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Abstract
This study focuses on the at-home Sleep apnea-hypopnea
syndrome (SAHS) severity estimation. Three percent
oxygen desaturation index ðODI3Þ from nocturnal
pulse-oximetry has been commonly evaluated as simpli-
fied alternative to polysomnography (PSG), the standard
in-hospital diagnostic test. However, ODI3 has shown
limited ability to detect SAHS as it only sums up
information from desaturation events. Other physiological
signs of SAHS can be found in respiratory and cardiac
signals, providing additional helpful data to establish
SAHS and its severity. Pulse rate variability time series
(PRV), also derived from nocturnal oximetry, is consid-
ered a surrogate for heart rate variability, which provides
both cardiac and respiratory information. In this study,
200 oximetric recordings obtained at patients home were
involved, divided into training (50%) and test (50%)
groups. ODI3 and PRV were obtained from them, the
latter being characterized by the extraction of statistical
features in time domain, as well as the spectral entropy
from the commonly used very low (0–0.04 Hz.), low
(0.04–0.15 Hz.), and high (0.15–0.4 Hz.) frequency
bands. The ODI3 and PRV features were joined in a
multi-layer perceptron artificial neural network (MLP),
trained to estimate the apnea-hypopnea index (AHI),
which is the PSG-derived parameter used to diagnose
SAHS. Our results showed that single ODI3 rightly
assigned 62.0% of the subjects from the test group into
one out the four SAHS severity degrees, reaching 0.470
Cohens kappa, and 0.840 intra-class correlation

coefficient (ICC) with the actual AHI (accuracies of
90.0, 88.0 and 82.0% in the increasing AHI cutoffs used
to define SAHS severity). By contrast, our MLP model
rightly assigned 75.0% of the subjects into their corre-
sponding SAHS severity level, reaching 0.614 j and
0.904 ICC (accuracies of 93.0, 88.0 and 90.0%). These
results suggest that SAHS diagnosis could be accurately
conducted at-patients home by combining ODI3 and PRV
from nocturnal oximetry
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1 Introduction

The sleep apnea-hypopnea syndrome (SAHS) is a chronic
and prevalent disease in which patients show recurrent epi-
sodes of respiratory pauses (apneas) and airflow reductions
(hypopneas) while sleeping [1]. Apneic events boost a
number of undesirable physiological processes that lead to a
harmful impact both in health and quality of life of affected
people [2].

The number of apneas and hypopneas per hour of sleep,
i.e., the apnea-hypopnea index (AHI), is the parameter used
to determine the presence and severity of SAHS [1, 3].
Clinical specialists estimate AHI by examining multiple
physiological signals recorded during in-lab nocturnal
polysomnography (PSG), which is the standard diagnostic
test [3]. However, simplifying SAHS diagnosis has become
a major issue for biomedical engineering due to limitations
related to the PSG complexity, costs, and demand of time
from physicians [3]. These drawbacks, together with the
high prevalence of SAHS [3], imply a limited availability of
specialized facilities, which derives in long waiting lists and
delays the access to both diagnosis and treatment [3].
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In past years, a wide range of simpler diagnostic alter-
natives have been evaluated. In contrast to 32 signals
recorded during PSG, most of the alternatives focused on
analyzing a single one [4, 5]. Nocturnal pulse-oximetry
(NPO) is a simple test often used for this purpose [6, 7]. It
only requires a sensor on a finger to record the blood oxygen
saturation ðSpO2Þ. This signal monitors the oxygen in the
hemoglobin of the blood, which falls due to apneic events
[1].

Promising results have been derived from the investiga-
tion of the SpO2 signal, which include the use of automatic
signal processing techniques and the assessment of
clinically-used oxygen desaturation indexes (ODI) [6, 7].
However, recent studies have reported substantial redun-
dancy between the 3% ODI ðODI3Þ, and the remaining
information usually extracted from SpO2 [8]. Moreover,
SAHS is known to change the normal profile of the cardiac
signals by the recurrence of bradycardia/tachycardia patterns
[4]. Particularly, a recent work from our group reported that
spectral entropy (SE) from VLF (0–0.04 Hz), LF (0.04–
0.15 Hz), and HF (0.15–0.40 Hz) bands of the heart rate
variability signal (HRV) provides more useful information
than the corresponding power-based traditional features [9].
This kind of information is not available when using SpO2

signal alone. Hence, we hypothesize that the usefulness of
ODI3 to simplify SAHS diagnosis test can be improved
adding cardiac data of interest.

In this regard, NPO sensor is not only able to record SpO2

but pulse rate too. Several studies have evaluated the use of
cardiac information obtained from the pulse rate variability
signal (PRV) as a surrogate of HRV [10, 11]. These works
showed the usefulness of PRV in pediatric SAHS context.
However, they did not evaluate adult subjects, they focused
on the analysis of the classic spectral power-based HRV
parameters [10], or only used time-domain PRV information
to detect specific apneic related events [11]. Additionally,
the signals used in these works were acquired in a labora-
tory, i.e., under supervised conditions.

In accordance with the above mentioned, we aim at
evaluating the joint usefulness of ODI3 from SpO2 together
with time and frequency domain features obtained from
PRV. The extraction of SE from VLF, LF, and HF of PRV
spectrum is proposed. Additionally, first to fourth order
statistics (Mt1–Mt4) are also obtained with the purpose of
characterizing the whole PRV time series. Moreover, in
contrast to previous studies, both PSG and NPO are con-
ducted at patients home. Hence, our proposal can be eval-
uated under those conditions which best reflect the usual
sleep environment and behavior of patients. The eight fea-
tures extracted from NPO (SpO2 and PRV) are subsequently

used as the only source of information to train a multi-layer
perceptron (MLP) artificial neural network with ability to
automatically estimate AHI. We chose MLP in view of its
success in previous studies focused on automatic AHI esti-
mation [12, 13]. The diagnostic performance of this esti-
mated AHI is compared with ODI3 to assess whether the use
of PRV information can improve the ability of oximetry to
detect SAHS and its severity.

2 Subjects and Signals

The study involved 200 adult subjects (67.5% males). All of
them where referred to the sleep unit of the Hospital
Universitario Rio Hortega in Valladolid (Spain) due to
clinical suspicious of SAHS. The subjects gave their
informed consent to participate in the study and the Ethics
Committee of the Hospital approved the protocol. A physi-
cian examined at-home PSG (Embletta MPR ST+ , Embla
Systems, USA) tests from all patients to compute an AHI for
each of them. Apneas and hypopneas were scored following
the rules of the American Academy of Sleep Medicine
(AASM) [1]. According to the computed AHI, subjects were
diagnosed in four SAHS-severity degrees: 12 no-SAHS
(AHI < 5 e/h), 46 mild (5 � AHI < 15 e/h), 46 moderate
(15 � AHI < 30 e/h), and 96 severe (AHI � 30 e/h). The
sample was randomly divided into a training (50%) and a
test (50%) set, with the two of them having the same number
of subjects from each SAHS-severity degree. Table 1 shows
the demographic and clinical data of the subjects under study
for the whole group and the training and test sets.

A NPO (WristOxTM2 , Nonin, USA) was conducted at the
same time that each PSG. SpO2 and PRV were obtained at
sampling rates of 1 Hz and 3 Hz, respectively. Artifacts
were removed from both of them. In SpO2, zero values and
differences between consecutive samples � 4% were
removed and substituted by interpolated data [14]. In PRV,
values <0.33 s or >1.5 s, as well as differences in consecu-
tive PRV values >0.66, were considered arrhythmia-related
artifacts [4]. All of them were also removed and substituted
by interpolated samples [4].

Table 1 Demographic and clinical data of the subjects under study

Data All Training Test

Subjects (n) 200 100 100

Male (%) 67.5 64.0 71.0

Age (years) 55.4 ± 12.6 55.0 ± 11.9 55.8 ± 13.3

BMI (Kg/m2) 29.5 ± 5.3 29.7 ± 5.3 29.3 ± 5.4

AHI (e/h) 34.3 ± 24.5 35.1 ± 25.3 33.5 ± 23.8

214 G. C. Gutiérrez-Tobal et al.



3 Methodology

3.1 SpO2 and PRV Features

One feature was obtained from the SpO2 signal ðODI3Þ
whereas 7 more were extracted from PRV: first- to fourth
order statistical moments Mt1–Mt4 in time domain and the
spectral entropy from the VLF ðSEVLFÞ, LF ðSELFÞ, and
HF ðSEHFÞ frequency bands. Next we briefly describe each
of them:

• ODI3 is a clinical parameter widely used to help in SAHS
diagnosis. It computes the number of drops from the
SpO2 signal baseline � 3%, divided by the number of
hours of the recording [14].

• Mt1–Mt4 are the well-known mean ðMt1Þ, standard
deviation ðMt2Þ, skewness ðMt3Þ, and kurtosis ðMt4Þ,
which characterize the central tendency, dispersion,
asymmetry, and peakedness of a time series, respectively.
They have shown its utility to analyze oximetric signals
in the past [12].

• SE measures the flatness of the spectrum of a biomedical
signal [9]. Higher SE values (closer to 1) are reached
when the spectral power is spreaded throughout fre-
quencies. By contrast, SE values closer to 0 are reached
in the presence of spectrums where power is condensed
[9]. SE can be computed by applying Shannon’s entropy
to a normalized version of the power spectral density in a
frequency range [9].

These eight features were used to characterize the
recordings of each subject under study and train (and test) a
MLP model with ability to automatically estimate AHI.

3.2 Multi-layer Perceptron Artificial Neural
Network

MLP is a supervised learning algorithm typically arranged in
three fully connected layers (input, hidden, and output) [13].
The layers are formed by neurons, each of them character-
ized by an activation function gð Þ and their connections (or
weights) to neurons from other layers (wi;j, being i and
j different layers). In this study, the input layer has eight
neurons due to the number of the extracted features. More-
over, according to the AHI regression task, a single unit with
a linear activation function was used in the output layer.
Linear activation functions were also used for each neuron in
the hidden layer ðNHÞ. The number of hidden neurons finally
arranged is a tuning parameter optimized using the training
set [13]. In order to prevent overfitting, a regularization
parameter (a) was introduced during the MLP training

process [13]. It was also optimized along with NH . All
weights wi;j were optimized using the sum of squares error
function minimization criterion by means of the scaled
conjugate gradient algorithm [13].

3.3 Statistical Analysis

Intra-class correlation coefficient (ICC) was used to measure
the concordance between our estimation and the actual AHI.
Cohen’s kappa ðjÞ assessed the diagnostic ability of the
estimated AHI in the four class classification task. Esti-
mated AHI was also evaluated in the three AHI thresholds
that define the severity groups to further assess its poten-
tiality as screening tool. Sensitivity (Se), specificity (Sp), and
accuracy (Acc) were used for this purpose. Regarding the
optimization of the NH and a parameters in the MLP model,
a leave-one-out cross-validation (loo-cv) procedure was
applied only in the training test. The whole training set,
without the loo-cv process, was used to obtain the final MLP
model.

4 Results

4.1 MLP Optimization and Training (Training
Set)

Figure 1 shows the optimization of NH and a during the
loo-cv procedure.The pair NH ¼ 45 and a ¼ 0:3 reached the
highest j (0.597). These values were chosen as optimum,
and used to train the model with the whole training set.

4.2 Diagnostic Ability of Our Proposal (Test Set)

Figure 2 displays a Bland-Altman plot facing the estimated
AHI and the actual AHI. A small overestimation of our AHI
can be observed (mean = 1.2) with the limits of the 95%
confidence interval in the range (−19.2, 21.6). Table 2 dis-
plays the confusion matrices of both ODI3 alone and the
AHI estimated by our MLP model in the test set. ODI3
rightly estimates the severity of 62.0% of the subjects,
showing an ICC ¼ 0:840 between it and the actual AHI, and
a Cohen’s j ¼ 0:470 in the four-class classification task. By
contrast, our estimated AHI rightly classifies 75.0% of
subjects into their actual severity degree, achieving ICC ¼
0:904 and j ¼ 0:614. Table 3 summarizes the diagnostic
statistics for the three AHI thresholds that limit the
SAHS-severity levels, i.e., AHI = 5, 15, and 30 e/h. The
estimated AHI reaches the highest Acc for the three
thresholds, outperforming ODI3 in AHI = 5 and 30 e/h.
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Fig. 2 Bland-Altman plot facing
estimated and actual AHI

Fig. 1 NH and a optimization
process with loo-cv

Table 2 Confusion matrices for ODI3 and the AHI estimation derived
from our MLP model (Test set). Rows correspond to the actual SAHS
severity degree

no-SAHS Mild Moderate Severe

ODI3

no-SAHS 6 0 0 0

Mild 9 13 1 0

Moderate 0 10 12 1

Severe 1 0 16 31

Estimated AHI

no-SAHS 3 3 0 0

Mild 2 14 6 1

Moderate 1 3 12 7

Severe 1 0 1 46

Table 3 Evaluation of AHI thresholds (5, 15, and 30 e/h) for both
ODI3 and our AHI estimation from MLP (Test set)

5 e/h 15 e/h 30 e/h

ODI3

Se. (%) 89.4 84.5 64.6

Sp. (%) 100.0 96.6 98.1

Acc. (%) 90.0 88.0 82.0

Estimated AHI

Se. (%) 95.7 92.9 95.8

Sp. (%) 50.0 75.9 84.6

Acc. (%) 93.0 88.0 90.0
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5 Discussion and Conclusions

In this study, we obtained an MLP model with ability to
estimate AHI from oximetric recordings acquired at patient’s
home. This model was trained with ODI3 from SpO2 as well
as 7 features from PRV that reflect cardiac information not
showed by the former. Our proposal reached very high
agreement with actual AHI ðICC ¼ 0:904Þ and diagnostic
ability (j ¼ 0:614; 93.0%, 88.0%, 90.0% Acc for 5, 15, and
30 e/h, respectively), outperforming the single use of the
widespread clinical parameter ODI3 at each statistics.

Three studies have been found evaluating the diagnostic
usefulness of at-home NPO. All of them only analyzed the
SpO2 signal. Olson et al. conducted a univariate analysis
through delta index which showed moderate Se/Sp pairs in
the three AHI thresholds (82.7%/54.2%, 88.5%/39.6%,
92.6%/34.1%, 5 e/h, 15 e/h, and 30 e/h, respectively) [15].
Chung et al. directly assessed the usefulness of at-home
ODI3, reaching 87.0, 84.0, 93.7% Acc for the same AHI
thresholds [16]. Finally, Schlotthauer et al. estimated ODI3
by means of the empirical mode decomposition, and its
diagnostic assessment for AHI = 15 e/h reached 83.8% Se
and 85.5% Sp [17]. Our proposal achieved an overall higher
diagnostic ability than those reported in these works.

Notwithstanding these considerations, some limitations
need to be pointed out. In accordance with the high preva-
lence of SAHS, and the pre-test symptoms referred by the
patients involved in the study, the number of no-SAHS
subjects is low comparing to the other SAHS-severity
groups. A higher proportion of them would enhance the
soundness of our results. This issue will be addressed in
future studies. In addition, although the features extracted
from the PRV signal have shown their usefulness, another
future goal is the assessment of the information extracted by
means of different analytical approaches.

Summarizing, our automatic estimation of the AHI has
shown very high diagnostic ability using a MLP model only
trained with at-home oximetric recordings. It outperformed
the state-of-the-art studies found. Adding PRV features to
ODI3 enhanced the performance of the oximetric index
alone. These results suggest that the information contained
in the PRV signal complement ODI3, leading to an accurate
at-home diagnostic alternative.
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