

Driver Manual

cifX Device Driver

Linux (Kernel 2.6.x / 3.x.x)
V1.1.0.0

Hilscher Gesellschaft für Systemautomation mbH
www.hilscher.com

DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public

Introduction 2/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

Table of contents

1 Introduction...4
1.1 About this document ..4
1.2 List of revisions ..4
1.3 Overview ..5
1.4 Requirements...6
1.5 Features ...6
1.6 Limitations ..7
1.7 CD contents ...7
1.8 Terms, abbreviations and definitions ...8
1.9 References to documents ..8
1.10 Legal Notes ..9

1.10.1 Copyright ... 9
1.10.2 Important notes ... 9
1.10.3 Exclusion of liability ... 10
1.10.4 Export .. 10

2 Licensing terms..11

3 Installation...12
3.1 Prerequisites ..12
3.2 Preparation...13
3.3 Installation of the driver in one step ...14
3.4 Single step installation process..14

3.4.1 Compiling the netX UIO kernel module ... 15
3.4.2 Compiling the cifX userspace library ... 19

3.5 Compiling the example programs ..23
3.5.1 Compiling the cifX example program via console.. 24
3.5.2 Compiling the cifX example program via IDE .. 25

3.6 Loading netX UIO driver module..26
3.7 Firmware and configuration file storage...27

3.7.1 Device identification via single directory .. 28
3.7.2 Device identification via slotnumber (Rotary switch) ... 29
3.7.3 Device identification via device and serial number .. 30
3.7.4 Creating the directory tree of the configuration file storage ... 31

4 Linux driver specific information..32
4.1 Additional structures...33

4.1.1 Structure CIFX_LINUX_INIT ... 33
4.1.2 Structure CIFX_DEVICE_T ... 34

4.2 Additional functions ..36
4.2.1 cifXDriverInit().. 37
4.2.2 cifXDriverDeinit() ... 38
4.2.3 xDriverRestartDevice() .. 38
4.2.4 cifXGetDriverVersion()... 39
4.2.5 cifXGetDeviceCount().. 39
4.2.6 cifXFindDevice() .. 40
4.2.7 cifXDeleteDevice()... 40

4.3 Support for non-PCI devices..41
4.3.1 ISA or other memory-mapped devices (DPM)... 42
4.3.2 Custom specific hardware interface (e.g. SPI) .. 43

4.4 Driver/Library start-up procedure ...47
4.4.1 Startup via AUTOSCAN or CARD number .. 47
4.4.2 Startup via CIFX_DRIVER_INIT_NOSCAN... 48

4.5 Device configuration (device.conf)...49
4.6 netX-based virtual Ethernet interface...51

4.6.1 Features .. 51
4.6.2 Requirements .. 51
4.6.3 Limitations ... 51
4.6.4 Overview ... 52
4.6.5 Virtual cifX Ethernet interface setup .. 53

5 Using SYCON.net to configure the fieldbus system...54
5.1 Remote access via TCP/IP-Server ..54

Introduction 3/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

6 Programming with the cifX Linux Driver..55
6.1 Example: Generic driver initialization...55
6.2 Example: Driver initialization for ISA device ..56

6.2.1 Not using UIO driver .. 56
6.2.2 Using UIO driver.. 57

6.3 Example: Driver initialization for custom hardware interface ...58

7 Question and answers ...59
7.1 cifX Device Driver...59

7.1.1 Failed to install driver via build script ... 59
7.1.2 It is not possible to run any script located on the CD... 59
7.1.3 Failed to load the uio_netx kernel module ... 59
7.1.4 Unable to access or find a device.. 59
7.1.5 Failed to map the DPM of a device ... 60
7.1.6 cifX device is not correctly configured ... 60
7.1.7 No log file of the user space driver is created.. 60
7.1.8 Failed request DMA state or to exchange IO-data via DMA.. 60

7.2 netX-based virtual Ethernet interface...61
7.2.1 Failed to create a virtual Ethernet interface ... 61
7.2.2 No cifX Ethernet device appears ... 61
7.2.3 No network access although device successfully created... 61
7.2.4 Network adapter disappears during device reset .. 61

8 Appendix ...62
8.1 List of tables ...62
8.2 List of figures..62
8.3 Contacts ...63

Introduction 4/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1 Introduction
1.1 About this document
This manual describes the Hilscher cifX driver for Linux and its architecture.

The driver offers access to the Hilscher netX-based hardware (e.g. CIFX50) with the same
functional API as the cifX Device Driver for Windows®.

1.2 List of revisions

Rev Date Name Chapter Revision

4 2010-06-01 SD Updated udev rule to get write access
Added compilation with Eclipse
Update functions / limitations / little changes for driver version 1.0.0.0
Added cifXGetDriverVersion()
Update file storage if rotary switch is used

5 2012-05-11 RM/SD
3.4.2.2

4.2.3

3.7.1 to
3.7.2
4.1.1

Tested with Linux Kernel 2.6.35 and 3.3.3
Added information to start build process under Eclipse
Added toolkit compiler option CIFX_TOOLKIT_TIME
Added xDriverRestartDevice() function
Added MRAM support
Fixed pictures of the directory structure (changed boot loader name and
config.nxd instead of warmstart.dat)
Update initialization structure CIFX_LINUX_INIT:
 - Added support of initializing particular card
 - Added locking mechanism to synchronize access from multiple
 applications (CIFX_DRIVER_INIT_CARDNUMBER).
 - Stack size of polling thread is configurable.

6 2013-02-13 RM/SD 1.4
3.4.1.2
3.4.1.2/3
.6
3.7.4
-/-

Information about CIFX API manual added.
Unnecessary header files removed.
Description of compiler flags settings reworked.
Section Creating the directory tree of the configuration file storage added.
DMA support information added.

7 2014-3-10 SD 1.7
3
4
4.6
7

CD layout updated (folder templates added).
Reworked (added information of automated build scripts 3.3).
Reworked (to be more informative).
Information about the Virtual cifX Ethernet Interface added.
Chapter for FAQs added.

8 2014-11-03 SD 1.5

1.7
3.4.2
3.6
4
4.1.1 /
4.1.2
4.3

6
6.2

Features updated: Custom Hardware Interface support, Interrupt support for
ISA devices.
ISA and SPI example added.
Compiler options updated.
Module arguments added: custom card defintion.
Features ‘custom hardware interface support’ updated.
Reworked (due to new features).

Information about non-PCI device support added, including section 4.3.1 /
4.3.2 / 4.3.2.1 / 4.3.2.2 / 4.3.2.3 / 4.3.2.4)
Reworked
ISA example code added.

Table 1: List of revisions

Introduction 5/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1.3 Overview
The cifX Linux driver runs as a library in userspace and accesses the card via a UIO kernel module
(Userspace I/O).

External
hardware

kernel space

User space

Application

libcifx.so

uio_netx.ko
(maps memory and handles

IRQ’s)

Board0..n

CH0 CH1 ...

DPM / DMA / IRQ Mapping

DPM / Handling

Figure 1: Linux cifX driver architecture

Introduction 6/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1.4 Requirements

Mandatory

 Linux Source (tested under 2.6 / 3.3.3 / 3.13.5)

 libpthread, librt

 cifX board (PCI/PCIe), NXSB-PCA / NXSB100 / netPLC, netJACK / NXHX board or NX-PCA-
PCI / NXHX or netX Chip (DPM connections).

 Building with configure:
- pkg-config utility for automatic finding/configuring needed libraries

 Building with Eclipse:
- Eclipse environment (tested V3.5.2 / V3.7.2 / V4.4)
- Eclipse CDT-plugin (V6.0.2 or later)

Optional

 Linux standard libraries libpciaccess (tested with V0.10.2 / V0.13.1-2)
- always needed for cifX PCI cards, support can be disabled by defining
CIFX_TOOLKIT_DISABLEPCI)

1.5 Features
 Based on the netX Toolkit source V1.2.0.0

 Unlimited number of cifX boards supported

 Support for NXSB-PCA or NX-PCA-PCI, netPLC, netJACK boards included

 Interrupt notification for applications

 Support of second Memory Window for PCI-based device (e.g. MRAM)

 Setting the device time during start-up if time handling is supported by the device

 DMA Support

 Support of a Virtual cifX Ethernet Interface (see section netX-based virtual Ethernet interface
on page 51)

 uio_netx driver supports custom memory mapped devices
(e.g. DPM, ISA, or other non PCI devices)

 Interrupt support for ISA devices (when using uio_netx with custom device)

 Simple integration of custom hardware interface (e.g. via SPI)

Introduction 7/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1.6 Limitations
 No Interrupt support for NXSB-PCA and NX-PCA-PCI boards

 On big-endian machines the user is responsible for converting send/receive packets from/to
little endian. This is NOT automatically done inside the driver / toolkit.

 Interrupt support only available for devices handled through uio_netx kernel module

 Only one application can access a card simultaneously. For multi-application access to a
single card, a special application needs to be implemented by user.

 Online diagnostics access via SYCON.net needs a TCP/IP Server functionality integrated
into the user application. An example stand alone server is offered with the Linux driver.

 libcifx (Toolkit) needs to run as 'root' or with a user that has the following rights:

 read/write access to the PCI configuration registers
(i.e. '/sys/class/uio/uio<n>/device/config')

 Mapping of DPM to user space (see 'mmap' and 'ulimit -l')

 read/write access to devices '/dev/uio<n>'

 read/write access to /dev/mem (for user added devices)

1.7 CD contents

Folder Content

documentation Driver documentation

driver

libcifx cifX Linux driver source
(autoconf project / Eclipse project)

patches uio-netx-dma-support.patch - (includes update of the uio_netx kernel module and
necessary extension of the Linux kernel Build Environment (DMA support)

uio_netx netx uio driver sources

BSL boot loader files

scripts installation scripts for the uio_netx kernel module

templates templates for several device configurations

examples cifX example application

basedir Example card configuration directory
(copy to /opt/cifx or to your own base directory)

cifxsample Small example application, demonstrating driver initialization and toolkit usage
(autoconf project / Eclipse project)

cifXTCPServer Example stand alone TCP server for SYCON.net diagnostic access
(autoconf project / Eclipse project)

cifXTestConsole Demo application for testing toolkit functions
(autoconf project / Eclipse project)

LoadModules Example application, demonstrating firmware module loading.
(Eclipse project / Makefile)

ISASample Small application, demonstrating the initialization of an ISA device via User Space
library libcifx

SPISample Small application, demonstrating the initialization of an SPI device via User Space
library libcifx

Diagnostic and Remote
Access

Documentation, example and sources for the netX diagnostic and remote access

Table 2: CD contents

Introduction 8/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1.8 Terms, abbreviations and definitions

Term Description

cifX Communication Interface based on netX

comX Communication Module based on netX

PCI Peripheral Component Interconnect

UIO Userspace I/O

API Application Programming Interface

DPM Dual-Port Memory
Physical interface to all communication board
Note: DPM is also sometimes used for PROFIBUS-DP Master

Table 3: Terms, abbreviations and definitions

1.9 References to documents
This document refers to the following documents:

[1] Hilscher Gesellschaft für Systemautomation mbH:
CIFX API - Application Programming Interface Revision 2, english, 2013.

[2] Hilscher Gesellschaft für Systemautomation mbH: Driver Manual cifX Device Driver -
Windows 2000/XP/Vista/7/8 V1.1.x.x, revision 22, english, 2013

[3] Hilscher Gesellschaft für Systemautomation mbH: Protocol API, PROFINET IO-Device,
Revision 14, English, 2013.

[4] Hilscher Gesellschaft für Systemautomation mbH: cifX netX Toolkit - DPM TK, revision 7,
english, 2014

Table 4: References to documents

Introduction 9/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1.10 Legal Notes

1.10.1 Copyright
© 2009-2014 Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying material (manual, accompanying texts,
documentation, etc.) are protected by German and international copyright law as well as
international trade and protection provisions. You are not authorized to duplicate these in whole or
in part using technical or mechanical methods (printing, photocopying or other methods), to
manipulate or transfer using electronic systems without prior written consent. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations. The
included diagrams do not take the patent situation into account. The company names and product
descriptions included in this document may be trademarks or brands of the respective owners and
may be trademarked or patented. Any form of further use requires the explicit consent of the
respective rights owner.

1.10.2 Important notes

The manual, accompanying texts and the documentation were created for the use of the products
by qualified experts, however, errors cannot be ruled out. For this reason, no guarantee can be
made and neither juristic responsibility for erroneous information nor any liability can be assumed.
Descriptions, accompanying texts and documentation included in the manual do not present a
guarantee nor any information about proper use as stipulated in the contract or a warranted
feature. It cannot be ruled out that the manual, the accompanying texts and the documentation do
not correspond exactly to the described features, standards or other data of the delivered product.
No warranty or guarantee regarding the correctness or accuracy of the information is assumed.

We reserve the right to change our products and their specification as well as related manuals,
accompanying texts and documentation at all times and without advance notice, without obligation
to report the change. Changes will be included in future manuals and do not constitute any
obligations. There is no entitlement to revisions of delivered documents. The manual delivered with
the product applies.

Hilscher Gesellschaft für Systemautomation mbH is not liable under any circumstances for direct,
indirect, incidental or follow-on damage or loss of earnings resulting from the use of the information
contained in this publication.

Introduction 10/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

1.10.3 Exclusion of liability

The software was produced and tested with utmost care by Hilscher Gesellschaft für
Systemautomation mbH and is made available as is. No warranty can be assumed for the
performance and flawlessness of the software for all usage conditions and cases and for the
results produced when utilized by the user. Liability for any damages that may result from the use
of the hardware or software or related documents, is limited to cases of intent or grossly negligent
violation of significant contractual obligations. Indemnity claims for the violation of significant
contractual obligations are limited to damages that are foreseeable and typical for this type of
contract.

It is strictly prohibited to use the software in the following areas:

 for military purposes or in weapon systems;

 for the design, construction, maintenance or operation of nuclear facilities;

 in air traffic control systems, air traffic or air traffic communication systems;

 in life support systems;

 in systems in which failures in the software could lead to personal injury or injuries leading to
death.

We inform you that the software was not developed for use in dangerous environments requiring
fail-proof control mechanisms. Use of the software in such an environment occurs at your own risk.
No liability is assumed for damages or losses due to unauthorized use.

1.10.4 Export

The delivered product (including the technical data) is subject to export or import laws as well as
the associated regulations of different counters, in particular those of Germany and the USA. The
software may not be exported to countries where this is prohibited by the United States Export
Administration Act and its additional provisions. You are obligated to comply with the regulations at
your personal responsibility. We wish to inform you that you may require permission from state
authorities to export, re-export or import the product.

Licensing terms 11/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

2 Licensing terms
The Hilscher cifX Linux driver consists of several modules.

 uio_netx Offered by Hilscher Gesellschaft für Systemautomation mbH

The latest version of the uio_netx kernel module is located on the CD.

This module is licensed under GPL V2 and can be used under these terms.

 libcifx Offered by Hilscher Gesellschaft für Systemautomation mbH

This library is a userspace library and an intellectual property of the

Hilscher Gesellschaft für Systemautomation mbH.

The source code and library can be used for internal development, modification and
debugging purpose.

Distribution of the original libcifx source code, parts of the libcifx source code or
modifications based on it is prohibited.

Binary distribution for use in products is allowed.

Installation 12/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3 Installation
This chapter describes the installation procedure consisting of the compile and installation process
of the user space library libcifx and the kernel module uio_netx including the cifX example
programs.

The cifX driver can be installed in two ways

 Using the installation script located on the CD, building automatically all required
components and installing all required files

 Installing all components separately

For the standard use case the automatic installation should be sufficient (see section Installation of
the driver in one step on page 14). In case of custom needs (e.g. update of only a single
component, building the driver for another target system or any installation trouble) the single step
installation is the preferred way (see section Single step installation process on page 14).

The following steps are required to run a demo application

 Plug in the cifX hardware and start the system

 Extract the driver sources (see section Preparation on page 13)

 Install all required driver components (see sections Installation of the driver in one step /
Single step installation process on page 14)

 Load the kernel driver (optional depends on the chosen installation method, see section
Loading netX UIO driver module on page 26)

 Build the demo application (see section Compiling the example programs on page 23)

In case of any installation trouble please refer to the chapter Question and answers on page 59.

3.1 Prerequisites
 Kernel header (version of the kernel, the modules should be build for / tested with 3.13.5)

 GCC 4.x.x (tested with version 4.6.3)

For PCI card support

 Library and development package of libpciaccess (tested with V0.10.3 / V0.13.1-2)

Installation 13/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.2 Preparation
The following steps explain how to copy the driver source from the CD and extract them in a
working directory.

Note: Some files of the driver package provide special functions, e.g. scripts are marked as
executable. Not to loose such attributes and permissions, it is required to unpack the
driver archive under Linux operating systems. Unpacking the archive under another
operating systems may clear all attributes. In this case it is not possible to run the
scripts without restoring all attributes and permissions.

 Change to your working directory (e.g. /home/project/)

cd /home/project/

Note: Do not use any whitespaces within your project path since the provided scripts can not
handle these.

 Extract/copy the sources from the cdrom (choose the archive because of the file attributes,
see note above)

tar xvjf /mnt/cdrom/driver.tar.bz

 Change into the extracted folder

cd ./driver

 Most of the work, explained in this document will start from this point. If not especially noted,
’project folder' refers to this folder.

Note: Since several installation instructions rely on the 'project folder', in the following the
document estimates the folder as extracted.

If not especially noted, 'project folder' refers to the folder of the extracted driver
source.

Installation 14/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.3 Installation of the driver in one step
The following guide requires extracting the sources from the CD (see section Preparation on page
13).

Build process

 Change to the driver directory

cd driver/

 Run the installation script (root rights requested during installation)

./build_install_driver

 Follow the installation instructions

 In case of successful installation the driver is ready to use. For any restrictions see the
following note.

Note: In case of a successful installation, note the following restrictions

 Running an example program, every accessed device will appear with only the boot
loader being flashed. For device specific configuration (e.g. download of device specific
firmware) see section Firmware and configuration file storage on page 27.

 In case of a system reboot the kernel driver needs to be reloaded (for an automated
load see section Loading netX UIO driver module on page 26).

3.4 Single step installation process
The single step installation process comprises the installation of the following components

 Boot loader and Firmware

Install the firmware and the boot loader (see section Firmware and configuration file storage
on page 27 and Creating the directory tree of the configuration file storage on page 31).

 Kernel Module

Build the kernel module netanalyzer.ko and install it (see section Compiling the netX UIO
kernel module on page 15).

 User Space library

Build the libcifx user space library and install it (see section Compiling the cifX userspace
library on page 19).

Installation 15/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.4.1 Compiling the netX UIO kernel module

Building the uio_netx kernel module can be done in two ways

 Building the uio_netx kernel module during the kernel build procedure

 Building the uio_netx kernel module only

The way, which should be chosen, depends on, if the kernel of the target system is already built.

In case, the kernel is already built, there is no need to rebuild the whole kernel. It is possible to
build the uio_netx module as an external module and install it afterwards.

3.4.1.1 Compiling the UIO kernel module during kernel build process

The following steps describe how to build the whole kernel including the uio_netx module. This
generic kernel build procedure may differ from your kernel build mechanism.

Note: If the kernel is already built, it is not necessary to recompile the whole kernel. In this
case, skip this step and continue with section Compiling the UIO kernel module on
page 17.

 Change to your working directory (e.g. /usr/src)

cd /usr/src

 Extract the kernel sources

tar xjf linux-source-x.x.x.tar.bz2

 Change into the uio driver folder within the extracted kernel source

cd linux-source-x.x.x/drivers/uio

 Apply the patch of uio_netx driver

patch -p0 <[path to project folder]/patches/uio_netx_update.patch

(e.g. patch -p0 </usr/src/driver/patches/uio_netx_update.patch)

The patch includes:

- update of the uio_netx kernel module uio_netx.c

- extension of the Kernel configuration scripts (Kconfig,Makefile) for DMA support

Note: Patching is only guaranteed to work for the latest tested kernel version (see Mandatory,
Requirements on page 6).

 Load your old kernel configuration via command line or inside 'make menuconfig'

make oldconfig

 Configure your kernel to include UIO ('Userpace I/O drivers') and uio_netx ('Hilscher NetX
Card driver')

make menuconfig

Enable 'Device Drivers / Userspace I/O Drivers / Hilscher netX Card Driver'

On demand enable DMA support

Installation 16/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

 Optional: Rebuild the kernel (necessary only if Hilscher netX Card driver should be a built-in

driver, not a module)

make all install

 Build and install the modules

make modules modules_install

Installation 17/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.4.1.2 Compiling the UIO kernel module only

The following text describes how to build the kernel module for an kernel already built. The build
and installation process can be done manually or by script. If the target machine is the same
machine as the build machine and the module should be built for the current running kernel the
automatic installation process is the preferable way because of its easy usage. In contrast, the
manual way is more flexible. In case of building the modules for another system choose the
manual method.

Any further step depends on the preferred installation method, script-based or manually.

Automatic Installation Process using the Scripts:

 Change into the project driver folder (see section Preparation on page 13)

(e.g.) cd /home/projects/driver

 Change into 'scripts'

cd ./scripts

 Build the kernel module (during the build process it is possible to enable or disable DMA
support)

./install_uio_netx build

 Install the module to the current kernel installation path (see /lib/modules/$(uname -r)/)

./install_uio_netx install

 Update the kernel's module dependencies

./install_uio_netx update

At this point the module is installed only. Module loading is described in chapter Loading netX UIO
driver module on page 26.

Installation 18/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

Manual installation process

 Change to your project driver folder (see section Preparation on page 13)

(e.g.) cd /home/project/driver

 Change into 'uio_netx'

cd uio_netx

 Run the makefile

Note: By default the makefile will generate a module for the active kernel (-> see
uname -r) and DMA support enabled.

To generate a module for a specific kernel set the argument 'KDIR' to the kernel header
directory the module should be build for. To disable DMA set the argument 'DMA_DISABLE'
to '1'.

Example: Disabled DMA support and kernel header files located under
/home/project/my_kernel/:

make DMA_DISABLE=1 KDIR=/home/project/my_kernel/

 Copy the uio_netx module in the target directory of the system the module is built for

cp uio_netx.ko /lib/modules/[kernel-version]/kernel/drivers/uio/

(Example: cp uio_netx.ko /lib/modules/$(uname -r)/kernel/drivers/uio/)

 Update the list of the module dependencies

depmod

At this point the module is installed only. Module loading is described in chapter Loading netX UIO
driver module on page 26.

Installation 19/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.4.2 Compiling the cifX userspace library

The userspace library contains the cifX Toolkit with all necessary Linux adaptions. This library
needs to be build for the system the library should run on. The library can be build via the console
or the Eclipse IDE.

3.4.2.1 Using the console

Installation procedure

 Change to your project driver folder (see section Preparation on page 13)

(e.g.) cd /home/project/driver

 Change to the libcifx build directory (the correct name depends on the version)

cd libcifx_1.0.x.0

 Run the configure script

./configure

Option Parameter Description

--prefix Installation path Sets the path where the library (subdirectory lib) and include
files (subdirectory include/cifx) will be installed.

Default: /usr/local

--enable-debug none Enables debug symbols for the generated library

--disable-pci none Disable PCI support. This will remove all links to libpciaccess.

Note: When compiling without PCI support, the driver cannot
handle cifX PCI cards any more

--enable-verbose none Enable verbose outputs to console (outputs debug information
before the log file is created)

--enable-single-directory none Use subdirectory 'deviceconfig/FW/channelx' beneath base
directory for firmware/configuration file storage.

Note: This will force all handled devices to use the same
firmware/configuration

--enable-time-setup none Enables toolkit function, setting the device time during device
start-up.

--enable-dma none Enables DMA support

PCIACCESS_CFLAGS

PCIACCESS_LIBS

compiler
parameters

Force the usage of the given parameters for the libpciaccess
and don't use pkg-config

--enable-cifxethernet none Enables support for the netX based virtual ethernet interface

Note: This feature requires dedicated hardware and firmware
(for more information see section netX-based virtual Ethernet
interface on page 51).

--enable-hwif none Enables support for custom hardware interface (e.g. SPI) (for
more information see section Support for non-PCI device on
page 41)

CFLAGS Compiler flags Custom compiler flags (e.g. 32-bit on 64-bit platform
CFLAGS=-m32)

 Table 5: Additional libcifx configuration options

Installation 20/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

 Build all source modules

make all

 Install the library and include files (root required)

make install

Example for compilation without using pkg-config

./configure PCIACCESS_CFLAGS="-I/opt/pciaccess/include -L/opt/pciaccess/lib"
 PCIACCESS_LIBS="-lpciaccess"
make all

3.4.2.2 Using the Eclipse IDE

Get the Eclipse environment from http://www.eclipse.org/downloads/. Depending on the download,
you will need additionally the CDT-plugins (http://www.eclipse.org/cdt/downloads.php). They are
required to build and debug C/C++ projects. For more information see http://www.eclipse.org/cdt/.
There is also information about how to start and develop under the Eclipse environment.

When Eclipse is installed and the workspace path is set, you can load the predefined cifX library
project as follows:

 Start Eclipse.

 Select File > Import and choose in the folder General, Existing Projects into Workspace.

 Select the path to the extracted sources (['project folder']/libcifx, see section Preparation on
page 13) and load the shown pre-selected project.

Figure 2: Eclipse IDE – Import project

Note: Figure 2 shows a project import of the cifX library V1.0.0.0. The project name depends
on the cifX library version.

http://www.eclipse.org/downloads/�
http://www.eclipse.org/cdt/downloads.php�
http://www.eclipse.org/cdt/�

Installation 21/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

After importing the project, right click on libcifx, which is shown in the project explorer, to open the
extended settings.

 Right click on the project libcifx.

 Select Properties > C/C++ Build > Settings.

 Under the tab Tool Settings > Symbols you can define or undefine special compiler flags.

The default setting is a debug version (g3) without any optimization. The following compiler flags
can be set additionally.

Option Parameter Description

DEBUG compiler
parameters

Enables debug symbols for the generated library

CIFX_TOOLKIT_

DISABLEPCI

compiler
parameters

Disable PCI support. This will remove all links to libpciaccess.

Note: When compiling without PCI support, the driver cannot handle
cifX PCI cards any more

VERBOSE compiler
parameters

Enable verbose outputs to console

CIFX_TOOLKIT_

USESINGLE_DIRECTORY

compiler
parameters

Use subdirectory 'deviceconfig/FW/channelx' beneath base directory
for firmware/configuration file storage.

Note: This will force all handled devices to use the same
firmware/configuration

CIFX_TOOLKIT_TIME compiler
parameters

Enables toolkit function, setting the device time during device start-
up.

CIFX_TOOLKIT_DMA compiler
parameters

Enables DMA support

CIFXETHERNET compiler
parameters

Enables support for the netX based virtual Ethernet interface

Note: This feature requires dedicated hardware and firmware (for
more information see section netX-based virtual Ethernet interface on
page 51).

CIFX_DRV_HWIF compiler
parameters

Enables support for custom hardware interface (e.g. SPI)

(for more information see section Support for non-PCI device on page
41)

Table 6: Additional libcifx configuration options

Installation 22/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

Build the project

Use either the menu entry Project->Build All or right click the libcifx project entry in the 'Project
Explorer' view and chose Build Configurations->Build->All.

Install the library

Now the library (located under '~/libcifx/Release/' or '~/libcifx/Debug/') needs to be copied to the
installation path (/usr/local/lib/). The correct library file is in the format
libcifx.so.[Major].[Minor].[Release].

Note: The name of the library depends on the version (e.g. library libcifx.so.1.0.4)

Finally run the next three steps:

 Change into the installation directory (cd /usr/local/lib/).

 Run ldconfig to register library and create a link

ldconfig

 Create a symbolic link ‘libcifx.so’ to the cifx library libcifx.so.[Maj].[Min].[Rel]

Example for libcifx library V1.0.4

ln –s libcifx.so.1.0.4 libcifx.so

Note: The required include files must also be copied to the installation path
(/usr/local/include/cifx/).
- ./src/cifxlinux.h
- ./src/Toolkit/cifXUser.h
- ./src/Toolkit/cifXErrors.h
- ./src/Toolkit/cifXEndianess.h
- ./src/Toolkit/rcX_Public.h
- ./src/Toolkit/TLR_Types.h
- ./src/Toolkit/rcX_User.h

Installation 23/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.5 Compiling the example programs
All example applications listed in section CD contents on page 7, rely on the same two ways to be
build.

 Via Console (autoconf / Makefile)

 Via IDE (Eclispe)

The following chapter explains how to build an application using the cifxsample test program.

Note: Before using the test applications make sure you have compiled and installed the cifX
library which is described in section Compiling the cifX userspace library on page 19.

Installation 24/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.5.1 Compiling the cifX example program via console

Installation procedure

 Change into your working directory (e.g. cd ~)

 Extract/copy the example sources from the CD-ROM

In case of an archive use:

tar xvjf /mnt/cdrom/example.tar.bz2

If it is already extracted use:

cp -R /mnt/cdrom/example/ .

 Change to cifxsample build directory

cd example/cifxsample

 Run the configure script

./configure

Option Parameter Description

--prefix Installation path Sets the path where the program will be installed.

Default: /usr/local

--enable-debug None Enables debug symbols for the generated library

--with-cifx-lib Path to cifX library Needs to be set if your installation target of the cifX library is
not in your default library search path

--with-cifx-include Path to cifXUser.h, etc. Needs to be set if the cifX includes are not in your default
include path

CFLAGS /
CXXFLAGS

Compiler flags Custom compiler flags (e.g. 32bit on 64bit platform
CFLAGS=-m32)

 Table 7: Additional cifxsample configuration options

 Build all source modules

make all

 Optional: Install the program

make install

Example for compiling without using pkg-config

./configure libcifx_CFLAGS="-I/usr/local/include/cifx -L/usr/local/lib"
 libcifx_LIBS="-lcifx -lpthread -lrt" PCIACCESS_CFLAGS="-I/opt/pciaccess/include
 -L/opt/pciaccess/lib" PCIACCESS_LIBS="-lpciaccess"
make all

Installation 25/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.5.2 Compiling the cifX example program via IDE

As mentioned before, you must copy the entire example folder in your local workspace to open the
example project.

 Change into the working directory (e.g. cd /home/~/workspace/).

 Extract/copy the example sources from the CD-ROM

In case of an archive use:

tar xvjf /mnt/cdrom/example.tar.bz2

If it is already extracted use:

cp -R /mnt/cdrom/example/ .

 Start Eclipse and import the project as noted in section Using the Eclipse IDE on page 20.

Note: Before compiling the example, the library libcifx must be installed (see section
Compiling the cifX userspace library on page 19).

The default search path for the header is '/usr/local/include/cifx'. If another path is used, set the
include path to the specified one.

 Right click the project cifxsample

 Select Properties > C/C++ Build > Settings.

 Under the tab Tool Settings > Directories you can set a new or additional include path.

Debug information output from the example program can be activated by defining the compiler flag
DEBUG (set compiler flags, see section Using the Eclipse IDE on page 20).

Option Parameter Description

DEBUG compiler parameters Enables debug information output. (Disabled by default)

Table 8: Additional cifxsample configuration options

Build the project

 Use either the menu entry Project->Build All or a right click to the example project entry in
the ‘Project Explorer' view and chose Build Configurations->Build->All.

The Eclipse debug environment can be used after compiling the project. When the library libcifx is
built in debug version, it is also possible to step into the driver functions.

Installation 26/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.6 Loading netX UIO driver module

Module loading / unloading

To load the UIO driver module, you will need to login as root and enter the following command:

modprobe uio_netx

Note: To automatically load the UIO driver module at system startup, check the manual of
your Linux distribution. Usually kernel modules loaded at startup are placed in
/etc/modules.

To unload the module run

modprobe –r uio_netx

Optional arguments

The uio_netx driver provides mapping of non-PCI devices by passing the appropriate arguments
(user_dpm_addr, user_dpm_len and user_irq). For more information refer to section Support for
non-PCI devices on page 41. The module arguments are arrays, so it is possible to pass a comma
separated list of parameters.

Option Parameter Description

user_dpm_addr ULONG Array Physical start address of the DPM (system dependent)

user_dpm_len ULONG Array Length of the DPM (depends on the device)

user_irq int Array Number of the interrupt line (0 = not connected)

Table 9: uio-netx optional arguments

Example parameter usage

The following command loads the kernel module and maps two cards, with a DPM memory
location at 0xD0000 (16kB, IRQ5) and 0xFECC0000 (64kB, no IRQ).

modprobe uio_netx user_dpm_start=0xD0000,0xFECC0000 user_dpm_len=0x4000,0x10000
user_irq=5,0

Using netX UIO Driver as user (non-root)

If you want to access the UIO driver with user privileges you will need to make sure the user has
read / write access to the following device nodes and files:

 /dev/uio<n>

 /sys/class/uio/uio<n>/device/config

This can automatically be done by writing an udev rule (see example below):
/etc/udev/netx.rules
SUBSYSTEMS=="pci",ATTRS{vendor}=="0x15cf",ATTRS{device}=="0x0000",MODE="0666",PROGRAM="/b
in/bash –c ’chmod 0666 /sys/class/uio/uio%n/device/config’"

An example of an udev rule (80-udev-netx.rules) is located on the CD under
/driver/templates/udev/ (see section CD contents on page 7). For standard use case (the rule file
will match all Hilscher cards) copy the rule file ‘80-udev-netx.rules’ to ‘/etc/udev/rules.d/’. To make
the changes take effect restart the udev system via ‘sudo udevadm trigger’ or unload and then
reload the kernel module uio_netx.

Installation 27/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.7 Firmware and configuration file storage
cifX cards are not using any flash memory to store a firmware or configuration on the card. Every
time the card is powered-up all files (boot loader, firmware and configuration) must be loaded into
the hardware.

This chapter describes where to store these files depending on the way the cards should be
identified. Identification of a card can be done in three different ways (single directory / device and
serial number / Slotnumber) described below.

When the appropriate storage method is chosen, the folder structure can be easily created with the
provided helper scripts (see section Creating the directory tree of the configuration file storage on
page 31).

Note: Firmware and configurations are not stored on the hardware and must be loaded into
the hardware each time the card is powered-up.

It is the task of the driver to initialize the card and therefore the driver has to know which files have
to be loaded into the hardware.

To allow device-specific configuration, every file that needs to be downloaded must be stored in a
unique way. This relation (device <-> device firmware, configuration) is done via a specific folder
structure. These folders reside under a global base folder (default: '/opt/cifx', can be changed
during driver initialization).

 (1) Use a single directory

If only ONE cifX device needs to be supported, a predefined directory can be used by setting
the define CIFX_TOOLKIT_USESINGLE_DIRECTORY accordingly (see compiler flag
USESINGLE_DIRECTORY (Eclipse) or enable-single-directory (autoconf)). The firmware
and configuration file must reside in the subdirectory named FW.

For detailed information of the folder structure layout, see section Device identification via
single directory on page 28.

 (2) Use the Slotnumber (hardware rotary switch)

The Slotnumber serves to distinguish between multiple cifX cards installed in one PC. The
Slotnumber must be set at the cifX card using the "Rotary switch". While Slotnumber 0
means, that the cifX card is identified via its device and serial number, values from 1 to 9
corresponds to the Slotnumber 1 to 9. The firmware and configuration file must reside in the
subdirectory Slot_<1..9>.

For detailed information of the folder structure layout see section Device identification via
slotnumber (Rotary switch) on page 29.

 (3) Use the device and serial number (default)

If the cifX device is not equipped with a rotary switch to set the slotnumber or the slotnumber
mechanism should not be used, the device is identified by its device and serial number. The
firmware and configuration file must reside in the subdirectory /<Device Number>/<Serial
Number>/.

For detailed information of the folder structure layout see section Device identification via
device and serial number on page 30.

Note: How to setup the basic directory tree of the configuration file storage is described in
section Creating the directory tree of the configuration file storage on page 31.

Note: When creating directories or files remember Linux is case sensitive.

Installation 28/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.7.1 Device identification via single directory

The following table describes the different subdirectory levels, using a single directory which
should hold the firmware and configuration files.

Note: This method requires to compile the user space library libcifx with single directory
support enabled (for more information see section Compiling the cifX userspace library
on page 19).

Subdirectory Description

<BASEDIR> Base directory

Default: '/opt/cifx'

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN).

deviceconfig Device specific configuration files

FW If single directory is used, the search path is set to

<BASEDIR>/deviceconfig/FW

Contains the device.conf which holds the device specific settings

Note: This directory must contain the rcX base firmware if loadable modules are used.

 channel<#> Channel specific files

- firmware file (*.nxf - e.g. cifxdpm.nxf)

- fieldbus configuration file (*.nxd - e.g. config.nxd)

- firmware loadable module file (*.nxo)

Note: Currently only channel 0 is supported

Table 10: Firmware and configuration file storage - Single directory

Sample directory structure for single directory usage

+ <BASEDIR>/
|
|-- NETX100-BSL.BIN (bootloader)
|
|--+ deviceconfig
 |
 |--+ FW
 |
 |-- device.conf (configuration file)
 |
 |--+ channel0
 | |
 | |-- cifXdps.nxf (firmware)
 | |-- config.nxd (fieldbus database or warmstart.dat)
 |
 |--+ channel1
 |--+ channel2
 |--+ channel3
 |--+ channel4
 |--+ channel5

Note: Single directory usage is intended to be used if only one cifX device is supported by the
hardware and application. Because all requests to a firmware and/or configuration file
downloads are routed to the same "single" directory.
The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the
configuration file storage on page 31.

Installation 29/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.7.2 Device identification via slotnumber (Rotary switch)

The following table describes the different subdirectory levels, if the device provides a "Rotary
switch" which is used as the Slotnumber identification.

Subdirectory Description

<BASEDIR> Base directory

Default: '/opt/cifx'

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN)

deviceconfig Device specific configuration files

Slot_<1..9> If device provides a rotary switch, the files will be stored under:
Slot_<rotary switch set>. (Only if the rotary switch is not 0)

Contains the device.conf which holds the device specific settings

Note: This directory must contain the rcX base firmware if loadable modules are used.

 channel<#> Channel specific files

- firmware file (*.nxf - e.g. cifxdpm.nxf)

- fieldbus configuration file (*.nxd - e.g. config.nxd)

- firmware loadable module file (*.nxo)

Note: Currently only channel 0 is supported

Table 11: Firmware and configuration file storage - Rotary switch

Sample directory structure for a cifX device identified by Slotnumber 2

+ <BASEDIR>/
|
|-- NETX100-BSL.BIN (bootloader)
|
|--+ deviceconfig
 |
 |--+ Slot_1
...|
 |--+ Slot_2
 | |
 | |-- device.conf (configuration file)
 | |
 | |--+ channel0
 | | |
 | | |-- cifxdpm.nxf
 | | |-- config.nxd (fieldbus database or warmstart.dat)
 | |
 | |--+ channel1
 | |--+ channel2
 | |--+ channel3
 | |--+ channel4
 | |--+ channel5
...|
 |--+ Slot_3
 |--+ Slot_4
 |--+ Slot_5
 |--+ Slot_6
 |--+ Slot_7
 |--+ Slot_8
 |--+ Slot_9

Note: The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the
configuration file storage on page 31.

Installation 30/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.7.3 Device identification via device and serial number

Device identification via the device and serial number are the default way to distinguish between
multiple cifX devices in one PC.

Note: <Device Number>/<Serial Number> are shown on the device hardware label.
Example:
Hardware Label Entry: 1250.100 / 20217
Directory Entry: '/1250100/20217'

The following table describes the different subdirectory levels, without using the rotary switch:

Subdirectory Description

<BASEDIR> Base directory

Default: '/opt/cifx'

Can be changed during userspace library initialization. This directory must contain the
second stage PCI boot loader (e.g. NETX100-BSL.BIN)

deviceconfig Device specific configuration files

<Device Number> Device number of the device (e.g. 1250100)

<Serial Number> Serial number of the device (e.g. 20217)

Contains device.conf storing device specific settings

NOTE: This directory must contain the rcX base firmware if loadable modules are used.

 channel<#> Channel specific files

- firmware file (*.nxf - e.g. cifxdpm.nxf)

- fieldbus configuration file (*.nxd - e.g. config.nxd)

- firmware loadable module file (*.nxo)

NOTE: Currently only channel 0 is supported

Table 12: Firmware and configuration file storage - Device and serial number

Sample directory structure for a cifX device with device number 1250100 and serial number
20217

+ <BASEDIR>/
|
|-- NETX100-BSL.BIN (bootloader)
|
|--+ deviceconfig
 |
 |--+ 1250100
 |
 |--+ 20217
 | |
 | |-- device.conf (configuration file)
 | |
 | |--+ channel0
 | | |
 | | |-- cifXdps.nxf (firmware)
 | | |-- config.nxd (fieldbus database or warmstart.dat)
 | |
 | |--+ channel1
 | |--+ channel2
 | |--+ channel3
 | |--+ channel4
 | |--+ channel5
 |

Note: The base directory structure (including the second stage boot loader) can easily be
created using the provided script, see section Creating the directory tree of the
configuration file storage on page 31.

Installation 31/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

3.7.4 Creating the directory tree of the configuration file storage

An easy way to setup the configuration file storage is to use the provided installation script
'install_firmware' located on the CD under /driver/scripts/.

The following steps show how to create the directory tree needed by the different configuration file
storage methods noted in sections Device identification via single directory to Device identification
via device and serial number starting on page 28.

 Change to your project folder (see section Preparation on page 13)

(e.g.) cd /usr/src/driver.

 Change into 'script'

cd ./script

 First install the second stage boot loader by calling (root privileges are required)

./install_firmware install

This creates the folder '/opt/cifx/deviceconfig' and copies the second stage boot loader to
'/opt/cifx/'

 Depending on the chosen configuration file storage method, execute one of the following
commands (root privileges are required)

Device identification via device and serial number:

./install_firmware add_device [device no] [serial no]

Device identification via slotnumber:

./install_firmware add_slot_dir [slot no]

Device identification via single directory:

Note: This method requires to compile the user space library libcifx with single
directory support enabled (for more information see section Compiling the cifX
userspace library on page 19).

./install_firmware create_single_dir

Note: This installation procedure only creates the directory structure, installs the boot loader
and adds a default configuration file.

To install an application specific firmware refer to section Device identification via
single directory on page 28 to section Device identification via slotnumber (Rotary
switch) on page 29.

For further device configuration see section Device configuration (device.conf) on page
49.

Remember to adapt the permissions, in case of normal users should be able to access
files located in the configuration storage.

Linux driver specific information 32/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4 Linux driver specific information
The Linux driver needs some special initialization compared to the standard Windows driver,
because it is not executed by the kernel at system startup.

The driver (libcifx) is linked to an application and needs to be configured correctly to work.

To enable the use of the cifX driver by an application, some special functions are provided. These
functions are described in the following chapters. Further the Linux driver supports also access to
devices via different hardware interfaces (e.g. SPI, ISA), for more information refer to Support for
non-PCI device on page 41.

Chapter Driver/Library start-up procedure on page 47 describes the correct usage and sequence of
the functions.

Features

The user space driver libcifX provides debug output feature. The tracing can be enabled
during the driver’s initialization (see Trace Level, Structure CIFX_LINUX_INIT on page 33).

Depending on the trace level the following messages will be logged:

 Trace Level = 0x00 – Tracing disabled

 Trace Level = 0x01 – Debug messages will be logged

 Trace Level = 0x02 – Information messages will be logged

 Trace Level = 0x04 – Warning messages will be logged

 Trace Level = 0x08 – Errors messages will be logged

 Trace Level = 0xFF – All messages will be logged

For debugging purposes it is sometimes useful to enable all debug messages.

By default the driver creates a log file in the driver’s ’base directory’ (see Firmware and
configuration file storage on page 27). If the log file creation fails (e.g. no permissions to
create or write to a file in the configuration directory) the debug messages will be printed to
the console output.

Note: By default root can create and write to a log file only. To be able to log debug
messages created by an application started by a normal user, remember to
change the permissions of the driver’s configuration base directory (see section
Firmware and configuration file storage on page 27).

Restrictions

By default only root can access a cifX device

Note: libcifx (netX/cifX Toolkit) needs to be run as 'root' or with a user that has the
following rights:
=> read/write access to the PCI configuration registers
(i.e.'/sys/class/uio/uio<n>/device/config')
=> read/write access to devices '/dev/uio<n>'
=> Mapping of DPM to user space (see 'mmap' and 'ulimit -l')
=> read/write access to /dev/mem (for user added devices)

To be able to access a device as ‘normal user’ see section Loading netX UIO
driver module on page 26.

Linux driver specific information 33/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.1 Additional structures
Some of the Linux specific functions need parameters provided through structures. The structures
and the meaning of the internal data are described in the following chapter.

4.1.1 Structure CIFX_LINUX_INIT

This structure is used to initialize the cifX driver.

Element Data type Description

init_options int Driver Initialization options:

0 = CIFX_DRIVER_INIT_NOSCAN
Driver does not scan for available cards detected by the UIO driver (driver
handles only the user defined cards, see element user_cards)

1 = CIFX_DRIVER_INIT_AUTOSCAN
Driver scans for all available cards, which are detected by the UIO driver
initializes and adds them to the application.

2 = CIFX_DRIVER_INIT_CARDNUMBER
Driver scans for only one card (UIO device) specified by iCardNumber.
Independently of the number the Device name is set to 'cifX0'.

iCardNumber int Index of card to initialize when
init_option is set to CIFX_DRIVER_INIT_CARDNUMBER

fEnableCardLocking int Locking multiple application access to a specific cifX card.
fEnableCardLocking = 0
User application has to synchronize access from multiple applications.

fEnableCardLocking <>0
Ignore access to cards already used by another application. It is not
possible to open a second instance of a locked cifX device.
(Useful option in mode CIFX_DRIVER_INIT_CARDNUMBER)

base_dir const char* Set the base directory of the driver,
Set to NULL to use the default directory ('/opt/cifx')

poll_interval unsigned long Polling interval in milliseconds [ms] for non-interrupt cards.
Used for Change of State (COS) detection

0 = default of 500ms

CIFX_POLLINTERVAL_DISABLETHREAD can be used to completely
disable COS polling

poll_priority int Priority of the polling thread (for possible values see man page of
pthread_setschedparam) 0 = default (priority of the calling thread)

poll_schedpolicy int Scheduling policy, need to be set when poll_priority is set
0 = SCHED_NORMAL (poll_priority 0)
1 = SCHED_FIFO (poll_priority 1..99)
2 = SCHED_RR (poll_priority 1..99)

poll_StackSize int Stack size of the polling thread.
poll_StackSize specifies the number additional bytes to add to
PTHREAD_STACK_MIN (= 0x4000Bytes).

If poll_StackSize is set to 0 the default size +0x1000 byte is used.
Default Stack-Size: PTHREAD_STACK_MIN + 0x1000

trace_level unsigned long Set the trace level of the driver.
0x0000 = no trace information is created
0xFFFF = maximum trace information is created

user_card_cnt int Number of user cards to be manually added to the driver.
Devices are specified by the CIFX_DEVICE_T structure.

Linux driver specific information 34/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

Element Data type Description

user_cards struct
CIFX_DEVICE_T*

Pointer to an optional array of additional user card structures.
Number of card structures in the array must be given in user_card_cnt.

For more information see section Structure CIFX_DEVICE_T on page 34.

Table 13: Structure CIFX_LINUX_INIT definition

4.1.2 Structure CIFX_DEVICE_T

This structure contains all information describing a cifX device. The structure needs to be filled in
the following cases:

 Handling non-UIO devices

In case of a netX device, which is not detectable by the UIO driver, should be added to the
driver's control (for more information see section Support for non-PCI devices on page 41).

 Controlling more than one UIO device, but not all that exists in the system

In this case neither the CIFX_DRIVER_INIT_CARDNUMBER nor the
CIFX_DRIVER_INIT_AUTOSCAN option can be used. Instead an array of the required cards
needs to be passed to the driver.

Thereby the requested cards, so called ‘User Cards’, are differentiated by the following two groups

 UIO-Devices

Detected by the UIO driver (cifX PCI cards)

 Non-UIO devices

Not detectable by the UIO driver

In case of a UIO-Device the information for the CIFX_DEVICE_T structure can be easily retrieved
by calling cifXFindDevice(). cifXFindDevice() fills the CIFX_DEVICE_T structure for the requested
device and returns. In case of a non-UIO device the structure needs to be filled by the user and
passed to the driver. In this case UIO-specific fields need to be invalidated by setting the values to
'-1'.

CIFX_DEVICE_T data content

Description Element Data type

UIO device None UIO device

Virtual pointer to card DPM dpm unsigned char*

Filled by cifXFindDevice() Must be provided by the user
(e.g. via mmap()).For more
information refer to Support for non-
PCI devices on page 41

Virtual pointer to card DPM dpmaddr unsigned long

Filled by cifXFindDevice() Must be provided by the user. For
more information refer to Support for
non-PCI devices on page 41

Size of the DPM in bytes dpmlen unsigned long

Filled by cifXFindDevice() Must be provided by the user. For
more information refer to Support for
non-PCI devices on page 41

UIO number of the device uio_num int

Filled by cifXFindDevice() Not used set to '-1'

Linux driver specific information 35/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

Description Element Data type

UIO device None UIO device

File handle to UIO device uio_fd int

Filled by cifXFindDevice() Not used set to '-1'

PCI card handling

0 = Card is a non-PCI card with firmware in FLASH memory
(no reset during start-up required)

1 = Card is a PCI card, needs to be reset on every start

pci_card int

- Filled by cifXFindDevice()
- Can be overwritten by user

Not used set to '-1'

Force card storage behavior

0 = Auto-detect card storage (PCI = RAM, DPM = Flash)

1 = Force usage of RAM only on this card. (This will execute a HW reset and
download boot loader / Firmware on every start of the card)

force_ram int

- Filled by cifXFindDevice()
- Can be overwritten by user

Must be provided by the user

Optional user initialization function

Callback that is made at several stages when initializing a device. This
allows the user to setup DPM and timings if they are different from the netX
ROM Loader settings.

NULL = suppress callback

notify PFN_CIFX_NOTIFY_EVENT

User provided User provided

User definable information per device userparam void*

User provided User provided

Optional (requires the compiler flag CIFX_DRV_HWIF set, when compiling the user space library libcifx, see section
Compiling the cifX userspace library on page 19)

Optional: User definable function. Initializes the hardware interface (may
be NULL). For more information refer to Custom specific hardware interface
(e.g. SPI) on page 43.

hwif_init

Not used set to NULL User provided

Optional: User definable function. De-initializes the hardware interface
(may be NULL). For more information refer to Custom specific hardware
interface (e.g. SPI) on page 43

hwif_deinit

Not used set to NULL User provided

User definable function. Implements the read access to the netX
device. Function implementation highly depends on the hardware interface.
For more information refer to Custom specific hardware interface (e.g. SPI)
on page 43

hwif_read

Not used set to NULL User provided

User definable function. Implements the write access to the netX
device. Function implementation highly depends on the hardware interface.
For more information refer to Custom specific hardware interface (e.g. SPI)
on page 43

hwif_write

Not used set to NULL User provided

Table 14: CIFX_DEVICE_T data content

Linux driver specific information 36/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.2 Additional functions
This chapter describes functions which are available for the Linux version of the driver only. These
functions need to be used to initialize the driver to be usable inside an application.

Linux driver specific functions:

Function Description

cifXDriverInit() Driver initialization function, see cifXDriverInit()) on page 37.

cifXDriverDeinit() De-initialization of the driver, see cifXDriverDeinit() on page 38,

xDriverRestartDevice() Restarts the specified device, see xDriverRestartDevice() on page 38,

cifXGetDriverVersion() Returns the driver and toolkit version, see cifXGetDriverVersion() on page 39,

cifXGetDeviceCount() Returns the number of the detected UIO devices, see cifXGetDeviceCount() on page 39,

cifXFindDevice() Returns the information structure (CIFX_DEVICE_T) of the requested UIO device, see
cifXFindDevice() on page 40.

cifXDeleteDevice() Deletes a previously via cifXFindDevice() acquired device. see cifXDeleteDevice() on page 40.

Table 15: Linux cifX Driver: Linux specific driver functions

Linux driver specific information 37/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.2.1 cifXDriverInit()

This function must be called before accessing any driver function. It initializes the driver and adds
the needed devices to the control of the libcifx shared library.

Function call

int32_t cifXDriverInit(struct CIFX_LINUX_INIT* init_params)

Arguments

Argument Data type Description

init_params struct CIFX_LINUX_INIT_T* Initialization parameters (see section Structure
CIFX_LINUX_INIT on page 33 for details)

Return Values

CIFX_NO_ERROR (0) if the driver was successfully initialized.

Remarks

The driver initialization provides three different types, see element 'init_options' in Structure
CIFX_LINUX_INIT on page 33.

Note: The given initialization option belongs only to UIO devices. In general user
defined Non-UIO devices (see Structure CIFX_DEVICE_T on page 34) given in
'user_cards' are not effected and will be always added to the driver's control.

 CIFX_DRIVER_INIT_NOSCAN

The driver ignores all devices which are detected by the UIO driver.

The driver handles only the given User Cards (see element 'user_cards' in section
Structure CIFX_LINUX_INIT on page 33).

Use case: The application should not acquire every device found, instead specified ones
only.

 CIFX_DRIVER_INIT_AUTOSCAN

The driver scans for all devices, which are detected by the UIO driver and adds them to the
driver's control.

Use case: The application should have access to all cards, found in the PC.

 CIFX_DRIVER_INIT_CARDNUMBER

The driver scans for the requested device (UIO device) and adds it to the driver's control.

Use case: The application should have access to only one specific card (UIO device).

Linux driver specific information 38/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.2.2 cifXDriverDeinit()

Un-initialize the driver and remove all devices from the control of the libcifx shared library. After
calling this function the application must not access any cifX Driver API function any more.

Function call

void cifXDriverDeinit(void)

Arguments

None

4.2.3 xDriverRestartDevice()

The function can be used to restart a netX board. The driver processes the same functions as on a
power-on reset (reset the hardware and download the second stage boot loader, firmware and
configuration files etc.).

A restart is necessary on PCI-based-netX boards, if a running firmware should be updated or
changed. Because on such boards the firmware is not stored in a FLASH file system and updating
the firmware while it is running in RAM is not possible.

Note: A restart is only performed, if no application has an open handle to the board or one of
its communication channels.

Function call

int32_t APIENTRY xDriverRestartDevice(CIFXHANDLE hDriver,
char* szBoardName,
void* pvData);

Arguments

Argument Data type Description

hDriver CIFXHANDLE Handle to the driver (returned by xDriverOpen)

szBuffer String Identifier for the board.
(e.g. 'cifX<BoardNumber>')

pvData void* For further extensions can be NULL

Return Values

CIFX_NO_ERROR if the function succeeds.

Linux driver specific information 39/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.2.4 cifXGetDriverVersion()

This function returns the version of the cifX driver for Linux.

Function call

int32_t cifXGetDriverVersion (uint32_t ulSize, char* szVersion);

Arguments

Argument Data type Description

ulSize unsigned long Size of buffer referenced by parameter szVersion

szVersion char* Buffer to return driver version string

Return values

Return values

CIFX_NO_ERROR Memory mapping successful

CIFX_INVALID_BUFFERSIZE Size of supplied buffer is too small

4.2.5 cifXGetDeviceCount()

Query the number of available UIO devices. Device detection only works through the netX UIO
driver.

Function call

int cifXGetDeviceCount(void)

Arguments

None

Return values

Number of detected devices.

Linux driver specific information 40/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.2.6 cifXFindDevice()

Build a CIFX_DEVICE_T structure for a given device.

The structure can be used by an application if only some specific cards should be used. Therefore
the application has to add them manually to the driver as a user card, see section Structure
CIFX_LINUX_INIT on page 33.

This can be done by calling the function cifXDriverInit() with the 'CIFX_DRIVER_INIT_NOSCAN'
option and passing the card information in the user_cards parameter.

Function call

struct CIFX_DEVICE_T* cifXFindDevice(int num, int fCheckAccess)

Arguments

Argument Data type Description

num int Device number of the chosen device.
Range: 0..cifXGetDeviceCount()

int fCheckAccess Check if device is already used by another application
fCheckAccess = 0, do not check if already accessed
fCheckAccess = 1, check if device is already accessed

Return values

Pointer to the device information structure of the given device.

NULL, if the device number is invalid or not available or if fCheckAccess = 1 and the device is
already used by another application.

4.2.7 cifXDeleteDevice()

Delete a CIFX_DEVICE_T structure that was returned by cifXFindDevice(). This needs to be done
after the driver un-initialization to clean up all internally used administration data and allocated
memory areas.

Function call

void cifXDeleteDevice(stuct CIFX_DEVICE_T* device)

Arguments

Argument Data type Description

device struct CIFX_DEVICE_T* Pointer to a device returned by cifXFindDevice()

Linux driver specific information 41/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.3 Support for non-PCI devices
The Linux cifX Driver provides the ability to access devices connected via several hardware
interfaces. In general, the supported devices can be grouped into so called memory-mapped
devices and non-memory-mapped devices. Since the driver is capable to detect PCI devices
autonomously only, other devices need to be published by the customer.

Depending on the type of the device (memory-mapped or non-memory-mapped) the driver
provides the following integration possibilities:

Device type Integration interface Features / limitations / description

Kernel Mode Driver uio-netx Features
- No difference between custom and standard uio

device
- Interrupt support
- No additional initialization in user space (skips

adding user defined card)
Limitations

- Parameter need to be passed during driver
startup

Memory mapped devices can easily passed to the
driver without any driver preparation.
For more information see section ISA or other memory-
mapped devices on page 42.

Memory-mapped
DPM

User Space Driver libcifx Features
- Independent of the uio_netx kernel module

Limitations
- No interrupt support

Memory mapped devices can easily passed to the
driver without any driver preparation.
For more information see section ISA or other memory-
mapped devices on page 42.

Non-Memory Mapped
DPM

User Space Driver libcifx Features
- Depends on the customer’s implementation

Limitations
- Depends on the customer’s implementation

This method requires the implementation of dedicated
hardware read/write functions. For more information
see section Custom specific hardware interface (e.g.
SPI) on page 43.
Note: To be able to handle a non memory mapped
device the driver need to be build with the compiler
flag CIFX_DRV_HWIF set (see section Compiling
the cifX userspace library on page 19).

Table 16: Overview supported device types

Linux driver specific information 42/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.3.1 ISA or other memory-mapped devices (DPM)

The netx-uio kernel mode driver is capable to detect PCI devices autonomously only. Other
memory-mapped devices like ISA or DPM devices do not provide any detection methods and need
to be published by the customer. The device can easily be integrated by passing the device-
specific-memory parameter to the driver. Memory-mapped devices can be passed to the uio-netx
kernel module or the User Space Driver libcifx. For the differences of both methods see section
Overview supported device types on page 41.

 Memory-mapped device via kernel module uio_netx

The device-specific information can be passed via command line parameter during module
loading:
modprobe user_dpm_addr=0xD0000 user_dpm_len=0x4000 user_irq=4

The above example adds a device with the DPM located at the physical address 0xD0000,
DPM length of 16 KB and interrupt connected to IRQ line 4. For more information of the
parameter see section Loading netX UIO driver module on page 26.

In case the mapping succeeds, the driver creates a new uio_netx device which is accessible
via the user space library libcifx as common uio device.

For an example refer to Using UIO driver on page 57.

 Memory-mapped device via user space library libcifx

Integration of a memory mapped device via a user space library requires the device
specification via Structure CIFX_DEVICE_T (page 34). The filled structure need to be
passed to the drivers initialization routine cifXDriverInit() via Structure CIFX_LINUX_INIT
(page 33).

The following table shows the important parameter of the CIFX_DEVICE_T structure. For
other parameter or general information refer to Structure CIFX_DEVICE_T on page 34.

Name Type Description

dpm unsigned char* Virtual Pointer to the card’s DPM. The driver provides a helper function
(cifx_ISA_map_dpm()), mapping the physical address to the application’s
specific virtual memory. For more information refer to the Example: Driver
initialization for ISA device on page 56.

dpmaddr unsigned long Physical address to the card’s DPM (this parameter depends on the system
and the hardware configuration, for more information refer to the appropriate
hardware documentation).

dpmlen unsigned long Size of the DPM in bytes (depends on the device, for more information refer
to the appropriate hardware documentation).

Table 17: Initialization parameter: Custom memory mapped device

For an example refer to Not using UIO driver on page 56.

Linux driver specific information 43/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.3.2 Custom specific hardware interface (e.g. SPI)

Note: To enable the following feature, the user space library needs to be build with the
compiler flag CIFX_DRV_HWIF (set), see section Compiling the cifX userspace library
on page 19.

Additional to Memory-mapped devices, the cifX Toolkit is capable to access netX-based hardware
via the cifXToolkit Hardware Function Interface. For more information refer to Hilscher Gesellschaft
für Systemautomation mbH: cifX netX Toolkit - DPM TK, revision 7, english, 2014.

Similar to a ‘non-UIO-memory-mapped Device’, the custom device needs to be specified via the
Structure CIFX_DEVICE_T (on page 34). Though, the custom hardware interface feature requires
an additional implementation of interface-specific read/write functions.

The hardware-specific read/write functions need to be specified per device, during driver
initialization (see hwif_read, hwif_write, Structure CIFX_DEVICE_T).

The following table shows the important parameter of the CIFX_DEVICE_T structure. For other
parameter or general information refer to Structure CIFX_DEVICE_T on page Structure
CIFX_DEVICE_T on page 34.

Name Type Description

dpm unsigned char* set to 0 (since no physical address exists)

dpmaddr unsigned long set to 0 (since the driver cannot access the device’s DPM
directly)

dpmlen unsigned long Size of DPM in Bytes (depends on the device, refer to the
hardware documentation)

userparam void* Optional: User parameter (may point to information required
for the hardware interface). If not used set to NULL

hwif_init PFN_DRV_HWIF_INIT Optional: Initializes the custom hardware interface
Note: Need to be implemented by customer (see section
Hardware initialization via hwif_init on page 44).
If not used set to NULL

hwif_deinit PFN_DRV_HWIF_DEINIT Optional: De-initializes the custom hardware interface
Note: Need to be implemented by customer (see section
Hardware de-initialization via hwif_deinit on page 44).
If not used set to NULL

hwif_read PFN_DRV_HWIF_MEMCPY Reads a given number of bytes from the netX DPM via the
custom hardware interface.
Note: Need to be implemented by customer (see section
Hardware read access via hwif_read on page 45).

hwif_write PFN_DRV_HWIF_MEMCPY Writes a given number of bytes to the netX DPM via the
custom hardware interface.
Note: Need to be implemented by customer (see section
Hardware write access via hwif_write on page 46).

Table 18: Initialization parameter: Custom hardware interface

In case of registered hardware functions (hwif_read, hwif_write), the toolkit replaces the common
memory access (e.g. via memcpy()) by the appropriate access function.

The initialized structure need to be passed to the drivers initialization routine cifXDriverInit() via
Structure CIFX_LINUX_INIT.

For an SPI example application see SPISample, CD contents on page 7).

Linux driver specific information 44/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.3.2.1 Hardware initialization via hwif_init

This function needs to be implemented by the customer. The function needs to provide a complete
initialization of the specific hardware interface. If the function returns success (CIFX_NO_ERROR)
it must be guaranteed that is is possible to read from and write to the interface. Further, the
function implementation must be aware of its initialization state, since it may be called during
application runtime (e.g. in case of a reset via xDriverRestartDevice()). The passed device-specific
structure Structure CIFX_DEVICE_T, provides a tag called userparam, which enables passing of
interface-specific information and states.

This function is optional. In case initialization is not required set the hwif_init in Structure
CIFX_DEVICE_T to NULL.

Function call

int32_t hwif_init (stuct CIFX_DEVICE_T* device)

Arguments

Argument Data type Description

device struct CIFX_DEVICE_T* Pointer to the device

Return values

CIFX_NO_ERROR on success

For all possible error values refer to the header file cifXErrors.h located in the cifX Driver Toolkit,
see Toolkit, CD contents on page 7.

4.3.2.2 Hardware de-initialization via hwif_deinit

This function needs to be implemented by the customer. The function needs to provide a complete
de-initialization of the specific-hardware interface. Further, the function implementation must be
aware of its initialization state, since it may be called during application runtime (e.g. in case of a
reset xDriverRestartDevice()). The passed device specific structure Structure CIFX_DEVICE_T
provides a tag called userparam, which enables passing of interface-specific information and
states.

This function is optional. In case de-initialization is not required, set the hwif_deinit in the Structure
CIFX_DEVICE_T to NULL.

Function call

void hwif_deinit (stuct CIFX_DEVICE_T* device)

Arguments

Argument Data type Description

device struct CIFX_DEVICE_T* Pointer to the device

Linux driver specific information 45/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.3.2.3 Hardware read access via hwif_read

This functions need to be implemented by the customer. The function needs to provide reading the
number of bytes given by ulLen from the DPM. pvAddr contains the offset where to start reading
from the DPM.

The passed device specific structure Structure CIFX_DEVICE_T provides a tag called userparam,
which enables passing of interface-specific information and states.

Function call

void* hwif_read (stuct CIFX_DEVICE_T* device,
 void* pvAddr,
 void* pvData,
 uint32_t ulLen)

Arguments

Argument Data type Description

device struct CIFX_DEVICE_T* Pointer to the device

pvAddr void* Offset in DPM where to read from
Note: This is a pointer to the DPM location where to
read from. This can be handled as an offset (unsigned
long) from the beginning of the DPM, if the parameter
dpmaddr is set to NULL (see Structure
CIFX_DEVICE_T on page 34). Otherwise dpmaddr
need to subtracted to get the offset.

pvData void* Pointer to memory where to store read data

ulLen uint32_t Length of data to read

Return values

Pointer to the read buffer passed into the function call (pvData).

Linux driver specific information 46/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.3.2.4 Hardware write access via hwif_write

This function needs to be implemented by the customer and has to write the number of bytes,
given by ulLen to the DPM start offset contained in pvAddr.

The passed device specific structure Structure CIFX_DEVICE_T provides a tag called userparam,
which enables passing of interface specific information and states.

Function call

void* hwif_write (stuct CIFX_DEVICE_T* device,
 void* pvAddr,
 void* pvData,
 uint32_t ulLen)

Arguments

Argument Data type Description

device struct CIFX_DEVICE_T* Pointer to the device

pvAddr void* Offset in DPM where to write to
Note: This is a pointer to the DPM location where to
write to and it can be handled as an offset (unsigned
long) from the beginning of the DPM, if the parameter
dpmaddr is set to NULL (see Structure
CIFX_DEVICE_T on page 34). Otherwise dpmaddr
need to subtracted to get the offset.

pvData void* Pointer to a buffer containing the write data

ulLen uint32_t Length of data to write

Return values

Pointer holding the write address passed into the function (pvAddr).

Linux driver specific information 47/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.4 Driver/Library start-up procedure
The driver start-up procedure can be controlled by the user, setting the appropriate initialization
flag (Structure CIFX_LINUX_INIT (init_options) on page 33).

The following three use cases are available:

 CIFX_DRIVER_INIT_AUTOSCAN

Automatically add all found uio_netx-based devices and add user specified devices.

 CIFX_DRIVER_INIT_CARDNUMBER

Add only one specific uio_netx-based device and add user specified devices.

 CIFX_DRIVER_INIT_NOSCAN

Skip uio_netx device scan and add only user specified devices.

4.4.1 Startup via AUTOSCAN or CARD number

Figure 3: Initialization of libcifx using CIFX_DRIVER_INIT_AUTOSCAN / CIFX_DRIVER_INIT_CARDNUMBER

Linux driver specific information 48/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.4.2 Startup via CIFX_DRIVER_INIT_NOSCAN

Figure 4: Initialization of libcifx using CIFX_DRIVER_INIT_NOSCAN

Linux driver specific information 49/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.5 Device configuration (device.conf)
Parameters like a unique alias name and interrupt support can be configured per device. The
configuration file must be named 'device.conf'. Where to place the configuration file, depends on
the chosen configuration file storage method, see sections Device identification via single directory
to Device identification via device and serial number starting on page 28:

Device identification via device and serial number

 '/opt/cifx/deviceconfig/[device no]/[serial no]/device.conf'

e.g. device no: 1250100 / serial no: 20217

'/opt/cifx/deviceconfig/1250100/20217/device.conf'

Device identification via slotnumber

 '/opt/cifx/deviceconfig/Slot_[no]/device.conf'

e.g. slot number 1

'/opt/cifx/deviceconfig/Slot_1/device.conf '

Device identification via single directory

 '/opt/cifx/deviceconfig/FW/device.conf'

The file may contain the following keys:

Key Datatype Description

alias char[16] Alias name for the device. Must be less than 16 characters

irq string Enable/Disable IRQ on the device

'no' = IRQ disabled
'yes' = IRQ enabled

irqprio int Priority of the ISR handler thread (0 = default (priority of the calling thread)

see Linux man pages pthread_attr_setschedparam

irqsched string Setup alternate ISR scheduling algorithm
See Linux man pages pthread_attr_setschedpolicy

'fifo' = FIFO scheduling (see SCHED_FIFO -> irqprio 1..99)

'rr' = Real-Time Scheduling (see SCHED_RR -> irqprio 1..99)

dma string Enable/Disable DMA support of the device

'no' = DMA disabled
'yes' = DMA enabled

Note: DMA support needs also to be enabled in the uio_netx kernel module,
 for more information see sections Compiling the UIO kernel module during
kernel build (page 15) and Compiling the UIO kernel module (page 17).

eth string Enable/Disable Virtual Ethernet Interface support of the device

'no' = Ethernet Interface disabled
'yes' = Ethernet Interface enabled

Note: This feature requires a firmware running on the PC card cifX that provides an
extra channel supporting a dedicated stack to transport Raw-Ethernet data (for more
information see section netX-based virtual Ethernet interface on page 51)

Table 19: device.conf parameters

Linux driver specific information 50/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

Sample device.conf

#Sample device configuration file
alias=PROFIBUS
irq=no
irqprio=1
irqsched=fifo
dma=no

Linux driver specific information 51/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.6 netX-based virtual Ethernet interface

Note: This feature requires a firmware running on the PC card cifX that provides an extra
channel supporting a dedicated stack to transport Raw-Ethernet data.

The libcifx user space library provides an extension to create and serve a virtual Ethernet device
for common network application usage.

The virtual network adapter is based on the TUN/TAP driver.

4.6.1 Features

 Polling Mode

 Simultaneous access of the PC card cifX from cifX driver and the corresponding Ethernet
device

4.6.2 Requirements

 cifX Device Driver V1.0.3.0 or later

 Firmware with appropriate Ethernet Interface

Tested fimware:

 PROFINET I/O IRT Slave V3.4.144.1

For more information see reference [3] section 1.5.2 Technical Data – Ethernet
Interface.

 Hardware: cifX PCI/PCIe

4.6.3 Limitations

 Performance:

Max. TCP/IP throughput (send/receive): 42-49 MBit/s / 11-17 MBit/s.

Note: The throughput highly depends on the running firmware and the fieldbus configuration.

 Network packets:

Network packet type indication is not configurable. Since the libcifx driver does no packet
filtering (Multicast, Broadcast, …) the types of delivered packets depends on the firmware.
For detailed information about the set of provided network packets refer to the
documentation of the firmware which will be installed.

 MAC Address:

The device MAC address is not configurable and therefore bind to a fixed MAC address. For
more information refer to documentation of the firmware which will be installed. The fieldbus
stack running on the netX will hold its own MAC address.

 The application/user must have CAP_NET_ADMIN privileges

 The Ethernet device lifetime is bind to applications lifetime, which initializes the driver

 Ethernet device will disappear if a device reset is executed

 Application must not access the communication channel used for raw Ethernet access

Linux driver specific information 52/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.6.4 Overview

The following figure shows an example application and all the required components and how they
are layered and interact.

Figure 5: Virtual cifX network interface – Application overview

The netx_tap module is an extension of the user space library libcifx and manages the virtual
Ethernet iterface handling. In case of cifX-Ethernet support is enabled, see section Virtual cifX
Ethernet interface setup on page 53, the driver searches for an appropriate channel providing
Raw-Ethernet support. If a channel is detected the netx_tap extension attaches via the cifX API
(libcifx) and creates a virtual network interface ’netx_tap device’.

The creation of the virtual network interface and all of its required initialization is done by the
TUN/TAP driver. During runtime the netx_tap module transfers the network data from the cifx
device to the netx_tap device and vice versa.

From the application point of view network requests are routed through the Linux network API
through the TUN/TAP driver over the libcifX to the device.

It is also possible to access the device via the common cifX API in parallel.

Linux driver specific information 53/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

4.6.5 Virtual cifX Ethernet interface setup

Prerequisites

Make sure to configure at least one card to run a firmware providing the Raw-Ethernet support, see
section Firmware and configuration file storage on page 27.

Setup

 Build the user space library libcifx providing the cifX Ethernet extension

 Build and install the user space library libcifx with Ethernet support enabled, see
section Compiling the cifX userspace library on page 19.

./configure –enable-cifxethernet

 Enable Ethernet support for the device providing the firmware with an extra
communication channel for Raw-Ethernet Support, see section Device configuration
(device.conf) on page 49.

eth=yes

 Start an application which initializes the driver

Note: The initialization options (see cifXDriverInit() on page 37) must not skip the
device providing the Raw-Ethernet interface.

 Start network application accessing the cifx Ethernet interface

After driver initialization the virtual cifX Ethernet device should be present (see ifconfig -a).
The device is named as its parent device (e.g. parent device cifx3 -> Ethernet interface cifx3)

Optional

 Allow non-root users to start the application

Note: By default root can create a virtual ethernet interface only.

 By default root can create a cifX Ethernet interface only. To be able to run the
application as non-root user, add the CAP_NET_ADMIN capability to your application

setcap cap_net_admin+pe [name of the application] (root required)

 Automatic interface startup and configuration

Note: By default the network interface will not appear until it is configured and enabled
by the administrator (root) e.g. via ifconfig. This interface setup can be skipped by
adding an udev rule which automatically configures the interface.

 Add udev rule, which automatically configures the Ethernet interface. A template is
located on the CD (/driver/templates/udev/80-udev-cifxeth.rules, see section CD
contents on page 7).

cp 80-udev-cifxeth.rules /etc/udev/rules.d/

 The previously installed rule file refers to a script named cifxeth, which provides the
device start and configuration. The template udev rule estimates the configuration
script to be located under /etc/init.d/.

cp cifxeth /etc/init.d

 Customize the start and configuration script to your own needs. The provided template
(cifxeth) will enable DHCP for every cifX Ethernet interface.

Using SYCON.net to configure the fieldbus system 54/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

5 Using SYCON.net to configure the fieldbus system
The Hilscher fieldbus hardware has to be configured by a Windows application called SYCON.net.
SYCON.net is based on the FDT/DTM concept and generates the configuration files for the
hardware. It is also able to update the firmware for a specific card.

Please use the following steps to create a configuration:

 Install SYCON.net

 Open SYCON.net and create a configuration

 Store the SYCON.net configuration project and export the configuration from SYCON.net into
a so called database file (NXD).

 Copy the database and the firmware files to the device configuration directory (see section
Firmware and configuration file storage on page 27).

 Now start/restart the cifX Linux driver. This will load the firmware and configuration into the
cifX card.

5.1 Remote access via TCP/IP-Server
SYCON.net is also able to connect to a remote device supporting the Hilscher 'cifX Diagnostics
and Remote Access' functions.

The driver CD also includes a standalone TCP/IP server example (cifXTCPServer), offering access
to a remote system with an installed CIFX hardware.

The example can be found in the examples directory of the Linux driver CD.

Note: The TCP/IP server example exclusively accesses the remote CIFX hardware without a
running user application on the Linux (remote) system.
It can be used to test fieldbus configurations and running fieldbus diagnostics from
SYCON.net.

Programming with the cifX Linux Driver 55/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

6 Programming with the cifX Linux Driver
6.1 Example: Generic driver initialization
The cifX Linux driver offers the same interface described in the CIFX API. Therefore the CIFX API -
Application Programming Interface manual (see reference [1]) can be used. This manual describes
the driver functions, error codes and shows some program examples.

Note: As the driver is contained in the library linked to your application, you will need to
initialize the driver by a calling the function 'cifXDriverInit' and 'cifXDriverDeInit'.

Initialization example

struct CIFX_LINUX_INIT init =
{
 .init_options = CIFX_DRIVER_INIT_AUTOSCAN, // Find all UIO devices automatically
 .iCardNumber = 0, // not used when init_options set to AUTOSCAN
 .fEnableCardLocking = 0, // do not lock card
 .base_dir = NULL, // use default (/opt/cifx/)
 .poll_interval = 0, // use default poll interval (500ms)
 .poll_StackSize = 0, // used default size (0x5000 Byte)
 .trace_level = 255, // Enable all debugging outputs to log file
 .user_card_cnt = 0, // no user defined cards
 .user_cards = NULL, // not used
};
 /* First of all initialize toolkit */
 long lRet = cifXDriverInit(&init);

 /* TODO: Insert your application here */

 cifXDriverDeinit();

The installation CD includes an 'Example' directory with Linux-specific examples.

Programming with the cifX Linux Driver 56/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

6.2 Example: Driver initialization for ISA device

6.2.1 Not using UIO driver

The following example shows how to initialize the driver to map an ISA device passed via user
space liberary libcifx.
struct CIFX_DEVICE_T tISADevice = {0};
struct CIFX_LINUX_INIT tDriverInit = {0};

tISADevice.dpmaddr = 0xD0000; /* physical address to DPM of the ISA device, need to */
 /* be set according to the jumper settings */
 /* NOTE: for more information of the address setup */
 /* (jumper settings) refer to hardware’s documentation */
tISADevice.dpmlen = 0x4000; /*!< length of DPM in bytes, depends on the device */

/* since device is not a uio device and no pci card invalidate the following parameter */
tISADevice.uio_num = -1; /*!< uio number, -1 for non-uio devices */
tISADevice.uio_fd = -1; /*!< uio file handle, -1 for non-uio devices */

/* Open the system memory file (/dev/mem) */
/* Required to map the memory of the ISA device. */
if ((iISAfd = cifx_ISA_open())<0) {
 printf("Error opening the system memory (%s)
 return -1;
}
printf("Try to map the physical dpm address to a virtual memory\n");
if ((fSucess = cifx_ISA_map_dpm(iISAfd,
 (void**)&tISADevice.dpm,
 tISADevice.dpmaddr,
 tISADevice.dpmlen))<0) {
 printf("Error mapping dpm (%s)!\n", strerror(errno));
 cifx_ISA_close(iISAfd);
 return -1;
} else {
{
 /* setup the standard driver initializaion structure */
 tDriverInit.init_options = CIFX_DRIVER_INIT_NOSCAN; /* NOSCAN since we are not */
 /* interested in other cards */
 tDriverInit.user_card_cnt = 1; /* set user card count to 1 since we pass one */
 /* user card */
 tDriverInit.user_cards = &tISADevice; /* the previously prepared ISA device */

 /* initialize driver */
 lRet = cifXDriverInit(&tDriverInit);

 if (CIFX_NO_ERROR == lRet) {

 /* TODO: Insert your application here */

 cifXDriverDeinit();
 }
 cifx_ISA_unmap_dpm(tISADevice.dpm, tISADevice.dpmlen);
}
cifx_ISA_close(fd_isa);

For an ISA example application see ISASample, CD contents on page 7.

Note: Using this method does not allow using interrupt mode on ISA devices.

Programming with the cifX Linux Driver 57/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

6.2.2 Using UIO driver

The following example shows how to initialize the driver to map an ISA device passed via the
uio_netx kernel mode driver.

1. Pass ISA card to uio driver:
modprobe uio_netx user_dpm_start=0xD0000 user_dpm_len=0x4000 user_irq=5

2. Initialize driver as required (e.g. AUTOSCAN for devices)
struct CIFX_LINUX_INIT init =
{
 .init_options = CIFX_DRIVER_INIT_AUTOSCAN, // Find all UIO devices automatically
 .iCardNumber = 0, // not used when init_options set to AUTOSCAN
 .fEnableCardLocking = 0, // do not lock card
 .base_dir = NULL, // use default (/opt/cifx/)
 .poll_interval = 0, // use default poll interval (500ms)
 .poll_StackSize = 0, // used default size (0x5000 Byte)
 .trace_level = 255, // Enable all debugging outputs to log file
 .user_card_cnt = 0, // no user defined cards
 .user_cards = NULL, // not used
};
 /* First of all initialize toolkit */
 long lRet = cifXDriverInit(&init);

 /* TODO: Insert your application here */

 cifXDriverDeinit();

Note: This method does allow using interrupt mode on ISA devices.

Programming with the cifX Linux Driver 58/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

6.3 Example: Driver initialization for custom hardware
interface

The following example shows how to initialize the driver to be able to communicate via custom
hardware interface. For an SPI example application see SPISample, CD contents on page 7.

void* CustomHwIFRead(struct CIFX_DEVICE_T* ptDev, void* pvaddr,
 void* pvdata, uint32_t ulLen)
{
 //TODO: Need to be implemented by the customer
 /* read the given number of bytes from the DPM */

 return pvdata; /* return destination address */
}

void* CustomHwIFWrite(struct CIFX_DEVICE_T* ptDev, void* pvaddr,
 void* pvdata, uint32_t ulLen)
{
 //TODO: Need to be implemented by the customer
 /* write the given number of bytes to the DPM */

 return pvaddr; /* return destination address */
}

int main()
{
 struct CIFX_DEVICE_T tCustomDev = {0};
 struct CIFX_LINUX_INIT tDriverInit = {0};

 tCustomDev.dpmaddr = 0x00; /* not used since address is not memory mapped */
 tCustomDev.dpmlen = 0x10000; /*!< length of DPM in bytes, depends on the device */

 /* since device is no uio device and no pci card invalidate the following parameter */
 tCustomDev.uio_num = -1; /*!< uio number, -1 for non-uio devices */
 tCustomDev.uio_fd = -1; /*!< uio file handle, -1 for non-uio devices */

 /* custom hardware interface initialization */
 tCustomDev.hwif_init = NULL; /* we need no initialization of the interface */
 tCustomDev.hwif_deinit = NULL; /* we need no initialization of the interface */
 tCustomDev.hwif_read = CustomHwIFRead; /* custom read function */
 tCustomDev.hwif_write = CustomHwIFWrite; /* custom read function */

 /* setup the standard driver initializaion structure */
 tDriverInit.init_options = CIFX_DRIVER_INIT_NOSCAN; /* NOSCAN since we are not */
 /* interested in other cards */
 tDriverInit.user_card_cnt = 1; /* set user card count to 1 since we pass 1 user card */
 tDriverInit.user_cards = & tCustomDev; /* the previously prepared device */

 /* initialize driver */
 lRet = cifXDriverInit(&tDriverInit);
 if (CIFX_NO_ERROR == lRet) {
 /* TODO: Insert your application here */

 cifXDriverDeinit();
 }
 return 0;
}

Question and answers 59/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

7 Question and answers

Troubleshooting Instruction

Try to solve the problem in the order of the noted solutions following below.

7.1 cifX Device Driver

7.1.1 Failed to install driver via build script

Make sure that the path to your project folder does not contain any whitespaces.

In case the path does not contain any whitespaces refer to the console output and analyze the
given error message. In case of an imprecise error message try to install the driver manually. This
might give a more detailed description.

 How to build the user space library manually - Compiling the cifX userspace library on page
19

 How to build the kernel modul uio_netx - Compiling the netX UIO kernel module on page 15

7.1.2 It is not possible to run any script located on the CD

Some files of the driver package provide special functions. E.g. the scripts are marked as
executable. Extracting the sources under another operating system than Linux may clear such
attributes and permissions. Therefore make sure to choose the ‘.tar.bz’ archive of the driver,
located on the CD and extract it under Linux, see section Preparation on page 13.

7.1.3 Failed to load the uio_netx kernel module

Note: To be able to load the kernel module root privileges are required.

 Refer to the error message returned when loading the module.

 Make sure the required uio module is already loaded (dump the list of the currently loaded
modules)

Run the lsmod command.

 Refer to information kept in the kernel log.

Print the kernel log message (e.g. via dmesg).

7.1.4 Unable to access or find a device

 Refer to the log file of the driver

How to enable the drivers log file – see section Linux driver specific information on page 32.

 Verify to have the correct permissions to access a device.

Refer to the restrictions listed in section Linux driver specific information on page 32.

 Failed to map the DPM

Go to section Failed to map the DPM of a device on page 60.

 Make sure the no other application is running and already accessing the device.

Question and answers 60/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

7.1.5 Failed to map the DPM of a device

To allow mapping of the DPM to a user application, make sure the application is allowed to mmap
enough memory (at least 64 Kbyte). You can check the current memory lock limit using the
following command, which returns the maximum possible mapped memory in kB: ulimit -l

7.1.6 cifX device is not correctly configured

The device appears without or with the wrong firmware/configuration being flashed

 Make sure the device configuration is correctly setup.

Refer to the cifX log (cifX[x].log) file located in the driver’s configuration directory.

 Refer to the driver’s log file and make sure according to the chosen configuration method,
the appropriate folder structure is created. For more information see section Firmware and
configuration file storage on page 27.

 If no driver log file can be found – see section No log file of the user space driver is created
on page 60.

7.1.7 No log file of the user space driver is created

If the driver’s tracing feature is enabled, by default the driver tries to create a log file in the driver’s
configuration directory. If this fails the driver will print the debug messages to the console. Error
messages, which appear before log file creation, will be printed to ‘stderr’.

 How to enable the drivers log file – see section Linux driver specific information on page 32.

 Make sure to have to correct access rights to the driver’s configuration directory (read+write!)

7.1.8 Failed request DMA state or to exchange IO-data via DMA

DMA support needs to be enabled during build of both driver components

 Make sure to enable DMA support during built of the kernel module uio_netx

Compiling the netX UIO kernel module on page 15

 Make sure to enable DMA support during built user space driver libcifx

Compiling the cifX userspace library on page 19

Question and answers 61/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

7.2 netX-based virtual Ethernet interface

7.2.1 Failed to create a virtual Ethernet interface

Note: A virtual Ethernet interface will be created during the driver’s initialization and its
lifetime is bind to the applications lifetime, which initializes the driver.

 Refer to the error message printed to stderr or the cifX log file.

 Make sure to enable the Ethernet extension when building the user space library libcifx.

How to build the user space library manually - Compiling the cifX userspace library on page
19.

 Ethernet support needs to be enabled per device. Make sure to enable Ethernet support on
the device with the firmware providing the Raw-Ethernet channel.

Refer to Device configuration (device.conf) on page 49.

 Make sure to have the correct permissions to be able to create a Virtual Ethernet interface.

see CAP_NET_ADMIN – section Virtual cifX Ethernet interface setup on page 53.

 If the previous steps does not solve the problem, go on with section No cifX Ethernet device
appears on page 61.

7.2.2 No cifX Ethernet device appears

The device may already be created but still not active. An Ethernet interface still needs to be
enabled by the administrator.

 Make sure the application which initializes the driver is running without any errors.

Go to section Failed to create a virtual Ethernet interface on page 61.

 Verify if the interface is already created by running the command ifconfig –a

 If device is not present go on with Failed to create a virtual Ethernet interface on page
61.

 If device is present verify the automated setup and configuration - Virtual cifX Ethernet
interface setup on page 53.

7.2.3 No network access although device successfully created

 On some distributions, configuring more than one network adapter to the very same subnet
may lead into communication errors

Make sure to configure only one adapter per subnet

7.2.4 Network adapter disappears during device reset

When resetting a device or the system channel all of its channels will be re-initialized. Therefore a
reset of a device, offering a virtual cifX Ethernet Interface, as a consequence, also restarts the cifX
Ethernet interface and all connections using the Ethernet interface get interrupted.

Appendix 62/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

8 Appendix
8.1 List of tables
Table 1: List of revisions ... 4
Table 2: CD contents .. 7
Table 3: Terms, abbreviations and definitions... 8
Table 4: References to documents ... 8
Table 5: Additional libcifx configuration options... 19
Table 6: Additional libcifx configuration options... 21
Table 7: Additional cifxsample configuration options... 24
Table 8: Additional cifxsample configuration options... 25
Table 9: uio-netx optional arguments .. 26
Table 10: Firmware and configuration file storage - Single directory... 28
Table 11: Firmware and configuration file storage - Rotary switch.. 29
Table 12: Firmware and configuration file storage - Device and serial number... 30
Table 13: Structure CIFX_LINUX_INIT definition .. 34
Table 14: CIFX_DEVICE_T data content .. 35
Table 15: Linux cifX Driver: Linux specific driver functions.. 36
Table 16: Overview supported device types.. 41
Table 17: Initialization parameter: Custom memory mapped device... 42
Table 18: Initialization parameter: Custom hardware interface ... 43
Table 19: device.conf parameters ... 49

8.2 List of figures
Figure 1: Linux cifX driver architecture.. 5
Figure 2: Eclipse IDE – Import project... 20
Figure 3: Initialization of libcifx using CIFX_DRIVER_INIT_AUTOSCAN / CIFX_DRIVER_INIT_CARDNUMBER........... 47
Figure 4: Initialization of libcifx using CIFX_DRIVER_INIT_NOSCAN .. 48
Figure 5: Virtual cifX network interface – Application overview ... 52

Appendix 63/63

cifX Device Driver | Linux (Kernel 2.6.x / 3.x.x)
DOC090201DRV08EN | Revision 8 | English | 2014-11 | Released | Public © Hilscher, 2009-2014

8.3 Contacts

Headquarters

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69500 Bron
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr

Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it

Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp

Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea
Hilscher Korea Inc.
Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

mailto:info@hilscher.com�
mailto:de.support@hilscher.com�
mailto:info@hilscher.cn�
mailto:cn.support@hilscher.com�
mailto:info@hilscher.fr�
mailto:fr.support@hilscher.com�
mailto:info@hilscher.in�
mailto:info@hilscher.it�
mailto:it.support@hilscher.com�
mailto:info@hilscher.jp�
mailto:jp.support@hilscher.com�
mailto:info@hilscher.kr�
mailto:info@hilscher.ch�
mailto:ch.support@hilscher.com�
mailto:info@hilscher.us�
mailto:us.support@hilscher.com�

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 Overview
	1.4 Requirements
	1.5 Features
	1.6 Limitations
	1.7 CD contents
	1.8 Terms, abbreviations and definitions
	1.9 References to documents
	1.10 Legal Notes
	1.10.1 Copyright
	1.10.2 Important notes
	1.10.3 Exclusion of liability
	1.10.4 Export

	2 Licensing terms
	3 Installation
	3.1 Prerequisites
	3.2 Preparation
	3.3 Installation of the driver in one step
	3.4 Single step installation process
	3.4.1 Compiling the netX UIO kernel module
	3.4.1.1 Compiling the UIO kernel module during kernel build process
	3.4.1.2 Compiling the UIO kernel module only

	3.4.2 Compiling the cifX userspace library
	3.4.2.1 Using the console
	3.4.2.2 Using the Eclipse IDE

	3.5 Compiling the example programs
	3.5.1 Compiling the cifX example program via console
	3.5.2 Compiling the cifX example program via IDE

	3.6 Loading netX UIO driver module
	3.7 Firmware and configuration file storage
	3.7.1 Device identification via single directory
	3.7.2 Device identification via slotnumber (Rotary switch)
	3.7.3 Device identification via device and serial number
	3.7.4 Creating the directory tree of the configuration file storage

	4 Linux driver specific information
	4.1 Additional structures
	4.1.1 Structure CIFX_LINUX_INIT
	4.1.2 Structure CIFX_DEVICE_T

	4.2 Additional functions
	4.2.1 cifXDriverInit()
	4.2.2 cifXDriverDeinit()
	4.2.3 xDriverRestartDevice()
	4.2.4 cifXGetDriverVersion()
	4.2.5 cifXGetDeviceCount()
	4.2.6 cifXFindDevice()
	4.2.7 cifXDeleteDevice()

	4.3 Support for non-PCI devices
	4.3.1 ISA or other memory-mapped devices (DPM)
	4.3.2 Custom specific hardware interface (e.g. SPI)
	4.3.2.1 Hardware initialization via hwif_init
	4.3.2.2 Hardware de-initialization via hwif_deinit
	4.3.2.3 Hardware read access via hwif_read
	4.3.2.4 Hardware write access via hwif_write

	4.4 Driver/Library start-up procedure
	4.4.1 Startup via AUTOSCAN or CARD number
	4.4.2 Startup via CIFX_DRIVER_INIT_NOSCAN

	4.5 Device configuration (device.conf)
	4.6 netX-based virtual Ethernet interface
	4.6.1 Features
	4.6.2 Requirements
	4.6.3 Limitations
	4.6.4 Overview
	4.6.5 Virtual cifX Ethernet interface setup

	5 Using SYCON.net to configure the fieldbus system
	5.1 Remote access via TCP/IP-Server

	6 Programming with the cifX Linux Driver
	6.1 Example: Generic driver initialization
	6.2 Example: Driver initialization for ISA device
	6.2.1 Not using UIO driver
	6.2.2 Using UIO driver

	6.3 Example: Driver initialization for custom hardware interface

	7 Question and answers
	7.1 cifX Device Driver
	7.1.1 Failed to install driver via build script
	7.1.2 It is not possible to run any script located on the CD
	7.1.3 Failed to load the uio_netx kernel module
	7.1.4 Unable to access or find a device
	7.1.5 Failed to map the DPM of a device
	7.1.6 cifX device is not correctly configured
	7.1.7 No log file of the user space driver is created
	7.1.8 Failed request DMA state or to exchange IO-data via DMA

	7.2 netX-based virtual Ethernet interface
	7.2.1 Failed to create a virtual Ethernet interface
	7.2.2 No cifX Ethernet device appears
	7.2.3 No network access although device successfully created
	7.2.4 Network adapter disappears during device reset

	8 Appendix
	8.1 List of tables
	8.2 List of figures
	8.3 Contacts

