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Abstract— Dementia due to Alzheimer’s disease (AD) is a 

common disorder with a great impact on the patients’ quality 

of life. The aim of this pilot study was to characterize 

spontaneous electroencephalography (EEG) activity in 

dementia due to AD using bispectral analysis. Five minutes of 

EEG activity were recorded from 17 patients with moderate 

dementia due to AD and 19 age-matched controls. Bispectrum 

results revealed that AD patients are characterized by an 

increase of phase coupling at low frequencies in comparison 

with controls. Additionally, some bispectral features calculated 

from the bispectrum showed significant differences between 

both groups (p < 0.05, Mann-Whitney U test with Bonferroni’s 

correction). Finally, a stepwise logistic regression analysis with 

a leave-one-out cross-validation procedure was used for 

classification purposes. An accuracy of 86.11% (sensitivity = 

88.24%; specificity =84.21%) was achieved. This study suggests 

the usefulness of bispectral analysis to provide further insights 

into the underlying brain dynamics associated with AD.  

I. INTRODUCTION 

Dementia is the main cause of long-term functional 
dependence in elderly population [1]. The global prevalence 
of dementia was 24 million in 2011, and it is estimated to 
double every 20 years through to 2040 [2]. Dementia due to 
Alzheimer’s disease (AD) is a common disorder with a huge 
impact on the quality of life of the patients and their 
caregivers [3]. For all these reasons, dementia due to AD is 
becoming a key public-healthcare and economic problem. 
Pathologically, AD is characterized by the presence of 
extracellular amyloid beta-peptide plaques and intracellular 
tau aggregation [4]. Currently, a definite diagnosis of AD 
could only be made upon death, after examination of tissue 
samples at autopsy. For this reason, physicians can really 
only make a diagnosis of probable AD. Clinical diagnosis 
usually includes a thorough medical history, mental status 
tests, physical and neurological examinations, cerebrospinal 
fluid biomarkers, blood tests, and neuroimaging studies. 
Nowadays, the National Institute on Aging and Alzheimer’s 
Association (NIA-AA) does not recommend 
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electroencephalography (EEG) for the diagnosis of dementia 
due to AD, in spite of its potential to characterize neural 
dynamics [5]. EEG is a non-invasive technique to measure 
the electromagnetic brain activity [6]. It allows the 
assessment of the spatio-temporal patterns of neural activity 
and their interactions in the time range of milliseconds [7]. 
As AD affects different cerebral cortex areas, EEG is indeed 
a useful technique to understand the neural mechanisms of 
this disorder. 

In the last decades, much effort has been devoted to 
characterize the neural activity in AD. Spectral techniques are 
the most extended option to analyze EEG activity from AD 
patients, due to their simplicity and ease of clinical 
interpretation. The most common marker in AD patients’ 
EEG is an increased brain activity at lower frequency bands 
[8]. Spectral entropies and spectral ratios have been also 
applied in order to characterize the neural activity in AD 
[9,10]. However, the phase relationship among components is 
lost when the EEG is processed with these classical spectral 
measures [11]. Additionally, these measures assume 
stationarity, whereas EEG is essentially a non-stationary 
signal. Therefore, new methods are needed to overcome the 
limitations of the aforementioned analyses.  

Bispectral analysis is a suitable tool to track the changes 
in signals arising from both nonlinear and linear changes in 
the generating process [12]. The motivations to use this 
signal processing technique are the following [11,13]: (i) to 
measure non-Gaussianity (normality); (ii) to obtain 
information about the phase of the time series; and (iii) to 
detect and characterize the nonlinear mechanisms that 
generate time series via phase relations of their harmonic 
components. In spite of its potential, only a few studies 
applied measures related to the bispectrum to characterize the 
brain dynamics in AD. For instance, Samar et al. [14] 
suggested that quadratic phase coupling patterns in delta band 
were altered in this form of dementia. Other study concluded 
that a significant proportion of patients with dementia shows 
a low baseline value of the Bispectral Index [15]. The aim of 
this study is to characterize EEG changes associated with the 
dementia due to AD, using five features extracted from the 
bispectrum: two bispectral entropies and three features 
related to the third-order statistics. 

II. MATERIALS 

A. Subjects 

EEG signals were recorded from 36 subjects. The AD 
group was formed by 17 patients with moderate dementia due 
to AD, diagnosed according to the clinical criteria of the 
NIA-AA. Nineteen elderly subjects without cognitive 
impairments and with no history of neurological or 
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Figure 1. Contour plots of the grand-averaged higher order periodograms for control subjects (left panel) and AD patients (right panel). 

psychiatric disorders comprised the control group. Table 1 
shows socio-demographic and clinical data for both groups. It 
is important to note that no significant difference in age was 
found between controls and patients. All participants and 
patients’ caregivers gave their written informed consent to be 
included in the study. The Ethics Committee at the “Hospital 
Universitario Río Hortega” (Valladolid, Spain) endorsed the 
study protocol, according to The Code of Ethics of the World 
Medical Association (Declaration of Helsinki). 

B. EEG recording 

EEG activity was recorded with a 19-channel EEG 
equipment (XLTEK

®
, Natus Medical). This system uses the 

International 10-20 System with 19-channels standard 
electrode layout: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, 
T3, T4, T5, T6, Pz, P3, P4, O1 and O2. For each subject, five 
minutes of spontaneous EEG activity were acquired at a 
sampling frequency of 200 Hz. Afterwards, EEG data were 
digitally filtered between 1 and 40 Hz. Finally, artifact-free 
epochs of 5-s length were selected by visual inspection by an 
experienced EEG investigator.  

III. METHODS  

A. Bispectrum 

Higher order spectra (HOS), also called higher order 
statistics, are defined as the Fourier transformations of higher 

order cumulants of a random process [11]. A particular 
example of HOS is power spectrum, which is defined to be 
the Fourier transform of the second-order cumulant sequence. 
On the other hand, bispectrum and trispectrum correspond 
with the third- and the fourth-order cumulant spectra. In this 
study, EEG signals were analyzed using bispectrum. The 
bispectrum can be considered as a decomposition of the third 
moment (skewness) of a signal over frequency. The 
usefulness of bispectrum to analyze systems with asymmetric 
non-linearities has been already demonstrated [16]. 

Let x(n) be a deterministic and zero-mean time series, its 
bispectrum may be expressed in terms of the Fourier 
transform of the signal as [11]: 

𝐵(𝑓1, 𝑓2) = ∑ ∑ ∑ 𝑥(𝑛) · 𝑥(𝑛 + 𝜏1)

∞

𝑛=−∞

∞

𝜏2=−∞

∞

𝜏1=−∞

· 𝑥(𝑛 + 𝜏2) · 

     · exp⁡[𝑖2𝜋 · (𝑓1𝜏1 + 𝑓2𝜏2)].        (1) 

Setting 𝑛 + 𝜏1 = 𝑚 and 𝑛 + 𝜏2 = 𝑘, and splitting the 

exponent, equation 1 can be expressed as:  

𝐵(𝑓1, 𝑓2) = { ∑ 𝑥(𝑚)𝑒−𝑖2𝜋𝑓1𝑚
∞

𝑚=−∞

} · { ∑ 𝑥(𝑘)𝑒−𝑖2𝜋𝑓2𝑘
∞

𝑘=−∞

} · 

· { ∑ 𝑥(𝑛)𝑒+𝑖2𝜋(𝑓1+𝑓2)𝑛
∞

𝑛=−∞

} =⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

   = 𝑋(𝜔1) · 𝑋(𝜔2) · 𝑋
∗(𝜔1 + 𝜔2).      (2) 

Equation 2 is a triple product evaluated at two frequencies, 

f1 and f2, and their sum, f1 + f2. This expression is analogous 

to the periodogram for power spectrum. For this reason, it is 

called higher order periodogram [11]. Figure 1 shows the 

contour plots of the grand-averaged higher order 

periodograms for control and AD groups. It is important to 

note that just as the power spectrum has symmetrical 

properties, so do the bispectrum [16]. Therefore, it is only 

TABLE I. SOCIO-DEMOGRAPHIC AND CLINICAL DATA FOR EACH GROUP 

 AD group Control group 

Number of subjects 17 19 

Age (years) (Mean ± SD) 79.6  5.6 77.0  3.9 

Gender (Male:Female) 5:12 9:10 

MMSEa (Mean ± SD) 16.0  2.5 28.6  1.3 

B-ADLb (Mean ± SD) 6.3  1.7 1.4  0.8 

 
a MMSE: Mini-Mental State Examination 
b Bayer Activities of Daily Living Scale 
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necessary to evaluate the bispectrum in the triangular region 

that satisfies f2 ≥ 0, f2 ≥ f1 and f1 + f2 ≤ fs/2 [11]. This region is 

known as the principal domain of the bispectrum [16]. 

B. Bispectral features 

 After the computation of bispectrum, different bispectral 
features can be extracted. Several bispectral features have 
been already proposed in the literature: mean magnitude of 
the bispectrum, phase entropy, weighted center of the 
bispectrum, and relative power of the bispectrum, among 
others [11,17]. In this study, five features were calculated: 
normalized bispectral entropy (P1), normalized bispectral 
squared entropy (P2), and three features related to the third-
order statistics (H1, H2 and H3). Let be B(f1, f2) the bispectrum 
in the principal domain of an EEG epoch x(n) and given a 
frequency range F (in this study, F corresponds to the typical 
five EEG frequency bands: delta, theta, alpha, beta, and 
gamma), the following bispectral features were computed 
[18,19]: 

 Normalized bispectral entropy (P1): 

𝑃1 = −∑ 𝑝𝑖 log 𝑝𝑖𝑖 ,         (3) 

where 

𝑝𝑖 =
|𝐵(𝑓1,𝑓2)|

∑ |𝐵(𝑓1,𝑓2)|𝑓1,𝑓2∈𝐹
⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓1, 𝑓2 ∈ 𝐹.    (4) 

Each pi corresponds to each combination of f1 and f2 
values. 

 Normalized bispectral squared entropy (P2): 

𝑃2 = −∑ 𝑝𝑗 log 𝑝𝑗𝑗 ,        (5) 

where 

𝑝𝑗 =
|𝐵(𝑓1,𝑓2)|

2

∑ |𝐵(𝑓1,𝑓2)|
2

𝑓1,𝑓2∈𝐹
⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓1, 𝑓2 ∈ 𝐹.    (6) 

Each pj corresponds to each combination of f1 and f2 
values. 

 Sum of logarithmic amplitudes of the bispectrum 
(H1): 

𝐻1 = ∑ log(|𝐵(𝑓1, 𝑓2)|)𝑓1,𝑓2∈𝐹 ,     (7) 

 Sum of logarithmic amplitudes of diagonal elements 
of the bispectrum (H2): 

𝐻2 = ∑ log(|𝐵(𝑓𝑘, 𝑓𝑘)|)⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑘 ∈ 𝐹
𝑁
𝑘=1 .   (8) 

 First-order spectral moment of the amplitudes of 
diagonal elements of the bispectrum (H3): 

𝐻3 = ∑ 𝑘 · log(|𝐵(𝑓𝑘, 𝑓𝑘)|)⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑘 ∈ 𝐹
𝑁
𝑘=1 .  (9) 

The above 5 features were estimatated for each artifact-
free epoch, EEG channel, and frequency band. Then, results 
were averaged over epochs and channels, obtained only one 
value of P1, P2, H1, H2, and H3 per subject and frequency 
band.   

 C. Statistical analysis 

Kolmogorov-Smirnov and Shapiro-Wilk tests were used 
to assess normality of distribution, whereas Levene’s test was 
applied to verify the homocedasticity. As data did not meet 

parametric test assumptions, statistical comparisons between 
groups were performed by means of Mann-Whitney U test.  

Additionally, receiver operating characteristic (ROC) 
curves were used to evaluate the ability of each bispectral 
feature to distinguish between both groups. In order to 
calculate sensitivity, specificity, accuracy, and area under the 
curve (AUC) values, a leave-one-out cross-validation 
(LOOCV) procedure was used. Lastly, a stepwise logistic 
regression analysis, also with a LOOCV procedure, was used 
to build the multivariate model for the classification of the 
subjects into AD or control groups.  

IV. RESULTS AND DISCUSSION 

A. Bispectrum 

In this study, bispectrum was applied to the EEG data 
from 17 patients with dementia due to AD and 19 elderly 
control subjects. This technique was proposed in order to 
recover information regarding deviation from Gaussianity, 
but also to detect the presence of phase couplings [20]. This 
is an important advantage of bispectrum over classical 
spectral measures [20]. In the current study, AD patients 
showed an increase of phase coupling at low frequencies in 
comparison with controls (see Fig. 1). These findings agree 
with previous studies [21, 22]. For instance, phase lag index, 
a novel measure to quantify phase sychronization, was 
applied to magnetoencephalography recordings from AD 
patients and controls. It revealed higher phase 
synchronization in AD group than in control one at delta and 
theta bands. The opposite behavior was found in high 
frequency bands [22]. In other study, Koenig et al. [21] 
applied global field synchronization, which reflects the global 
amount of phase-locked activity at a given frequency, to a 
large EEG database. Their results showed  that AD patients 
are associated with decreased  coupling  values  in  alpha,  
beta  and  gamma  frequency  bands,  and  increased values  
in  delta. All these studies  support the hypothesis that  AD  
includes  a  disconnection  syndrome [23]. 

B. Bispectral features 

Five bispectral features (P1, P2, H1, H2, and H3) were 
calculated for each epoch. After the averaging process over 
all artifact-free epochs and channels, only one value of each 
feature per subject and frequency band was obtained. 
Statistical analyses revealed significant differences (p < 0.05, 
Mann Whitney U test) between controls and AD patients for 
H1, H2, and H3 features at delta, theta, and alpha frequency 
bands, and only for H2 in beta band (see Table 2). However, 
only features H1 and H2 in theta, and H3 in alpha remained 
significant after a Bonferroni’s correction.  

ROC curves with a LOOCV procedure were used to 
assess the ability of bispectral features to discriminate 
patients with dementia due to AD from control subjects. The 
highest accuracy value was obtained for H2 feature at theta 
frequency band: 83.33% (sensitivity = 83.25%; specificity = 
84.21%; AUC = 0.84). Finally, a stepwise logistic regression 
model was created based on the following variables: H2 
(theta), H1 (alpha), H2 (alpha), and H3 (alpha). With this 
model, an accuracy of 86.11% was achieved (sensitivity = 
88.24%; specificity = 84.21%; AUC = 0.93). This value 
compares well with the accuracies reported by previous 
studies [9,24]. 
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C. Limitations and future work 

Some limitations of our research work should be noted. 
Firstly, only 17 patients with moderate dementia due to AD 
and 19 elderly controls took part in this study. Future efforts 
will be focused to increase the number of subjects, as well as 
to include new groups: subjects with mild cognitive 
impairment and patients with mild dementia due to AD. 
Secondly, only interactions within the typical EEG frequency 
bands have been analyzed. However, interaction between 
different frequency bands can provide complementary 
information. Finally, only five bispectral features have been 
calculated in this study, but other features could also help to 
understand the mechanisms underlying this complex 
disorder.  

V. CONCLUSION  

Our study leads us to conclude that spontaneous EEG 
activity in patients with dementia due to AD is characterized 
by changes in the higher order periodogram. This study 
suggests the usefulness of our approach (five different 
bispectral features calculated at different frequency bands) to 
provide further insights into the underlying brain dynamics 
associated with AD.  
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TABLE I. STATISTICAL RESULTS (P-VALUES OBTAINED WITH MANN WHITNEY U-TEST) FOR THE FIVE BISPECTRAL FEATURES AND THE FIVE 

FREQUENCY BANDS. SIGNIFICANT DIFFERENCES ARE DISPLAYED IN ITALICS. 

 P1 P2 H1 H2 H3 

Delta 0,3106 0,3106 0,0190 0,0207 0,0058 

Theta 0,0532 0,0760 0,0009 0,0005 0,0026 

Alpha 0,1939 0,2165 0,0071 0,0048 0,0015 

Beta 0,4661 0,9495 0,0532 0,0459 0,0814 

Gamma 0,4283 0,5901 0,4100 0,4100 0,3581 
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