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Resumen: 

El objetivo de este proyecto es implementar una solución válida para un proyecto de 

IoT basado en un LM35 (sensor de temperatura), que proporciona los datos que se 

transmitirán a través de una WAN LoRa, y un módulo, el TTGO LoRa Wifi V1. Esté módulo 

está formado por: el chip ESP32, un OLED controlado por el SSD1306 y un transceptor LoRa 

controlada por el SX1276.  

La transmisión de RF tendrá lugar en la banda de la UE reservada para la tecnología LoRa, 

868 MHz. Y los paquetes LoRa WAN serán enviados a un Gateway LoRa que los redirigirá a 

la nube a nuestra aplicación en línea. 

Después de todo, esta aplicación, que se hará en línea con la plataforma 

TheThingsNetwork.org, tendrá el deber de gestionar el paquete que recibe decodificarlos y 

proporcionar un entorno fácil de usar para mostrar estos datos para nosotros, y la 

información de la misma. 

 

Palabras clave: 

Sensor de temperatura, Internet de las Cosas, tecnología LoRa, LoRa network, ESP32  
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1.INTRODUCTION. 
 

What is the IoT? 

The Internet of Things [1] is a concept that is based on the interconnection of any 

product with any other product around it. From a book to the fridge in your own home. 

The aim is to make all these devices communicate with each other and thus become more 

intelligent and independent. 

Its significance can be brutal in both the economic and social spheres. Even greater than 

the digital age. The Internet of Things allows computers to interact with real-life elements 

and gain independence from human beings, leaving us in charge of what really matters. 

 

What is LoRa? 

 IoT devices are normally designed to have a long service life ranging from five to 

eight years. This requires continuous support of the chosen network connectivity 

throughout the life of the device. Due to the uncertainty regarding the longevity of the 2G 

network, designers should consider alternative connectivity that not only has long-term 

secure support, but also fits the power consumption, communication range and low cost 

limitations used with typical IoT applications. 

Among the potential candidates, LoRa technology has strong technical credentials and is 

already being used in applications that require reliable communications over distances of 

several kilometers, such as wireless meter reading and street lighting control. It is a sub-

GHz Low-Power Wide Area Network (LPWAN) technology that maintains a data rate of 

0.3 kbps to 50 kbps depending on the range and duration of the message. Transmission 

distances can be up to 15 or 20 km. 

 

1.1. Goals: 

The aim of this project is to implement a valid solution for an IoT project based on a 

LM35 (temperature sensor), that provides the data which will be transmitted through a 

LoRa WAN, and a LoRa technology board, the TTGO LoRa Wifi V1. This board will be 
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ruled by the ESP32 chip, this one will control: an OLED display to have a better control 

of the state of our transmission process through the SSD1306 controller and a LoRa 

technology transceiver with an antenna controlled by the SX1276. For each controller we 

will need different libraries to perform an optimal communication between them. 

The RF transmission will take place on the EU band reserved for the LoRa technology, 

868 MHz. And the LoRa WAN packages will be sended to a LoRa gateway which will 

redirect them to the cloud to our online application. 

After all, this application, that will be made online with the TheThingsNetwork.org 

platform, will have the duty to manage the package that it receives decode them and 

provide a user-friendly environment to display this data for us, and the information of it. 
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2.ANALYTICAL PART. 

2.1. Structure and characteristics of Lora network. 

2.1.1. LoRa Network architecture 

LoRa [2], which stands for “Long Range”, is a long-range wireless communications 

system, promoted by the LoRa Alliance. This system aims at being usable in long-lived 

battery-powered devices, where the energy consumption is of paramount importance. 

LoRa can commonly refer to two distinct layers:  

 

Figure 1 LoRa WAN architecture and devices classes [7] 

 

(i) a physical layer using the Chirp Spread Spectrum (CSS) radio modulation 

technique; and Sensors 2016, 16, 1466 4 of 18 

(ii)  a MAC layer protocol (LoRaWAN), although the LoRa communications 

system also implies a specific access network architecture. 

Many existing deployed networks utilize a mesh network architecture. In a mesh network, 

the individual end-nodes forward the information of other nodes to increase the 

communication range and cell size of the network. While this increases the range, it also 

adds complexity, reduces network capacity, and reduces battery lifetime as nodes receive 

and forward information from other nodes that is likely irrelevant for them. Long range 

star architecture makes the most sense for preserving battery lifetime when long-range 

connectivity can be achieved. 
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The basic architecture of a LoRaWAN network is as follows: end-devices communicate 

with gateways using LoRa with LoRaWAN [3]. Gateways forward raw LoRaWAN 

frames from devices to a network server over a backhaul interface with a higher level of 

performance, typically Ethernet or 3G. 

 

Consequently, gateways are only bidirectional relays, or protocol converters, with the 

network server being responsible for decoding the packets sent by the devices and 

generating the packets that should be sent back to the devices. There are three classes of 

LoRa end-devices, which differ only with regards to the downlink scheduling. 

 

 

Figure 2 LoRa network architecture [6] 

 

2.1.2. LoRa Physical Layer 

The LoRa physical layer [4], developed by Semtech, allows for long-range, low-power 

and low-throughput communications. It operates on the 433-, 868- or 915-MHz ISM 

bands, depending on the region in which it is deployed (868 MHz in Europe). The payload 

of each transmission can range from 2–255 octets, and the data rate can reach up to 50 

Kbps when channel aggregation is employed. The modulation technique is a proprietary 

technology from Semtech. 

LoRa is a chirp spread spectrum modulation, which uses frequency chirps with a linear 
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variation of frequency over time in order to encode information. Because of the linearity 

of the chirp pulses, frequency offsets between the receiver and the transmitter are 

equivalent to timing offsets, easily eliminated in the decoder. 

 

 
Figure 3 Up-Chirp spread spectrum modulation example in time domain [6] 

To figure out the chirp modulation [5] works deeply, let’s take a look at a commonly 

used frequency modulation techniques, the frequency shift keying, in which the 

frequency switch between just two values, like a digital signal.  

 

 

Figure 4: example of FSK frequency shift keying. [5] 

And on the other hand, we have a chirp spectrum example in which we can see easily 

how the frequency takes a lot of different values from its bandwidth making lines 

called: upchirps and downchirps.  
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Figure 5: example of chirp modulation [5] 

The direction, bandwidth use and speed of growing slope (sweep rate), are the two 

parameters that will give us the possibility to send a lot of data with smaller frames than 

other modulation techniques. 

 

Figure 6: Bandwidth and Sweep rate in the chirp modulation [5] 
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Physical Frame Format 

In the physical layer [6] of our LoRa WAN network, we find a frame format to 

encapsulate our payload, and add all the physical layer context information. This format 

is normally a preamble and the bare payload, but this format may change with two 

additional but optional frame fields: a heading and a CRC (Cyclic redundancy check).  

• Preamble: 

The preamble starts with a sequence of constant upchirps that cover the whole 

frequency band of a given bandwidth. The last two upchirps of this preamble encode the 

sync word. The sync word is a one-byte (8-bits) value that is used to pair LoRa 

Networks which use the same frequency band.  For it, devices configured with a given 

sync word will stop listening to a transmission if the decoded sync word does not match 

its configuration (if they don´t have the same sync word). The sync word is followed by 

two and a quarter downchirps, for a duration of 2.25 symbols. The total duration of this 

preamble can be configured between 10.25 and 65,539.25 symbols. 

 

Figure 7 preamble of a physical frame format [6] 

 

• Optional header: 

After the preamble we have the possibility of adding an optional heading. If we use it, 

it´s transmitted with a code rate of 4/8 (if the code rate is k/n, for every k bits of useful 

information, the coder generates a total of n bits of data, of which n-k are redundant). 

That says the size of a payload (in bytes), the code rate used for the end of transmission 

and whether or not a 16-bit CRC for the payload is present at the end of the frame. In 

addition, the heading includes a CRC to help and give the power of discarding packets 

with invalid headers to the receiver. To store the payload size is stored using 1 byte, so 

the limit of the payload is 255 bytes. The header is optional to allow disabling it in 

situations where it is not necessary, for instance when the payload length, coding rate 

and CRC presence are known in advance. 

 

 

Figure 8 LoRa WAN Physical Layer Frame Format [7] 



                                                                           Design of IoT temperature sensor for LoRa network 
 

19 
 

 

2.1.3. LoRa MAC layer 

LoRa WAN gives us a MAC layer [7], to manage all the incoming requests of 

transmission from the end-devices of our network, allowing them to communicate 

through LoRa modulation. It uses the ISM bands (as many others radiofrequency 

applications), it allows everybody to create public or private IoT networks in an 

accessible way anywhere using the hardware and the software needed for it. 

LoRaWAN's network protocol and architecture decisively determine a node's battery 

life, network capacity, quality of service, security, and the variety of network 

applications. Unlike LoRaWAN, LoRa has no rules or standards beyond the physical 

layer limitations offered by the devices or those imposed by the library used. 

LoRaWAN can use LoRa or FSK modulation at the physical level 

It was designed for sensor networks where all of them would be exchanging packages, 

with a low data rate in long time intervals, like transmitting the temperature of an 

aquarium one time for day. 

Another interesting fact about LoRa wan it´s that you can´t transmit directly between 

end-devices, the “message” need to go first to the network server and then it can go to 

the other end device. 

 

LoRa network consists of several elements:  

LoRa Nodes / End Points: LoRa end points are the sensors or application where 

sensing and control takes place. These nodes are often placed remotely. Examples, 

sensors, tracking devices, etc. 

LoRa Gateways: Unlike cellular communication where mobile devices are associated 

with the serving base stations, in LoRaWAN nodes are associated with a specific 

gateway. Instead, any data transmitted by the node is sent to all gateways and each 

gateway which receives a signal transmits it to a cloud-based network server. 
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Typically, the gateways and network servers are connected via some backhaul (cellular, 

Wi-Fi, ethernet or satellite). 

Network Servers: The networks server has all the intelligence. It filters the duplicate 

packets from different gateways, does security check, send ACKs to the gateways. In 

the end if a packet is intended for an application server, the network server sends the 

packet to the specific application server. 

Using this type of network where all gateways can send the same packet to the network 

server, the need of hand-off or handover is removed. This is useful for asset-tracking 

application where items or assets move from one location to another. 

 

-LoRa End-Device Class  

In this network the gateway serve just as relays of signals from random senders packages 

to forward them to the network server to store it and process it.  So as to that the send-

devices are associated with the network server, that at the end of each transmission will 

be the one that recognize duplicate packets, and if a replay is needed they choose the 

proper gateway to send it, even to the end-device. 

In LoRa WAN we have three different classes of end-devices [8] to address the various 

needs of each use of the network and its technology. 

Like other networks, where end devices can have different capabilities depending on 

devices classes, end nodes in LoRa WAN network can have different device classes. 

Each device class is a trade-off between network downlink communication latency versus 

battery-life. 

• Class A (All), Bi-directional: 

The pure asynchronous one, the uplink transmission is just one slot while the downlink 

consists of two slots. The uplink is scheduled by the end-devices based on his own 

demanding needs. High probability of collisions, if one node is transmitting and another 
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wakes up and decides to transmit on the same frequency channel with similar settings, a 

collision will occur. 

 

Figure 9: Class A type device transmission [8] 

The downlink takes place in two receiving windows of a specific time, only after one 

package is sent by the end-device, it puts itself in hearing mode. 

 

Figure 10 Class A device timing diagram [8] 

This is the most energy-saving class, and it’s the most used for sporadic needing 

communications. 

• Class B (Beacon), Bi-directional with scheduled 

We could have called it the one with random receiving windows, because the downlinks 

are planned after one uplink, when we say “planned” we are talking about a specific and 

selected number of reception windows and its listening duration. In general, it might be 
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at least two downlink slots and an extra one. To start the downlink at a specific time, the 

device receives a time synchronized Beacon signal from the gateway. 

 

Figure 11 Class B type device transmission [8] 

 

Figure 12 Class b device timing diagram [8] 

• Class C (Continuous), Bi-directional with maximum receive slots 

This class of devices are always ready to receive transmission, always hearing unless they 

want to transmit. Its easy to figure out that this is the most power consuming class out of 

the three, it’s a battery save-less way of performing. But these are so used for demanding 

applications as real time traffic management. 
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Figure 13 Class C type transmission [8] 

 

 

Figure 14 Class C device timing diagram [8] 

 

 

LoRa WAN MAC layer message format: 

We should notice that the PHYPayload [7] its encapsulated again, it has a MAC header, 

the MAC Payload and a Message Integrity Code, a four-byte code calculated from the 

Network session key (NwkSKey) 
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Figure 15  PHYPayload [7] 

The MAC header specifies the message type and format version of the specification of 

the LoRaWAN layer with which it has been encoded. There are six types of MAC 

messages: 

 

 

Figure 16 MAC commands [7] 

 

The MACPayload includes a frame header, optional port field and a payload optional 

frame. 

 

 

Figure 17 MAC Payload [7] 

 

The frame header contains the address with which the device within the network, a FCtrl 

field to enable the Adaptive data rate, a frame counter and a FOpts field in case you want 

to transmit a MAC command. The FPort field is used to determine whether the field 

FRMPayload contains MAC commands or application data as a measurement. 
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Figure 18 detailed FHDR [7] 

The seven most significant bits of the DevAddr field are used for the network identifier 

(NwkID) while the remaining twenty-five correspond to the network address (NwkAddr), 

which can be assigned by the network administrator. 

Maximum MACPayload field size varies by frequency band the data rate and the absence 

of the control field (FOpts): 

 

Figure 19 MAC payload sizes varying with the frequency [7] 

Security in LoRa WAN: 

In some scenarios, security is indispensable and necessary when dealing with data from 

an entire city, which may contain information that needs to be protected. That's why 

LoRaWAN incorporates several layers of encryption [9], with their corresponding keys, 

that make use of the AES128 encryption algorithm to protect communications: 

• Network Session Key: 128-bit key that guarantees security to network level. 

• Application Session Key: 128-bit key that ensures security end-to-end 

application level. 

• Application Key: 128-bit key that guarantees extreme security to application 

level, used only in OTAA. 

 

LoRaWAN, being a standardized protocol, has the following features set out in your 

specification, allowing the interoperability between the devices implementing this 
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technology, regardless of the external libraries used. The transmission power of the 

RN2483 modules, the structure of the LoRaWAN packets and the communication 

between nodes in a LoRaWAN network are presented below. 

 

My Network: 

A little diagram of our particular case IoT network: 

 

 

Figure 20 my network 

2.2. Lora endpoint realization examples, chipsets and their 

comparison.  

Popular ESP32 LoRa boards 

The following boards are popular for prototyping because they combine an ESP32, a 

LoRa tranceiver, an OLED 128x64 display: 

• Heltec Wifi LoRa 32 

• TTGO LoRa32 

These boards come in different versions and there are separate versions for 433/470MHz 

and 868/915MHz. 
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This boards are supposed to bring a Li-ion battery, but in my case it doesn´t. 

LoRa antenna: external, connected via cable with I-PEX connector; 868MHz have 5cm 

external whip antenna with SMA connector; 433MHz have a helical wire antenna. 

WiFi/Bluetooth antenna: single on-board. 

 

There is a dedicated LED (non-programmable) for the battery. It is on when the battery 

is charged. When no battery is connected: it is off when powered via 3.3V pin but flashes 

when powered via USB or 5V pin. 

A second LED (white on Heltec, blue on TTGO) (programmable) is connected to pin 25, 

on TTGO V2 the LED is connected to pin 22 but it is useless (see below). 

LoRa Performance 

The LoRa performance of the Heltec and TTGO boards has shown to be sub-optimal. 

Important factors are the quality of the RF circuitry (design) and the antennas. Because 

of the hardware, the range of communications for those circuits is so short, for example 

for the TTGO the range is no much more than 600 meters. 

-Heltec Wifi LoRa 32 [10] 

Have a white PCB and come in two different versions (the version numbers are not used 

by Heltec): 

V1: with on-board PCB WiFi/Bluetooth antenna. Appears to be available for 433MHz 

only. 

V2: with small on-board helical antenna (has a PCB antenna on the bottom but that is not 

connected). 

 

-TTGO LoRa32 [11] 

Have a black PCB and come in several different versions: 
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• LoRa (without 32): with on-board PCB Wifi/Bluetooth antenna on top. Appears 

to be available for 433MHz only. Also available without the display. 

• LoRa32 V1: with on-board metal Wifi/Bluetooth antenna on bottom. I-Pex 

connector located on top, it has a SX1276 LoRa transceiver module, and a OLED 

display controlled by a SSD1306. This will be our particular selection. 

• LoRa32 V2: with on-board metal Wifi/Bluetooth antenna on bottom (in a 

different location). 

Uses ESP32-Pico-D4 (with integrated flash memory) instead of ESP32, uses a 

(shielded) LoRa module, I-Pex connector located on the bottom, micro-USB 

connector is rotated 90 degrees, in addition has a micro-SD card slot on the bottom 

and an on/off switch for the battery next to the micro-USB connector. Switches 

the battery only so not possible to switch the board off when connected to USB 

for charging the battery. 

‘Programmable’ LED on pin 22 instead of pin 25 but useless because wired to 

SCL and all three LEDs are on the bottom side where you cannot see them.  DIO1 

and DIO2 each have a separate board pin but neither of them is connected to a 

GPIO port so must be explicitly wired. This also means that the TTGO V2 has 

two GPIO ports less that could otherwise have been used for other purposes.  

 

2.3. Environmental sensors and their data acquisition. 

2.3.1. Humidity and temperature sensor 

Based on a unique capacitive cell, these relative humidity sensors [12] are designed for 

high volume, cost sensitive applications such as office automation, automotive cabin air 

control, home appliances, and industrial process control systems. They are also useful in 

all applications where humidity compensation is needed. 

One of the advantages of this sensor is that its measurements has a digital output, this 

while protects us more from non-desirable noises. 
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Figure 21 DHT11 with his pinout and how to connect it with a controller [12] 

 

Table 1 Characteristics of the DHT11, (Ta=25º and the measurement frequency is 10KHz) [13] 

 

2.3.2. HL 69 Soil hygrometer moisture sensor 

This is an analog reading data sensor it provides us the humidity percentage of the ground 

[13], but it can also work as a digital sensor, will set to high when the the soil humidity 

exceeds a set threshold value previously selected, giving us a 1 or 0 value, but this second 

mode it´s not so accurate and useful. 
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The digital output can be connected directly to an Arduino to detect high and low by the 

microcontroller to detect soil moisture. A typical example of use is when we directly drive 

the digital outputs to the buzzer module, which can be used as a soil moisture alarm 

equipment. Analog output AO connected through the AD converter, you can get more 

precise values of soil moisture sent to your MCU. 

Characteristics: 

Operating voltage: 3.3V~5V 

– Dual output mode – Digital or Analog – analog output more accurate 

– Fixed bolt hole for easy installation 

– Power indicator (red) and digital switching output indicator (green) 

– LM393 comparator chip, stable 

– Panel PCB Dimension: Approx.3cm x 1.5cm 

– Soil Probe Dimension: Approx. 6cm x 3cm 

– Cable Length: Approx.21cm 

Interface Description(4-wire): 

VCC: 3.3V-5V 

GND: GND 

DO: digital output interface (0 and 1) 

AO: analog output interface 

 

Figure 22 pinout of the controller of the HL69 [13] 
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Figure 23 Arduino example of how to connect the two parts of this sensor to read data [13] 

 

2.3.3. Ultrasonic distance sensor HC-SR04 

 

Figure 24 pinout of the HC-SR04 [14] 

The HC-SR04 [14] sensor its ultrasonic distance sensor able to detect objects and 

calculate the distance of them to it, but this distances has to be on a range between 2 and 

450 cm for the sensor to work properly. 

This sensor works  using ultrasonic waves and has all the electronic responsible of making 

the measurement and providing a trigger signal. Its way of use it´s simple, the device send 

a starting pulse and then measuring the length of the return pulse.  

Each HC-SR04 module includes an ultrasonic transmitter, a receiver and a control circuit. 

It sends one  pulse through the transmitter and this pulse reflects and come back to the sensor 

through the receiver we receive that information.  

It has a low consuption and great accuracy for its reduced price. 
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Characteristics 

• Circuit dimensions: 43 x 20 x 17 mm 

• Tensión de alimentación: 5 Vcc 

• Working Current 15mA 

• Measuring Angle 15 degree 

• Frecuencia de trabajo: 40 KHz 

• Maximum range: 4.5 m 

• Minimum range: 1.7 cm 

• Minimum trigger pulse duration (TTL level Time-to-live): 10 μS. 

• Eco output pulse duration(TTL level Time-to-live): 100-25000 μS. 

• Minimum waiting time between one measure and the start of the next one: 20 

mS. 

 

Pinout: 

• VCC 

• Trig (Ultrasoud launch) 

• Echo (ultrasound reception) 

• GND 

 

We could easily calculate the distance to the target with this simple ecuation: 

Distance = {(Between trig and echo time) * (speed of sound 340 m/s)}/2 
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Figure 25 example of how to read data from the HC-SR04 with an Arduino UNO [14] 

 

From a more technical perspective the pulse transmission will be more explained in detail: You 

only need to supply a short 10uS pulse to the trigger input to start the ranging, and then the module 

will send out an 8 cycle burst of ultrasound at 40 kHz and raise its echo. 

 

Figure 26 HC-SR04 trigger and echo transmission timing diagram [14] 
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2.3.4. Sensor de temperature LM35 

This is going to be our selection, so we will talk about it later. 

2.3.5. MMA7361 Accelerometer sensor 

 

Figure 27 MMA736 accelerometer sensor [15] 

This sensor is an analog accelerometer of 3 exes (x,y,z) [15]. The level of the measurements of 

the accelerometer allows us to measure the acceleration or the inclination of a platform or surface 

of a object  in regards to the earth´s surface. 

Another features of this sensor are: the sleep mode, the signal conditioning, low pass filter of 1 

pole, temperature compensation, auto-test and 0 g detection for free fall. This sensor works with 

power sources between 2.2 V and 3.6 VDC (3.3 V is the optimal value). 

Sensor specifications MMA7361: 

• Low power current: 400 μA. 

• Waiting mode: 3 μA. 

• Low operating voltage: 2,2 V – 3,6 V. 

• High sensibility (800 mV / g@1.5g). 

• Selectable sensibility (± 1,5 g, ± 6 g). 

• 0g- Detect for the free fall protection. 

• signal condiotioning with the low pass filter.  
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Sensor pinout: 

 

Figure 28 MMA736 pinout [15] 

Pinout of the MMA736 

• X exe: It is an analog output signal along the X axis. 

• Y exe: It is an analog output signal along the Y axis. 

• Z exe: It is an analog output signal along the Z axis. 

• Sleep(SL):  This pin is activated in a negated way the integrated one will go to sleep and 

will not send us anything in its outputs. operation will resume when more power is 

consumed. 

• Detect (0G):  This pin will be high when 0 g is detected on all 3 axes. Useful for detecting 

free fall 

• 5 V: This pin is connected to a built in regulator that will bring 5v to 3.3v required on the 

chip to run 

• 3.3 V: This pin does not pass through the 5v regulator, it is for those who have a 

previously regulated 3.3v voltage. 

• Ground (GND):  This pin must be connected to circuit ground. 

• Sense select (GS): This pin is an enabling pin for the x, y, and z sensors. This must be 

enabled at low level, and then the power and ground pins are subtracted. is used to select 

between the two sensitivities. If this pin is low, it is in 1.5 g mode. If it is high, it switches 

to 6 g mode. 

• Self Test (ST):  This chip has been built in a self-test to verify that both the mechanical 

and electrical parts inside the chip are working properly. 
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Figure 29 Arduino pin connection example [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                           Design of IoT temperature sensor for LoRa network 
 

37 
 

3.DESIGN PART. 

3.1. Sensor selection and requirements for data reading. 

The LM35 it’s an analog temperature sensor and differs with the classic thermistors in the way of 

measure the degrees, the classical thermistors measure it changing its electric resistance. The 

LM35 it’s an integrated with its own control circuit, which provides an analog output voltage in 

proportion to the temperature. 

The output of the LM35 is lineal with the temperature, increasing it 10 mV for each degree 

centigrade. The acceptable measure range goes from the -55ºC (-550mV) to the 150ºC (150mV). 

Its accuracy at ambient temperature is 0.5ºC (25ºC). [16] 

 

Figure 30 Pinout of the LM35 [16] 

 

 

Figure 31 Bottom view of LM35 LP package [16] 

 

For our own purpose case we have chosen a simple sensor, in order to not take risks in 

the data reading process. This detects temperatures from -55ºC to 150ºC, 1ºC is equivalent 

to 10mV and supports voltages between 4V and 30V. All this information has been 

obtained from the LM35 data sheet. 
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Technical features: 

• Linear + 10-mV/°C Scale Factor  

• 0.5°C Ensured Accuracy (at 25°C)  

• Rated for Full −55°C to 150°C Range 

• Suitable for Remote Applications  

• Low-Cost Due to Wafer-Level Trimming  

• Operates From 4 V to 30 V  

• Less Than 60-μA Current Drain  

• Low Self-Heating, 0.08°C in Still Air  

• Non-Linearity Only ±¼°C Typical  

• Low-Impedance Output, 0.1 Ω for 1-mA Load 

• Calibrated directly in Celsius (Centigrade) 

 

Maximum supported electrical ratings: 

 

Table 2 Maximum electrical ratings for the LM35 [16] 

It’s also recommended for this sensor to work between -55ºC and 150ºC. 

 

Application form:  

The manufacturer gives a bunch of different possibilities to implement our little 

temperature measurement station, starting with the simplest one which has a shortened 

range of measure of 2º to 150º; to a lot of more complex implementation, like the one of 

the figure 33, where we have the full range of measure from -55º to 150º. 
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Figure 32 basic temperature sensor (2ºC to 150ºC) [16] 

 

 

Figure 33 full range centigrade temperature sensor [16] 

We have selected the first type of implementation, because we don´t need a great range 

of measurements for this project, we can manage with the easy one, moreover at this time 

of the year there is no possibility to record values below 2º. So our range of sensing will 

be between 2ºC and 100ºC more or less, it will be powered with 5 V while the ADC of 

the ESP 32 can just read between 0 V and 3.3 V, but as we have said, with the values that 

we are going to work it won´t be a problem, we won´t break the board. 

 

Possible error on the measure: 

We look at the LM35 line and we can see that the optimal working temperature is the 25º, 

but if we increment or decrement the ambient temperature we start adding a linear 

growing error, that increase from ± 1º to ± 1.5º. [17] 
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Figure 34 Accuracy vs Temperature (Ensured) [16] 

 

Power supply advice: 

This sensor has wide range of valid values (4V to 30V), so it’s an easy to use-and-success 

IC for many applications. But for noisy environments is recommended to add a 0.1 uF 

capacitor from the V+ to the GND to bypass the supply voltage and make it more stable, 

reducing the total amount of noise. 

 

Linearity of the ESP32 ADC measures with the LM35: 

 

Figure 35 sensor volt input versus the ESP32 adc output. [17] 

Resolution 3.3V/4096 = 0.000805664 V = 0.8 mV 
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3.2. Functional diagram design.  

 

 

Figure 36 Simple Connections Diagram 

 

Figure 37 Complex Connections Diagram 
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3.3. Microcontroller selection. Parameters, connectivity and 

toolset of ESP32. 

3.3.1. Introduction 

Created by Espressif Systems, ESP32 is a low-cost, low-power system on a chip (SoC) 

series with Wi-Fi & dual-mode Bluetooth capabilities. 

At its heart, there's a dual-core or single-core Tensilica Xtensa LX6 microprocessor with 

a clock rate of up to 240 MHz. ESP32 is highly integrated with built-in antenna switches, 

RF balun, power amplifier, low-noise receive amplifier, filters, and power management 

modules. Engineered for mobile devices, wearable electronics, and IoT applications, 

ESP32 achieves ultra-low power consumption through power saving features including 

fine resolution clock gating, multiple power modes, and dynamic power scaling. [18] 

 

3.3.2. Parameters of ESP32 

• Processors: 

o Main processor: Tensilica Xtensa 32-bit LX6 microprocessor 

▪ Cores: 2 or 1 (depending on variation) All chips in the ESP32 

series are dual-core except for ESP32-S0WD, which is single-core. 

▪ Clock frequency: up to 240 MHz 

▪ Performance: up to 600 DMIPS 

o Ultra-low power co-processor: allows you to ADC conversions, 

computation, and level thresholds while in deep sleep. 

• Wireless connectivity: 

o Wi-Fi: 802.11 b/g/n/e/i (802.11n @ 2.4 GHz up to 150 Mbit/s) 

o Bluetooth: v4.2 BR/EDR and Bluetooth Low Energy (BLE) 

• Memory: 

o Internal memory: 

▪ ROM: 448 KiB For booting and core functions. 

▪ SRAM: 520 KiB For data and instruction. 
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▪ RTC fast SRAM: 8 KiB For data storage and main CPU during 

RTC Boot from the deep-sleep mode. 

▪ RTC slow SRAM: 8 KiB For co-processor accessing during deep-

sleep mode. 

▪ eFuse: 1 Kibit Of which 256 bits are used for the system (MAC 

address and chip configuration) and the remaining 768 bits are 

reserved for customer applications, including Flash-Encryption 

and Chip-ID. 

▪ Embedded flash: Flash connected internally via IO16, IO17, 

SD_CMD, SD_CLK, SD_DATA_0 and SD_DATA_1 on ESP32-

D2WD and ESP32-PICO-D4. 

• 0 MiB (ESP32-D0WDQ6, ESP32-D0WD, and ESP32-

S0WD chips) 

• 2 MiB (ESP32-D2WD chip) 

• 4 MiB (ESP32-PICO-D4 SiP module) 

o External flash & SRAM: ESP32 supports up to four 16 MiB external QSPI 

flashes and SRAMs with hardware encryption based on AES to protect 

developers' programs and data. ESP32 can access the external QSPI flash 

and SRAM through high-speed caches. 

▪ Up to 16 MiB of external flash are memory-mapped onto the CPU 

code space, supporting 8-bit, 16-bit and 32-bit access. Code 

execution is supported. 

▪ Up to 8 MiB of external flash/SRAM memory are mapped onto the 

CPU data space, supporting 8-bit, 16-bit and 32-bit access. Data-

read is supported on the flash and SRAM. Data-write is supported 

on the SRAM. ESP32 chips with embedded flash do not support 

the address mapping between external flash and peripherals. 

• Peripheral input/output: Rich peripheral interface with DMA that includes 

capacitive touch, ADCs (analog-to-digital converter), DACs (digital-to-analog 

converter), I²C (Inter-Integrated Circuit), UART (universal asynchronous 

receiver/transmitter), CAN 2.0 (Controller Area Network), SPI (Serial 

Peripheral Interface), I²S (Integrated Inter-IC Sound), RMII (Reduced Media-

Independent Interface), PWM (pulse width modulation), and more. 
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• Security: 

o IEEE 802.11 standard security features all supported, including WFA, 

WPA/WPA2 and WAPI 

o Secure boot 

o Flash encryption 

o 1024-bit OTP, up to 768-bit for customers 

o Cryptographic hardware acceleration: AES, SHA-2, RSA, elliptic curve 

cryptography (ECC), random number generator (RNG) 

 

 

Figure 38 ESP 32 block diagram [18] 

 

3.3.3. Toolset 

Steps to install Arduino ESP32 support on Windows [19]: 

*Tested on 32 and 64 bit Windows 10 machines 

1. Download and install the latest Arduino IDE Windows Installer from arduino.cc 

2. Download and install Git from git-scm.com 

3. Start Git GUI and run through the following steps: 

https://www.arduino.cc/en/Main/Software
https://git-scm.com/download/win
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o Select Clone Existing Repository 

 

Figure 39 Git Gui menu  

o Select source and destination 

▪ Sketchbook Directory: 

Usually C:/Users/[YOUR_USER_NAME]/Documents/Arduino a

nd is listed underneath the "Sketchbook location" in Arduino 

preferences. 

▪ Source Location: https://github.com/espressif/arduino-esp32.git 

▪ Target 

Directory: [ARDUINO_SKETCHBOOK_DIR]/hardware/espress

if/esp32 

▪ Click Clone to start cloning the repository 

o open a Git Bash session pointing 

to [ARDUINO_SKETCHBOOK_DIR]/hardware/espressif/esp32 and 

execute git submodule update --init --recursive 

o Open [ARDUINO_SKETCHBOOK_DIR]/hardware/espressif/esp32/tool

s and double-click get.exe 

https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/win-screenshots/win-gui-1.png
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Figure 40: execution of get.exe 

o When get.exe finishes, you should see the following files in the directory 

 

Figure 41 new get files 

4. Plug your ESP32 board and wait for the drivers to install (or install manually any 

that might be required) 

https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/win-screenshots/win-gui-4.png
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/win-screenshots/win-gui-5.png
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5. Start Arduino IDE 

6. Select your board in Tools > Board menu 

7. Select the COM port that the board is attached to 

8. Compile and upload (You might need to hold the boot button while uploading) 

 

ESP 32 Pinout: 

 

Figure 42 ESP 32 pinout [20] 

 

 

 

 

As the pinout of the ESP 32 is closely related to the TTGO Lora module V1 I put the 

TTGO pinout here, because a lot of pins come directly from ESP32. 
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Figure 43 TTGO ESP32 LoRa module V1 [19] 

 

3.4. Lora chip selection. Parameters, connectivity and 

programming of SX1276. 

3.4.1. Introduction 

Semtech’s LoRa transceivers feature a long-range wireless modem that provides ultra-

long range spread spectrum communication and high interference immunity while 

minimizing current consumption. 

 

Figure 44 SX1276 pinout [21] 
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3.4.2. Parameters 

• integrated +20dBm power amplifier LoRa Modem 

• 168dB maximum link budget 

• +20dBm - 100 mW constant RF output vs. V supply 

• +14dBm high efficiency Power Amplifier 

• Programmable bit rate up to 300kbps 

• High sensitivity: down to -148dBm 

• Bullet-proof front end: IIP3 = -11dBm 

• Excellent blocking immunity 

• Low RX current of 9.9mA, 200nA register retention 

• Fully integrated synthesizer with a resolution of 61Hz 

• FSK, GFSK, MSK, GMSK, LoRa and OOK modulation 

• Built-in bit synchronizer for clock recovery 

• Preamble detection 

• 127dB Dynamic Range RSSI 

• Automatic RF Sense and CAD with ultra-fast AFC 

• Packet engine up to 256 bytes with CRC 

• Built-in temperature sensor and low battery indicator 

 

 

3.4.3. Connectivity 

To connect LoRa module with the ESP32 microprocessor we are using the SPI protocol 

with Arduino, so a brief introduction to his protocol will be needed: 

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by 

microcontrollers for communicating with one or more peripheral devices quickly over 

short distances. It can also be used for communication between two microcontrollers. 

With an SPI connection there is always one master device (usually a microcontroller) 

which controls the peripheral devices. Typically, there are three lines common to all the 

devices: 
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• MISO (Master In Slave Out) - The Slave line for sending data to the master, 

• MOSI (Master Out Slave In) - The Master line for sending data to the peripherals, 

• SCK (Serial Clock) - The clock pulses which synchronize data transmission generated by 

the master 

And one line specific for every device: 

• SS (Slave Select) - the pin on each device that the master can use to enable and 

disable specific devices. 

When a device's Slave Select pin is low, it communicates with the master. When it's high, 

it ignores the master. This allows you to have multiple SPI devices sharing the same 

MISO, MOSI, and CLK lines 

Here it is show and example of the SPI protocol working with a time diagram. This 

interface gives access to a configuration register to select and configure how are is the IC 

going to access the register, we have: single, burst and FIFO. They difference each other 

in the way that the frame is composed, in the first one after the address byte, there is only 

one data byte, in the second there are a bunch of them like in the third, so on the last two 

you don´t need the address byte to be sent each time, it´s enough with the first address 

byte, then the BURST method increment its address value and the FIFO the address is 

memorized [21]. 

SINGLE access: an address byte followed by a data byte is sent for a write access whereas 

an address byte is sent, and a read byte is received for the read access.  

The NSS pin goes low at the beginning of the frame and goes high after the data byte. 

 

 

Figure 45 SPI timing diagram (SINGLE access) [21] 
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MOSI is generated by the master on the falling edge of SCK and is sampled by the slave 

(i.e. this SPI interface) on the rising edge of SCK. MISO is generated by the slave on the 

falling edge of SCK. A transfer is always started by the NSS pin going low. MISO is high 

impedance when NSS is high.  

The first byte is the address byte. It is comprising:  

• A wnr bit, which is 1 for write access and 0 for read access.  

• Then 7 bits of address, MSB first. The second byte is a data byte, either sent on 

MOSI by the master in case of a write access or received by the master on MISO 

in case of read access. The data byte is transmitted MSB first.  

Proceeding bytes may be sent on MOSI (for write access) or received on MISO (for read 

access) without a rising NSS edge and re-sending the address. In FIFO mode, if the 

address was the FIFO address then the bytes will be written / read at the FIFO address. In 

Burst mode, if the address was not the FIFO address, then it is automatically incremented 

for each new byte received. The frame ends when NSS goes high. The next frame must 

start with an address byte. The SINGLE access mode is therefore a special case of FIFO 

/ BURST mode with only 1 data byte transferred. During the write access, the byte 

transferred from the slave to the master on the MISO line is the value of the written 

register before the write operation [22]. 

As we are going to use a SPI protocol to communicate the SX1276 LoRa module with 

the ESP32, the pin mapping will be according to the OLED_LoRa_sender.ino code (first 

board test),  (Remember we are using V1): 
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Definition name 

in Arduino 

Pin mapping Type of the pin in 

TTGO Lora 

Module 

 

SCK  Pin 5 GPIO 5  LoRa_SCK 

MISO  Pin 19 GPIO 19 LoRa_MOSI 

MOSI Pin 27 GPIO 27 LoRa_MOSI 

SS Pin 18 GPIO 18 LoRa_CS 

RST Pin 14 GPIO 14 LoRa_RST 

DIO Pin 26 GPIO 26 LoRa_IRQ 

Table 3 pin connection SX1276 with ESP32 

 

3.4.4. Programming 

The first thing we need to start writing code to control the SX1276 transceiver is to 

include a couple of useful and must-install Arduino libraries: 

The first one the Lora.h library, for sending and receiving data using LoRa radios, 

supports Semtech SX1276 base boards and shields. 

The SPI.h library, this library allows you to communicate with SPI devices, with the 

Arduino as the master device. 

The Wire.h library, this library allows you to communicate with I2C / TWI devices.  

The SSD1306.h is one option of methods to talk with the display through the controller, 

it has drawing functions, string printing functions and so on, we can see it in detail in the 

annexes of code.  
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3.5. OLED display with SSD1306 controller connection and 

programming. 

3.5.1. Introduction 

An OLED display its similar to a LED/LCD display, in which the light is provided by a 

external source, besides the OLED display use organic LEDs that has autonomous 

lightning, this feature makes the OLED displays even thinner, and probably the thinnest 

technology. 

The brain that will tell our display what to do is going to be the SSD1306 controller. It’s 

a single-chip CMOS OLED/PLED driver with controller for organic/polymer light 

emitting diode dot-matrix graphic system. It consists of 128 segments and 64 commons. 

This integrated circuit is designed for Common Cathode type OLED panel. 

This controller embeds with contrast control, display RAM and oscillator, which reduces 

the number of external components and the power consumption. It has a 256-step 

brightness control. Data/Commands are sent from general microcontroller unit through 

the hardware selectable 6800/8000 series compatible Parallel Interface, I2C interface or 

Serial Peripheral Interface. It is suitable for many compact portable applications, such as 

mobile phone sub-display, and many other applications. 
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3.5.2. Connection 

 

 

Figure 46 SSD1306 controller and OLED display  

 

 

In this picture we can see how the interface between the OLED display and his controller 

will take place through the common and the segment pins, which will tell which pixels 

have to turn up. 

 

Figure 47 SSD1306 controller and OLED display (technical) [23] 
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In the following picture we can see the exact connections that we are supposed to do if 

we want to connect the SSD1306 controller with any other MCU that provides him the 

data to display, there also a couple of capacitors that are recommend to use, and last but 

not least the power source with a couple of parallel capacitors to maintain the value 

constant. 

 

Figure 48 SSD1306 controller connections needed to work with any other device  

 

In our controller we can difference a few determinant parts for our control of the oled 

display. The first one is the Graphic Display Data RAM, and the second one are the 

Common and Segments drivers; we will explain them later. For now we can plced them 

in a figurative way as we see in the next picture. [23] 
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Figure 49 Block diagram of the SSD1306 OLED dislpay controller [23] 

Segments driver / Common driver: 

Comunication through SSD1306 and OLED its made through a segmet/common driver. 

Segment drivers deliver 128 current sources to drive the OLED panel. The driving current 

can be adjusted from 0 to 100uA with 256 steps. Common drivers generate voltage-

scanning pulses. 
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Figure 50 Communication diagram between a MCU the Seg/Com driver and the OLED display 

 

Graphic display Data RAM (GDDRAM): 

This is a bit mapped static RAM that has the pattern about to be displayed, this RAM has 

128 x 64 bits and divided that ones into pages, from 0 to 7. Each page it’s like a row of a 

matrix, containing all the segments from 0 to 127, and a group of commons, actually 8 

commons each page. 

 

Figure 51 GDDRAM pages structure of SSD1306 [23] 
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Figure 52 Detailed pages of the SSD1306 [23] 

The controller gives us the possibility to select the interface protocol that we will use to 

“talk” with it. This is possible because of a group of three-bit pins: BS0, BS1, BS2 that 

taking HIGH or Low different combinations of values will select the protocol. For 

example in our case, I2C communication ks selected with the combination: [ BS0, BS1 , 

BS2 ] = [  0  ,  1  ,  0  ] 

 

Table 4 MCU bus interface pin selection [23] 

Note: 

(1) 0 is connected to VSS 

(2) 1 is connected to VDD 

 

Table 5 MCU interface assignment under different bus interface mode [23] 

As we are using the I2C, the last row will be the one. Using three digital pins to the data 

and commands transmission: the D2 for the SDAout, the D1 SDAin and finally the D0 
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for the SCL (we will explain these concepts later); mine while the other digital pins (from 

D7 to D3) will remain at a low level. In addition, we will need a couple of control signals: 

in the pin D/C# it will take place the SA0, and in the RES# pin we will have the RES# 

(regular reset); and the E, R/W# and CS# will remain LOW. 

 

 

Figure 53 pinout scheme of the SSD1306 controller [23] 

I2C interface protocol: 

To connect OLED Display with the ESP32 microprocessor we are using the I2C protocol 

with Arduino, so a brief introduction to his protocol will be needed: 

I2C combines the best features of SPI and UARTs. With I2C, you can connect multiple 

slaves to a single master (like SPI) and you can have multiple masters controlling single, 

or multiple slaves. This is really useful when you want to have more than one 

microcontroller logging data to a single memory card or displaying text to a single LCD, 

but in our particular case we are only the I2C protocol is going to connect just two things, 

the ESP32 and the SSD1306 controller [24]. 
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Like UART communication, I2C only uses two wires to transmit pure data and commands 

between two devices: SDA and SCL, but it also needs two more wires for control: 

SA0: slave address bit, to recognise the slave address before the transmission, but as we 

had said earlier we are connection just two things, so we won´t need this wire. This one 

is needed when we have a bunch of slaves or masters. 

RST or RES#: is used for the initialization of device before start transmitting its need to 

restart de device and his parameters. 

 

Figure 54 Master-Slave communication with I2C interface basic diagram [24] 

 

SDA (Serial Data) – The I2C bus data signal, communication channel between master 

and slave, not just data, also ACK is sent through that.  

In this bus we have two wires tied together: the SDAin and SDAout. Through SDAin pin 

the data its transmitted, so as to it it must be always connected, besides the SDAout its 

just for the ACK so it may be disconnected, losing the ACK message and letting our 

communication as unidirectional. 
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Figure 55 ACK message example [23] 

 

SCL (Serial Clock) – The line that carries the clock signal. Each transmission of data bit 

takes place during a single clock period of SCL. 

 

 
Figure 56 example of the SCL functioning [23] 

 

Like SPI, I2C is synchronous, so the output of bits is synchronized to the sampling of bits 

by a clock signal shared between the master and the slave. The clock signal is always 

controlled by the master. 

I2C is a serial communication protocol, so data is transferred bit by bit along a single wire 

(the SDA line). 
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Figure 57 I2C bus data format in the write mode [23] 

As we are going to use a I2C protocol to communicate the OLED Display and the ESP32 

microprocessor, the pin mapping will be according to the OLED_LoRa_sender.ino code 

(first board test), (Remember we are using V1): 

Definition name in 

arduino 

Pin mapping Type of the pin in 

TTGO Lora Module 

OLED_SCL Pin 15 GPIO 5  

OLED_SDA Pin 4 GPIO 19 

OLED_RST Pin 16 GPIO 16 

Table 6 pin connection of SSD1306 with ESP32 

 

3.5.3. Programming 

The first thing we need to start writing code to control the SSD1306 is to include his own 

library: 

#include "SSD1306.h"  
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This is one of the internal sub-libraries of the OLED library; this library includes a lot of 

different functions to draw circles, lines, squares, to write words and so on. 

To start working with this lib, first we have to initialize our OLED display for the 

connection with esp32. This is possible with: 

SSD1306Wire (uint8_t _address, uint8_t _sda, uint8_t _scl); 

This is how the function is initialized with his parameters in the library. 

To call and use it in our script: 

Address = 0x3c 

OLED_SDA = 4 

OLED_SCL = 15 

SSD1306  display (0x3c, 4, 15); 

After that we can start writing our code and using the different display functions, that we 

can find in the annexes. It´s also important to say that this is just one of the possible 

libraries that we may use for the SSD1306 controller. 
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3.6. The schematic diagram design (including internal 

connections of presented TTGO Lora module). 

 

 

 

Figure 58 Schematic of TTGO LoRa module 
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3.7. The data reading and transmission flowchart design. 

 

 

Figure 59 Global flowchart for the LoRa WAN project 



                                                                           Design of IoT temperature sensor for LoRa network 
 

66 
 

 

Figure 60 Data Reading flowchart for the LoRa WAN project 
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Figure 61 Data Transmission Flowchart of the LoRa WAN project 

 

3.8. The program design using Arduino shield with libraries. 

3.8.1. OLED_LoRa_sender.ino 

 

Libraries and definitions: 

1-SPI.h: 

It’s an Arduino proper library, that includes all the commands to perform a proper SPI 

devices transmission. 

Function examples: 

   SPI.begin(); Initializes the SPI bus by setting SCK, MOSI, and SS to outputs, 

pulling SCK and MOSI low, and SS high. 
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2-LoRa.h: 

This Arduino library is design for communications and transmission between two devices 

using LoRa technology, just sending and receiving unformatted bits between them. Not 

even the payload format in a LoRa WAN is used here. This library provides us an 

interface between our MCU and the LoRa transceiver to then transmit our data with its 

functions LoRa.beginPacket(), LoRa.print(), LoRa.endPacket(). 

Functions examples: 

LoRa.setPins(SS,RST,DI0); It’s easy to realise that this function will set the I2C 

communication pins between our transceiver and our MCU, and initialize it. 

3-Wire.h: 

 This library allows you to communicate with I2C / TWI devices. In our particular 

case we will need to manage the transmissions between the SSD1306 controller and the 

ESP32 MCU. We won´t use wire methods on this script, it will be used by the other 

library, the one that mange the OLED display, the SSD1306, but this library has been 

explained in previous points. 

#include <SPI.h> 

#include <LoRa.h> 

#include <Wire.h>   

#include "SSD1306.h"  

#include "images.h" 

 

Define all the pin connections that are needed to be made, for the SPI communication 

between SX1276 and ESP32. 

#define SCK     5    // GPIO5  -- SX1278's SCK 

#define MISO    19   // GPIO19 -- SX1278's MISO 

#define MOSI    27   // GPIO27 -- SX1278's MOSI 

#define SS      18   // GPIO18 -- SX1278's CS 
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#define RST     14   // GPIO14 -- SX1278's RESET 

#define DI0     26   // GPIO26 -- SX1278's IRQ(Interrupt Request) 

#define BAND    868E6 

 

Initializations and declarations: 

 

 unsigned int counter = 0; A simple counter that will be increasing 

its value to see how the other lora ttgo module receive it and display it correctly. 

 

V1 modification in the ssd1306 controller pin connections for the I2C 

communication 

SSD1306 display(0x3c, 4, 15); 

String rssi = "RSSI --"; 

String packSize = "--"; 

String packet ; 

 

Void_setup(): 

 

void setup() { 

  pinMode(16,OUTPUT); 

  pinMode(2,OUTPUT); 

   

  digitalWrite(16, LOW);    // set GPIO16 low to reset OLED 

  delay(50);  
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  digitalWrite(16, HIGH); // while OLED is running, must set 

GPIO16 in high 

   

  Serial.begin(9600); 

  while (!Serial); 

  Serial.println(); 

  Serial.println("LoRa Sender Test"); 

   

  SPI.begin(SCK,MISO,MOSI,SS); The function to setup and initialize the SPI 

communications 

  LoRa.setPins(SS,RST,DI0); The function to setup and initialize  the LoRa 

communications 

  if (!LoRa.begin(868E6)) { To start LoRa technology is so important to put the 

European frequency band 

    Serial.println("Starting LoRa failed!"); 

    while (1); 

  } 

  //LoRa.onReceive(cbk); these two lines are commented because are for the 

receiver version 

  //LoRa.receive(); 

 

  Serial.println("init ok"); 

  display.init(); Initialization of the oled display to start running 

  display.flipScreenVertically();   

  display.setFont(ArialMT_Plain_10); 

  logo(); 
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  delay(1500); 

} 

 

Void loop(): 

 

void loop() { 

  display.clear(); 

  display.setTextAlignment(TEXT_ALIGN_LEFT); 

  display.setFont(ArialMT_Plain_10); 

   

  display.drawString(0, 0, "Sending packet: "); 

  display.drawString(90, 0, String(counter)); 

  display.display(); 

 

  // send packet, This four commands form the sending “protocol” , just in a 

metaphorical way 

  LoRa.beginPacket(); This one set the start of the package to send 

  LoRa.print("hello "); This case we are sending a simple hello + counter number 

  LoRa.print(counter); 

  LoRa.endPacket(); This one set the start of the package to send 

 

  counter++; 

  digitalWrite(2, HIGH);   // turn the LED on (HIGH is the voltage 

level) 

  delay(1000);                       // wait for a second 

  digitalWrite(2, LOW);    // turn the LED off by making the voltage 

LOW 

  delay(1000);a                       // wait for a second 

} 



                                                                           Design of IoT temperature sensor for LoRa network 
 

72 
 

 

3.8.2. Ttgo_abp_lorawan.ino 

Lmic.h lib explanation: 

 The LMiC library [25] gives us an event-based programming model where all 

protocol events are dispatched to the application’s onEvent() call back function the one 

that takes care of the each instant running event. The timings or interrupts are carried by 

the built-in libraries that handles the run-time environment, taking care pf timer queues 

and job management. 

 The code is run in jobs which are executed on the main thread by the main 

scheduler function os_runloop(). These so-called jobs are coded as regular C functions 

and will be managed by the run time functions, the ones that control the run-time 

environment with his initialization, scheduling and execution of the run-time jobs. 

For the job management an additional per job control struct osjob_t is required which 

identifies the job and stores all the information needed to manage and handle it. The jobs 

should only update state and schedule actions, which will trigger new job or event call-

backs. 

All an application has to do is to initialize the run-time environment using the os_init() 

function and to run the job scheduler function os_runloop(), which does not return. In 

order to launch all the protocol actions and generate events, an initial job needs to be set 

up. Therefore, a start-up job is scheduled using the os_setCallback() function, in our 

particular case we are using the os_setTimedCallback() function, which differs with the 

other in the time when job is going to be prepared to run. The first job prepares a 

immediately runnable job and the second one scheduled a timed job fixed with the 

absolute system time. 

Hal/hal.h lib explanation: 

This library is a hardware abstraction layer that treats and handle low level data and 

information more related to the hardware drivers and its management. 
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Figure 62 Diagram of the place that Hardware abstraction layer takes up in the LMIC library and that on the LoRa 

WAN architecture [25] 

 

To understand how this library works we are going to review a couple of examples of the 

Hal library functions: 

 void hal_init (): Initialize the hardware abstraction layer and configure the 

components for: IO, SPI, TIMER, IRQ for other hal functions. 

void hal_failed (): Perform a fatal failure situation resetting everything to a 

safe state position. 

void hal_pin_rxtx (u1_t val): Drive the digital output pins RX and TX 

(0=receive, 1=transmit) getting them prepared to transmit. 

 

U8x8lib.h lib explanation: 

 This lib it’s so similar to the SSD1306 library we use previously on the 

lora sender and receiver example, we use this now because it’s the one that had been 

tested for the LoRa WAN protocol. It has typical display controllers functions like: 

u8x8.setCursor(0, 5); 

The set cursor function just put the location where we are going to start displaying 

things. 

u8x8.printf("TIME %lu", os_getTime()); 
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The printf function works exactly equal to the c++ function, it simply displays some 

characters or numbers. 

u8x8.drawString(0, 7, "EV_SCAN_TIMEOUT");       

The drawstring function is so similar to printf  plus set cursor, because it select the 

starting position to display and  the string to display. 

 

Arduino code: 

#include <lmic.h> 

#include <hal/hal.h> 

#include <SPI.h> 

#include <U8x8lib.h> 

 

#define BUILTIN_LED 25 

 

// the OLED used 

U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ 15, /* 

data=*/ 4, /* reset=*/ 16); The OLED controller pin connections for the 

I2C communication with the ESP32. 

 
// LoRaWAN NwkSKey, network session key 

This is the default Semtech key, which is used by the early prototype TTN 

network. 

static const PROGMEM u1_t NWKSKEY[16] = { 0x75, 0x15, 0x56, 

0x54, 0x94, 0xD7, 0xCD, 0x35, 0x26, 0x04, 0x61, 0x7A, 0xC9, 

0xB5, 0xFC, 0x92 }; 

 
// LoRaWAN AppSKey, application session key 

This is the default Semtech key, which is used by the early prototype TTN 

network. 

static const u1_t PROGMEM APPSKEY[16] = { 0xAA, 0x3F, 0xAA, 

0xFD, 0xCE, 0x05, 0x77, 0xAA, 0xF0, 0x7C, 0x2A, 0x66, 0xCC, 

0x6B, 0x7E, 0xAD }; 

 

// LoRaWAN end-device address (DevAddr) 
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static const u4_t DEVADDR = 0x26011467; This address has to be 

changed for every node! 

 

These callbacks are only used in over-the-air activation, so they are left empty 

here (we cannot leave them out completely unless DISABLE_JOIN is set in 

config.h, otherwise the linker will complain). 

void os_getArtEui (u1_t* buf) { } 

void os_getDevEui (u1_t* buf) { } 

void os_getDevKey (u1_t* buf) { } 

 

static uint8_t mydata[] = "Hello, world!"; This is going to be the data 

that we are going to send 

static osjob_t sendjob; the osjob_t is a structure that identifies the job and 

stores context information, our job will be called sendjob. 

 

Schedule TX every “n” seconds (might become longer due to duty cycle 

limitations). 

const unsigned TX_INTERVAL = 30; 

 

Pin mapping, to communicate the SX1276 with the ESP32 through the SPI 

protocol. 

const lmic_pinmap lmic_pins = { 

  .nss = 18, This is the salve selection pin 

  .rxtx = LMIC_UNUSED_PIN, 

  .rst = 14, This is the reset pin, RST. 

  .dio = {26, 33, 32}, This are going to be the MISO, MOSI and 

IRQ pins. 

}; 

 

void onEvent (ev_t ev): 

The implementation of this call back function may react on certain events and trigger 

new actions based on the event and the LMIC state, it works like kind of conventional 

state-machine. Typically, an implementation processes the events it is interested in and 

schedules further protocol actions using the LMIC API. The following events will be 

reported: 
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void onEvent (ev_t ev) { 

    Serial.print(os_getTime()); 

    u8x8.setCursor(0, 5); 

    u8x8.printf("TIME %lu", os_getTime());     

    Serial.print(": "); 

    switch(ev) { 

        case EV_SCAN_TIMEOUT: 

            Serial.println(F("EV_SCAN_TIMEOUT")); 

            u8x8.drawString(0, 7, "EV_SCAN_TIMEOUT"); 

            break; 

        case EV_BEACON_FOUND: 

            Serial.println(F("EV_BEACON_FOUND")); 

            u8x8.drawString(0, 7, "EV_BEACON_FOUND"); 

            break; 

        case EV_BEACON_MISSED: 

            Serial.println(F("EV_BEACON_MISSED")); 

            u8x8.drawString(0, 7, "EV_BEACON_MISSED"); 

            break; 

        case EV_BEACON_TRACKED: 

            Serial.println(F("EV_BEACON_TRACKED")); 

            u8x8.drawString(0, 7, "EV_BEACON_TRACKED"); 

            break; 

        case EV_JOINING: 

            Serial.println(F("EV_JOINING")); 

            u8x8.drawString(0, 7, "EV_JOINING"); 

            break; 

        case EV_JOINED: 

            Serial.println(F("EV_JOINED")); 

            u8x8.drawString(0, 7, "EV_JOINED "); 

           Disable link check validation (automatically enabled during join, 

but not supported by TTN at this time). 

            LMIC_setLinkCheckMode(0); Enable/disable link check 

validation. Link check mode is enabled by default and is used to periodically 

verify network connectivity. Must be called only if a session is established. In 

this case is disabled. 
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            break; 

        case EV_RFU1: 

            Serial.println(F("EV_RFU1")); 

            u8x8.drawString(0, 7, "EV_RFUI"); 

            break; 

        case EV_JOIN_FAILED: 

            Serial.println(F("EV_JOIN_FAILED")); 

            u8x8.drawString(0, 7, "EV_JOIN_FAILED"); 

            break; 

        case EV_REJOIN_FAILED: 

            Serial.println(F("EV_REJOIN_FAILED")); 

            u8x8.drawString(0, 7, "EV_REJOIN_FAILED"); 

            break; 

        case EV_TXCOMPLETE: 

The data prepared via LMIC_setTxData2() has been sent, and eventually 

downstream data has been received in return. If confirmation was requested, the 

acknowledgement has been received.  

 
            Serial.println(F("EV_TXCOMPLETE (includes waiting 

for RX windows)")); 

            u8x8.drawString(0, 7, "EV_TXCOMPLETE"); 

            digitalWrite(BUILTIN_LED, LOW); 

            if (LMIC.txrxFlags & TXRX_ACK) If we have flags and 

confirmed UP frame was acked  

              Serial.println(F("Received ack")); 

              u8x8.drawString(0, 7, "Received ACK"); 

            if (LMIC.dataLen) { 

              Serial.println(F("Received ")); 

              u8x8.drawString(0, 6, "RX "); 

              Serial.println(LMIC.dataLen); LMIC.dataLen is one of 

the flag binary comands nad part of the LIMIC structure, // 0 no data or zero length 

data, >0-byte count of data 

              u8x8.setCursor(4, 6); 

              u8x8.printf("%i bytes", LMIC.dataLen); 

              Serial.println(F(" bytes of payload")); 
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              u8x8.setCursor(0, 7); 

              u8x8.printf("RSSI %d SNR %.1d", LMIC.rssi, 

LMIC.snr); Received Signal Strength Indicator, the RSSI intensity of the 

signal and the SNR signal-to-noise ratio the relation between the signal and the 

noise. 

            } 

            Schedule next transmission 

            os_setTimedCallback(&sendjob, 

os_getTime()+sec2osticks(TX_INTERVAL), do_send); 

            break; 

        case EV_LOST_TSYNC: 

            Serial.println(F("EV_LOST_TSYNC")); 

            u8x8.drawString(0, 7, "EV_LOST_TSYNC"); 

            break; 

        case EV_RESET: 

            Serial.println(F("EV_RESET")); 

            u8x8.drawString(0, 7, "EV_RESET"); 

            break; 

        case EV_RXCOMPLETE: 

            // data received in ping slot 

            Serial.println(F("EV_RXCOMPLETE")); 

            u8x8.drawString(0, 7, "EV_RXCOMPLETE"); 

            break; 

        case EV_LINK_DEAD: 

            Serial.println(F("EV_LINK_DEAD")); 

            u8x8.drawString(0, 7, "EV_LINK_DEAD"); 

            break; 

        case EV_LINK_ALIVE: 

            Serial.println(F("EV_LINK_ALIVE")); 

            u8x8.drawString(0, 7, "EV_LINK_ALIVE"); 

            break; 

         default: 

            Serial.println(F("Unknown event")); 

            u8x8.setCursor(0, 7); 

            u8x8.printf("UNKNOWN EVENT %d", ev); 
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            break; 

    } 

} 

 

Do_send()function: 

The main function into it is the LMIC_setTXData2(), this function will be the main 

factor to send our package.  

 

void do_send(osjob_t* j){ 

    // Check if there is not a current TX/RX job running 

    if (LMIC.opmode & OP_TXRXPEND) { 

        Serial.println(F("OP_TXRXPEND, not sending")); 

        u8x8.drawString(0, 7, "OP_TXRXPEND, not sent"); 

    } else { 

        // Prepare upstream data transmission at the next 

possible time. 

 
 

The pure “sending” or transmitting LMIC_setTxData2 (u1_t port, xref2u1_t data, u1_t 

dlen, u1_t confirmed) 

We are using port 1, sending data will be mydata (helloworld string), the length of 

mydata -1 bit, and no confirmation from receiver (the meaning of the last number wich 

can take 0 or 1 value). 

 

        LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);  

        Serial.println(F("Packet queued")); 

        u8x8.drawString(0, 7, "PACKET QUEUED"); 

    } 

    // Next TX is scheduled after TX_COMPLETE event. 

} 

 

Void setup(): 

void setup() { 

    Serial.begin(115200); 

    Serial.println(F("Starting")); 
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    u8x8.begin(); 

    u8x8.setFont(u8x8_font_chroma48medium8_r); 

    u8x8.drawString(0, 1, "LoRaWAN LMiC TTN Node...");  

        

    SPI.begin(5, 19, 27); 

 

    // LMIC init 

     os_init();  Initialize the run-time environment  

 

  Reset the MAC state. Session and pending data transfers will be discarded. 

    LMIC_reset(); A must use function to start a loraWAN network 

transmission, it’s a part of the LMIC initialization needed   

 

Set static session parameters. Instead of dynamically establishing a session 

by joining the network, precomputed session parameters are being provided. 

    #ifdef PROGMEM 

On AVR, these values are stored in flash and only copied to RAM 

once. Copy them to a temporary buffer here, LMIC_setSession will 

copy them into a buffer of its own again. 

    uint8_t appskey[sizeof(APPSKEY)]; 

    uint8_t nwkskey[sizeof(NWKSKEY)]; 

    memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); 

    memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); 

    LMIC_setSession (0x1, DEVADDR, nwkskey, appskey); 

    #else 

If not running an AVR with PROGMEM, just use the arrays directly 

    LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY); 

    #endif 

 

    #if defined(CFG_eu868) 

Set up the channels used by the Things Network, which corresponds to the defaults of 

most gateways. Without this, only three base channels from the LoRaWAN specification 

are used, which certainly works, so it is good for debugging, but can overload those 
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frequencies, so be sure to configure the full your network here (unless your network 

autoconfigures them). Setting up channels should happen after LMIC_setSession, as that 

configures the minimal channel set. 

    // NA-US channels 0-71 are configured automatically 

//    LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

//    LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, 

DR_SF7B), BAND_CENTI);      // g-band 

//    LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

//    LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

//    LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

//    LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

//    LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

    LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, 

DR_SF7),  BAND_CENTI);      // g-band 

//    LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  

DR_FSK),  BAND_MILLI);      // g2-band 

//     

TTN defines an additional channel at 869.525Mhz using SF9 for class B devices' ping 

slots. LMIC does not have an easy way to define set this frequency and support for class 

B is spotty and untested, so this frequency is not configured here. 

    #elif defined(CFG_us915) 

NA-US channels 0-71 are configured automatically but only one group of 8 should (a 

subband) should be active TTN recommends the second sub band, 1 in a zero-based 

count. 

    LMIC_selectSubBand(1); 

    #endif 

 

    // Disable link check validation 

    LMIC_setLinkCheckMode(0); 
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    // TTN uses SF9 for its RX2 window. 

    LMIC.dn2Dr = DR_SF9; 

 

Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library 

and to not have a great influence at the hardware level) 

    LMIC_setDrTxpow(DR_SF7,14); 

 

    // Start job 

    do_send(&sendjob); 

} 

 

Void loop(): 

Like we have said earlier one of the most important things to do in a LMIC based program 

is run the job scheduler function os_runloop(), which Execute run-time jobs from the 

timer and from the run queues. This function is the main action dispatcher. It does not 

return and must be run on the main thread, in other words, it will be the “brain” of this 

event based-program. 

In our case we are using the is_runloop_once(); as its name said it happens once. 

 

void loop() { 

    os_runloop_once(); 

} 

 

3.8.3. Ttgo_abp_lorawan_LM35sensor2.ino 

This code is going to be one to perform our main task, the temperature data transmission 

to our TTN app through LoRa WAN. This code only defers with the last in a few things: 

To send the digital values provided by the ESP32 ADC, we must improve the code in 

order to send more than a “Hello World”. So first we create a new data buffer where the 

information will be stored before transmission, this buffer is going to be a char of 8 lots: 

static uint8_t mydata[] = { 0,0,0,0,0,0,0,0}; 

And we are going to need to use a function to convert the number read into a char, using 

the dtostrf, similar to well know functions as sprint but more useful for this case: 
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dtostrf(temperature,5,2,(char*)mydata); 

 

In addition, in the do_send function we need to change the LMIC_setData2 function 

parameters for the new buffer structure. 

 

LMIC_setTxData2(1, mydata, strlen((char*) mydata), 0); 

 

Of course before all this technical modifications we have to introduce the analogRead() 

with its pin, and the algorithm to transform the raw data into temperature values. 

 

float RawValue = analogRead(34); 

    float temperature; 

float Voltage; 

 

Voltage = (RawValue / 4095.0) * 3300; // 5000 to get millivots. 

    temperature = (Voltage * 0.1); 

 

This new code features are based on: [26] 
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4.Obtained results and conclusions. 

4.1. Sensor and Data Reading and transformation to digital 

(ADC) 

Analog to Digital Converter of the ESP32: 

ESP32 integrates two 12-bit SAR (“Successive Approximation Register”): A successive 

approximation ADC is a type of analog-to-digital converter that converts a 

continuous analog waveform into a discrete digital representation via a binary 

search through all possible quantization levels before finally converging upon a digital 

output for each conversion) ADCs (Analog to Digital Converters) and supports 

measurements on 18 channels (analog enabled pins). Some of these pins can be used to 

build a programmable gain amplifier which is used for the measurement of small analog 

signals. 

 

Successive Approximation ADC: 

This is the most commonly used ADC when we need medium or high speed of 

conversion, between microseconds and decimals of microseconds. A comparator is used 

to tight up successively a range of input voltage. In each consecutive step the converter 

compares the input voltage with the output voltage of internal digital to analog converter, 

which may be the mid-way point in the selected voltage range of values. Each step of this 

process is stored in a successive approximation register (SAR). 

For example, we take input voltage value of 6.3 V, and the initial range is between 0 V 

and 16 V.  

In the first step it compares 6.3 V with 8 V (the mid-way point of the 0 to 16 V range of 

values). The comparator inform that the input value is smaller than 8V, so as to that the 

SAR updates the range to a new and tighter 0 to 8 V.  

The second step will be similar to the first, despite now the input value is compared to 4 

V (the mid-way point of the 0 to 8 V range). The comparator inform that the input value 

is bigger than 4V, so as to that the SAR updates the range to a new and tighter 4 to 8 V.  

Third step will narrow now the range of values from 6 to 8 V, and so on until we get the 

expected resolution [27]. 

 

https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/wiki/Quantization_(signal_processing)
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Figure 63 The internal logic circuit of a SAR ADC [27] 

 

The ADC driver API currently only supports ADC1 (9 channels, attached to GPIOs 32-

39). 

Taking an ADC reading involves configuring the ADC with the desired precision and 

attenuation settings, and then calling adc1_get_voltage() to read the channel. 

It is also possible to read the internal hall effect sensor via ADC1 [28]. 

 

4.2. How to use LoRa WAN with TTGO LoRa ESP32 

4.2.1. Introduction 

In this guide I will explain how I have connected my ttgo lora module v1, to a gateway 

in our university, working with LoRa WAN, creating an online application for this 

purpose with thethingsnetwork.org web. 

4.2.2. Step by step 

Software needs: 

Step 1 was making sure that the Arduino IDE becomes capable of compiling code for the 

board and to upload it to it. To do that you need to go to this repository 

https://github.com/Heltec-Aaron-Lee/WiFi_Kit_series. Scroll down to get to the English 

instructions. I didn’t use the option to checkout via git, but simple downloaded it as a Zip 
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file (big green button upper right). In the folder ..\Documents\Arduino\hardware on my 

laptop I created a folder “heltec” and within that I copied the folders “esp32” and 

“esp8266” from the ZIP file. 

 

 
Figure 64 heltec files  

 

Important: in the folder ..\Documents\Arduino\hardware\heltec\esp32\tools there is a file 

called get.exe. You need to double click that file so a number of other files can be 

downloaded. 

 

Figure 65 tools file with its content 

Step 2 is to download the Arduino-LMIC library that handles the communication with 

the SX1276 chip on the board. Here again I downloaded the ZIP-file from github. Since 

this is a library, it needs to be installed from within the Arduino IDE via Sketchs > Include 

Library > Add .ZIP library. 
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Figure 66 downloaded file with the LMIC library 

 

 

 
Figure 67 includeind the LMIC library procedure 

 

Step 3 is making sure we can output stuff to the OLED. For that we need to install the 

U8x8lib library, (just another different library to control the oled display through the 

SSD1306 controller, we will use this library because it’s the one that had been checked 

to work properly with LoRa WAN). I used the build in option to install the library via 

Sketch > Include Library > Manage Library. Just search for U8x8 and install it. 

 

Now we can start. As board you select “WiFi_LoRa_32”. The LIMC repository on github, 

provided by Matthijs Kooijman also includes a number of examples for use of the code 

with The Things Network.  

That way you’ll get the needed codes to add in your copy of the code (making sure the 

data of your device gets delivered at the right location). 

¡There is another change we have to make within the provided example code! 

  You have to change this code snippet: 

// Pin mapping  

const lmic_pinmap lmic_pins = {  

.nss = 6,  

.rxtx = LMIC_UNUSED_PIN,  
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.rst = 5,  

.dio = {2, 3, 4}, }; 

into: 

// Pin mapping  

const lmic_pinmap lmic_pins = {  

.nss = 18,  

.rxtx = LMIC_UNUSED_PIN,  

.rst = 14,  

.dio = {26, 33, 32}, }; 

 

 

This code we have just downloaded have a little problem, it doesn’t use the OLED 

display, and as we had spent money on it we would like to use it. So, we are going to 

download another piece of uploaded Arduino code from Github, this time from another 

direction, it’s the same code but with a couple of new lines referred to the OLED display 

library: https://github.com/PiAir/esp32-sx1276. 

 

In this direction we downloaded the ABP example: 
 

 
Figure 68 ABP example code that we are going to use 

This step by step tutorial is based on: [29]. 

 

4.2.3. Decoding of the data transmitted 

The example that we are using just keeps sending “Hello, world!” on a loop.  If you 

look for the data received by TTN in the console, you won’t see that text there at first. 

You should see a payload containing “48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21”. This 

has been encoded to its hexadecimal form code, so for example when we see a “48” is 

the hexadecimal code for “H”, the rest of them we can find on the ASCII table. 

Translating the ASCII values back to a string can be done automatically by TTN if you 

tell it how to. You can create a payload function for that (you can find it as “Payload 

Formats” on Application level on our already created application of TTN, we will see 

how to create it later, not on Device level). If you add this function: 
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function Decoder(bytes, port) { 

  var text = String.fromCharCode.apply(null, bytes); 

  return { 

    message: text 

  } 

} 

 

Then the incoming payload gets translated into a JSON-object containing the string as 

“message” [30]. 

 

Figure 69 Example de decoding. 

 

4.2.4. Attaching the sensor 

It’s clear that just sending the same “Hello World” string is not enough, we need now to 

prepare ourselves to attach a sensor to our TTGO LoRa board and start sending the 

measured data. To know where to connect that sensor, a schema of the pinouts is 

needed.  
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Figure 70 TTGO LoRa V1 pinout [19] 

 

Besides needing to have the correct schema, some of the pins are already in use by the 

existing script. A quick look at the code lists GPIO-pins 15, 4, 16, 18, 14, 26, 33, 32 as 

already in use. And of course, it wouldn´t be a good idea to use the pins of “LoRa_” and 

“LED” and “OLED” in the pinout schema, because it makes that I expect more ports to 

be in use. So that gives me a bunch of free pins to use. 

Its important to mark that we are going to measure analog data, so we should use a pin 

with analog to digital converter, so one of the free pins with the “ADC_” words in it.  I 

will choose the pin 35 as it´s free and has the AD converter ADC1_7 (GPIO35*). 

The next step is connecting the analog output of our LM35 to the pin 34, to transform that 

analog values to digital so as to make it manipulable for the MCU. And finally connect 

the Vp to the 5V and the GND of our sensor to GND [31]. 

 

 Programming code for sensing: 

At first we can use a typical Arduino function that is also valid for ESP32 ADC, the 

analogRead(), the argument of this function is the pin where we have attached our sensor; 

so in our case, it will be analogRead(35), this would give as the value ready to work with 

it. 

Before this we should configure the pin to work as ADC using adcAttachPin(34), on the 

void setup() [32] . 
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It’s also important to use the Serial communication, first we configure it in the void 

setup() electing the baudrate of communication, in our case Serial.begin(115200); after 

that we should print our info to see if everything its working good with the Serial.println() 

function. This is just a first approach to use sensors with the ESP32, of course after this 

first test we should integrate that on our major lora WAN code to send transmit this data 

instead of the hello world string. 

 

-Potentiometer test:  

We are using a B10K potentiometer, with linear characteristic, resistance of 10K, and an 

angle of rotation of 300º ± 10º. 

 

Figure 71 Pinout of the B10K 

 

Figure 72 potentiometer B10K 
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Figure 73 Potentiometer analogRead() with 12 bits of resolution, with 5 V 

 

 

Figure 74 Potentiometer analogRead() with 6 bits of resolution with 5 V 

We can easily notice that something it´s not working properly because the value of the 

analogRead() isn´t proportional to the angle of potentiometer´s rotation in all the degrees 

positions, for example when we are at the 0º the measurement is 0, but if we keep moving 

until a certain value of rotation the measurement keep on 0º; after that in a short range of 

degrees (almost 30º) all the range of values appears, from 0 to 4095 (in the 12 bit 

resolution case), and after that, the 4095 value saturate again, and it´s been held to end of 

the rotation. 

Now I change the V+ value of the potentiometer from 5 V to 3 V. And see what changes: 

Finally, we have get the full range of valid values from 0º and 0 V from 5 V values  

 

 

Figure 75 cursor at the start 3.3 V 



                                                                           Design of IoT temperature sensor for LoRa network 
 

93 
 

 

 

Figure 76 cursor at the half way 3.3 V 

 

 

Figure 77 cursor at the end 3.3 V 

 

Testing the LM35 sensor: 

Voltage = (RawValue / 4095.0) * 3300; // 3300 to get millivolts. 

temperature = (Voltage * 0.1); 

     

We use this conversion algorithm because we have a 12-bit resolution, 3300 mV as 

maximum ADC output value and we have multiplied it by 0.1 (divided it by 10mV), 

because 10 mV per degree. 
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Figure 78 testing the LM35 at 5V and the 12 bits of resolution 

After seeing the results it´s clear that the results of the LM35 sensing test are not what we 

espected, the temperature it´s not even close to the real one, it´s 26ºC and the sensor gives 

us around 10ºC. 

So now we are going to need to check what is not working. In a quick look we can see 

that the voltage digital signal provided by the ADC is around 95 mV, and it should be 

260 mV aproximately (for the 26ºC); so as to it we checked the voltages with a voltmeter: 

• 5 V board power source, its okey its giving 5.14 V 

• Analog output of the LM35, its okey is giving us around 267 mV 

So now we now that the problem is not due to the power source or the LM35, it is on the 

ADC of the ESP32. To check the performing accuracy of the ADC we have make a table 

of measurements, this measurements will be done with the 10K potentiometer to check 

all posible values, the problems could be on the low voltage levels so we decided to make 

a measurement each 10 mV in the 0 V to 0.5 V range, then a measurement each 20 mV 

in the 0.5 V to 1 V, and to finish a measurement each 100 mV (the maximum value its 

3.3 V but it has not been necessary to reach it to solve the problem). 
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The table of measurements is available on the anexes, but for the moment we will check 

the chart where the VADC values are on the y axes and the Vexp (volts measured with 

voltmeter) values are on the x axes. 

 

Figure 79 Volts measured versus Volts provided by the ADC 

 

The charts has good linearity response, but now we have found the problem. At low 

voltages, below 150 mV or 160 mV in particular, the volts of the ADC are always 0 mV. 

This gives us the key of the problem, we have an offset error. To correct this error, we 

look at what it may be a common temperature value, 25ºC, so we have a difference of 

170 mV between the value measured and the Vadc. If we want to correct it, we have to 

add the offset value to our algorithm. 

Error offset = 170 mV: 

float voltag = ((temp1*3300)/4095)+170; 

Now we attach the LM35 back with the board and test it again: 
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Figure 80 Example of values provided by the sensor with the offset error added 

The results are the expected, even though we know that this is not a great accuracy sensor. 

Temperatures of 26ºC are real an acceptable value. 

 

4.2.5. TheThingsNetwork application 

In the TheThingNetwork webpage we will have to create two things in our account to 

perform the test of our LoRa WAN network: 

• New Application 

• New Device 

-Add application: 

The application that we are creating will be an interface between the end-point devices 

and the VGTU LoRa station direction that will receive and store all the information sent. 



                                                                           Design of IoT temperature sensor for LoRa network 
 

97 
 

 

Figure 81 adding a TTN application 

We have a group of fields that we have to fill with information. The Application ID field 

will be the words to identify our app, we have called it ttgo_lora_esp32 (we should put a 

representative name without blank spaces),The description field doesn´t affect anything 

to our application, its just to describe the main point of our application, The Application 

EUI its an important field (we will deep into it later, but we can say that the EUI it´s an 

identifier), but it can be filled automatically by the webpage. The Handler registration 

field must be filled with: ttn-handler-eu, as this is one of the possible options that the 

webpage give us. 

After that our application will be finished and ready to work. 

 

Figure 82 checking our TTN app 

Now if we get into our application, we wiil see the application EUIS generated by the 

webpage in hexadecimal format, and downer will appear our devices, so the next step will 

be how to add new devices to our app. 
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Figure 83 App EUIS and registered device in TTN 

 

 

-Register Device: 

We have a group of fields that we have to fill with information. The Device ID field will 

be the words to identify our app, we have called it ttgo_lora_esp32_v1 (we should put a 

representative name without blank spaces),The description field doesn´t affect anything 

to our device, it´s just to describe the main point of our device, The Device EUI it’s an 

important field (we will deep into it later, but we can say that the EUI it´s an identifier), 

but it can be filled automatically by the webpage with random numbers. 

The App Key field will be filled automatically by the webpage with random numbers, 

field (we will deep into it later). 

We need to put in the App EUI field the number generated for our application, to connect 

the app with the new device. 
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Figure 84 parameters of our new TTN device 

 

 

Figure 85 status check of our TTN device 

Now that we have our device registered we have to change a few parameters of its 

configuration. 

Device Address, this field is one the most significant ones, because its filled with the “ID” 

of our device, the TTGO v1, in my case. 

The Network Session Key, the other key field that we had fill with the “ID” of our 

gateway, the VGTU LoRa station. 

 



                                                                           Design of IoT temperature sensor for LoRa network 
 

100 
 

 

Figure 86 EUIS and Keys of our device 

We change the device address, the network session key and the app session key in our 

own code, also we have to change the configuration of activation method to ABP [33]. 

 

4.2.6. Two more basic notions of LoRa WAN: 

-End-Device setup and activation method: 

You can choose for either OTAA(Over the air activation) or ABP(Activation by 

personalization). I chose ABP, because its easier to configure and use. 

 

Figure 87 button of TTN app to choose the activation method 

We are going to take a closer look and see what do those two group of words mean. 

LoRaWAN allows for its packets to be both signed and encrypted by the use of keys 

known to both the node (module/sensor) and the LoRaWAN network/application server. 

The following are the keys:  
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• Network Session Key (NwkSKey)  

• Application Session Key (AppSKey) 

 

In addition, each device on the network has a unique device address (DevAddr).  

These keys are known only to the individual node (RM1xx module) and the 

network/application server. This means that another node or man-in-the-middle is not 

able to decode the packet payload.  

The following two methods are used to deploy these keys:  

 

• Over-the-Air Activation (OTAA)  

• Activation by personalization (ABP) 

With either of these methods, the same keys are loaded into both the module and network 

server that allows end-to-end data security. 

Over-the-Air activation: 

Over-the-Air activation (OTAA) [34] uses an application ID (AppEUI) and an application 

key (AppKey) along with a device ID (DevEui) to derive the network session key 

(NwkSKey), application session key (AppSKey) and the device address. A device address 

(DevAddr) is assigned by the network. OTAA is the preferred method because of its 

security advantages including regeneration of the session keys and simplifying network 

management. 

In conclusion, a join procedure with a join-request and a join-accept message exchange 

is used for each new session. Based on the join-accept message, the end-devices are able 

to obtain the new session keys (NwkSkey and AppSKey). 
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Table 7 parameters of the OTAA [34] 

 Activation by personalization: 

Activation by personalization (ABP) [34] uses both session keys directly, along with the 

DevAddr, to sign and encrypt the data packets. These must be configured both on the 

node (RM1xx module) and on the network server, expanding these ideas. 

The activation process should give the following information to an end-device: 

• End-device address (DevAddr): A 32-bit identifier of the end-device. Seven bits 

are used as the network identifier, and 25 bits are used as the network address of 

the end-device. 

• Application identifier (AppEUI): A global application ID in the IEEE EUI64 

address space that uniquely identifies the owner of the end-device. 

• Network session key (NwkSKey): A key used by the network server and the end-

device to calculate and verify the message integrity code of all data messages to 

ensure data integrity. 

• Application session key (AppSKey): A key used by the network server and end-

device to encrypt and decrypt the payload field of data messages. 

• In our particular case, for the ABP, the two session keys are directly stored into 

the end-devices. 
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Table 8 parameters of the ABP [34] 

Of course you will need to create a new device in the TTN console first.  

-Addressing: 

Devices and application s have 64 bit unique identifier (DevEUI and AppEUI). When a 

device joins the network, it receives a dynamic (non-unique) 32-bit address (DevAddr) 

 

Figure 88 updating the keys in the Arduino code 

For the update of the keys in the code we are using,  the network session key and the app 

session key we have to change the values to hexadecimal style, we don´t change the 

device address format though. 

-Additional coding lines needed the make the OLED display works properly: 

#include <U8x8lib.h> 

#define BUILTIN_LED 25 

// the OLED used 
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U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ 15, /* 

data=*/ 4, /* reset=*/ 16); 

 

We also changed the pins of our pin connection in arduino programm fot the OLED, 

because as we already knowed, V1 and V2 of ttgo module are different in the pinmapping. 

The three pins which will make the comunications with the I2C protocol will be 4, 15 and 

16.  

 

4.3. Final working test:  

 

 

Figure 89 TTGO module powered and LM35 sensor attached to it 

 

Now we have everything ready to work. The code will be the last shown, the 

test_abp_lorawan_LM35sensor2.ino, this codes implements everything we are going to 

need: LoRa WAN protocols, sensor reading, AD conversion , OLED display controller 

pin selection, LoRa transceiver pin selection, all the keys, addresses and EUIS needed, 

and selection of channel for transmission. 

We can see in the Arduino serial monitor how the event EV_TXCOMPLETE, that means 

that the data on the buffer has been sent, and downstream in has been received in return 

perfectly. And in each line; the raw data, voltage and temperature that we have been sent 

is shown. 
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Figure 90 Arduino serial monitor 

 

We can also see on the display when the TTGO has received the ACKE confirmation 

message: 

 

 

Figure 91 OLED displaying ACKE message received 
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To see if our project is working the it has to, let´s take a look at the TTN application: let´s 

check if it´s receiving data, and what data is it receiving too check if it’s the same. 

 

Figure 92 Data received and decoded in our TTN app. 

It´s easy to conclude that: 

• We are sending data 

• The data we are sending is the correct and the same as the data displayed on the 

serial monitor. 
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5.CONCLUSIONS. 

I would like to start saying that the Semtech LoRa technology, in this case the SX1276 

transceiver, is a success in terms of its accessibility when implementing a LoRa WAN 

network, they have an achieved a reliable, secure and open IoT solution, accessible to 

almost everyone interested in that field of technology, and furthermore is not expensive 

to start a project with it. Also, the ESP32 seems to be a good option to be the “main brain” 

of IoT projects. 

Finally, we have succeeded in our main goal: transmitting temperature data through LoRa 

technology in a LoRa network. After a great number of tests, such as the OLED  display 

test, the bare LoRa packages sending test between two LoRa modules, the sensors tests 

(10K potentiometer and LM35) with different power sources, the LoRa WAN 

implementation with ABP sending just a constant string, finally, the most important test; 

the mixture of everything, the LoRa WAN implementation with ABP configuration 

transmitting the temperature data of the LM35 through the LoRa Gateway to our server 

network in the cloud of TheThingsNetwork.org.  

However, all tests have brought to light a couple of failures. On the one hand, the ADC 

of the ESP32 has a threshold level before it senses any low voltage values, this is a 

problem when we are using a low voltage output sensor like the LM35, which in a regular 

environment, like the earth, is never going to provide an output above 500mV (50ºC). But 

as we have probed with a small correction in the offset, this can be fixed. So, the ESP32 

may not be suitable for low power signal sensors. On the other hand, the LoRa technology 

seems adequate in many other aspects, but the antenna hasn’t got a strong working range, 

with regards to tests using the LoRa gateway located at the faculty, these had to be carried 

out within the faculty´s area as its hardware only covers a small region. 
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7.ANEXES. 

7.1. Code 

7.1.1. SSD1306.h library 

1. /* Drawing functions */   
2.    // Sets the color of all pixel operations   
3.    void setColor(OLEDDISPLAY_COLOR color);   
4.    
5.    // Draw a pixel at given position   
6.    void setPixel(int16_t x, int16_t y);   
7.    
8.    // Draw a line from position 0 to position 1   
9.    void drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1);   
10.    
11.    // Draw the border of a rectangle at the given location   
12.    void drawRect(int16_t x, int16_t y, int16_t width, int16_t height);   
13.    
14.    // Fill the rectangle   
15.    void fillRect(int16_t x, int16_t y, int16_t width, int16_t height);   
16.    
17.    // Draw the border of a circle   
18.    void drawCircle(int16_t x, int16_t y, int16_t radius);   
19.    
20.    // Draw all Quadrants specified in the quads bit mask   
21.    void drawCircleQuads(int16_t x0, int16_t y0, int16_t radius, uint8_t quads)

;   
22.    
23.    // Fill circle   
24.    void fillCircle(int16_t x, int16_t y, int16_t radius);   
25.    
26.    // Draw a line horizontally   
27.    void drawHorizontalLine(int16_t x, int16_t y, int16_t length);   
28.    
29.    // Draw a lin vertically   
30.    void drawVerticalLine(int16_t x, int16_t y, int16_t length);   
31.    
32.    // Draws a rounded progress bar with the outer dimensions given by width an

d height. Progress is    
33.    // a unsigned byte value between 0 and 100   
34.    void drawProgressBar(uint16_t x, uint16_t y, uint16_t width, uint16_t heigh

t, uint8_t progress);   
35.    
36.    // Draw a bitmap in the internal image format   
37.    void drawFastImage(int16_t x, int16_t y, int16_t width, int16_t height, con

st char *image);   
38.    
39.    // Draw a XBM   
40.    void drawXbm(int16_t x, int16_t y, int16_t width, int16_t height, const cha

r *xbm);   
41.    
42.    /* Text functions */   
43.    
44.    // Draws a string at the given location   
45.    void drawString(int16_t x, int16_t y, String text);   
46.    
47.    // Draws a String with a maximum width at the given location.   
48.    // If the given String is wider than the specified width   
49.    // The text will be wrapped to the next line at a space or dash   
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50.    void drawStringMaxWidth(int16_t x, int16_t y, uint16_t maxLineWidth, String
 text);   

51.    
52.    // Returns the width of the const char* with the current   
53.    // font settings   
54.    uint16_t getStringWidth(const char* text, uint16_t length);   
55.    
56.    // Convencience method for the const char version   
57.    uint16_t getStringWidth(String text);   
58.    
59.    // Specifies relative to which anchor point   
60.    // the text is rendered. Available constants:   
61.    // TEXT_ALIGN_LEFT, TEXT_ALIGN_CENTER, TEXT_ALIGN_RIGHT, TEXT_ALIGN_CENTER_

BOTH   
62.    void setTextAlignment(OLEDDISPLAY_TEXT_ALIGNMENT textAlignment);   
63.    
64.    // Sets the current font. Available default fonts   
65.    // ArialMT_Plain_10, ArialMT_Plain_16, ArialMT_Plain_24   
66.    void setFont(const char *fontData);   
67.    
68.    /* Display functions */   
69.    
70.    // Turn the display on   
71.    void displayOn(void);   
72.    
73.    // Turn the display offs   
74.    void displayOff(void);   
75.    
76.    // Inverted display mode   
77.    void invertDisplay(void);   
78.    
79.    // Normal display mode   
80.    void normalDisplay(void);   
81.    
82.    // Set display contrast   
83.    void setContrast(char contrast);   
84.    
85.    // Turn the display upside down   
86.    void flipScreenVertically();   

 

7.1.2. Oled_LoRa_sender.ino 

 

1. #include <SPI.h>   
2. #include <LoRa.h>   
3. #include <Wire.h>     
4. #include "SSD1306.h"    
5. #include "images.h"   
6. #define SCK     5    // GPIO5  -- SX1278's SCK   
7. #define MISO    19   // GPIO19 -- SX1278's MISO   
8. #define MOSI    27   // GPIO27 -- SX1278's MOSI   
9. #define SS      18   // GPIO18 -- SX1278's CS   
10. #define RST     14   // GPIO14 -- SX1278's RESET   
11. #define DI0     26   // GPIO26 -- SX1278's IRQ(Interrupt Request)   
12. #define BAND    868E6   
13.    
14. unsigned int counter = 0;   
15.    
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16. //V1 modification   
17. SSD1306 display(0x3c, 4, 15);   
18. String rssi = "RSSI --";   
19. String packSize = "--";   
20. String packet ;   
21.    
22. void logo(){   
23.   display.clear();   
24.   display.drawXbm(0,5,logo_width,logo_height,logo_bits);   
25.   display.display();   
26. }   
27.    
28. void setup() {   
29.   pinMode(16,OUTPUT);   
30.   pinMode(2,OUTPUT);   
31.      
32.   digitalWrite(16, LOW);    // set GPIO16 low to reset OLED   
33.   delay(50);    
34.   digitalWrite(16, HIGH); // while OLED is running, must set GPIO16 in high   
35.      
36.   Serial.begin(9600);   
37.   while (!Serial);   
38.   Serial.println();   
39.   Serial.println("LoRa Sender Test");   
40.      
41.   SPI.begin(SCK,MISO,MOSI,SS);   
42.   LoRa.setPins(SS,RST,DI0);   
43.   if (!LoRa.begin(868E6)) {   
44.     Serial.println("Starting LoRa failed!");   
45.     while (1);   
46.   }   
47.   //LoRa.onReceive(cbk);   
48. //  LoRa.receive();   
49.   Serial.println("init ok");   
50.   display.init();   
51.   display.flipScreenVertically();     
52.   display.setFont(ArialMT_Plain_10);   
53.   logo();   
54.   delay(1500);   
55. }   
56.    
57. void loop() {   
58.   display.clear();   
59.   display.setTextAlignment(TEXT_ALIGN_LEFT);   
60.   display.setFont(ArialMT_Plain_10);   
61.      
62.   display.drawString(0, 0, "Sending packet: ");   
63.   display.drawString(90, 0, String(counter));   
64.   display.display();   
65.    
66.   // send packet   
67.   LoRa.beginPacket();   
68.   LoRa.print("hello ");   
69.   LoRa.print(counter);   
70.   LoRa.endPacket();   
71.    
72.   counter++;   
73.   digitalWrite(2, HIGH);   // turn the LED on (HIGH is the voltage level)   
74.   delay(1000);                       // wait for a second   
75.   digitalWrite(2, LOW);    // turn the LED off by making the voltage LOW   
76.   delay(1000);                       // wait for a second   
77. }  
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7.1.3. Ttgo_abp_lorawan.ino 

1.  
2. #include <lmic.h>   
3. #include <hal/hal.h>   
4. #include <SPI.h>   
5. #include <U8x8lib.h>   
6.    
7. #define BUILTIN_LED 25   
8.    
9. // the OLED used   
10. U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ 15, /* data=*/ 4, /* reset=

*/ 16);   
11.    
12. // LoRaWAN NwkSKey, network session key   
13. // This is the default Semtech key, which is used by the early prototype TTN   
14. // network.   
15. static const PROGMEM u1_t NWKSKEY[16] = { 0x75, 0x15, 0x56, 0x54, 0x94, 0xD7, 

0xCD, 0x35, 0x26, 0x04, 0x61, 0x7A, 0xC9, 0xB5, 0xFC, 0x92 };   
16.    
17. // LoRaWAN AppSKey, application session key   
18. // This is the default Semtech key, which is used by the early prototype TTN   
19. // network.   
20. static const u1_t PROGMEM APPSKEY[16] = { 0xAA, 0x3F, 0xAA, 0xFD, 0xCE, 0x05, 

0x77, 0xAA, 0xF0, 0x7C, 0x2A, 0x66, 0xCC, 0x6B, 0x7E, 0xAD };   
21.    
22. // LoRaWAN end-device address (DevAddr)   
23. static const u4_t DEVADDR = 0x26011467; // <-

- Change this address for every node!   
24.    
25. // These callbacks are only used in over-the-air activation, so they are   
26. // left empty here (we cannot leave them out completely unless   
27. // DISABLE_JOIN is set in config.h, otherwise the linker will complain).   
28. void os_getArtEui (u1_t* buf) { }   
29. void os_getDevEui (u1_t* buf) { }   
30. void os_getDevKey (u1_t* buf) { }   
31.    
32. static uint8_t mydata[] = "Hello, world!";   
33. static osjob_t sendjob;   
34.    
35. // Schedule TX every this many seconds (might become longer due to duty   
36. // cycle limitations).   
37. const unsigned TX_INTERVAL = 30;   
38.    
39. // Pin mapping   
40. const lmic_pinmap lmic_pins = {   
41.   .nss = 18,   
42.   .rxtx = LMIC_UNUSED_PIN,   
43.   .rst = 14,   
44.   .dio = {26, 33, 32},   
45. };   
46.    
47. void onEvent (ev_t ev) {   
48.     Serial.print(os_getTime());   
49.     u8x8.setCursor(0, 5);   
50.     u8x8.printf("TIME %lu", os_getTime());       
51.     Serial.print(": ");   
52.     switch(ev) {   
53.         case EV_SCAN_TIMEOUT:   
54.             Serial.println(F("EV_SCAN_TIMEOUT"));   
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55.             u8x8.drawString(0, 7, "EV_SCAN_TIMEOUT");   
56.             break;   
57.         case EV_BEACON_FOUND:   
58.             Serial.println(F("EV_BEACON_FOUND"));   
59.             u8x8.drawString(0, 7, "EV_BEACON_FOUND");   
60.             break;   
61.         case EV_BEACON_MISSED:   
62.             Serial.println(F("EV_BEACON_MISSED"));   
63.             u8x8.drawString(0, 7, "EV_BEACON_MISSED");   
64.             break;   
65.         case EV_BEACON_TRACKED:   
66.             Serial.println(F("EV_BEACON_TRACKED"));   
67.             u8x8.drawString(0, 7, "EV_BEACON_TRACKED");   
68.             break;   
69.         case EV_JOINING:   
70.             Serial.println(F("EV_JOINING"));   
71.             u8x8.drawString(0, 7, "EV_JOINING");   
72.             break;   
73.         case EV_JOINED:   
74.             Serial.println(F("EV_JOINED"));   
75.             u8x8.drawString(0, 7, "EV_JOINED ");   
76.             // Disable link check validation (automatically enabled   
77.             // during join, but not supported by TTN at this time).   
78.             LMIC_setLinkCheckMode(0);   
79.             break;   
80.         case EV_RFU1:   
81.             Serial.println(F("EV_RFU1"));   
82.             u8x8.drawString(0, 7, "EV_RFUI");   
83.             break;   
84.         case EV_JOIN_FAILED:   
85.             Serial.println(F("EV_JOIN_FAILED"));   
86.             u8x8.drawString(0, 7, "EV_JOIN_FAILED");   
87.             break;   
88.         case EV_REJOIN_FAILED:   
89.             Serial.println(F("EV_REJOIN_FAILED"));   
90.             u8x8.drawString(0, 7, "EV_REJOIN_FAILED");   
91.             break;   
92.         case EV_TXCOMPLETE:   
93.             Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"

));   
94.             u8x8.drawString(0, 7, "EV_TXCOMPLETE");   
95.             digitalWrite(BUILTIN_LED, LOW);   
96.             if (LMIC.txrxFlags & TXRX_ACK)   
97.               Serial.println(F("Received ack"));   
98.               u8x8.drawString(0, 7, "Received ACK");   
99.             if (LMIC.dataLen) {   
100.               Serial.println(F("Received "));   
101.               u8x8.drawString(0, 6, "RX ");   
102.               Serial.println(LMIC.dataLen);   
103.               u8x8.setCursor(4, 6);   
104.               u8x8.printf("%i bytes", LMIC.dataLen);   
105.               Serial.println(F(" bytes of payload"));   
106.               u8x8.setCursor(0, 7);   
107.               u8x8.printf("RSSI %d SNR %.1d", LMIC.rssi, LMIC.snr);   
108.             }   
109.             // Schedule next transmission   
110.             os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_I

NTERVAL), do_send);   
111.             break;   
112.         case EV_LOST_TSYNC:   
113.             Serial.println(F("EV_LOST_TSYNC"));   
114.             u8x8.drawString(0, 7, "EV_LOST_TSYNC");   
115.             break;   
116.         case EV_RESET:   
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117.             Serial.println(F("EV_RESET"));   
118.             u8x8.drawString(0, 7, "EV_RESET");   
119.             break;   
120.         case EV_RXCOMPLETE:   
121.             // data received in ping slot   
122.             Serial.println(F("EV_RXCOMPLETE"));   
123.             u8x8.drawString(0, 7, "EV_RXCOMPLETE");   
124.             break;   
125.         case EV_LINK_DEAD:   
126.             Serial.println(F("EV_LINK_DEAD"));   
127.             u8x8.drawString(0, 7, "EV_LINK_DEAD");   
128.             break;   
129.         case EV_LINK_ALIVE:   
130.             Serial.println(F("EV_LINK_ALIVE"));   
131.             u8x8.drawString(0, 7, "EV_LINK_ALIVE");   
132.             break;   
133.          default:   
134.             Serial.println(F("Unknown event"));   
135.             u8x8.setCursor(0, 7);   
136.             u8x8.printf("UNKNOWN EVENT %d", ev);   
137.             break;   
138.     }   
139. }   
140.    
141. void do_send(osjob_t* j){   
142.     // Check if there is not a current TX/RX job running   
143.     if (LMIC.opmode & OP_TXRXPEND) {   
144.         Serial.println(F("OP_TXRXPEND, not sending"));   
145.         u8x8.drawString(0, 7, "OP_TXRXPEND, not sent");   
146.     } else {   
147.         // Prepare upstream data transmission at the next possible time

.   
148.         LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);   
149.         Serial.println(F("Packet queued"));   
150.         u8x8.drawString(0, 7, "PACKET QUEUED");   
151.     }   
152.     // Next TX is scheduled after TX_COMPLETE event.   
153. }   
154.    
155. void setup() {   
156.     Serial.begin(115200);   
157.     Serial.println(F("Starting"));   
158.        
159.     u8x8.begin();   
160.     u8x8.setFont(u8x8_font_chroma48medium8_r);   
161.     u8x8.drawString(0, 1, "LoRaWAN LMiC TTN Node...");    
162.           
163.     SPI.begin(5, 19, 27);   
164.    
165.     // LMIC init   
166.     os_init();   
167.     // Reset the MAC state. Session and pending data transfers will be 

discarded.   
168.     LMIC_reset();   
169.    
170.     // Set static session parameters. Instead of dynamically establishi

ng a session   
171.     // by joining the network, precomputed session parameters are be pr

ovided.   
172.     #ifdef PROGMEM   
173.     // On AVR, these values are stored in flash and only copied to RAM 

  
174.     // once. Copy them to a temporary buffer here, LMIC_setSession will
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175.     // copy them into a buffer of its own again.   
176.     uint8_t appskey[sizeof(APPSKEY)];   
177.     uint8_t nwkskey[sizeof(NWKSKEY)];   
178.     memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));   
179.     memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));   
180.     LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);   
181.     #else   
182.     // If not running an AVR with PROGMEM, just use the arrays directly

   
183.     LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);   
184.     #endif   
185.    
186.     #if defined(CFG_eu868)   
187.     // Set up the channels used by the Things Network, which correspond

s   
188.     // to the defaults of most gateways. Without this, only three base 

  
189.     // channels from the LoRaWAN specification are used, which certainl

y   
190.     // works, so it is good for debugging, but can overload those   
191.     // frequencies, so be sure to configure the full frequency range of

   
192.     // your network here (unless your network autoconfigures them).   
193.     // Setting up channels should happen after LMIC_setSession, as that

   
194.     // configures the minimal channel set.   
195.     // NA-US channels 0-71 are configured automatically   
196. //    LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
197. //    LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), B

AND_CENTI);      // g-band   
198. //    LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
199. //    LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
200. //    LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
201. //    LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
202. //    LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
203.     LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAN

D_CENTI);      // g-band   
204. //    LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  B

AND_MILLI);      // g2-band   
205. //    // TTN defines an additional channel at 869.525Mhz using SF9 for 

class B   
206.     // devices' ping slots. LMIC does not have an easy way to define se

t this   
207.     // frequency and support for class B is spotty and untested, so thi

s   
208.     // frequency is not configured here.   
209.     #elif defined(CFG_us915)   
210.     // NA-US channels 0-71 are configured automatically   
211.     // but only one group of 8 should (a subband) should be active   
212.     // TTN recommends the second sub band, 1 in a zero based count.   
213.     // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-

global_conf.json   
214.     LMIC_selectSubBand(1);   
215.     #endif   
216.    
217.     // Disable link check validation   
218.     LMIC_setLinkCheckMode(0);   
219.    
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220.     // TTN uses SF9 for its RX2 window.   
221.     LMIC.dn2Dr = DR_SF9;   
222.    
223.     // Set data rate and transmit power for uplink (note: txpow seems t

o be ignored by the library)   
224.     LMIC_setDrTxpow(DR_SF7,14);   
225.    
226.     // Start job   
227.     do_send(&sendjob);   
228. }   
229.    
230. void loop() {   
231.     os_runloop_once();   
232. }   

 

7.1.4. Ttgo_abp_lorawan_LM35sensor2.ino 

1. #include <lmic.h>   
2. #include <hal/hal.h>   
3. #include <SPI.h>   
4. #include <U8x8lib.h>   
5.    
6. #define BUILTIN_LED 25   
7.    
8. // the OLED used   
9. U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ 15, /* data=*/ 4, /* reset=

*/ 16);   
10.    
11. // LoRaWAN NwkSKey, network session key   
12. // This is the default Semtech key, which is used by the early prototype TTN   
13. // network.   
14. static const PROGMEM u1_t NWKSKEY[16] = { 0x75, 0x15, 0x56, 0x54, 0x94, 0xD7, 

0xCD, 0x35, 0x26, 0x04, 0x61, 0x7A, 0xC9, 0xB5, 0xFC, 0x92 };   
15.    
16. // LoRaWAN AppSKey, application session key   
17. // This is the default Semtech key, which is used by the early prototype TTN   
18. // network.   
19. static const u1_t PROGMEM APPSKEY[16] = { 0xAA, 0x3F, 0xAA, 0xFD, 0xCE, 0x05, 

0x77, 0xAA, 0xF0, 0x7C, 0x2A, 0x66, 0xCC, 0x6B, 0x7E, 0xAD };   
20.    
21. // LoRaWAN end-device address (DevAddr)   
22. static const u4_t DEVADDR = 0x26011467; // <-

- Change this address for every node!   
23.    
24. // These callbacks are only used in over-the-air activation, so they are   
25. // left empty here (we cannot leave them out completely unless   
26. // DISABLE_JOIN is set in config.h, otherwise the linker will complain).   
27. void os_getArtEui (u1_t* buf) { }   
28. void os_getDevEui (u1_t* buf) { }   
29. void os_getDevKey (u1_t* buf) { }   
30.    
31. //static uint8_t mydata[] = "Hello, world!";   
32. //static uint8_t mydata[] = "Hello, world!";   
33.    
34. static uint8_t mydata[] = { 0,0,0,0,0,0,0,0};   
35.    
36. //uint16_t mydata;   
37. static osjob_t sendjob;   
38.    
39. // Schedule TX every this many seconds (might become longer due to duty   
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40. // cycle limitations).   
41. const unsigned TX_INTERVAL = 30;   
42.    
43. // Pin mapping   
44. const lmic_pinmap lmic_pins = {   
45.   .nss = 18,   
46.   .rxtx = LMIC_UNUSED_PIN,   
47.   .rst = 14,   
48.   .dio = {26, 33, 32},   
49. };   
50.    
51. void onEvent (ev_t ev) {   
52.     Serial.print(os_getTime());   
53.     u8x8.setCursor(0, 5);   
54.     u8x8.printf("TIME %lu", os_getTime());       
55.     Serial.print(": ");   
56.     switch(ev) {   
57.         case EV_SCAN_TIMEOUT:   
58.             Serial.println(F("EV_SCAN_TIMEOUT"));   
59.             u8x8.drawString(0, 7, "EV_SCAN_TIMEOUT");   
60.             break;   
61.         case EV_BEACON_FOUND:   
62.             Serial.println(F("EV_BEACON_FOUND"));   
63.             u8x8.drawString(0, 7, "EV_BEACON_FOUND");   
64.             break;   
65.         case EV_BEACON_MISSED:   
66.             Serial.println(F("EV_BEACON_MISSED"));   
67.             u8x8.drawString(0, 7, "EV_BEACON_MISSED");   
68.             break;   
69.         case EV_BEACON_TRACKED:   
70.             Serial.println(F("EV_BEACON_TRACKED"));   
71.             u8x8.drawString(0, 7, "EV_BEACON_TRACKED");   
72.             break;   
73.         case EV_JOINING:   
74.             Serial.println(F("EV_JOINING"));   
75.             u8x8.drawString(0, 7, "EV_JOINING");   
76.             break;   
77.         case EV_JOINED:   
78.             Serial.println(F("EV_JOINED"));   
79.             u8x8.drawString(0, 7, "EV_JOINED ");   
80.             // Disable link check validation (automatically enabled   
81.             // during join, but not supported by TTN at this time).   
82.             LMIC_setLinkCheckMode(0);   
83.             break;   
84.         case EV_RFU1:   
85.             Serial.println(F("EV_RFU1"));   
86.             u8x8.drawString(0, 7, "EV_RFUI");   
87.             break;   
88.         case EV_JOIN_FAILED:   
89.             Serial.println(F("EV_JOIN_FAILED"));   
90.             u8x8.drawString(0, 7, "EV_JOIN_FAILED");   
91.             break;   
92.         case EV_REJOIN_FAILED:   
93.             Serial.println(F("EV_REJOIN_FAILED"));   
94.             u8x8.drawString(0, 7, "EV_REJOIN_FAILED");   
95.             break;   
96.         case EV_TXCOMPLETE:   
97.             Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"

));   
98.             u8x8.drawString(0, 7, "EV_TXCOMPLETE");   
99.             digitalWrite(BUILTIN_LED, LOW);   
100.             if (LMIC.txrxFlags & TXRX_ACK)   
101.               Serial.println(F("Received ack"));   
102.               u8x8.drawString(0, 7, "Received ACK");   
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103.             if (LMIC.dataLen) {   
104.               Serial.println(F("Received "));   
105.               u8x8.drawString(0, 6, "RX ");   
106.               Serial.println(LMIC.dataLen);   
107.               u8x8.setCursor(4, 6);   
108.               u8x8.printf("%i bytes", LMIC.dataLen);   
109.               Serial.println(F(" bytes of payload"));   
110.               u8x8.setCursor(0, 7);   
111.               u8x8.printf("RSSI %d SNR %.1d", LMIC.rssi, LMIC.snr);   
112.             }   
113.             // Schedule next transmission   
114.             os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_I

NTERVAL), do_send);   
115.             break;   
116.         case EV_LOST_TSYNC:   
117.             Serial.println(F("EV_LOST_TSYNC"));   
118.             u8x8.drawString(0, 7, "EV_LOST_TSYNC");   
119.             break;   
120.         case EV_RESET:   
121.             Serial.println(F("EV_RESET"));   
122.             u8x8.drawString(0, 7, "EV_RESET");   
123.             break;   
124.         case EV_RXCOMPLETE:   
125.             // data received in ping slot   
126.             Serial.println(F("EV_RXCOMPLETE"));   
127.             u8x8.drawString(0, 7, "EV_RXCOMPLETE");   
128.             break;   
129.         case EV_LINK_DEAD:   
130.             Serial.println(F("EV_LINK_DEAD"));   
131.             u8x8.drawString(0, 7, "EV_LINK_DEAD");   
132.             break;   
133.         case EV_LINK_ALIVE:   
134.             Serial.println(F("EV_LINK_ALIVE"));   
135.             u8x8.drawString(0, 7, "EV_LINK_ALIVE");   
136.             break;   
137.          default:   
138.             Serial.println(F("Unknown event"));   
139.             u8x8.setCursor(0, 7);   
140.             u8x8.printf("UNKNOWN EVENT %d", ev);   
141.             break;   
142.     }   
143. }   
144.    
145. void do_send(osjob_t* j){   
146.        
147.     float temp1;   
148.     int raw = analogRead(35);   
149.     temp1 = raw;   
150.     float voltag = ((temp1*3300)/4095)+170;   
151.     float temp = (voltag*0.1);   
152.        
153.     Serial.print("RAW VALUE: ");   
154.     Serial.println(temp1);   
155.     Serial.print("Voltage: ");   
156.     Serial.println(voltag);   
157.     Serial.print("Temp: ");   
158.     Serial.println(temp);   
159.    
160.     dtostrf(temp,5,2,(char*)mydata);   
161.    
162.     // Check if there is not a current TX/RX job running   
163.     if (LMIC.opmode & OP_TXRXPEND) {   
164.         Serial.println(F("OP_TXRXPEND, not sending"));   
165.         u8x8.drawString(0, 7, "OP_TXRXPEND, not sent");   
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166.     } else {   
167.         // Prepare upstream data transmission at the next possible time

.   
168.           
169.         //LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);   
170.          LMIC_setTxData2(1, mydata, strlen((char*) mydata), 0);   
171.     }   
172.         Serial.println(F("Packet queued"));   
173.         u8x8.drawString(0, 7, "PACKET QUEUED");   
174.     }   
175.     // Next TX is scheduled after TX_COMPLETE event.   
176.    
177.    
178. void setup() {   
179.     Serial.begin(115200);   
180.     Serial.println(F("Starting"));   
181.     analogReadResolution(12);   
182.        
183.     u8x8.begin();   
184.     u8x8.setFont(u8x8_font_chroma48medium8_r);   
185.     u8x8.drawString(0, 1, "LoRaWAN LMiC TTN Node...");    
186.           
187.     SPI.begin(5, 19, 27);   
188.    
189.     // LMIC init   
190.     os_init();   
191.     // Reset the MAC state. Session and pending data transfers will be 

discarded.   
192.     LMIC_reset();   
193.    
194.     // Set static session parameters. Instead of dynamically establishi

ng a session   
195.     // by joining the network, precomputed session parameters are be pr

ovided.   
196.     #ifdef PROGMEM   
197.     // On AVR, these values are stored in flash and only copied to RAM 

  
198.     // once. Copy them to a temporary buffer here, LMIC_setSession will

   
199.     // copy them into a buffer of its own again.   
200.     uint8_t appskey[sizeof(APPSKEY)];   
201.     uint8_t nwkskey[sizeof(NWKSKEY)];   
202.     memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));   
203.     memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));   
204.     LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);   
205.     #else   
206.     // If not running an AVR with PROGMEM, just use the arrays directly

   
207.     LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);   
208.     #endif   
209.    
210.     #if defined(CFG_eu868)   
211.     // Set up the channels used by the Things Network, which correspond

s   
212.     // to the defaults of most gateways. Without this, only three base 

  
213.     // channels from the LoRaWAN specification are used, which certainl

y   
214.     // works, so it is good for debugging, but can overload those   
215.     // frequencies, so be sure to configure the full frequency range of

   
216.     // your network here (unless your network autoconfigures them).   
217.     // Setting up channels should happen after LMIC_setSession, as that
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218.     // configures the minimal channel set.   
219.     // NA-US channels 0-71 are configured automatically   
220. //    LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
221. //    LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), B

AND_CENTI);      // g-band   
222. //    LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
223. //    LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
224. //    LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
225. //    LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
226. //    LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  B

AND_CENTI);      // g-band   
227.     LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAN

D_CENTI);      // g-band   
228. //    LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  B

AND_MILLI);      // g2-band   
229. //    // TTN defines an additional channel at 869.525Mhz using SF9 for 

class B   
230.     // devices' ping slots. LMIC does not have an easy way to define se

t this   
231.     // frequency and support for class B is spotty and untested, so thi

s   
232.     // frequency is not configured here.   
233.     #elif defined(CFG_us915)   
234.     // NA-US channels 0-71 are configured automatically   
235.     // but only one group of 8 should (a subband) should be active   
236.     // TTN recommends the second sub band, 1 in a zero based count.   
237.     // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-

global_conf.json   
238.     LMIC_selectSubBand(1);   
239.     #endif   
240.    
241.     // Disable link check validation   
242.     LMIC_setLinkCheckMode(0);   
243.    
244.     // TTN uses SF9 for its RX2 window.   
245.     LMIC.dn2Dr = DR_SF9;   
246.    
247.     // Set data rate and transmit power for uplink (note: txpow seems t

o be ignored by the library)   
248.     LMIC_setDrTxpow(DR_SF7,14);   
249.    
250.     // Start job   
251.     do_send(&sendjob);   
252. }   
253.    
254. void loop() {   
255.     os_runloop_once();   
256. }   
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7.2. LM35 electrical characteristics 

 

 

Table 9 LM35 electrical characteristics part 1 [16] 
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Table 10 LM35 electrical characteristics part 2 [16] 
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Table 11 LM35 electrical characteristics part 3 [16] 
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7.3. Table of potentiometer test measurements: 

 

Vexp (mV) VADC (mV) Vexp (mV) VADC (mV) Vexp (mV) VADC (mV) 

7,9 0 260,1 92 804 610 

21,2 0 270 108 840 645 

37 0 298,2 132 879 683 

47 0 331,7 168 916 722 

65 0 347,7 178 957 756,73 

81,9 0 392,4 220 973 774 

96,8 0 427,8 257 999 796 

108,3 0 484 305 1022 823 

121,2 0 508 325 1127 928,35 

137 0 543 361,03 1214 1007,33 

152,9 0 582 399,71 1317 1110 

163,2 25 601 422,27 1414 1201 

174,4 35 637 456,12 1500 1286,92 

197,2 40 659 477,07 1615 1397 

207,4 50 685 500 1705 1484,7 

232 75 719 530 1831 1600 

247,3 85 745 556 1956 1720 

260,1 92 771 581,22 2071 1928,08 

 

Table 12 Values of potentiometer test measurements, V measured in front of V provided by the ADC 

 


