ1 δ3 δ6

δ1 δ4

δ1

 , A′234 =


δ1 δ2 δ4 δ6

δ1 δ3 δ5

δ1 δ4

δ1

 ,

A235 =


δ1 δ2 δ4 δ7

δ1 δ3 δ6

δ1 δ5

δ1

 , A243 =


δ1 δ2 δ5 δ7

δ1 δ4 δ6

δ1 δ3

δ1

 ,

A322 =


δ1 δ3 δ5 δ6

δ1 δ2 δ4

δ1 δ2

δ1

 , A′322 =


δ1 δ3 δ4 δ5

δ1 δ2 δ3

δ1 δ2

δ1

 ,

A323 =


δ1 δ3 δ4 δ5

δ1 δ2 δ4

δ1 δ3

δ1

 , A324 =


δ1 δ3 δ5 δ7

δ1 δ2 δ6

δ1 δ4

δ1

 ,
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A′324 =


δ1 δ3 δ4 δ6

δ1 δ2 δ5

δ1 δ4

δ1

 , A325 =


δ1 δ3 δ4 δ7

δ1 δ2 δ6

δ1 δ5

δ1

 ,

A332 =


δ1 δ3 δ5 δ6

δ1 δ3 δ4

δ1 δ2

δ1

 , A342 =


δ1 δ3 δ6 δ7

δ1 δ4 δ5

δ1 δ2

δ1

 ,

A422 =


δ1 δ4 δ5 δ6

δ1 δ2 δ3

δ1 δ2

δ1

 , A423 =


δ1 δ4 δ6 δ7

δ1 δ2 δ5

δ1 δ3

δ1

 ,

A′423 =


δ1 δ4 δ5 δ6

δ1 δ2 δ4

δ1 δ3

δ1

 , A432 =


δ1 δ4 δ6 δ7

δ1 δ3 δ5

δ1 δ2

δ1

 ,

A′432 =


δ1 δ4 δ5 δ6

δ1 δ3 δ4

δ1 δ2

δ1

 , A523 =


δ1 δ5 δ6 δ7

δ1 δ2 δ4

δ1 δ3

δ1

 ,

A532 =


δ1 δ5 δ6 δ7

δ1 δ3 δ4

δ1 δ2

δ1

 .

We now explain why the above matrices correspond to metrizable OPMs, by

showing the basic information of some linear metrics that generate these OPMs

(take into account Remarks 1 and 3):

A22: d(l1, l2) = d(l2, l3) = 1.

A23: d(l1, l2) = 1, d(l2, l3) = 2.

A32: d(l1, l2) = 2, d(l2, l3) = 1.
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A222: d(l1, l2) = d(l2, l3) = d(l3, l4) = 1.

A223: d(l1, l2) = d(l2, l3) = 1, d(l3, l4) = 1.5.

A′223: d(l1, l2) = d(l2, l3) = 1, d(l3, l4) = 2.

A224: d(l1, l2) = d(l2, l3) = 1, d(l3, l4) = 3.

A232: d(l1, l2) = d(l3, l4) = 1, d(l2, l3) = 2.

A233: d(l1, l2) = 1, d(l2, l3) = d(l3, l4) = 2.

A234: d(l1, l2) = 1, d(l2, l3) = 1.5, d(l3, l4) = 2.

A′234: d(l1, l2) = 1, d(l2, l3) = 2, d(l3, l4) = 3.

A235: d(l1, l2) = 1, d(l2, l3) = 1.5, d(l3, l4) = 3.

A243: d(l1, l2) = 1, d(l2, l3) = 3, d(l3, l4) = 2.

A322: d(l1, l2) = 2, d(l2, l3) = d(l3, l4) = 1.5.

A′322: d(l1, l2) = 2, d(l2, l3) = d(l3, l4) = 1.

A323: d(l1, l2) = d(l3, l4) = 1, d(l2, l3) = 2.

A324: d(l1, l2) = 2.5, d(l2, l3) = 1, d(l3, l4) = 3.

A′324: d(l1, l2) = 2, d(l2, l3) = 1, d(l3, l4) = 3.

A325: d(l1, l2) = 2, d(l2, l3) = 1, d(l3, l4) = 4.

A332: d(l1, l2) = d(l2, l3) = 2, d(l3, l4) = 1.

A342: d(l1, l2) = 2, d(l2, l3) = 3, d(l3, l4) = 1.

A422: d(l1, l2) = 3, d(l2, l3) = d(l3, l4) = 1.

A423: d(l1, l2) = 2.5, d(l2, l3) = 1, d(l3, l4) = 2.

A′423: d(l1, l2) = 3, d(l2, l3) = 1, d(l3, l4) = 2.

A432: d(l1, l2) = 2.5, d(l2, l3) = 2, d(l3, l4) = 1.

A′432: d(l1, l2) = 3, d(l2, l3) = 2, d(l3, l4) = 1.

A523: d(l1, l2) = 3, d(l2, l3) = 1, d(l3, l4) = 1.5.

A532: d(l1, l2) = 3, d(l2, l3) = 1.5, d(l3, l4) = 1.

Remark 4. The Appendix includes the associated proximity matrices of the
26 non metrizable OPMs for g = 4.

As an example, we show that the OPM with associated proximity matrix

A1
222 =


δ1 δ2 δ3 δ5

δ1 δ2 δ4
δ1 δ2

δ1
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is not metrizable.
Since π13 = δ3 � δ4 = π24 , we have d(l1, l3) < d(l2, l4). If π was metrizable,

we had d(l1, l2) + d(l2, l3) < d(l2, l3) + d(l3, l4). Then, d(l1, l2) < d(l3, l4), i.e.,
π12 � π34 , that is a contradiction, because π12 = π34 = δ2.

2.4. Uniform OPMs

We now consider uniform and totally uniform OPMs, and analyze their

relationships with metrizable OPMs.

Definition 4. An OPM π : L2 −→ ∆ is uniform if πr (r+1) = πs (s+1) for all
r, s ∈ {1, . . . , g − 1}, and totally uniform if πr (r+t) = πs (s+t) for all r, s, t ∈
{1, . . . , g − 1} such that r + t ≤ g and s+ t ≤ g.

Remark 5. Let π : L2 −→ ∆ be a totally uniform OPM on L. Taking into
account Definitions 1 and 4, � is determined by πrr = πss � πr (r+1) =
π(r+1) r = πs (s+1) = π(s+1) s � πr (r+2) = π(r+2) r = πs (s+2) = π(s+2) s �
· · · � πr (r+g−2) = π(r+g−2) r = πs (s+g−2) = π(s+g−2) s � π1g = πg1 , for all
admissible r, s ∈ {1, . . . , g}. Consequently, πrs � πtu ⇔ |s − r| < |u − t|, for
all r, s, t, u ∈ {1, . . . , g}.

Obviously, every totally uniform OPM is uniform. We now justify that the

converse is also true in the case of metrizable OPMs. We also prove that totally

uniform OPMs are always metrizable.

Proposition 3. If π : L2 −→ ∆ is a uniform metrizable OPM on L, then it
is also totally uniform.

Proof. Let d : L2 −→ R be a linear metric such that πrs � πtu ⇔ d(lr, ls) <

d(lt, lu). Since π is uniform, there exists ρ > 0 such that d(lr, lr+1) = ρ for

every r ∈ {1, . . . , g − 1}. Then, d(lr, lr+2) = d(lr, lr+1) + d(lr+1, lr+2) = 2ρ

for every r ∈ {1, . . . , g − 2}, i.e., πr(r+2) = πs(s+2) for all r, s ∈ {1, . . . , g − 2}.
Iterating this process, we have d(lr, lr+t) = t ·ρ for all r, t ∈ {1, . . . , g−1} such

that r + t ≤ g, hence πr(r+t) = πs(s+t) for all r, s, t ∈ {1, . . . , g − 1} such that

r + t, s+ t ≤ g. �

Proposition 4. If π : L2 −→ ∆ is a totally uniform OPM on L, then π is
metrizable and it is only generated by the family of linear metrics dρ : L2 −→ R
defined as dρ(lr, ls) = ρ · |s− r| with ρ > 0.

Proof. It is easy to see that the mapping d1 : L2 −→ R defined as d1(lr, ls) =

|s − r| for all r, s ∈ {1, . . . , g} is a linear metric. By Remark 5, πrs � πtu ⇔
|s − r| < |u − t|, for all r, s, t, u ∈ {1, . . . , g}. Then, π is metrizable and it is

generated by d1. Let d : L2 −→ R a linear metric that generates π. Since π is
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uniform, there exists ρ > 0 such that d(lr, lr+1) = ρ for every r ∈ {1, . . . , g−1},
and d(lr, lr+t) = ρ · t for all r, t ∈ {1, . . . , g − 1} such that r + t ≤ g. Let

r, s ∈ {1, . . . , g}. If r ≤ s, then d(lr, ls) = d(lr, lr+(s−r)) = ρ ·(s−r) = ρ · |s−r|.
If s < r, then d(lr, ls) = d(ls, lr) = d(ls, ls+(r−s)) = ρ · (r − s) = ρ · |s− r|. �

Remark 6. For each granularity g ≥ 3, there is one and only one totally uni-
form OPM. For g = 3 and g = 4 these are the ones with associated proximity
matrices A22 and A222, respectively. For g = 4, two of the 51 OPMs are uni-
form but not totally uniform (hence, non metrizable), the ones with associated
proximity matrices A1

222 and A2
222 (see the Appendix). For g ≥ 5, finding

all the OPMs is a tedious task. However, the unique totally uniform OPM is
directly obtained from Remark 5: δ1 = πrr = πss � δ2 = πr (r+1) = π(r+1) r =
πs (s+1) = π(s+1) s � δ3 = πr (r+2) = π(r+2) r = πs (s+2) = π(s+2) s � δg−1 =
· · · � πr (r+g−2) = π(r+g−2) r = πs (s+g−2) = π(s+g−2) s � δg = π1g = πg1 , for all
admissible r, s ∈ {1, . . . , g}.

3. Aggregating experts’ opinions through voting systems

Consider that a set of experts E = {1, . . . ,m} compares the ordinal prox-

imities between pairs of linguistic terms of an OQS L in a purely ordinal way.

Given (lr, ls), (lt, lu) ∈ L2, with πrs �e πtu we denote that expert e ∈ E
declares that lr is closer to ls than lt is to lu. Analogously, πrs =e πtu denotes

that expert e ∈ E declares that the proximity between ls and lt is the same as

that between lt and lu.

We now introduce some methods for generating social proximity outcomes

through different voting systems: simple and qualified majorities, and scoring

rules. Given (lr, ls), (lt, lu) ∈ L2, our aim is to determine, if possible, whether

the social outcome is πrs � πtu , πtu � πrs or πrs = πtu , after applying the

corresponding voting system to the comparisons drawn up by the experts πrs

versus πtu , for all e ∈ E.

3.1. Majorities

We consider that the status quo is πrs = πtu : this should be the social

outcome whenever there is no previously fixed majority, declaring πrs � πtu or

πtu � πrs .

Simple majority is the most decisive majority (when indifferences are al-

lowed, the winner can have very poor support). Qualified majorities require

more support before a winner can be declared; they range from absolute to

unanimous majorities.
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1. If simple majority is applied:

(a) πrs � πtu ⇔
(
#{e ∈ E | πrs �e πtu} > #{e ∈ E | πtu �e πrs} and

#{e ∈ E | πrs �e πtu} > #{e ∈ E | πrs =e πtu}
)
,

(b) πtu � πrs ⇔
(
#{e ∈ E | πtu �e πrs} > #{e ∈ E | πrs �e πtu} and

#{e ∈ E | πtu �e πrs} > #{e ∈ E | πrs =e πtu}
)
,

(c) πrs = πtu , otherwise.

2. If the qualified majority of threshold q ∈ [0.5, 1) is applied4:

(a) πrs � πtu ⇔ #{e ∈ E | πrs �e πtu} > q ·m,

(b) πtu � πrs ⇔ #{e ∈ E | πtu �e πrs} > q ·m,

(c) πrs = πtu , otherwise.

3.2. Scoring rules

We assume that when an expert e ∈ E declares πrs �e πtu , then that

expert prefers this assessment to πrs =e πtu , and the latter to πtu �e πrs .

Analogously, when an expert e ∈ E declares πtu �e πrs , then that expert

prefers this assessment to πrs =e πtu , and the later one to πrs �e πtu . We

also assume that when an expert e ∈ E declares πrs =e πtu , then that expert

prefers this assessment to both πrs �e πtu and πtu �e πrs , and is indifferent

between these two latter assessments5.

These three situations can be visualized in the usual way of showing linear

and weak orders

πrs �e πtu πtu �e πrs πrs =e πtu

πrs =e πtu πrs =e πtu πrs �e πtu πtu �e πrs
πrs ≺e πtu πtu ≺e πrs

If a scoring rule with normalized scoring vector (1, s, 0), with 0 ≤ s ≤ 1, is

applied, then 1 point is assigned to the first ranked alternative, s points to the

second ranked alternative and 0 points to the third ranked alternative. As usual,

when indifferences appear, the average of the corresponding scores is assigned.

Thus, in the third situation a score of s/2 is assigned to the two alternatives

that are in a tie.

4Absolute majority corresponds to the case q = 0.5.
5Clearly, an expert e ∈ E could prefer πrs �e πtu to πtu �e πrs or vice-versa. With

this simplification we avoid asking the experts more questions.
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3.3. Consistency

For all r, s, t, u, v, w ∈ {1, . . . , g} the following conditions must be satisfied:

(
πrs � πtu ∧ πtu � πvw

)
⇒ πrs � πvw (1)(

πrs � πtu ∧ πtu = πvw
)
⇒ πrs � πvw (2)(

πrs = πtu ∧ πtu � πvw
)
⇒ πrs � πvw (3)(

πrs = πtu ∧ πtu = πvw
)
⇒ πrs = πvw (4)

r < s < t ⇒ πrs � πrt (5)

r < s < t ⇒ πst � πrt (6)

Conditions (1), (2) and (3) refer to the linear order � on ∆; (4) to the

transitivity of = ; and (5) and (6) to the monotonicity of π.

3.4. A case study

To show how some voting systems can be applied for generating an OPM

from the opinions of a group of experts, we consider the data from the case

study reported in Garćıa-Lapresta and Pérez-Román [11, 2.4].

We now present the results of a survey conducted on 76 members of the

Spanish Society for Fuzzy Logic and Technology (ESTYLF ) about the degrees

of proximity between the usual decisions of some journal editors (see Table 1).

l1 l2 l3 l4
Reject Major revision Minor revision Accept

Table 1: Meaning of the linguistic terms.

Table 2 contains the data obtained in the survey.

We now present the social outcomes generated by simple majority and some

qualified majorities when aggregating experts’ opinions about the ordinal prox-

imities between pairs of linguistic terms.

• Simple majority: π34 � π23 � π12 � π24 � π13 . This information allows

us to assign the following degrees of proximity

πrr = δ1 � π34 = δ2 � π23 = δ3 � π12 = δ4 � π24 = δ5 � π13 = δ6 � π14 = δ7
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π12 versus π23 Number %
π12 � π23 27 35.5

π12 ≺ π23 32 42.1

π12 = π23 17 22.4

π23 versus π34 Number %
π23 � π34 6 7.9

π23 ≺ π34 69 90.8

π23 = π34 1 1.3

π12 versus π34 Number %
π12 � π34 10 13.2

π12 ≺ π34 54 71.0

π12 = π34 12 15.8

π12 versus π24 Number %
π12 � π24 42 55.3

π12 ≺ π24 18 23.7

π12 = π24 16 21.0

π13 versus π34 Number %
π13 � π34 0 0.0

π13 ≺ π34 75 98.7

π13 = π34 1 1.3

π13 versus π24 Number %
π13 � π24 1 1.3

π13 ≺ π24 53 69.7

π13 = π24 22 29.0

Table 2: Data of the survey.

and the metrizable OPM with associated proximity matrix

A432 =


δ1 δ4 δ6 δ7

δ1 δ3 δ5

δ1 δ2

δ1

 .

• Qualified majorities of thresholds q ∈ [0.5, 0.552): π34 � π12 = π23 �
π24 � π13 . This information allows us to assign the following degrees of

proximity

πrr = δ1 � π34 = δ2 � π12 = π23 = δ3 � π24 = δ4 � π13 = δ5 � π14 = δ6

and the metrizable OPM with associated proximity matrix

A332 =


δ1 δ3 δ5 δ6

δ1 δ3 δ4

δ1 δ2

δ1

 .

• Qualified majorities of thresholds q ∈ [0.697, 0.710): π34 � π12 = π23 =
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π13 = π24 . Since π13 = π12 and π24 = π23 , π violates the monotonicity

conditions (5) and (6) and, consequently, π is not an OPM. Nevertheless,

the obtained ordinal proximities can be arranged in the following matrix
δ1 δ3 δ3 δ4

δ1 δ3 δ3

δ1 δ2

δ1

 .

• Qualified majorities of thresholds q ∈ [0.710, 0.907): π12 = π23 , π12 =

π34 , π34 � π13 , π34 � π23 , π12 = π24 and π13 = π24 . Since π34 = π12 ,

π12 = π23 and π34 � π23 , π violates condition (4), the transitivity of

= , and, consequently, it is not an OPM. In this case it is not possible to

arrange the ordinal proximities obtained in any matrix.

We now present the outcomes generated by some scoring rules when aggre-

gating experts’ opinions on the proximities between pairs of linguistic terms.

Consider the normalized scoring vector (1, s, 0), with 0 ≤ s ≤ 1.

• s ∈ [0, 0.2]: we obtain the metrizable OPM with associated proximity

matrix A432.

• s ∈ [0.3, 0.5): we obtain the metrizable OPM with associated proximity

matrix A332.

• s ∈ (0.5, 0.7]: π34 � π23 = π12 = π24 . Since π24 = π23 , π violates the

monotonicity condition (5) and, consequently, π is not an OPM.

• s ∈ [0.8, 0.9]: π12 = π23 , π12 = π34 , π34 � π13 , π34 � π23 , π12 = π24

and π13 = π24 . Since π34 = π12 , π12 = π23 and π34 � π23 , π violates

condition (4), the transitivity of = , and, consequently, it is not an OPM.

Again, it is not possible to arrange the obtained ordinal proximities in any

matrix.

All these inconsistencies may be considered as specific problems of judgment

aggregation within social choice theory, in the sense that the aggregation of

judgments over multiple interconnected issues may produce inconsistent out-

comes (see, for instance, Grossi and Pigozzi [15]). Some proposals aimed at

avoiding these inconsistencies are made in the next section.
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4. Avoiding inconsistencies

In order to avoid the inconsistencies shown in Section 3 when experts’ opin-

ions are aggregated through voting systems, we now introduce some distance-

based procedures. Two of them are related to the characterizations of the

median and the mean, in the sense that the outcomes are the metrizable OPMs

that minimize the sum of distances and squared distances, respectively, to the

metrizable OPMs of the agents.

First we introduce metrics on OPMs.

4.1. Distances between OPMs

With P (L) we denote the set of OPMs on L. With M(L) we denote the

set of metrizable OPMs on L.

Definition 5. Let π1 : L2 −→ ∆1 and π2 : L2 −→ ∆2 be two OPMs, w :
N −→ R a weighting function such that w(1) = 1 ≥ w(2) ≥ · · · ≥ w(g− 1) > 0,

β : (∆1 ∪∆2)
2 −→ N ∪ {0} the mapping defined as β(δi, δj) = |i − j| and

S = {(r, s) ∈ {1, . . . , g − 1}2 | r + s ≤ g}. Then, Dw

(
π1, π2

)
is defined as

Dw

(
π1, π2

)
=

∑
(r,s)∈S

w(s) · β
(
π1
r (r+s), π

2
r (r+s)

)
. (7)

Remark 7. An equivalent formulation of Eq. (7) is

Dw

(
π1, π2

)
=

g−1∑
r=1

β
(
π1
r (r+1), π

2
r (r+1)

)
+ w(2) ·

g−2∑
r=1

β
(
π1
r (r+2), π

2
r (r+2)

)
+

+w(3) ·
g−3∑
r=1

β
(
π1
r (r+3), π

2
r (r+3)

)
+ · · ·

Remark 8. Some simple examples of weighting functions are:

1. Power: w(s) =
1

sα
, with α ≥ 1.

2. Exponential: w(s) =
1

αs−1
, with α > 1.

3. Linear: w(s) = 1−1− α
g − 2

·(s−1), with 0 < α < 1 (note that α = w(g−1)).

Proposition 5. If w : N −→ R is a weighting function such that w(1) = 1 ≥
w(2) ≥ · · · ≥ w(g − 1) > 0, then the mapping Dw : P (L)2 −→ R defined from
Eq. (7) is a metric.
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Proof. Taking into account that w(s) > 0 for every s ∈ {1, . . . , g − 1}
and the mapping β : {δi | i ∈ N} −→ R defined as β(δi, δj) = |i − j| is a

metric, we have that Dw

(
π1, π2

)
is a positive linear combination of distances.

Consequently, Dw is a metric. �

Remark 9. For g = 4, let w : N −→ R be the weighting functions with
power weights for α = 1, i.e., w(1) = 1, w(2) = 1

2 and w(3) = 1
3 , and

α = 2, i.e., w(1) = 1, w(2) = 1
4 and w(3) = 1

9 , and exponential weights for
α = 2, i.e., w(1) = 1, w(2) = 1

2 and w(3) = 1
4 , and α = 3, i.e., w(1) =

1, w(2) = 1
3 and w(3) = 1

9 . The closest metrizable OPM, with respect to
Dw, to the non metrizable OPMs with associated proximity matrices A1

ijk and

A2
ijk (see the Appendix) are just the ones associated with Aijk or A′ijk (see

Subsection 2.3). However, linear weighting functions do not follow this pattern.
For instance, if α = 0.3, i.e., w(1) = 1, w(2) = 0.85 and w(3) = 0.7, then
the closest metrizable OPM, with respect to Dw, to the non metrizable OPMs
with associated proximity matrices A1

222 and A2
222 (see the Appendix) is not

the one associated with A222, but the ones associated with A′223 and A′322,
respectively. For this reason, on the sequel we do not consider linear weighting
functions.

In what follows we focus on metrizable OPMs. Consider a profile of metriz-

able OPMs (π1, . . . , πm) ∈ M(L)m associated with m experts6. We are inter-

ested in finding a metrizable OPM that represents, as faithfully as possible, the

opinions of the experts. As shown in Subsection 3.4, applying a voting system

for generating the ordinal proximities between pairs of linguistic terms from

the comparisons of the experts may generate inconsistencies. In the following

subsections we propose different approaches for solving these problems.

4.2. Voting systems

In spite of the inconsistency problems mentioned in Section 3, in some cases

it is possible to use a voting system to obtain a matrix (πrs) that represents

the ordinal proximities between pairs of linguistic terms7. If (πrs) corresponds

to a metrizable OPM π ∈ M(L), then π is the outcome. Otherwise, once a

6Notice that experts are not required directly to provide metrizable OPMs. They only need
to answer some simple questions. In particular, for g = 4, following the algorithm included
in Figure 4, the corresponding metrizable OPMs are easily generated once between two and
four questions have been answered.

7As shown in the examples provided in Subsection 3.4, such a matrix cannot exist if
condition (4) is not satisfied.
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metric Dw has been fixed, we find8

{π ∈M(L) | ∀π′ ∈M(L) Dw (π, π) ≤ Dw (π′, π)} ,

i.e., the solution of

arg
π∈M(L)

minDw (π, π) .

If this set contains more than one metrizable OPM, a tie-breaking procedure

needs to be applied. One possibility is to set a sequence of weighting functions

and apply them lexicographically.

4.3. Minimizing aggregated distances

We now introduce a proposal for obtaining collective metrizable OPMs from

the individual ones9. It is based on the characterizations of the statistical no-

tions of median and mean.

4.3.1. The median

It is well known that the medians of a list of numbers is the set of real

numbers that minimize the sum of distances to the numbers of the list. In

this way, the metrizable OPMs that minimize the sum of distances (for a fixed

metric Dw) to the metrizable OPMs of the agents,
(
π1, . . . , πm

)
, can be said to

be their medians. Thus, the medians of
(
π1, . . . , πm

)
are the elements of the

following set

medw
(
π1, . . . , πm

)
={

π ∈M(L) | ∀π′ ∈M(L)

m∑
i=1

Dw

(
π, πi

)
≤

m∑
i=1

Dw

(
π′, πi

)}
,

i.e., the solution of

medw
(
π1, . . . , πm

)
= arg
π∈M(L)

min

m∑
i=1

Dw

(
π, πi

)
. (8)

8We extend Eq. (7) to matrices that do not necessarily correspond to OPMs.
9This proposal is related to the one provided by Grossi and Pigozzi [15, 4.3.3] in a specific

problem of judgment aggregation. See also Eckert and Klamler [7] and Lang et al. [20].
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4.3.2. The mean

It is also well known that the mean of a list of numbers is the real number

that minimizes the sum of the squared distances to the numbers of the list. The

metrizable OPM that minimizes the sum of squared distances (for a fixed metric

Dw) to the metrizable OPMs of the agents,
(
π1, . . . , πm

)
, can be said to be its

mean. Thus, the mean of
(
π1, . . . , πm

)
is the following set

meanw
(
π1, . . . , πm

)
={

π ∈M(L) | ∀π′ ∈M(L)

m∑
i=1

(
Dw

(
π, πi

))2 ≤ m∑
i=1

(
Dw

(
π′, πi

))2}
,

i.e., the solution of

meanw
(
π1, . . . , πm

)
= arg
π∈M(L)

min

m∑
i=1

(
Dw

(
π, πi

))2
. (9)

Notice that the sets of medians and means may have more than one metriz-

able OPM. In such cases, a tie-breaking procedure needs to be applied. As in

Subsection 4.2, one possibility is to set a sequence of weighting functions and

apply them lexicographically.

Example 1. Table 3 shows the matrices associated with the OPMs of the 76
participants in the survey shown in Subsection 3.4 after the algorithm included
in Figure 4 for g = 4 has been applied.

If we consider Dw for the weighting functions appearing in Remark 9, power
weights for α = 1, i.e., w(1) = 1, w(2) = 1

2 and w(3) = 1
3 , and α = 2, i.e.,

w(1) = 1, w(2) = 1
4 and w(3) = 1

9 , and exponential weights for α = 2, i.e.,
w(1) = 1, w(2) = 1

2 and w(3) = 1
4 , and α = 3, i.e., w(1) = 1, w(2) = 1

3 and
w(3) = 1

9 , then the median and the mean of
(
π1, . . . , π76

)
is the metrizable

OPM with associated matrix A332, just the same as the one obtained when
absolute majority and closed qualified majorities are applied in Subsection 3.4.

Remark 10. The sums appearing in 4.3.1 and 4.3.2 can be changed for an
aggregation function F (for instance an OWA operator, such as the median or
a trimmed mean, a quasiarithmetic mean, etc.). Thus, (8) and (9) become

arg
π∈M(L)

minF
(
Dw

(
π, π1

)
, . . . , Dw (π, πm)

)
and

arg
π∈M(L)

minF
( (
Dw

(
π, π1

))2
, . . . , (Dw (π, πm))

2
)
,
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Matrix Frequency %
A222 4 5.3

A223 1 1.3

A232 5 6.6

A243 6 7.9

A323 1 1.3

A332 12 15.8

A342 16 21.1

A432 11 14.5

A′432 4 5.3

A532 16 21.1

76 100

Table 3: Matrices of the survey in Example 1.

respectively.
For instance, in Example 1 if the power weighting function for α = 1, i.e.,

w(1) = 1, w(2) = 1
2 and w(3) = 1

3 is considered, and the distances are ag-
gregated through the trimmed mean that removes the three highest and the
three lowest values, then the metrizable OPM with associated matrix A432 is
obtained, which is just the same as the one obtained when simple majority is
applied in Subsection 3.4.

Notice that the metrizable OPMs with the highest frequency (16), those

with associated proximity matrices A342 and A532, are not selected as the

social outcome for any of the procedures considered. This is not surprising at

all, since plurality rule10 could not faithfully represent individual opinions when

there are more than two alternatives (see, for instance, Morales [25] –English

translation in McLean and Urken [23]– and Laslier [21]).

Example 2. In this example we apply the proposed procedure to a 4-term OQS
used in the Trends in International Mathematics and Science Study (TIMSS).
This study evaluates the home, community, school, and student factors associ-
ated with student achievement in mathematics and science at fourth and eighth
grade levels in more than 60 countries. To that end, data is collected through
questionnaires completed by students, parents, teachers, and school principals.
The TIMSS has been conducted every four years since 1995. The latest data

10In this voting system each agent votes for only one alternative and the winners are the
alternatives with most number of votes.
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available is from TIMSS 2015 (see [28]).
In this example, a 4-term OQS used in TIMSS 2015 to assess some school

problems (arriving late at school, vandalism, cheating, classroom disturbances,
etc.) is considered. The linguistic terms of the scale appear in Table 4.

l1 l2 l3 l4
Serious problem Moderate problem Minor problem Not a problem

Table 4: Meaning of the linguistic terms.

As in Example 1, we carried out an on-line survey as to the proximities
between the terms of the scale. A total of 19 Spanish school principals who
participated in TIMSS 2015 contributed to this survey.

The algorithm included in Figure 4 for g = 4 is applied and the matrices
associated with the OPMs of the 19 participants are then shown in Table 5.

Matrix Frequency %
A222 6 31.59

A232 1 5.26

A234 1 5.26

A322 2 10.53

A332 3 15.79

A342 1 5.26

A432 1 5.26

A532 4 21.05

19 100

Table 5: Matrices of the survey in Example 2.

Considering Dw for the same weighting functions as in Example 1, the
metrizable OPM obtained using the median and the mean is the matrix A332.

5. Concluding remarks

Given an OQS, determining whether the scale is uniform or not (and if not

what the ordinal proximities between the linguistic terms of the scale are) is an

important issue. Our proposal is to ask some experts their opinions about these

ordinal proximities and aggregate these opinions to obtain a metrizable OPM

on the OQS. This is not a trivial problem, since inconsistencies could appear

(see Section 3).

We propose various procedures for generating a metrizable OPM from the

opinions of the experts, paying special attention to OQSs with three or four
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terms. Once this problem is solved, the OPM obtained can be used in different

decision-making and classification problems in which agents show their opin-

ions about a set of alternatives through an OQS equipped with a metrizable

OPM: Measuring consensus in a group of agents on a subset of alternatives, and

consensus-based clustering procedures, as in Garćıa-Lapresta and Pérez-Román

[11]; consensus-reaching processes, as in Garćıa-Lapresta and Pérez-Román [13];

implementing an appropriate voting system, such as the one introduced and an-

alyzed in Garćıa-Lapresta and Pérez-Román [14]; etc.

As shown in Subsection 2.3, for g = 3, answering a single question is suf-

ficient to assign the corresponding metrizable OPM; for g = 4, the number of

questions should be between 2 and 4 (see Figure 4). Following this pattern,

it is possible to determine all the metrizable OPMs of OQSs with granularity

g ∈ {5, 6, 7} (OQSs with more than seven linguistic terms are neither usual nor

appropriate). This tedious task needs to be carried out if the proposal included

in Subsections 4.2 and 4.3 is applied.

Taking into account Proposition 4, totally uniform OPMs are metrizable

only through πrs � πtu ⇔ ρ · |s − r| < ρ · |u − t|, with ρ > 0. Thus, it is

appropriate to associate a real number with each term of the OQS (for instance,

lr can be identified with r). However, this identification is not possible for non-

uniform OQSs (equipped with the corresponding OPMs), even when they are

metrizable, since different non proportional linear metrics may generate the

same OPM (see Remark 3). On the meaningless of assigning numerical values

to the linguistic terms of non-uniform OQSs, see Roberts [26], Franceschini et

al. [9] and Fattore et al. [8], among others.

As further research, the present analyses could be extended to the framework

of intervals of linguistic terms, when agents are allowed to assign several consec-

utive terms of the OQS, if they hesitate (see Garćıa-Lapresta and Pérez-Román

[12] and Garćıa-Lapresta and González del Pozo [10]).
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Annex: The non metrizable OPMs for g = 4

A1
222 =


δ1 δ2 δ3 δ5

δ1 δ2 δ4

δ1 δ2

δ1

 , A2
222 =


δ1 δ2 δ4 δ5

δ1 δ2 δ3

δ1 δ2

δ1

 ,

A1
223 =


δ1 δ2 δ5 δ6

δ1 δ2 δ4

δ1 δ3

δ1

 , A2
223 =


δ1 δ2 δ4 δ5

δ1 δ2 δ4

δ1 δ3

δ1

 ,

A1
232 =


δ1 δ2 δ5 δ6

δ1 δ3 δ4

δ1 δ2

δ1

 , A2
232 =


δ1 δ2 δ4 δ6

δ1 δ3 δ5

δ1 δ2

δ1

 ,

A1
233 =


δ1 δ2 δ5 δ6

δ1 δ3 δ4

δ1 δ3

δ1

 , A2
233 =


δ1 δ2 δ4 δ5

δ1 δ3 δ4

δ1 δ3

δ1

 ,

A1
234 =


δ1 δ2 δ6 δ7

δ1 δ3 δ5

δ1 δ4

δ1

 , A2
234 =


δ1 δ2 δ5 δ6

δ1 δ3 δ5

δ1 δ4

δ1

 ,

A1
243 =


δ1 δ2 δ6 δ7

δ1 δ4 δ5

δ1 δ3

δ1

 , A2
243 =


δ1 δ2 δ5 δ6

δ1 δ4 δ5

δ1 δ3

δ1

 ,

A1
322 =


δ1 δ3 δ4 δ6

δ1 δ2 δ5

δ1 δ2

δ1

 , A2
322 =


δ1 δ3 δ4 δ5

δ1 δ2 δ4

δ1 δ2

δ1

 ,
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A1
323 =


δ1 δ3 δ4 δ6

δ1 δ2 δ5

δ1 δ3

δ1

 , A2
323 =


δ1 δ3 δ5 δ6

δ1 δ2 δ4

δ1 δ3

δ1

 ,

A1
324 =


δ1 δ3 δ6 δ7

δ1 δ2 δ5

δ1 δ4

δ1

 , A2
324 =


δ1 δ3 δ5 δ6

δ1 δ2 δ5

δ1 δ4

δ1

 ,

A1
332 =


δ1 δ3 δ4 δ6

δ1 δ3 δ5

δ1 δ2

δ1

 , A2
332 =


δ1 δ3 δ4 δ5

δ1 δ3 δ4

δ1 δ2

δ1

 ,

A1
342 =


δ1 δ3 δ5 δ7

δ1 δ4 δ6

δ1 δ2

δ1

 , A2
342 =


δ1 δ3 δ5 δ6

δ1 δ4 δ5

δ1 δ2

δ1

 ,

A1
423 =


δ1 δ4 δ5 δ7

δ1 δ2 δ6

δ1 δ3

δ1

 , A2
423 =


δ1 δ4 δ5 δ6

δ1 δ2 δ5

δ1 δ3

δ1

 ,

A1
432 =


δ1 δ4 δ5 δ7

δ1 δ3 δ6

δ1 δ2

δ1

 , A2
432 =


δ1 δ4 δ5 δ6

δ1 δ3 δ5

δ1 δ2

δ1

 .
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