

Dual-Port Memory Interface Manual

Dual-Port Memory Interface
netX based Products

Hilscher Gesellschaft für Systemautomation mbH
www.hilscher.com

DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public

Introduction 2/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Table of Content

1 INTRODUCTION ..7
1.1 About this Document ...7
1.2 List of Revisions ..8
1.3 Terms, Abbreviations and Definitions..9
1.4 References ..10
1.5 Limitations ...10
1.6 Legal Notes ...11

1.6.1 Copyright ..11
1.6.2 Important Notes..11
1.6.3 Exclusion of Liability...12
1.6.4 Export ...12

2 DUAL-PORT MEMORY STRUCTURE ...13
2.1 Boot Procedure..13
2.2 netX Firmware ...14
2.3 Dual-Port Memory Layout..15

2.3.1 Dual-Port Memory Channels..16
2.3.2 Default Dual-Port Memory Mapping...19
2.3.3 Working with the Variable Layout ..20

2.4 Data Transfer Mechanism ...21
2.4.1 Command and Acknowledge ...21
2.4.2 Handshake Registers and Flags..22
2.4.3 Change of State Mechanism..22
2.4.4 Enable Flag Mechanism...23
2.4.5 Mailbox...24
2.4.6 Input and Output Data Blocks ..24
2.4.7 Control Block..25
2.4.8 Status Block ...25

2.5 Accessing a Protocol Stack ...26

3 DUAL-PORT MEMORY DEFINITIONS ..27
3.1 System Channel ..27

3.1.1 System Information Block ..28
3.1.2 Channel Information Block ...36
3.1.3 System Handshake Register..42
3.1.4 System Handshake Block ..44
3.1.5 System Control Block...45
3.1.6 System Status Block ..46
3.1.7 System Mailbox..50

3.2 Communication Channel ...51
3.2.1 Default Memory Layout ..51
3.2.2 Channel Handshake Register ..52

Introduction 3/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.3 Reserved Block ..56
3.2.4 Control Block..57
3.2.5 Common Status Block..59
3.2.6 Extended Status Block (Protocol Specific)...66
3.2.7 Channel Mailbox ..71
3.2.8 High Priority Output / Input Data Image ...73
3.2.9 Reserved Area ...73
3.2.10 Process Data Output/Input Image..74

3.3 Handshake Channel ..75
3.4 Application Channel...78

4 DUAL-PORT MEMORY FUNCTION...79
4.1 Non-Cyclic Data Exchange..79

4.1.1 Messages or Packets...80
4.1.2 About System and Channel Mailbox..82
4.1.3 Command and Acknowledge ...83
4.1.4 Using ulSrc and ulSrcId..86
4.1.5 How to Route rcX Packets ...87
4.1.6 Client/Server Mechanism...88
4.1.7 Transferring Fragmented Packets ...90

4.2 Input / Output Data Image ...94
4.2.1 DPM Mode ...94
4.2.2 DMA Mode ...94
4.2.3 Process Data Handshake Modes ..95
4.2.4 Buffered, Host Controlled Mode...95

4.3 Input / Output Data Status ...99
4.3.1 About Input/Output Data Status ...99
4.3.2 Provider State ..99
4.3.3 Consumer State ...101

4.4 Start / Stop Communication...102
4.4.1 Controlled or Automatic Start ...102
4.4.2 Start / Stop Communication through Dual-Port Memory102
4.4.3 Start / Stop Communication through Packets ..103

4.5 Lock Configuration...105
4.5.1 Lock Configuration through Dual-Port Memory......................................105
4.5.2 Lock Configuration through Packets ..105

4.6 Determining DPM Layout ..108
4.6.1 Default Memory Layout ..108
4.6.2 Obtaining Logical Layout..108
4.6.3 Mechanism...109

4.7 Identifying netX Hardware ...114
4.7.1 Security Memory ..114
4.7.2 Identifying netX Hardware through Packets...121

4.8 Identifying Channel Firmware..129
4.8.1 Identifying Channel Firmware Request..129
4.8.2 Identifying Channel Firmware Confirmation...130

Introduction 4/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9 Reset Command..132
4.9.1 System Reset vs. Channel Initialization...132
4.9.2 Resetting netX through Dual-Port Memory ..132
4.9.3 System Reset through Packets..137

4.10 Downloading Files to netX...141
4.10.1 File Download ..142
4.10.2 File Data Download..146
4.10.3 Abort File Download...149

4.11 Uploading Files from netX ...151
4.11.1 File Upload ...152
4.11.2 File Data Upload ..156
4.11.3 File Upload Abort ...158
4.11.4 Creating a CRC32 Checksum..160

4.12 Read MD5 File Checksum...161
4.12.1 MD5 File Checksum Request ..161
4.12.2 MD5 File Checksum Confirmation ...162

4.13 Delete a File ..163
4.13.1 File Delete Request..163
4.13.2 File Delete Confirmation...164

4.14 List Directories and Files from File System ...165
4.14.1 Directory List Request..165
4.14.2 Directory List Confirmation...167

4.15 Host / Device Watchdog ..168
4.15.1 Function..168
4.15.2 Get Watchdog Time Request...169
4.15.3 Get Watchdog Time Confirmation..170
4.15.4 Set Watchdog Time Request ...171
4.15.5 Set Watchdog Time Confirmation ..172

4.16 Set MAC Address ..173
4.16.1 Set MAC Address Request ..174
4.16.2 Set MAC Address Confirmation ...176

4.17 Start Firmware on netX..177
4.17.1 Start Firmware Request ...177
4.17.2 Start Firmware Confirmation ..178

4.18 Register / Unregister an Application ..179
4.18.1 Register Application Request...179
4.18.2 Register Application Confirmation..180
4.18.3 Unregister Application Request ...181
4.18.4 Unregister Application Confirmation ..182

4.19 Delete Configuration from the System...183
4.19.1 Delete Configuration Request ..183
4.19.2 Delete Configuration Confirmation...184

4.20 System Channel Information Blocks..185
4.20.1 Read System Information Block...185
4.20.2 Read Channel Information Block ...187
4.20.3 Read System Control Block ...189

Introduction 5/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.4 Read System Status Block...191
4.21 Communication Channel Information Blocks...193

4.21.1 Read Communication Control Block ..193
4.21.2 Read Common Status Block ..196
4.21.3 Read Extended Status Block ...198

4.22 Read Performance Data through Packets...200
4.22.1 Read Performance Data Request..200
4.22.2 Read Performance Data Confirmation...201

4.23 Set Handshake Configuration..203
4.23.1 Set Handshake Configuration Request..203
4.23.2 Set Handshake Configuration Confirmation...205

4.24 Real-Time Clock ..206
4.24.1 Time Command Request ...206
4.24.2 Time Command Confirmation ..208

5 DIAGNOSTIC..210
5.1 Versioning..210
5.2 Network Connection State...211

5.2.1 Mechanism...211
5.2.2 Obtain List of Slave Handles..212
5.2.3 Obtain Slave Connection Information ..214

5.3 Obtain I/O Data Size Information...216
5.3.1 Get DPM I/O Information Request ...216
5.3.2 Get DPM I/O Information Confirmation ..217

5.4 LEDs..220
5.4.1 System LED ...220
5.4.2 Communication Channel LEDs..220

6 STATUS & ERROR CODES...221
6.1 Packet Error Codes ...221
6.2 System Error Codes ..224

7 APPENDIX..225
7.1 Device Class..225
7.2 List of Figures ..228
7.3 List of Tables ...229

8 GLOSSARY ..231

9 CONTACT ..233

Introduction 6/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Page left blank

Introduction 7/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

1 Introduction

1.1 About this Document
This manual describes the user interface respectively the dual-port memory for netX-based products
manufactured by Hilscher.

In a dual processor system the netX dual-port memory is the interface between a host (e.g. PC or
microcontroller) and the netX chip. It is a shared memory area, which is accessible from the netX side
and the host side and used to exchange process and diagnostic data between both systems.

The netX firmware determines the dual-port memory layout in size and content. It offers 8 variable
memory areas or channels, which create the dual-port memory layout. The flexible memory structure
provides access to the netX chip with its integrated network/fieldbus controller. The content and layout
of the individual memory channels depend on the communication protocol running on the netX chip;
only the system channel and the handshake channel have a fixed structure and location. This area is
used to obtain information regarding type, offset and length of the variable areas.

The system channel holds a system register area. This area contains netX control registers and allows
access to chip specific functions. The control area is not always necessary; if it is present depends on
the hardware configuration of the netX chip and the firmware functions.

Introduction 8/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

1.2 List of Revisions
Rev Date Name Revisions

10 2011-01-17 tk
hh

Section ‘Not Buffered, Uncontrolled Mode’ removed
Structure RCX_HW_IDENTIFY_CNF_DATA_T expanded by ChipType,

ChipStep and Romcode Revision in section 4.7.2.2
Table 84: Boot Type in section 4.7.2.2 expanded
Corrected paket length to 36 in section 4.7.2.2
Corrected paket length to 16 in section 4.12.2
Corrected RCX_FILE_ABORT_REQ/CNF to

RCX_FILE_DOWNLOAD_ABORT_REQ/CNF in section 4.10.3
Corrected RCX_FILE_ABORT_REQ/CNF to

RCX_FILE_UPLOAD_ABORT_REQ/CNF in section 4.11.3
Changed ulExt in section 4.14.1
Corrected RCX_SYSTEM_STATUS_BLOCK_CNF to

RCX_SYSTEM_CONTROL in Section 4.20.4
Added Packet Set Handshake Configuration in Section 4.23
Section Force LED Flashing removed
Chapter Configuration removed
Added New Protocol Class DF1and VARAN to Table 24
Added new Device classes in Table 19 and section 7.1:

netJACK 10, netJACK 50, netJACK100, netJACK 500, netLINK 10
USB, netIC 10, comX 10, comX 50

Clarification for existing device class in Table 19 and section 7.1: comX is
with netX 100 and now named comX 100, netIC is with netX 50 and
now named netIC 50

11 2011-07-27 tk Added New Protocol/Task Class 3S PLC Handler
Added Note in Section 3.3 in Regards to Interrupt Behavior in 8-Bit-Mode
Made Correction for Bit 3 in Table 40

12 2012-03-08 hh
tk

Section System Information Block: Added range for hardware revision and
identification label

Section Security Memory: Added information of configuration zone
description

Added new Device classes in Table 19 and section 7.1:
netRAPID 10, netRAPID 50, netSCADA T51, netX 51, netRAPID 51,
EU5C gateway

Corrected Figure 8: Receive Packet Flowchart
Corrected Offset Addresses in Figure 2: Block Diagram Default Dual-Port

Memory Layout
Added Hardware Features Field in Section 3.1.6 System Status Block
Added Section 4.24 Real-Time Clock
Revised Section 4.16 Set MAC Address
Added 2nd Stage Bootloader blick pattern in section 5.4.1 System LED
Revised minor wording and spelling errors

Table 1: List of Revisions

Introduction 9/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

1.3 Terms, Abbreviations and Definitions
Term Description

ACK Acknowledge

ASCII American Standard Code of Information Interchange

Boolean Bit Data Type (TRUE / FALSE)

CMD Command

COS Change of State

DMA Direct Memory Access

DPM Dual-Port Memory

DRAM Dynamic Random Access Memory

DWORD Double Word, 4 Bytes, 32 Bit Entity

EC1 80186 based Micro Controller

EEPROM Electrically Erasable Programmable Read Only Memory

FW Firmware

FIFO "First in, first out", Storage Mechanism

GPIO General Purpose Input / Output Pins

HMI Human Machine Interface

Hz Hertz (1 per Second)

I²C Inter-Integrated Circuit

INT8 Signed Integer 8 Bit Entity (Byte)

INT16 Signed Integer 16 Bit Entity (Word)

INT32 Signed Integer 32 Bit Entity (Double Word)

IO Input / Output Data

LED Light Emitting Diode

LSB Least Significant Bit or Byte

MBX Mailbox

MMC Multimedia Card

ms Milliseconds, 1/1000 Second

MSB Most Significant Bit or Byte

OS Operating System

PCI Peripheral Component Interconnect

PLC Programmable Logic Controller

PIO Programmable Input/Output Pins

RAM Random Access Memory

RCS Real Time Operating System on AMD and EC-1 based processor types

rcX Real Time Operating System on netX

RTC Real Time Clock

s Second

SRAM Static Random Access Memory

TBD To Be Determined

UART Universal Asynchronous Receiver Transmitter

UINT8 Unsigned Integer 8 Bit Entity (Byte)

Introduction 10/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Term Description

UINT16 Unsigned Integer 16 Bit Entity (Word)

UINT32 Unsigned Integer 32 Bit Entity (Double Word)

USB Universal Serial Bus

WORD 2 Bytes, 16 Bit Entity

xC Communications Channel on the netX Chip (short form)

xPEC, xMAC Communications Channel on the netX Chip

Table 2: Terms, Abbreviations and Definitions

All variables, parameters and data used in this manual have the LSB/MSB (“Intel”) data
representation.

The terms Host, Host System, Application, Host Application and Driver are used interchangeably to
identify a process interfacing the netX via its dual-port memory in a dual-processor system.

1.4 References
[1] User Manual netX 2nd Stage Boot Loader Revision 8, Hilscher GmbH

1.5 Limitations
The dual-port memory layout of netX based products is not compatible to AMD or EC1 based
products. The dual-port memory and its structure and definitions apply for netX products only.

The netX dual-port memory interface manual makes general definitions for netX based products. The
individual implementation of a protocol stack / firmware may support only a subset of the structures
and functions from this document.

Structures and functions described in this document apply only to hardware from 3rd party vendors
insofar as original Hilscher firmware is concerned. Therefore, whenever the term "netX firmware" is
used throughout this manual, it refers to ready-made firmware provided by Hilscher. Although 3rd
party vendors are free to implement the same structures and functions in their product, no guarantee
for compatibility of drivers etc. can be given.

Introduction 11/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

1.6 Legal Notes

1.6.1 Copyright
© 2008-2012 Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying material (manual, accompanying texts,
documentation, etc.) are protected by German and international copyright law as well as international
trade and protection provisions. You are not authorized to duplicate these in whole or in part using
technical or mechanical methods (printing, photocopying or other methods), to manipulate or transfer
using electronic systems without prior written consent. You are not permitted to make changes to
copyright notices, markings, trademarks or ownership declarations. The included diagrams do not take
the patent situation into account. The company names and product descriptions included in this
document may be trademarks or brands of the respective owners and may be trademarked or
patented. Any form of further use requires the explicit consent of the respective rights owner.

1.6.2 Important Notes

The manual, accompanying texts and the documentation were created for the use of the products by
qualified experts, however, errors cannot be ruled out. For this reason, no guarantee can be made and
neither juristic responsibility for erroneous information nor any liability can be assumed. Descriptions,
accompanying texts and documentation included in the manual do not present a guarantee nor any
information about proper use as stipulated in the contract or a warranted feature. It cannot be ruled out
that the manual, the accompanying texts and the documentation do not correspond exactly to the
described features, standards or other data of the delivered product. No warranty or guarantee
regarding the correctness or accuracy of the information is assumed.

We reserve the right to change our products and their specification as well as related manuals,
accompanying texts and documentation at all times and without advance notice, without obligation to
report the change. Changes will be included in future manuals and do not constitute any obligations.
There is no entitlement to revisions of delivered documents. The manual delivered with the product
applies.

Hilscher Gesellschaft für Systemautomation mbH is not liable under any circumstances for direct,
indirect, incidental or follow-on damage or loss of earnings resulting from the use of the information
contained in this publication.

Introduction 12/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

1.6.3 Exclusion of Liability

The software was produced and tested with utmost care by Hilscher Gesellschaft für
Systemautomation mbH and is made available as is. No warranty can be assumed for the
performance and flawlessness of the software for all usage conditions and cases and for the results
produced when utilized by the user. Liability for any damages that may result from the use of the
hardware or software or related documents, is limited to cases of intent or grossly negligent violation of
significant contractual obligations. Indemnity claims for the violation of significant contractual
obligations are limited to damages that are foreseeable and typical for this type of contract.

It is strictly prohibited to use the software in the following areas:

! for military purposes or in weapon systems;

! for the design, construction, maintenance or operation of nuclear facilities;

! in air traffic control systems, air traffic or air traffic communication systems;

! in life support systems;

! in systems in which failures in the software could lead to personal injury or injuries leading to
death.

We inform you that the software was not developed for use in dangerous environments requiring fail-
proof control mechanisms. Use of the software in such an environment occurs at your own risk. No
liability is assumed for damages or losses due to unauthorized use.

1.6.4 Export

The delivered product (including the technical data) is subject to export or import laws as well as the
associated regulations of different counters, in particular those of Germany and the USA. The software
may not be exported to countries where this is prohibited by the United States Export Administration
Act and its additional provisions. You are obligated to comply with the regulations at your personal
responsibility. We wish to inform you that you may require permission from state authorities to export,
re-export or import the product.

Dual-Port Memory Structure 13/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2 Dual-Port Memory Structure

2.1 Boot Procedure
The netX supports different start-up scenarios depending on the hardware design. This chapter
describes the procedure for a design with a dual-port memory. In such an environment, the boot
procedure is divided into different steps as outlined below.

Step 1: After Power-On Reset

A ROM loader is always present in the netX. After power-on reset, the ROM loader is started. Its main
task is to initialize internal netX controller and its components like optional non-volatile boot devices
such as serial, parallel Flash etc. It also executes software module that may reside in the netX chip
(see also 2nd stage loader below). If none of the boot devices includes an executable software
module, a basic dual-port memory is being created.

Step 2: Download and Start the 2nd Stage Loader

The 2nd stage loader is a software module, which creates a so-called "system device" or "system
channel" in the dual-port memory area. After starting the 2nd stage loader, the system device creates
a mailbox system which can be accessed by the host system. Downloading the 2nd stage loader to
the netX is carried out by copying the loader software module into the dual-port memory and signaling
the netX to restart. The 2nd stage loader has to be downloaded again after power-on reset. If the
target hardware supports non-volatile boot devices, downloading the 2nd stage loader and firmware is
not necessary after power-on reset, because the ROM loader will find either the 2nd stage loader or
an executable firmware during step 1.

Step 3: Download and Start a Firmware

A firmware is a software module that opens a so-called "channel" in the dual-port memory area. The
firmware can be a fieldbus or Ethernet stack or any user application. The download is carried out by
the user application via the system device mailboxes. When the download has finished, the netX
operating system starts the firmware automatically. The firmware then creates mailboxes and
informational areas in the dual-port memory that allows communicating to the firmware directly. If the
target hardware does not support non-volatile boot devices, step 2 and step 3 must be always
processed after each power-on reset.

NOTE The ROM loader from step 1 is a pure hardware function of the netX chip and is executed
automatically, while step 2 and 3 are software driven and depend on the target hardware. If
the target hardware supports non-volatile boot devices, downloading the 2nd stage loader
and firmware is not necessary after power-on reset, because the ROM loader will find either
the 2nd stage loader or an executable firmware during step 1. Without a non-volatile boot
device, step 2 and step 3 must be always processed after each power-on reset.

Dual-Port Memory Structure 14/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.2 netX Firmware
This section gives an overview of the netX firmware. A netX firmware consists of different
independently operating protocol stacks, which can be executed concurrently in the context of the rcX
operating system. Each of the stacks or user applications consists of one or more tasks. Typically, the
AP Task (Application Task) in a protocol stack or user applications interfaces to the dual-port memory.

The system and handshake channel are always present. In the example below, two netX
communication channels and one application channel follow the handshake channel. A
communication channel is a protocol stack like PROFINET or DeviceNet. In the example, one of the
protocol stacks uses two xMAC/xPEC ports (xC ports).

netX Firmware

Dual-Port Memory

System Handshake

Application

Task R

Task S

Task T

Task O

Task P

Task Q

xC
Port

xC
Port

xC
Port

To Networks

rcX Operating System

System
Channel

Handshake
Channel

netX Channel
Protocol Stack

netX Channel
Protocol Stack

Application
Channel

Figure 1: netX Firmware Block Diagram (Example)

Dual-Port Memory Structure 15/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.3 Dual-Port Memory Layout
The block diagram below gives an overview of how the netX firmware may organize the dual-port
memory. The firmware provides process data and diagnostic information through certain areas of the
dual-port memory in order to communicate to the host application.

Application
Channel 0

System
Information Block

Communication
Channel 3

Communication
Channel 2

Communication
Channel 0

Handshake Ch.
System
Channel

Channel
Information Block

System Status
Block

System
Send Mailbox

Application
Channel 1

0x0000

0x0200

0x0300

0x4000

0x0000

0x0030

0x00B0

0x0100

0x01FF

Control Block

Common
Status Block

Send
Mailbox

0x0300

0x0310

0x1180

0x0500

0x0B40

0x0350

Receive
Mailbox

Output Data
Area 1

(high priority)

Input Data
Area 1

(high priority)

Reserved

Output Data
Area 0

Input Data
Area 0

0x11C0

0x1200

0x1300

0x2980

System
Receive Mailbox

0x0180

Reserved

0x00C0

Reserved

Extended
Status Block

0x3FFF

Handshake Channel 0

Reserved

Handshake Channel 1
Handshake Channel 2
Handshake Channel 3
Handshake Channel 4
Handshake Channel 5
Handshake Channel 6
Handshake Channel 7

0x02FF

0x0200

Communication
Channel 1

0x0308

0x0204
0x0208
0x020C

0x0214
0x0218

0x0210

0x021C
0x0220

max.
0x10000

0x00B8 System Control Block

Figure 2: Block Diagram Default Dual-Port Memory Layout

Dual-Port Memory Structure 16/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.3.1 Dual-Port Memory Channels

In the netX dual-port memory, the system channel and the handshake channel are always present.
The system channel provides information about the state of the netX operating system and the
structure of the dual-port memory. It allows basic communication via system mailboxes.

The handshake channel provides a bit toggle mechanism that insures synchronizing data transfer
between host system and netX firmware. All handshake cells from system, communication and
application channels are brought together in this one location.

After system and handshake channel follow communication and application channel. A communication
channel provides network access and consumes an area of the netX dual-port memory for process
data, none cyclic data and diagnostic data. An application channel can be used for any functionality
that may be executed in the context of the rcX operating system.

The size of a channel (system, handshake, communication or application) is always a multiple of 256
bytes.

Channel No Channel Name Size Description

Channel 0
System
Channel

512 Bytes
System Information, Status and Control Blocks,
Mailboxes

Channel 1
Handshake
Channel

256 Bytes
Handshake Flags for Host and netX, Change of State
Mechanism (COS)

Channel 2
Communication
Channel 0

Variable
m • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data of
the Protocol stack Running on Channel 0

Channel 3
Communication
Channel 1

Variable
n • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data of
the Protocol stack Running on Channel 1

Channel 4
Communication
Channel 2

Variable
p • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data of
the Protocol stack Running on Channel 2

Channel 5
Communication
Channel 3

Variable
q • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data of
the Protocol stack Running on Channel 3

Channel 6
Application
Channel 0

Variable
r • 256 Bytes

Custom Specific (Application)

Channel 7
Application
Channel 1

Variable
s • 256 Bytes

Custom Specific (Application)

Table 3: Memory Configuration (Overview)

Dual-Port Memory Structure 17/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.3.1.1 System Channel

From a driver/application point of view, the system channel is the most important location in the dual-
port memory. It is always present, even if no application firmware is loaded to the netX. It is the
"window" to the rcX operating system or netX boot loader respectively, if no firmware is loaded.

The system channel is located at the beginning of the dual-port memory (starting at offset 0x0000).
The first 256 byte page of this channel has a fixed structure. The following 256 byte page is reserved
for the system mailboxes. The size of the mailbox structure is 128 bytes for the send mailbox and 128
bytes for the receive mailbox.

Name Size Description

System Information Block 48 Bytes System Information Area

Channel Information Block 128 Bytes Mapping Information

Reserved 8 Bytes Reserved, Not Used

System Control Block 8 Bytes System Control and Commands

System Status Block 64 Bytes System Status Information

System Mailboxes 256 Bytes System Send / Receive Mailbox

Table 4: System Channel (Overview)

For details on the system channel refer to section 3.1 on page 27.

2.3.1.2 Handshake Channel

The handshake channel brings all handshake register from all channels together in one location. This
is the preferred approach for PC based solutions. The handshake mechanism allows synchronizing
data transfer between the host system and the netX. The channel has a size of 256 bytes and starts
always at address 0x0200. This channel has a fixed structure.

Name Size Description

Handshake Cell Block 64 Byte Cumulated Handshake Cells

Reserved 192 Byte Reserved, Not Used

Table 5: Handshake Channel

There are two types of handshake cells:

! System Handshake Cells
relates to the "System Device" that are used by the host application to execute netX-wide
commands like reset, etc.

! Communication Handshake Cells
are used to synchronize cyclic data transfer via IO images or non-cyclic data over mailboxes in
the communication channels as well as indicating status changes to the host system

For details on the handshake channel refer to section 3.3 on page 75.

Dual-Port Memory Structure 18/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.3.1.3 Communication Channels

The communication channel area in the dual-port memory is used by a protocol stack. A protocol stack
provides network access and consumes an area of the netX dual-port memory. Each communication
channel can have the following elements.

Name Size Description

Reserved Variable Reserved, Not Used

Control Variable Control Register

Common Status Variable Protocol Stack Status Information

Extended Status Variable Network Specific Information

Send Mailbox Variable Send Mailbox for Non-Cyclic Data Transfer

Receive Mailbox Variable Receive Mailbox for Non-Cyclic Data Transfer

Output Data Image 1 Variable High Priority Cyclic Output Process Data Image

Input Data Image 1 Variable High Priority Cyclic Input Process Data Image

Output Data Image 0 Variable Cyclic Output Process Data Image

Input Data Image 0 Variable Cyclic Input Process Data Image

Table 6: Communication Channel

The communication channel follows the preceding channels without gaps. Depending on the
implementation, the blocks mentioned above may or may not be present.

For details on the communication channels refer to section 3.2 on page 51.

2.3.1.4 Application Channels

Depending on the implementation, an application channel may or may not be present in the dual-port
memory. An OEM may choose to run an additional preprocessing application on the netX rather than
on the host system. That application can use this channel for preprocessing data and transferring the
results. An example for such an application is a barcode scanner using solely the netX chip.

Name Size Description

Application Variable Application Specific, not defined here

Reserved Variable Reserved, Not Used

Table 7: Application Channel

For details on the application channels refer to section 3.4 on page 78.

Dual-Port Memory Structure 19/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.3.2 Default Dual-Port Memory Mapping

This section describes the default memory layout. In the default memory layout, each of the
communication channels has a fixed structure and a fixed length. This differs from the variable
approach outlined above. The default memory layout allows the netX firmware to compile a small
layout total which size is 16 KByte in total for one communication channel. If two or more
communication channels are running, the total size of the mapping is enlarged to up to 64 KByte. With
the preceding system memory channel and handshake channel, the first communication channel
starts at offset address 0x0300.

The table below shows the dual-port memory mapping for the default layout.

Name Offset Size Description

 System Channel (0x000 … 0x01FF)

System Information 0x0000 48 Bytes System Information Area

Channel Information 0x0030 128 Bytes Mapping Information

Reserved 0x00B0 8 Bytes Reserved

System Control 0x00B8 8 Bytes System Control and Commands

System Status 0x00C0 64 Bytes System Status Information

System Mailboxes 0x0100 256 Bytes System Send / Receive Mailbox

 Handshake Channel (0x0200 … 0x02FF)

Handshake Register 0x0200 64 Bytes Cumulated Handshake Cells

Reserved 0x0240 192 Bytes Reserved

 Communication Channel 0 (0x0300 … 0x3FFF)

Reserved 0x0300 8 Bytes Reserved

Control 0x0308 8 Bytes Control Register

Common Status 0x0310 64 Bytes Protocol Stack Status Information

Extended Status 0x0350 432 Bytes Network Specific Information

Send Mailbox 0x0500 1600 Bytes Send Mailbox for Non-Cyclic Data Transfer

Receive Mailbox 0x0B40 1600 Bytes Receive Mailbox for Non-Cyclic Data Transfer

Output Data Image 1 0x1180 64 Bytes High Priority Cyclic Output Process Data Image

Input Data Image 1 0x11C0 64 Bytes High Priority Cyclic Input Process Data Image

Reserved 0x1200 256 Bytes Reserved for Future Use, Set to Zero

Output Data Image 0 0x1300 5760 Bytes Cyclic Output Process Data Image

Input Data Image 0 0x2980 5760 Bytes Cyclic Input Process Data Image

Continued next page

Dual-Port Memory Structure 20/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

 Communication Channel (0x4000 …)

Comm. Channel 1 0x4000 15.616 Bytes If available, same as Communication Channel 0

Comm. Channel 2 0x7D00 15.616 Bytes If available, same as Communication Channel 0

Comm. Channel 3 0xBA00 15616 Bytes If available, same as Communication Channel 0

 Application Channel (not defined here)

App. Channel 0 0xF700

App. Channel 1

Table 8: Default Memory Mapping

The firmware will set the Default Memory Map flag in the System COS field in System Status block, if
the default memory layout is used.

NOTE Today, most of the fieldbus firmware utilizes the default memory layout.

NOTE If not mentioned otherwise, this document refers to the default memory layout.

The size of one communication channel is always 15.616 Bytes for the default layout. The size of the
communication channel plus the size of the handshake channel plus the size of the system channel
equals 16 KBytes.

2.3.3 Working with the Variable Layout

If the Default Memory Map flag is cleared in the System COS filed in System Status block, the layout
of the dual-port memory is variable in size and location. For the variable approach, the rcX operating
system calculates the layout of the channel based on the configuration settings. The firmware creates
a memory map of the smallest possible size. Individual channel areas follow the previous area without
gaps.

In the variable layout, the Control and Common Status blocks are mandatory and always present.
Structure and size of these blocks are fixed. The Extended Status block is optional and may not be
present. The Send and Receive Mailbox are mandatory and always present, but variable in its size
and location. Depending on the implementation, Input and Output Data Images may or may not be
present. They have a variable size.

Dual-Port Memory Structure 21/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.4 Data Transfer Mechanism
All data in a channel is structured in blocks. According to their functions, these blocks use different
data transfer mechanisms. For example, data transfer through mailboxes uses a synchronized
handshake mechanism between host system and netX firmware. The same applies to process data
areas, when a buffered handshake mode is configured. Other blocks, like the status block, are read by
the host application and do not apply a synchronization mechanism. Types of blocks in the dual-port
memory are outlined below:

! Change of State
collection of flags, that initiate execution of certain commands or signal a change of state

! Mailbox
transfer non-cyclic messages or packages with a header for routing information

! Data Area
holds process image for cyclic process data or user defined data structures

! Control Block
is used to signal application related state to the netX firmware

! Status Block
holds information regarding the current network state

2.4.1 Command and Acknowledge

To ensure data consistency over a memory area (or block), the netX firmware has a pair of flags called
command and acknowledge flags. Engaging these flags gives access rights alternating to either the
user application or the netX firmware. If both application and netX firmware access the area at the
same time, it may cause loss of data or inconsistency.

The handshake cells are located in the handshake channel or at the beginning of a communication
channel (configurable). As a rule, if both flags have the same value (both are set or both are cleared)
the process which intends to write has access rights to the memory area or sub-area. If both have a
different value, the process which intends to read has access right. See page 83 for details. The
command and acknowledge mechanism is used for the change of state function (see below), process
data images and mailboxes.

Dual-Port Memory Structure 22/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.4.2 Handshake Registers and Flags

The netX firmware uses a handshake mechanism to synchronize data transfer between the network
and the host system. There is a pair of handshake flags for each process data and mailbox related
block (input / output or send / receive). The handshake flags are located in registers. Writing to these
registers triggers an interrupt to either the host system or the netX firmware.

The command-acknowledge mechanism as outlined on page 21 is used to share control over process
data image and mailboxes between host application and netX firmware. The mechanism works in
exactly the same way in both directions.

2.4.3 Change of State Mechanism

The netX firmware provides a mechanism to indicate a change of state from the netX to the host
application and vice versa. Every time a status change occurs, the new state is entered into the
corresponding register and then the Change of State Command flag is toggled. The other side then
has to toggle the Change of State Acknowledge flag back acknowledging the new state.

The Change of State (COS) registers are basically an extension to the handshake register (see
below). The more important (time critical) flags to control the channel protocol stack are located in the
handshake register, whereas less important (not time critical) flags are located in the Change of State
registers.

The command-acknowledge mechanism as outlined in section below is used to share control over the
Change of State (COS) register between host application and netX firmware. The mechanism works in
the same way in both directions.

NOTE The Change of State Command flag is set after power-on-reset (POR) or firmware start,
respectively.

Dual-Port Memory Structure 23/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.4.4 Enable Flag Mechanism

The Enable flags in the Communication Change of State register (located in the Control Block, see
section below) and in the Application Change of State register (located in the Common Status Block,
see section below) are used to selectively set flags without interfering with other flags (or commands,
respectively) in the same register. The application has to enable these commands before it signals it to
the netX protocol stack. The netX protocol stack does not evaluate command or status flags without
the Enable flag set, if these flags are accompanied by an enable flag.

The flowchart below shows how an application locks the configuration settings of a communication
channel.

HCF_HOST_COS_CMD = =
NCF_HOST_COS_ACK?

Finish Fault

Set APP_COS_LOCK_CONFIG

Set APP_COS_LOCK_CONFIG_ENABLE

Toggle HCF_HOST_COS_CMD

RCX_COMM_COS_CONFIG_LOCKED Set?

Wait Timeout?

Yes

No

Yes

No

Yes
No

No

Yes
HCF_HOST_COS_CMD = =

NCF_HOST_COS_ACK?

Clear APP_COS_LOCK_CONFIG_ENABLE

No

Yes
HCF_HOST_COS_CMD = =

NCF_HOST_COS_ACK?

Lock Configuration

Figure 3: Lock Configuration (Example Using Enable Flag)

The application sets the Lock Configuration flag and the Lock Configuration Enable flag in the control
block. Then the application toggles the Host Change of State Command flag in the host handshake
register, signaling to the channel firmware the new request. The firmware acknowledges the new state
by toggling the Host Change of State Acknowledge flag in the netX handshake register.

Dual-Port Memory Structure 24/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

The application shall clear all Enable flags from previous operations first. In the chart, after toggling the
Host Change of State Command flag, the application waits for the netX protocol stack to acknowledge
the command. The chart shows a timeout approach, but this function is optional.

2.4.5 Mailbox

The mailbox system on netX provides a non-cyclic data transfer channel for fieldbus protocols.
Another use of the mailbox is allowing access to the firmware running on the netX chip itself for
diagnostic purposes. There is always a send and a receive mailbox. Send and receive mailboxes
utilize handshake bits to synchronize data packets into or out of the mailbox area. The handshake
registers have a pair of handshake bits, one for the send mailbox and one for the receive mailbox.

The netX operating system rcX uses only the system mailbox. The system mailbox, however, has a
mechanism to route packets to a communication channel. A channel mailbox passes packets to its
own protocol stack only.

2.4.6 Input and Output Data Blocks

These data blocks in the netX dual-port memory are used for cyclic process data. The input block
holds the process data image received from the network whereas the output block holds data sent
to the network.

Process data transfer through the data blocks can be synchronized by using a handshake mechanism
(configurable). If in uncontrolled mode, the protocol stack updates the process data in the input and
output data image in the dual-port memory for each valid bus cycle. No handshake bits are evaluated
and no buffers are used. The application can read or write process data at any given time without
obeying the synchronization mechanism otherwise carried out via handshake registers. This transfer
mechanism is the simplest method of transferring process data between the protocol stack and the
application. This mode can only guarantee data consistency over a byte.

For the controlled / buffered mode, the protocol stack updates the process data in the internal input
buffer for each valid bus cycle. Each IO block uses handshake bits for access synchronization. Input
and output data block handshake operates independently from each other. When the application
toggles the input handshake bit, the protocol stack copies the data from the internal buffer into the
input data image of the dual-port memory. Now the application can copy data from the dual-port
memory and then give control back to the protocol stack by toggling the appropriate input handshake
bit. When the application/driver toggles the output handshake bit, the protocol stack copies the data
from the output data image of the dual-port memory into the internal buffer. From there the data is
transferred to the network. The protocol stack toggles the handshake bits back, indicating to the
application that the transfer is finished and a new data exchange cycle may start. Using this
mechanism either the protocol stack or application/driver temporarily "owns" the input/output data area
and has exclusive write/read access to it. So this mode guarantees data consistency over both input
and output area.

Dual-Port Memory Structure 25/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.4.7 Control Block

A control block is always present in both system and communication channel. In some respects,
control and status block are used together in order to exchange information between host application
and netX firmware. The control block is written by the application, whereas the application reads a
status block. Both control and status block have registers that use the Change of State mechanism
(see section below).

The following gives an example of the use of control and status block. The host application wishes to
lock the configuration settings of a communication channel to protect them against changes. The
application sets the Lock Configuration flag in the control block to the communication channel
firmware. As a result, the channel firmware sets the Configuration Locked flag in the status block (see
below), indicating that the current configuration settings cannot be deleted, altered, overwritten or
otherwise changed.

2.4.8 Status Block

A status block is present in both system and communication channel. It contains information about
network and task related issues. In some respects, status and control block are used together in order
to exchange information between host application and netX firmware. The application reads a status
block whereas the control block is written by the application. Both status and control block have
registers that use the Change of State mechanism (see section below).

Dual-Port Memory Structure 26/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

2.5 Accessing a Protocol Stack
This chapter explains the different possible ways to interface a protocol stack

1. by accessing the dual-port memory interface directly;

2. by accessing the dual-port memory interface virtually;

3. by programming the protocol stack.

The picture below visualizes these three different ways.

(Extended) Status Block Send Mailbox Receive Mailbox Output Data Image Input Data Image

Network Abstraction Layer

Fieldbus Task(s)

Network

Application Task

1

3

2

Figure 4: Accessing a Protocol Stack

This document explains how to access the dual-port memory through alternative 1 (and 2, if the user
application is executed on the netX chip in the context of the rcX operating system and uses the virtual
DPM) in the above image. Alternative 3 is explained in the fieldbus specific documentation and is not
part of this document.

Dual-Port Memory Definitions 27/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3 Dual-Port Memory Definitions

3.1 System Channel
The System Channel is the first of the channels in the dual-port memory and starts at address 0x0000.
It holds information about the system itself (netX, netX operating system) and provides a mailbox
transfer mechanism for system related messages or packets. The structure of the system channel is
as outlined below.

NOTE If not mentioned otherwise, the offset addresses convention used in this section are always
related to the beginning of corresponding channel start address.

System Channel

Offset Type Name Description

0x0000 Structure tSystemInfo
System Information Block
Identifies netX Dual-Port Memory
(see page 28)

0x0030 Structure atChannelInfo[8]

Channel Information Block
Contains Configuration Information About
Available Communication and Application Channel
Blocks (see page 36)

0x00B0 Structure tSysHandshake
Handshake Block
Handshake Block for Data Synchronization
(not used, set to zero)

0x00B4 UINT8 bReserved[4] Reserved

0x00B8 Structure tSystemControl
System Control Block
System Control and Commands
(see page 45)

0x00C0 Structure tSystemState System Status Block
System Status Information (see page 46)

0x0100
0x0180 Structure tSystemSendMailbox

tSystemRecvMailbox

System Mailboxes
System Send and Receive Packet Mailbox Area,
Always Located at the End of the System Block
(see page 50)

Table 9: System Channel Structure

System Channel Structure Reference
typedef struct NETX_SYSTEM_CHANNELtag
{
 NETX_SYSTEM_INFO_BLOCK tSystemInfo;
 NETX_CHANNEL_INFO_BLOCK atChannelInfo[8];
 NETX_HANDSHAKE_CELL tSysHandshake;
 UINT8 abReserved[4];
 NETX_SYSTEM_CONTROL_BLOCK tSystemControl;
 NETX_SYSTEM_STATUS_BLOCK tSystemState;
 NETX_SYSTEM_SEND_MAILBOX tSystemSendMailbox;
 NETX_SYSTEM_RECV_MAILBOX tSystemRecvMailbox;
} NETX_SYSTEM_CHANNEL;

Dual-Port Memory Definitions 28/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.1.1 System Information Block

The first entry in the system information block helps to identify the netX dual-port memory itself. It
holds a cookie and length information as well as information regarding the firmware running on the
netX. Its structure is outlined below. This block can also be read using the mailbox interface (see page
80 for details).

System Information Block

Offset Type Name Description

0x0000 UINT8 abCookie[4]
Identification
netX Module / Chip Identification and Start of DPM
netX Cookie: 'netX' (ASCII Characters)

0x0004 UINT32 ulDpmTotalSize DPM Size
Size Of Entire DPM In Bytes (see page 29)

0x0008 UINT32 ulDeviceNumber Device Number
Device Number / Identification (see page 29)

0x000C UINT32 ulSerialNumber Serial Number
Serial Number (see page 29)

0x0010 UINT16 ausHwOptions[4] Hardware Options
Hardware Assembly Option (see page 229)

0x0018 UINT16 usManufacturer
Manufacturer
Manufacturer Code / Manufacturer Location
(see page 31)

0x001A UINT16 usProductionDate Production Date
Date of Production (see page 31)

0x001C UINT32 ulLicenseFlags1 License Code
License Flags 1 (see page 32)

0x0020 UINT32 ulLicenseFlags2 License Code
License Flags 2 (see page 32)

0x0024 UINT16 usNetxLicenseID License Code
netX License Identification (see page 32)

0x0026 UINT16 usNetxLicenseFlags License Code
netX License Flags (see page 32)

0x0028 UINT16 usDeviceClass Device Class
netX Device Class (see page 33)

0x002A UINT8 bHwRevision Hardware Revision
Hardware Revision Index (see page 34)

0x002B UINT8 bHwCompatibility Hardware Compatibility
Hardware Compatibility Index (see page 35)

0x002C UINT8 bDevIdNumber
Device Identification Number
Identification Number read form Rotary Switches
(or similar) (see page 35)

0x002D UINT8 bReserved Reserved
Set to Zero

0x002E
… 0x002F UINT16 usReserved Reserved

Set to Zero

Table 10: System Information Block

Dual-Port Memory Definitions 29/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

System Information Block Structure Reference
typedef struct NETX_SYSTEM_INFO_BLOCKtag
{
 UINT8 abCookie[4]; /* 'netX' cookie */
 UINT32 ulDpmTotalSize; /* DPM size (in bytes) */
 UINT32 ulDeviceNumber; /* device number */
 UINT32 ulSerialNumber; /* serial number */
 UINT16 ausHwOptions[4]; /* hardware options */
 UINT16 usManufacturer; /* manufacturer */
 UINT16 usProductionDate; /* production date */
 UINT32 ulLicenseFlags1; /* license flags 1 */
 UINT32 ulLicenseFlags2; /* license flags 2 */
 UINT16 usNetxLicenseID; /* license ID */
 UINT16 usNetxLicenseFlags; /* license flags */
 UINT16 usDeviceClass; /* device class */
 UINT8 bHwRevision; /* hardware revision */
 UINT8 bHwCompatibility; /* hardware compatibility */
 UINT8 bDevIdNumber; /* device identification */
 UINT8 bReserved;
 UINT16 usReserved;
} NETX_SYSTEM_INFO_BLOCK;

netX Identification, netX Cookie

The netX cookie identifies the start of the dual-port memory. It has a length of 4 bytes and is always
present; it holds 'netX' as ASCII characters. If the dual-port memory could not be initialized properly,
the netX chip fills the entire area with 0x0BAD starting at address 0x0300.

Value Definition / Description

0x0BAD BAD MEMORY COOKIE

Table 11: netX Identification, netX Cookie

Dual-Port Memory Size

The size field holds the total size of the dual-port memory in bytes. The size information is needed
when the dual-port memory is accessed in ISA mode. In a PCI environment, however, the netX chip
maps always 64 KByte. If the default memory layout is used, the usable size 16 KByte (see page 51).

Device Number, Device Identification

This field holds an order or item number.

Example:
A value of 1.234.567.890 (= 0x499602D2) translates into an order number of "123.4567.890".

If the value is equal to zero, the device number is not set.

Serial Number

This field holds the serial number of the netX chip, respectively device. It is a 32-bit value. If the value
is equal to zero, the serial number is not set.

Dual-Port Memory Definitions 30/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Hardware Assembly Options (xC Port 0 … 3)

The hardware assembly options array allows determining the actual hardware configuration on the xC
ports. It defines the type of (physical) interface that connects to the netX periphery. Each array
element represents an xC port starting with port 0 for the first element.

The following assembly options are defined.

Value Definition / Description

0x0000 UNDEFINED
The xC port is marked UNDEFINED, if the hardware cannot be determined. This might be
the case, if no security memory is found or read access to the security memory failed

0x0001 NOT AVAILABLE
The xC port is marked NOT AVAILABLE for xC2 and xC3 on netX 50

0x0003 USED
The xC port is marked USED if this port is occupied by a protocol stack. This xC port cannot
be used by other firmware modules

0x0010 SERIAL
The xC port is marked SERIAL if the protocol stack supports an asynchronous serial data
link protocol

0x0020 AS-INTERFACE
The xC port is marked AS-INTERFACE if the firmware supports the Actuator/Sensor-
Interface

0x0030 CAN
The xC port is marked CAN if the firmware supports communication according to CAN
(Controller Area Network) specification

0x0040 DEVICENET
The xC port is marked DEVICENET if the firmware supports communication according to
the DeviceNet specification

0x0050 PROFIBUS
The xC port is marked PROFIBUS if the firmware supports communication according to the
PROFIBUS specification

0x0070 CC-LINK
The xC port is marked CC-LINK if the firmware supports communication according to the
CC-Link specification

0x0080 ETHERNET (internal Phy)
The xC port is marked ETHERNET (internal Phy) if the firmware expects an internal Phy to
be used with this xC port

0x0081 ETHERNET (external Phy)
The xC port is marked ETHERNET (external Phy) if the firmware expects an external Phy
connected to this xC port

0x0082 ETHERNET FIBER OPTIC (internal Phy)
The xC port is marked ETHERNET FIBER OPTIC (internal Phy) if the firmware supports
fiber optics for Ethernet on this xC port.

0x0090 SPI (Serial Peripheral Interface)
0x00A0 IO-LINK

The xC port is marked IO-LINK if the firmware supports communication according to the IO-
Link specification

0x00B0 COMPONET
The xC port is marked COMPONET if the firmware supports communication according to
the CompoNet specification

0xFFF4 I2C INTERFACE UNKNOWN
The xC port is marked I2C INTERFACE UNKNOWN if the physical interface cannot be
determined (e.g. option module is not connected)

0xFFF5 SSI INTERFACE
0xFFF6 SYNC INTERFACE
0xFFFA TOUCH SCREEN

Dual-Port Memory Definitions 31/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Value Definition / Description

0xFFFB I2C INTERFACE
The xC port is marked I2C INTERFACE if the protocol stack can obtain information about
the physical interface from an option module. This value, however, is never shown in the
hardware assembly option field. Either I2C INTERFACE UNKNOWN (if not found) or the
detected hardware assembly is displayed

0xFFFC I2C INTERFACE netTAP
The xC port is marked I2C INTERFACE netTAP for an option module on netTAP hardware
basis. This value, however, is never shown in the hardware assembly option field

0xFFFD PROPRIETARY INTERFACE
0xFFFE NOT CONNECTED

The xC port is marked NOT CONNECTED if this port has no traces to a connector. This xC
port can only be used for chip-internal purposes

0xFFFF RESERVED, DO NOT USE
Other values are reserved

Table 12: Hardware Assembly Options (xC Port 0 … 3)

Manufacturer

The manufacturer code / manufacturer location is one of the following.

Value Definition / Description

0x0000 UNDEFINED
0x0001 Hilscher Gesellschaft für Systemautomation mbH
0x0002 …
0x00FF Reserved for Hilscher Gesellschaft für Systemautomation mbH

Other values are reserved

Table 13: Manufacturer

Production Date

The production date entry is comprised of the calendar week and year (starting in 2000) when the
module was produced. Both, year and week are shown in hexadecimal notation. If the value is equal
to zero, the manufacturer date is not set.

Bit No. Definition / Description

0-7 Production Week [UINT8]
1-52 = Production (Calendar) Week
other values are reserved

8-15 Production Year [UINT8]
0-255 = Production Year

Table 14: Production Date

Example:
A Production Date of 0x062B indicates year 2006 and calendar week 43.

Dual-Port Memory Definitions 32/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

License Code

These fields contain licensing information that is available for the netX firmware and tools. All four
fields (License Flags 1, License Flags 2, netX License ID & netX License Flags) help identifying
available licenses. If the license information fields are equal to zero, a license or license code is not
set. The license information is read from the security memory during startup.

License Flags 1 are used to indicate the type of master protocols that are licensed. If a flag set, a
license is present. The number of master stacks that are licensed is indicated by bits 31 and 30 (see
below).

ulLicenseFlags1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PROFIBUS Master

 CANopen Master

 DeviceNet Master

 AS-Interface Master

 PROFINET IO RT Controller

 EtherCAT Master

 EtherNet/IP Scanner

 SERCOS III Master

Reserved, Set to Zero

ulLicenseFlags1 (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 …

 Reserved, Set to Zero

00 = Unlimited Number of Master Licenses
01 = 1 Master License
10 = 2 Master Licenses
11 = 3 Master Licenses

Table 15: License Flags 1

Bit No. Definition / Description

0 PROFIBUS Master
1 CANopen Master
2 DeviceNet Master
3 AS-Interface Master
4 PROFINET IO RT Controller
5 EtherCAT Master
6 EtherNet/IP Scanner
7 SERCOS III Master
8 … 29 Reserved
30, 31 Number of Master Licenses

0 = Unlimited Number of Master Licenses
1 = 1 Master License
2 = 2 Master Licenses
3 = 3 Master Licenses

Table 16: License Flags 1

Dual-Port Memory Definitions 33/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

License Flags 2 are used for tool licenses, e. g. SYCON.net or OPC server (bits 1 and 0). If a flag is
set, a tool license is present.

ulLicenseFlags2
31 30 29 28 … 10 9 8 7 6 5 4 3 2 1 0

 SYCON.net

 OPC Server

 QViS
01 = Minimum Size
10 = Standard Size
11 = Maximum Size

 CoDeSys (Hilscher)
01 = Minimum Size
10 = Standard Size
11 = Maximum Size

 Driver / Operating System (Host Application)

 Atvise Web Server

Reserved, Set to Zero

Table 17: License Flags 2

Bit No. Definition / Description

0 SYCON.net
1 OPC Server
2, 3 QViS

1 = Minimum Size
2 = Standard Size
3 = Maximum Size

4, 5 CoDeSys (Hilscher)
1 = Minimum Size
2 = Standard Size
3 = Maximum Size

6 Driver / Operating System (Host Application)
7 Atvise Web Server
8 … 31 Reserved, Set to Zero

Table 18: License Flags 2

netX License ID holds a customer identification number.

netX License Flags are reserved.

Device Class

This field identifies the hardware and helps selecting a suitable firmware file from the view of an
application when downloading a new firmware. The following hardware device classes are defined.

Value Definition / Description

0x0000 UNDEFINED
0x0001 UNCLASSIFIABLE
0x0002 NETX 500
0x0003 CIFX (all PCI types)
0x0004 COMX 100
0x0005 NETX EVALUATION BOARD

Dual-Port Memory Definitions 34/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Value Definition / Description

0x0006 NETDIMM
0x0007 NETX 100
0x0008 NETHMI
0x0009 Reserved
0x000A NETIO 50
0x000B NETIO 100
0x000C NETX 50
0x000D NETPAC (Gateway)
0x000E NETTAP 100 (Gateway)
0x000F NETSTICK
0x0010 NETANALYZER
0x0011 NETSWITCH
0x0012 NETLINK
0x0013 NETIC 50
0x0014 NPLC C100
0x0015 NPLC M100
0x0016 NETTAP 50 (Gateway)
0x0017 NETBRICK 100
0x0018 NPLC T100
0x0019 NETLINK PROXY
0x001A NETX CHIP (netX 10)
0x001B NETJACK 10
0x001C NETJACK 50
0x001D NETJACK 100
0x001E NETJACK 500
0x001F NETLINK 10 USB
0x0020 COMX 10
0x0021 NETIC 10
0x0022 COMX 50
0x0023 NETRAPID 10
0x0024 NETRAPID 50
0x0025 NETSCADA T51
0x0026 NETX 51
0x0027 NETRAPID 51
0x0028 EU5C Gateway
0x0029 …
0x7FFF Reserved

0x8000 …
0xEFFF Reserved

0xFFFE OEM DEVICE
Other values are reserved

Table 19: Device Class

Dual-Port Memory Definitions 35/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Hardware Revision

The Hardware Revision field indicates the current hardware revision of a module. It starts with one and
is incremented with every significant hardware change. The value ranges from 1 to 35. The identi-
fication label on the hardware shows 1, 2 ... 9, A, B ... Z, where A corresponds to 10, B to 11 … and Z
to 35.

ASCII characters are used for the hardware revision, if the Device Class is equal to NETX CHIP (see
above, either netX 50, 100 or 500). In this case, the hardware revision starts with ‘A’ (0x41, 65
respectively). All other devices use numbers.

Hardware Compatibility Index

The hardware compatibility index starts with zero and is incremented every time changes to the
hardware require incompatible changes to the firmware. The hardware compatibility is used by an
application before downloading a firmware file to match firmware and hardware. The application shall
refuse downloading an incompatible firmware file.

NOTE This hardware compatibility should not be confused with the firmware version number. The
firmware version number increases for every addition or bug fix. The hardware compatibility
is incremented only if a change makes firmware and hardware incompatible to each other
compared to the previous version.

Device Identification Number

In order to help to distinguish one netX hardware from another, some interface cards or modules have
rotary switches (or similar) to allow assigning an identification number to a specific interface card or
module (= device). The field holds the device identification number that was read from these switches
during startup. A 0 (zero) indicates that no identification number was assigned to the device.

NOTE This field is not the network address of a protocol stack!

Dual-Port Memory Definitions 36/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.1.2 Channel Information Block

The channel information block structure holds information about the channels that are mapped into the
dual-port memory. The system channel is always present. However, its structure and the structure of
the handshake channel are different to the following communication block descriptions. Each structure
is 16 bytes. This block can also be read using the mailbox interface (see page 79 for details).

Channel Information Block

Address Channel Area Structure

 Data Type Description

0x0030 System UINT8 Channel Type = SYSTEM (see page 38)

 UINT8 Reserved (set to zero)

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks

 UINT32 Size of Channel in Bytes

 UINT16 Size of Send and Receive Mailbox Added in Bytes

 UINT16 Mailbox Start Offset

… 0x003F UINT8[4] 4 Byte Reserved (set to zero)

 Data Type Description

0x0040 Handshake UINT8 Channel Type = HANDSHAKE (see page 38)

 UINT8[3] 3 Byte Reserved (set to zero)

 UINT32 Channel Size in Bytes

… 0x004F UINT8[8] 8 Byte Reserved

 Data Type Description

0x0050 UINT8 Channel Type = COMMUNICATION (see page 38)

Communication
Channel 0

UINT8 Channel ID, Channel Number

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks in this Channel

 UINT32 Size of Channel In Bytes (see page 39)

 UINT16 Communication Class (Master, Slave...)

 UINT16 Protocol Class (PROFIBUS, PROFINET....)

 UINT16 Protocol Conformance Class (DPV1, DPV2...)

… 0x005F UINT8[2] 2 Byte Reserved (set to zero)

0x0060
… 0x008F

Communication
Channel 1, 2 & 3 Structure Same as Communication Channel 0

continued next page

Dual-Port Memory Definitions 37/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

 Data Type Description

0x0090 UINT8 Channel Type = APPLICATION (see page 38)

Application
Channel 0 UINT8 Channel ID, Channel Number

 UINT8 Size / Position of Handshake Cells (see page 39)

 UINT8 Total Number of Blocks in this Channel

 UINT32 Size of Channel in Bytes

… 0x009F UINT8[8] 8 Byte Reserved (set to zero)

0x00A0
… 0x00AF

Application
Channel 1 Structure Same as Application Channel 0

Table 20: Channel Information Block

System Channel Information Structure Reference
typedef struct NETX_SYSTEM_CHANNEL_INFOtag
{
 UINT8 bChannelType;
 UINT8 bReserved;
 UINT8 bSizePositionOfHandshake;
 UINT8 bNumberOfBlocks;
 UINT32 ulSizeOfChannel;
 UINT16 usSizeOfMailbox;
 UINT16 usMailboxStartOffset;
 UINT8 abReserved[4];
} NETX_SYSTEM_CHANNEL_INFO;

Handshake Channel Information Structure Reference
typedef struct NETX_HANDSHAKE_CHANNEL_INFOtag
{
 UINT8 bChannelType;
 UINT8 bReserved[3];
 UINT32 ulSizeOfChannel;
 UINT8 abReserved[8];
} NETX_HANDSHAKE_CHANNEL_INFO;

Communication Channel Information Structure Reference
typedef struct NETX_COMMUNICATION_CHANNEL_INFOtag
{
 UINT8 bChannelType;
 UINT8 bChannelId;
 UINT8 bSizePositionOfHandshake;
 UINT8 bNumberOfBlocks;
 UINT32 ulSizeOfChannel;
 UINT16 usCommunicationClass;
 UINT16 usProtocolClass;
 UINT16 usConformanceClass;
 UINT8 abReserved[2];
} NETX_COMMUNICATION_CHANNEL_INFO;

Dual-Port Memory Definitions 38/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Application Channel Information Structure Reference
typedef struct NETX_APPLICATION_CHANNEL_INFOtag
{
 UINT8 bChannelType;
 UINT8 bChannelId;
 UINT8 bSizePositionOfHandshake;
 UINT8 bNumberOfBlocks;
 UINT32 ulSizeOfChannel;
 UINT8 abReserved[8];
} NETX_APPLICATION_CHANNEL_INFO;

Channel Information Block Structure Reference
typedef union NETX_CHANNEL_INFO_BLOCKtag
{
 NETX_SYSTEM_CHANNEL_INFO tSystem;
 NETX_HANDSHAKE_CHANNEL_INFO tHandshake;
 NETX_COMMUNICATION_CHANNEL_INFO tCom;
 NETX_APPLICATION_CHANNEL_INFO tApp;
} NETX_CHANNEL_INFO_BLOCK;

Channel Type

This field identifies the channel type of the corresponding memory location. The following channel
types are defined.

Value Definition / Description

0x00 UNDEFINED
0x01 NOT AVAILABLE
0x02 RESERVED
0x03 SYSTEM
0x04 HANDSHAKE
0x05 COMMUNICATION
0x06 APPLICATION
0x07 … 0x7F Reserved for future use
0x80 … 0xFF User defined

Table 21: Channel Type

Channel Identification (Communication and Application Channel Only)

This field is used to identify the communication or application channel. The value is unique in the
system and ranges from 0 to 255.

Dual-Port Memory Definitions 39/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Size / Position of Handshake Cells

This field identifies the position of the handshake cells and their size. The handshake cells may be
located at the beginning of the channel itself or in a separate handshake area. The size of the
handshake cells can be either 8 or 16 bit, if present at all. The size / position field is not supported yet.

Bit No. Definition / Description

0-3 Size Nibble [4 Bits]
0 = NOT AVAILABLE
1 = 8 BITS
2 = 16 BITS
Other values are reserved

4-7 Position Nibble [4 Bits]
0 = BEGINNING OF CHANNEL
1 = IN HANDSHAKE CHANNEL
Other values are reserved

Table 22: Size / Position of Handshake Cells

Total Number of Blocks

A channel comprises blocks, like IO data, mailboxes and status blocks. The field holds the number of
those blocks in this channel.

Size of Channel

This field contains the length of the entire channel itself in bytes.

Size of System Mailbox in Bytes (System Channel Only)

The mailbox size field holds the size of the system mailbox structure (send and receive mailbox
added). Its minimum size is 128 bytes. The structure includes two counters for enhanced mailbox
handling (see page 50 for details).

Mailbox Start-Offset (System Block Only)

The start-offset field holds the location of the system mailbox.

Communication Class

This array element holds further information regarding the protocol stack. It is intended to help
identifying the ‘communication class’ or ‘device class’ of the protocol.

Value Definition / Description

0x0000 UNDEFINED
0x0001 UNCLASSIFIABLE
0x0002 MASTER
0x0003 SLAVE
0x0004 SCANNER
0x0005 ADAPTER
0x0006 MESSAGING
0x0007 CLIENT
0x0008 SERVER
0x0009 IO-CONTROLLER
0x000A IO-DEVICE

Dual-Port Memory Definitions 40/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Value Definition / Description

0x000B IO-SUPERVISOR
0x000C GATEWAY
0x000D MONITOR / ANALYZER
0x000E PRODUCER
0x000F CONSUMER
0x0010 SWITCH
0x0011 HUB
0x0012 COMBINATION FIRMWARE

This protocol class is used to identify a firmware file that consists of two or more protocol
stacks. COMBINATION FIRMWARE, however, is never shown in the communication class
field in the dual-port memory. The communication class of the protocol stack is shown
instead.

0x0013 MANAGING NODE
0x0014 CONTROLLED NODE
0x0015 PROGRAMMABLE LOGIC CONTROLLER (PLC)
0x0016 HUMAN MACHINE INTERFACE (HMI)
0x0017 ITEM SERVER
Other values are reserved

Table 23: Communication Class

Protocol and Task Class

This field identifies the protocol stack or the task, respectively.

Value Definition / Description

0x0000 UNDEFINED
0x0001 3964R
0x0002 AS Interface
0x0003 ASCII
0x0004 CANopen
0x0005 CC-Link
0x0006 CompoNet
0x0007 ControlNet
0x0008 DeviceNet
0x0009 EtherCAT
0x000A EtherNet/IP
0x000B Foundation Fieldbus
0x000C FL Net
0x000D InterBus
0x000E IO-Link
0x000F LON
0x0010 Modbus Plus
0x0011 Modbus RTU
0x0012 Open Modbus TCP
0x0013 PROFIBUS DP
0x0014 PROFIBUS MPI
0x0015 PROFINET IO

Dual-Port Memory Definitions 41/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Value Definition / Description

0x0016 RK512
0x0017 SERCOS II
0x0018 SERCOS III
0x0019 TCP/IP, UDP/IP
0x001A Powerlink
0x001B HART
0x001C COMBINATION FIRMWARE

This protocol class is used to identify a firmware file that consists of two or more protocol
stacks. COMBINATION FIRMWARE, however, is never shown in the protocol class field
once the firmware is started. The protocol class of the protocol stack is shown instead.

0x001D Programmable Gateway
The programmable gateway function uses netSCRIPT as programming language.

0x001E Programmable Serial
The programmable serial protocol function uses netSCRIPT as programming language.

0x001F PLC: CoDeSys
0x0020 PLC: ProConOS
0x0021 PLC: IBH S7
0x0022 PLC: ISaGRAF
0x0023 Visualization: QviS
0x0024 Ethernet
0x0025 RFC1006
0x0026 DF1
0x0027 VARAN
0x0028 3S PLC Handler
0xFFF0 OEM, Proprietary
Other values are reserved

Table 24: Protocol and Task Class

Conformance Class

This field identifies the supported functionality of the protocol stack (PROFIBUS supports DPV1 or
DPV2, PROFINET complies with conformance class A/B/C, etc.). The entry depends on the protocol
class of the communication channel (see above) and is defined in the protocol specific manual.

Reserved

These areas are reserved for further use and should not be altered. It is set to zero. The same applies
to the user-defined array in the application section of the above structure.

Dual-Port Memory Definitions 42/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.1.3 System Handshake Register

The system handshake flags are used to synchronize data transfer between the netX firmware and the
host application via the system mailbox and to handle certain change of state function. They also hold
information about the status of the operating system rcX and can be used to execute certain
commands in the firmware (as a system wide reset for example). See page 21 for details to the
command/acknowledge mechanism.

NOTE Although mentioned in this section, the handshake registers are located in the handshake
channel (see page 75) for the default layout.

3.1.3.1 netX System Flags

The netX system register is written by the netX; the host system reads this register. The netX system
register is located at address 0x0202 in the dual-port memory.

bNetxFlags – netX writes, Host reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 NSF_READY

 NSF_ERROR

 NSF_HOST_COS_ACK

 NSF_NETX_COS_CMD

 NSF_SEND_MBX_ACK

 NSF_RECV_MBX_CMD

Reserved, set to zero

Table 25: netX System Flags

NOTE The data width of the netX system flags is 8 bit. The bits D15 – D8 are ignored.

Dual-Port Memory Definitions 43/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

netX System Flags bNetxFlags (netX " Host System)

Bit No. Definition / Description

0 Ready (NSF_READY)
The Ready flag is set as soon as the operating system has initialized itself properly and
passed its self test. When the flag is set, the netX is ready to accept packets via the system
mailbox. If cleared, the netX does not accept any packages.

1 Error (NSF_ERROR)
The Error flag is set when the netX has detected an internal error condition. This is
considered to be a fatal error. The Ready flag is cleared and the operating system is
stopped. An error code helping to identify the issue is placed in the ulSystemError variable
in the system status block (see page 46).

2 Host Change Of State Acknowledge (NSF_HOST_COS_ACK)
The Host Change of State Acknowledge flag is set when the netX acknowledges a
command from the host system. This flag is used together with the Host Change of State
Command flag in the host system flags on page 43.

3 netX Change Of State Command (NSF_NETX_COS_CMD)
The netX Change of State Command flag is set if the netX signals a change of its state to
the host system. Details of what has changed can be found in the ulSystemCOS variable in
the system control block (see page 45).

4 Send Mailbox Acknowledge (NSF_SEND_MBX_ACK)
Both the Send Mailbox Acknowledge flag and the Send Mailbox Command flag are used
together to transfer non-cyclic packages between the host system and the netX.

5 Receive Mailbox Command (NSF_RECV_MBX_CMD)
Both the Receive Mailbox Command flag and the Receive Mailbox Acknowledge flag are
used together to transfer non-cyclic packages between the netX and the host.

6, 7 … 15 Reserved, set to zero

Table 26: netX System Flags

3.1.3.2 Host System Flags

The host system flags are written by the host system; the netX reads these flags. The host system
register is located at address 0x0203 in the dual-port memory.

bHostFlags – Host writes, netX reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 HSF_RESET

 HSF_BOOTSTART

 HSF_HOST_COS_CMD

 HSF_NETX_COS_ACK

 HSF_SEND_MBX_CMD

 HSF_RECV_MBX_ACK

Reserved, set to zero

Table 27: Host System Flags

NOTE The data width of the host system flags is 8 bit. The bits D15 – D8 are ignored.

Dual-Port Memory Definitions 44/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Host System Flags bHostSysFlags (Host " netX System)

Bit No. Definition / Description

0 Reset (HSF_RESET)
The Reset flag is set by the host system to execute a system wide reset. This forces the
system to restart. All network connections are interrupted immediately regardless of their
current state.

1 Bootstart (HSF_BOOTSTART)
If set during reset, the Boot-Start flag forces the netX to stay in boot loader mode; a
firmware that may reside in the context of the operating system rcX is not started. If cleared
during reset, the operating system will start the firmware, if available.

2 Host Change Of State Command (HSF_HOST_COS_CMD)
The Host Change of State Command flag is set by the host system to signal a change of its
state to the netX. Details of what has changed can be found in the ulSystemCommandCOS
variable in the system control block (see page 45).

3 netX Change Of State Acknowledge (HSF_NETX_COS_ACK)
The netX Change of State Acknowledge flag is set by the host system to acknowledge the
new state of the netX. This flag is used together with the netX Change of State Command
flag in the netX system flags on page 42.

4 Send Mailbox Command (HSF_SEND_MBX_CMD)
Both the Send Mailbox Command flag and the Send Mailbox Acknowledge flag are used
together to transfer non-cyclic packages between the host system and the netX.

5 Receive Mailbox Acknowledge (HSF_RECV_MBX_ACK)
Both the Receive Mailbox Acknowledge flag and the Receive Mailbox Command flag are
used together to transfer non-cyclic packages between the netX and the host system.

6, 7 … 15 Reserved, set to zero

Table 28: Host System Flags

3.1.4 System Handshake Block

If required, the handshake register can be moved from the handshake block to the beginning of the
channel block. This handshake block is not yet supported and therefore set to zero.

System Handshake Block

Offset Type Name Description

0x00B0
… 0x00B7 UINT8 abReserved[8] Reserved

Not used, set to 0

Table 29: System Handshake Block

System Handshake Block Structure Reference
typedef struct NETX_HANDSHAKE_BLOCKtag
{
 UINT8 abReserved[8];
} NETX_HANDSHAKE_BLOCK;

Dual-Port Memory Definitions 45/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.1.5 System Control Block

The system control block is used by the host system to force the netX to execute certain commands in
the future. Currently there are no such commands defined. The system control block can also be read
using the mailbox interface (see page 80 for details).

System Control Block

Offset Type Name Description

0x00B8 UINT32 ulSystemCommandCOS System Change Of State
Not supported yet, set to 0

0x00BC UINT32 ulReserved Reserved
Not used, set to 0

Table 30: System Control Block

System Control Block Structure Reference
typedef struct NETX_SYSTEM_CONTROL_BLOCKtag
{
 UINT32 ulSystemCommandCOS;
 UINT32 ulReserved;
} NETX_SYSTEM_CONTROL_BLOCK;

Changing flags in this register requires the driver/application also to toggle the Host Change of State
Command flag in the Host System Flags register (see page 43). Only then, the netX protocol stack
recognizes the change.

Dual-Port Memory Definitions 46/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.1.6 System Status Block

The system status block provides information about the staus of the netX firmware. This block can
also be read using the mailbox interface (see page 80 for details).

System Status Block

Offset Type Name Description

0x00C0 UINT32 ulSystemCOS System Change Of State
DEFAULT LAYOUT (see page 47)

0x00C4 UINT32 ulSystemStatus
System Status
Information about file system, boot medium etc.
(see page 47)

0x00C8 UINT32 ulSystemError System Error
Indicates Success or an Error Code (see page 47)

0x00CC UINT32 ulBootError
Boot Error
Indicates a Fault During Boot Procedure
(see page 48)

0x00D0 UINT32 ulTimeSinceStart
Time Since Startup
Time Elapsed Since Startup (POR) in s
(see page 48)

0x00D4 UINT16 usCpuLoad CPU Load
CPU Load in 0.01% Units (see page 48)

0x00D6 UINT16 usReserved Reserved, set to 0

0x00D8 UINT32 ulHWFeatures Hardware Features
Supported Hardware Features (see page 48)

0x00DC
… 0x00FF UINT8 abReserved[36] Reserved

Set to 0

Table 31: System Status Block

System Status Block Structure Reference
typedef struct NETX_SYSTEM_STATUS_BLOCKtag
{
 UINT32 ulSystemCOS;
 UINT32 ulSystemStatus;
 UINT32 ulSystemError;
 UINT32 ulBootError;
 UINT32 ulTimeSinceStart;
 UINT16 usCpuLoad
 UINT16 usReserved;
 UINT16 ulHWFeatures;
 UINT8 abReserved[36];
} NETX_SYSTEM_STATUS_BLOCK;

Dual-Port Memory Definitions 47/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

System Change of State

The change of state field contains information of the current operating status of the communication
channel. Every time the status changes, the netX toggles the netX Change of State Command flag in
the netX communication flags register. The host system then has to toggle the netX Change of State
Acknowledge flag back acknowledging the new state.

Value Definition / Description

0x00000000 UNDEFINED
0x80000000 DEFAULT MEMORY MAP

If set, the default dual-port memory layout as outlined on page 51 is applied. This bit is set
once after power up or reset and changes only after reconfiguration.

Other values are reserved

Table 32: System Change of State

System Status

Among others, the system status field holds information whether or not a Flash Files system is
supported by the RCX operating system.

ulSystemStatus

31 30 29 28 27 26 25 24 23 22 21 … 3 2 1 0

 RCX_SYS_STATUS_OK

 unused, set to zero

 Boot Medium
0000 = RCX_SYS_STATUS_BOOTMEDIUM_RAM
0001 = RCX_SYS_STATUS_BOOTMEDIUM_SERFLASH
0010 = RCX_SYS_STATUS_BOOTMEDIUM_PARFLASH

 unused, set to zero

 RCX_SYS_STATUS_NO_SYSVOLUME

 RCX_SYS_STATUS_SYSVOLUME_FFS

RCX_SYS_STATUS_NXO_SUPPORTED

Table 33: System Status Field

Bit No. Definition / Description

0 Valid Flag (RCX_SYS_STATUS_OK)
Only if set, the data in System Status register is valid (for backwards compatibility)

1-23 Reserved, set to 0
24-27 Boot Medium

0 = RAM
1 = serial Flash
2 = �arallel Flash
Other values are reserved

28 Reserved, set to 0
29 No System Volume (RCX_SYS_STATUS_NO_SYSVOLUME)

If set, there is no system volume available
30 Flash File System (RCX_SYS_STATUS_SYSVOLUME_FFS)

If set, a remanent file system is available
31 Loadable Modules (RCX_SYS_STATUS_NXO_SUPPORTED)

If set, the operating system supports loadable firmware modules

Table 34: System Status Field

Dual-Port Memory Definitions 48/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

System Error

The system error field holds information about the general status of the netX firmware stacks. An error
code of zero indicates a faultless system. If the system error field holds a value other than SUCCESS,
the Error flag in the netX System flags is set (see page 3.1.3.1). See section 6 on page 221 for error
codes.

Boot Error

If the 2nd Stage Boot Loader encounters an error during startup procedure, an error code is written into
this location. For details see boot loader documentation.

Time since Startup

This field holds the time that elapsed since startup (Power-On-Reset, etc). The time is given in multiple
of 1 s.

CPU Load

This field holds the netX CPU load. The resolution is 0,01%. Therefore a value of 10.000 corresponds
to 100%.

Hardware Features

The hardware features field indicates if an external memory is supported. Additionally, it indicates the
type of clock that is supported by the netX hardware, if any.

ulHWFeatures

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 External Memory Type
0000 = None
0001 = MRAM 64*16 Bit (1 Mbit/128 KB)

 Reserved, set to 0

 External Memory Access Type
00 = No access
01 = External access (host)
10 = Internal access
11 = External and internal access

 Clock Type
00 = No RTC
01 = RTC external
10 = RTC internal
11 = RTC emulated

 Clock Status
0 = Time not valid
1 = Time valid

Unused, set to zero

Table 35: Hardware Features Field

Dual-Port Memory Definitions 49/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Bit No. Definition / Description

0-3 External Memory Type
0 = None
1 = MRAM 64*16 Bit (1 Mbit/128 KB)

4-5 Reserved, set to 0
6-7 External Memory Access Type

0 = No access
1 = External access (host)
2 = Internal access
3 = External and internal access

8-9 Clock Type
0 = No RTC Unknown RTC or driver not initialized
1 = RTC internal netX internal RTC using 32.768 kHz clock
2 = RTC external External RTC (PCF8563) connected via I2C
3 = RTC emulated No RTC hardware present, use system tick

10 Clock Status
0 = Time not valid Time was not set, RTC not initialized, battery failure, etc.
1 = Time valid Clock was initialized and time was set

11-31 Reserved, set to 0

Table 36: Hardware Features Field

Dual-Port Memory Definitions 50/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.1.7 System Mailbox

The system mailbox is the “window” to the operating system. It is always present even if no firmware is
loaded. A driver/application uses the mailbox system to determine the actual layout of the dual-port
memory (see page 79 for details).

NOTE Each mailbox can hold one packet at a time. The netX firmware stores packets that are not
retrieved by the host application in a packet queue. This queue has limited space and may
fill up so new packets get lost. To avoid this situation, it is strongly recommended to
frequently empty the mailbox, even if the host application does not expect any packets at all.
Unexpected command packets shall be returned to the sender with an Unknown Command
in the status field; unexpected reply messages can be discarded.

The system mailbox area has a send and a receive mailbox. Both mailboxes have a size of 124 bytes.
The mailbox area preceding are two counters indicating the number of packages that can be accepted
by the netX firmware (for the send mailbox) respectively the number of packages waiting (for the
receive mailbox). The send mailbox is used to transfer data to the rcX. The receive mailbox is
used to transfer data from the rcX. Non-cyclic packets are transferred between the netX firmware
and the host application by means of handshake bits. These bits regulate access rights between the
netX and the host system to either mailbox (see page 52 for details).

System Mailboxes

Offset Type Name Description

0x0100 UINT16 usPackagesAccepted Packages Accepted
Number Of Packages That Can Be Accepted

0x0102 UINT16 usReserved Reserved
Set to 0

0x0104
… 0x017F UINT8 abSendMbx[124] System Send Mailbox

Host System " netX

0x0180 UINT16 usWaitingPackages
Waiting Packages
Counter Of Packages That Are Waiting To Be
Processed

0x182 UINT16 usReserved Reserved
Set to 0

0x0184
… 0x01FF UINT8 abRecvMbx[124] System Receive Mailbox

netX " Host System

Table 37: System Mailbox

System Mailbox Structure Reference
typedef struct NETX_SYSTEM_SEND_MAILBOXtag
{
 UINT16 usPackagesAccepted;
 UINT16 usReserved;
 UINT8 abSendMbx[124];
} NETX_SYSTEM_SEND_MAILBOX;

typedef struct NETX_SYSTEM_RECV_MAILBOXtag
{
 UINT16 usWaitingPackages;
 UINT16 usReserved;
 UINT8 abRecvMbx[124];
} NETX_SYSTEM_RECV_MAILBOX;

Dual-Port Memory Definitions 51/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2 Communication Channel

3.2.1 Default Memory Layout

The netX features a compact layout for small host systems. With the preceding system and
handshake channel its total size is 16 KByte. The protocol stack will set the default memory map flag
in the ulSystemCOS variable in system status block on page 46. If the default memory map flag is
cleared, the layout of the dual-port memory is variable in its size and location.

NOTE If not mentioned otherwise, the offset address convention used in this section is always
related to the beginning of corresponding communication channel start address, which starts
with 0x0000 here.

Default Communication Channel Layout

Offset Type Name Description

0x0000 Structure tReserved Reserved
See Page 56 for Details

0x0008 Structure tControl Control
See Page 57 for Details

0x0010 Structure tCommonStatus Common Status Block
See Page 59 for Details

0x0050 Structure tExtendedStatus Extended Status Block
See Page 66 for Details

0x0200 Structure tSendMbx Send Mailbox
See Page 66 for Details

0x0840 Structure tRecvMbx Receive Mailbox
See Page 66 for Details

0x0E80 UINT8 abPd1Output[64] High Priority Output Data Image 1
Not Yet Supported, Set to 0

0x0EC0 UINT8 abPd1Input[64] High Priority Input Data Image 1
Not Yet Supported, Set to 0

0x0F00 UINT8 abReserved1[256] Reserved
Set to 0

0x1000 UINT8 abPd0Output[5760] Output Data Image 0
See Page 74 for Details

0x2680 UINT8 abPd0Input[5760] Input Data Image 0
See Page 74 for Details

Table 38: Default Communication Channel Layout

Default Communication Channel Structure Reference
typedef struct NETX_DEFAULT_COMM_CHANNELtag
{
 NETX_HANDSHAKE_BLOCK tReserved;
 NETX_CONTROL_BLOCK tControl;
 NETX_COMMON_STATUS_BLCOK tCommonStatus;
 NETX_EXTENDED_STATUS_BLOCK tExtendedStatus;
 NETX_SEND_MAILBOX_BLOCK tSendMbx;
 NETX_RECV_MAILBOX_BLOCK tRecvMbx;
 UINT8 abPd1Output[64];
 UINT8 abPd1Input[64];
 UINT8 abReserved1[256];
 UINT8 abPd0Output[5760];
 UINT8 abPd0Input[5760];
} NETX_DEFAULT_COMM_CHANNEL;

Dual-Port Memory Definitions 52/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.2 Channel Handshake Register

The channel handshake register are used to indicate the status of the protocol stack and to execute
certain commands in the protocol stack (reset a channel or synchronization of prcess data). The
mailbox flags are used to send and receive non-cyclic messages via the channel mailboxes. See page
66 for details to the command/acknowledge mechanism.

NOTE Although mentioned in this section, the handshake registers are located in the handshake
channel (see page 75) for the default layout.

3.2.2.1 netX Communication Flags

This flags register is organized as a bit field. The netX protocol stack writes the register to control data
synchronization via the mailbox system and the process data image. It also informs the host
application about its current network state. The register is read by the host system.

usNetxFlags – netX writes, Host reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 NCF_COMMUNICATING

 NCF_ERROR

 NCF_HOST_COS_ACK

 NCF_NETX_COS_CMD

 NCF_SEND_MBX_ACK

 NCF_RECV_MBX_CMD

 NCF_PD0_OUT_ACK

 NCF_PD0_IN_CMD

 NCF_PD1_OUT_ACK (not supported yet)

 NCF_PD1_IN_CMD (not supported yet)

unused, set to zero

Table 39: netX Communication Channel Flags

Dual-Port Memory Definitions 53/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

netX Communication Flags (netX " Application)

Bit No. Definition / Description

0 Communicating (NCF_COMMUNICATING)
The NCF_COMMUNICATING flag is set if the protocol stack has successfully opened a
connection to at least one of the configured network slaves (for master protocol stacks),
respectively has an open connection to the network master (for slave protocol stacks). If
cleared, the input data should not be evaluated, because it may be invalid, old or both. At
initialization time, this flag is cleared.

1 Error (NCF_ERROR)
The NCF_ERROR flag signals an error condition that is reported by the protocol stack. It
could indicate a network communication issue or something to that effect. The
corresponding error code is placed in the ulCommunicationError variable in the common
status block (see page 59). At initialization time, this flag is cleared.

2 Host Change Of State Acknowledge (NCF_HOST_COS_ACK)
The NCF_HOST_COS_ACK flag is used by the protocol stack indicating that the new
state of the host application has been read. At initialization time, this flag is cleared.

3 netX Change Of State Command (NCF_NETX_COS_CMD)
The NCF_NETX_COS_CMD flag signals a change in the state of the protocol stack. The
new state can be found in the ulCommunicationCOS register in the common status block
(see page 59). In return the host application then toggles the HCF_NETX_COS_ACK flag
in the host communication flags acknowledging that the new protocol state has been read.
At initialization time, this flag is cleared.

4 Send Mailbox Acknowledge (NCF_SEND_MBX_ACK)
Both the NCF_SEND_MBX_ACK flag and the HCF_SEND_MBX_CMD flag are used
together to transfer non-cyclic packages between the protocol stack and the application. At
initialization time, this flag is cleared.

5 Receive Mailbox Command (NCF_RECV_MBX_CMD)
Both the NCF_RECV_MBX_CMD flag and the HCF_RECV_MBX_ACK flag are used
together to transfer non-cyclic packages between the application and the protocol stack. At
initialization time, this flag is cleared.

6 Process Data 0 Out Acknowledge (NCF_PD0_OUT_ACK)
Both the NCF_PD0_OUT_ACK flag and the HCF_PD0_OUT_CMD flag are used together
to transfer cyclic output data from the application to the protocol stack. At initialization
time, this flag may be set, depending on the data exchanged mode.

7 Process Data 0 In Command (NCF_PD0_IN_CMD)
Both the NCF_PD0_IN_CMD flag and the HCF_PD0_IN_ACK flag are used together to
transfer cyclic input data from the protocol stack to the application. At initialization time,
this flag may be set, depending on the data exchanged mode.

8 Process Data 1 Out Acknowledge (NCF_PD1_OUT_ACK, not supported yet)
Both the NCF_PD1_OUT_ACK flag and the HCF_PD1_OUT_CMD flag are used together
to transfer output cyclic data from the application to the protocol stack. At initialization
time, this flag may be set, depending on the data exchanged mode.

9 Process Data 1 In Command (NCF_PD1_IN_CMD, not supported yet)
Both the NCF_PD1_IN_CMD flag and the HCF_PD1_IN_ACK flag are used together to
transfer cyclic input data from the protocol stack to the application. At initialization time,
this flag may be set, depending on the data exchanged mode.

10 … 15 Reserved, set to 0

Table 40: netX Communication Channel Flags

NOTE If accessed in 8-bit mode, bits 15 … 8 are not available.

Dual-Port Memory Definitions 54/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.2.2 Host Communication Flags

This flags register is organized as a bit field. The register is written by the host system to control data
synchronization via the mailbox system and the process data image. The register is read by the netX
protocol stack.

usHostFlags – Host writes, netX reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 unused

 HCF_HOST_COS_CMD

 HCF_NETX_COS_ACK

 HCF_SEND_MBX_CMD

 HCF_RECV_MBX_ACK

 HCF_PD0_OUT_CMD

 HCF_PD0_IN_ACK

 HCF_PD1_OUT_CMD (not supported yet)

 HCF_PD1_IN_ACK (not supported yet)

Unused, set to zero

Table 41: Host Communication Flags

Dual-Port Memory Definitions 55/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Host Communication Flags (Application " netX System)

Bit No. Definition / Description

0, 1 Reserved, set to 0
2 Host Change Of State Command (HCF_HOST_COS_CMD)

The HCF_HOST_COS_CMD flag signals a change in the state of the host application. A
new state is set in the ulApplicationCOS variable in the communication control block (see
page 57). The protocol stack on the netX then toggles the NCF_HOST_COS_ACK flag in
the netX communication flags back acknowledging that the new state has been read. At
initialization time, this flag is cleared.

3 Host Change Of State Acknowledge (HCF_NETX_COS_ACK)
The HCF_NETX_COS_ACK flag is used by host application to indicate that the new state of
the protocol stack has been read. At initialization time, this flag is cleared.

4 Send Mailbox Command (HCF_SEND_MBX_CMD)
Both the HCF_SEND_MBX_CMD flag and the NCF_SEND_MBX_ACK flag are used
together to transfer non-cyclic packages between the application and the protocol stack. At
initialization time, this flag is cleared.

5 Receive Mailbox Acknowledge (HCF_RECV_MBX_ACK)
Both the HCF_RECV_MBX_ACK flag and the NCF_RECV_MBX_CMD flag are used
together to transfer non-cyclic packages between the protocol stack and the application. At
initialization time, this flag is cleared.

6 Process Data 0 Out Command (HCF_PD0_OUT_CMD)
Both the HCF_PD0_OUT_CMD flag and the NCF_PD0_OUT_ACK flag are used together
to transfer cyclic output data from the application to the protocol stack. At initialization time,
this flag may be set, depending on the data exchanged mode.

7 Process Data 0 In Acknowledge (HCF_PD0_IN_ACK)
Both the HCF_PD0_IN_ACK flag and the NCF_PD0_IN_CMD flag are used together to
transfer cyclic input data from the protocol stack to the application. At initialization time, this
flag may be set, depending on the data exchanged mode.

8 Process Data 1 Out Command (HCF_PD1_OUT_CMD, not supported yet)
Both the HCF_PD1_OUT_CMD flag and the NCF_PD1_OUT_ACK flag are used together
to transfer cyclic output data from the application to the protocol stack. At initialization time,
this flag may be set, depending on the data exchanged mode.

9 Process Data 1 In Acknowledge (HCF_PD1_IN_ACK, not supported yet)
Both the HCF_PD1_IN_ACK flag and the NCF_PD1_IN_CMD flag are used together to
transfer cyclic input data from the protocol stack to the application. At initialization time, this
flag may be set, depending on the data exchanged mode.

10 … 15 Reserved, set to 0

Table 42: Host Communication Flags

NOTE If accessed in 8-bit mode, bits 15 … 8 are not available.

Dual-Port Memory Definitions 56/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.3 Reserved Block

The handshake register could be moved from the handshake channel to the beginning of the
communication channel area. It is always available in the default memory map (see page 51). Locating
the handshake block in the channel section of the dual-port memory is not supported yet and therefore
set to zero.

Communication Handshake Block

Offset Type Name Description

0x0000
… 0x0007 UINT8 abReserved[8] Reserved, Set to Zero

Table 43: Communication Handshake Block

Communication Handshake Block Structure Reference
typedef struct NETX_HANDSHAKE_BLOCKtag
{
 UINT8 abReserved[8];
} NETX_HANDSHAKE_BLOCK;

Dual-Port Memory Definitions 57/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.4 Control Block

The control block of a dual-port memory features a watchdog function to allow the operating system
running on the netX supervise the host application and vice versa. The control area is always present
in the dual-port memory. This block can also be read using the mailbox interface (see page 193 for
details).

Control Block

Offset Type Name Description

0x0008 UINT32 ulApplicationCOS

Application Change Of State
State Of The Application Program
READY, BUS ON, INITIALIZATION, LOCK
CONFIGURATION (see page 57)

0x000C UINT32 ulDeviceWatchdog
Device Watchdog
Host System Writes, Protocol Stack Reads
(see page 58)

Table 44: Communication Control Block

Communication Control Block Structure Reference
typedef struct NETX_CONTROL_BLOCKtag
{
 UINT32 ulApplicationCOS;
 UINT32 ulDeviceWatchdog;
} NETX_CONTROL_BLOCK;

Application Change of State Register

The Application Change of State is a bit field. The host application uses this field in order to send
commands to the communication channel. Changing flags in this register requires the application also
to toggle the Host Change of State Command flag in the Host Communication Flags register (see
page 54). Only then, the netX protocol stack recognizes the change.

ulApplicationCOS – Host writes, netX reads

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 RCX_APP_COS_
APP_READY

 RCX_APP_COS_BUS_ON

 RCX_APP_COS_BUS_ON_ENABLE

 RCX_APP_COS_INIT

 RCX_APP_COS_INIT_ENABLE

 RCX_APP_COS_LOCK_CONFIG

 RCX_APP_COS_LOCK_CONFIG_ENABLE

 RCX_APP_COS_DMA

 RCX_APP_COS_DMA_ENABLE

unused, set to zero

Table 45: Application Change of State

Dual-Port Memory Definitions 58/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Application Change of State Flags (Application " netX System)

Bit No. Definition / Description

0 Application Ready (RCX_APP_COS_APP_READY, not supported yet)
If set, the host application indicates to the protocol stack that its state is Ready.

1 Bus On (RCX_APP_COS_BUS_ON)
Using the Bus On flag, the host application allows or disallows the firmware to open network
connections. This flag is used together with the Bus On Enable flag below. If set, the netX
firmware tries to open network connections; if cleared, no connections are allowed and
open connections are closed.

2 Bus On Enable (RCX_APP_COS_BUS_ON_ENABLE)
The Bus On Enable flag is used together with the Bus On flag above. If set, this flag
enables the execution of the Bus On command in the netX firmware (for details on the
Enable mechanism see page 23).

3 Initialization (RCX_APP_COS_INIT)
Setting the Initialization flag the application forces the protocol stack to restart and evaluate
the configuration parameter again. All network connections are interrupted immediately
regardless of their current state. If the database is locked, re-initializing the channel is not
allowed.

4 Initialization Enable (RCX_APP_COS_INIT_ENABLE)
The Initialization Enable flag is used together with the Initialization flag above. If set, this
flag enables the execution of the Initialization command in the netX firmware (for details on
the Enable mechanism see page 23).

5 Lock Configuration (RCX_APP_COS_LOCK_CONFIG)
If set, the host system does not allow the firmware to reconfigure the communication
channel. The database will be locked. The Configuration Locked flag in the channel status
block (see page 59) shows if the current database has been locked.

6 Lock Configuration Enable (RCX_APP_COS_LOCK_CONFIG_ENABLE)
The Lock Configuration Enable flag is used together with the Lock Configuration flag above.
If set, this flag enables the execution of the Lock Configuration command in the netX
firmware (for details on the Enable mechanism see page 23).

7 Turn on DMA Mode (RCX_APP_COS_DMA)
The host system sets this flag in order to turn on the DMA mode for the cyclic process data
input / output image 0 (abPd0Output and abPd0Input).

8 Turn on DMA Mode Enable (RCX_APP_COS_DMA_ENABLE)
The DMA Enable flag is used together with the DMA flag above. If set, this flag enables the
execution of the DMA command in the netX firmware (for details on the Enable mechanism
see page 23).

9 … 31 Reserved, set to 0

Table 46: Application Change of State

Device Watchdog

The protocol stack supervises the host system using the watchdog function. If the application fails to
copy the value from the host watchdog location (page 59) to the device watchdog location (page 57),
the protocol stack assumes that the host system has some sort of problem and interrupts all network
connections immediately regardless of their current state. For details on the watchdog function, refer
to section 4.15 on page 168.

Dual-Port Memory Definitions 59/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.5 Common Status Block

The common status block contains information fields that are common to all protocol stacks. The
status block is always present in the dual-port memory. This block can also be read using the mailbox
interface (see page 196 for details).

3.2.5.1 All Implementations

The structure outlined below is common to all protocol stacks.

Common Status Block

Offset Type Name Description

0x0010 UINT32 ulCommunicationCOS

Communication Change of State
READY, RUN, RESET REQUIRED, NEW
CONFIG AVAILABLE, CONFIG LOCKED
(see page 60)

0x0014 UINT32 ulCommunicationState
Communication State
OFFLINE, STOP, IDLE, OPERATE
(see page 61)

0x0018 UINT32 ulCommunicationError
Communication Error
Unique Error Number According to Protocol Stack
(see page 62)

0x001C UINT16 usVersion
Version
Version Number of this Structure: 0x002
(see page 62)

0x001E UINT16 usWatchdogTime Watchdog Time
Configured Watchdog Time (see page 62)

0x0020 UINT8 bPDInHskMode
Handshake Mode
Input Process Data Handshake Mode
(see page 63)

0x0021 UINT8 bPDInSource Handshake Mode
Reserved, set to zero

0x0022 UINT8 bPDOutHskMode
Handshake Mode
Output Process Data Handshake Mode
(see page 63)

0x0023 UINT8 bPDOutSource Handshake Mode
Reserved, set to zero

0x0024 UINT32 ulHostWatchdog

Host Watchdog
Joint Supervision Mechanism
Protocol Stack Writes, Host System Reads
(see page 63)

0x0028 UINT32 ulErrorCount
Error Count
Total Number of Detected Error Since Power-Up
or Reset (see page 63)

0x002C UINT8 bErrorLogInd Number of available Log Entries
Not supported yet (see page 63)

0x002D UINT8 bErrorPDInCnt Number of input process data handshake errors

0x002E UINT8 bErrorPDOutCnt Number of output process data handshake errors

0x002F UINT8 bErrorSyncCnt Number of synchronization handshake errors
Not supported yet

0x0030 UINT8 bSyncHskMode Synchronization Handshake Mode
Not supported yet

Dual-Port Memory Definitions 60/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Common Status Block

Offset Type Name Description

0x0031 UIN8 bSyncSource Synchronization Source
(see page 63)

0x0032 UINT16 ausReserved[3] Reserved
Set to 0

Table 47: Common Status Block

Common Status Block Structure Reference
typedef struct NETX_COMMON_STATUS_BLOCKtag
{
 UINT32 ulCommunicationCOS;
 UINT32 ulCommunicationState;
 UINT32 ulCommunicationError;
 UINT16 usVersion;
 UINT16 usWatchdogTime;
 UINT8 bPDInHskMode;
 UINT8 bPDInSource;
 UINT8 bPDOutHskMode;
 UINT8 bPDOutSource;
 UINT32 ulHostWatchdog;
 UINT32 ulErrorCount;
 UINT8 bErrorLogInd;
 UINT8 bErrorPDInCnt;
 UINT8 bErrorPDOutCnt;
 UINT8 bErrorSyncCnt;
 UINT8 bSyncHskMode;
 UINT8 bSyncSource;
 UINT16 ausReserved[3];
 union
 {
 NETX_MASTER_STATUS tMasterStatusBlock; /* for master implementation */
 UINT32 aulReserved[6]; /* otherwise reserved */
 } uStackDepended;
} NETX_COMMON_STATUS_BLOCK;

Communication Change of State Register (All Implementations)

The Communication Change of State register is a bit field. It contains information about the current
operating status of the communication channel and its firmware. Every time the status changes, the
netX protocol stack toggles the netX Change of State Command flag in the netX communication flags
register (see page 52). The application then has to toggle the netX Change of State Acknowledge flag
back acknowledging the new state.

Dual-Port Memory Definitions 61/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

ulCommunicationCOS – netX writes, Host reads

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 RCX_COMM_COS_
READY

 RCX_COMM_COS_RUN

 RCX_COMM_COS_BUS_ON

 RCX_COMM_COS_CONFIG_LOCKED

 RCX_COMM_COS_CONFIG_NEW

 RCX_COMM_COS_RESTART_REQUIRED

 RCX_COMM_COS_RESTART_REQUIRED_ENABLE

 RCX_COMM_COS_DMA

Unused, set to zero

Table 48: Communication State of Change

Communication Change of State Flags (netX System " Application)

Bit No. Definition / Description

0 Ready (RCX_COMM_COS_READY)
The Ready flag is set as soon as the protocol stack is started properly. Then the protocol
stack is awaiting a configuration. As soon as the protocol stack is configured properly, the
Running flag is set, too.

1 Running (RCX_COMM_COS_RUN)
The Running flag is set when the protocol stack has been configured properly. Then the
protocol stack is awaiting a network connection. Now both the Ready flag and the Running
flag are set.

2 Bus On (RCX_COMM_COS_BUS_ON)
The Bus On flag is set to indicate to the host system whether or not the protocol stack has
the permission to open network connections. If set, the protocol stack has the permission to
communicate on the network; if cleared, the permission was denied and the protocol stack
will not open network connections.

3 Configuration Locked (RCX_COMM_COS_CONFIG_LOCKED)
The Configuration Locked flag is set, if the communication channel firmware has locked the
configuration database against being overwritten. Re-initializing the channel is not allowed
in this state. To unlock the database, the application has to clear the Lock Configuration flag
in the control block (see page 57).

4 Configuration New (RCX_COMM_COS_CONFIG_NEW)
The Configuration New flag is set by the protocol stack to indicate that a new configuration
became available, which has not been activated. This flag may be set together with the
Restart Required flag.

5 Restart Required (RCX_COMM_COS_RESTART_REQUIRED)
The Restart Required flag is set when the channel firmware requests to be restarted. This
flag is used together with the Restart Required Enable flag below. Restarting the channel
firmware may become necessary, if a new configuration was downloaded from the host
application or if a configuration upload via the network took place.

6 Restart Required Enable (RCX_COMM_COS_RESTART_REQUIRED_ENABLE)
The Restart Required Enable flag is used together with the Restart Required flag above. If
set, this flag enables the execution of the Restart Required command in the netX firmware
(for details on the Enable mechanism see page 23).

7 DMA Mode On (RCX_COMM_COS_DMA)
The protocol stack sets this flag in order to signal to the host application that the DMA mode
is turned on.

8 … 31 Reserved, set to 0

Table 49: Communication State of Change

Dual-Port Memory Definitions 62/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Communication State (All Implementations)

The communication state field contains information about the current device status in terms of network
communication. Depending on the implementation, all or a subset of the definitions below is
supported.

Value Definition / Description

0x00000000 UNKNOWN
0x00000001 OFFLINE
0x00000002 STOP
0x00000003 IDLE
0x00000004 OPERATE
Other values are reserved

Table 50: Communication State

Communication Channel Error (All Implementations)

This field holds the current error code of the communication channel. If the cause of error is resolved,
the communication error field is set to zero (= RCX_S_OK) again. Not all of the error codes are
supported in every implementation.

Structure Version (All Implementations)

The version field holds version of this structure. It starts with one; zero is not defined.

Value Definition / Description

0x0002 STRUCTURE VERSION
In version 2:
 Added bPDInHskMode, bPDInSource, bPDOutHskMode, bPDOutSource
 Added bErrorLogInd, bErrorPDInCnt, bErrorPDOutCnt,
 bErrorSyncCnt, bSyncHskMode, bSyncSource

Table 51: Structure Version

Watchdog Timeout (All Implementations)

This field holds the configured watchdog timeout value in milliseconds. The application may set its
watchdog trigger interval accordingly. If the application fails to copy the value from the host watchdog
location to the device watchdog location, the protocol stack will interrupt all network connections
immediately regardless of their current state. For details, see page 168.

Dual-Port Memory Definitions 63/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Handshake Mode

The protocol stack supports different handshake mechanisms to synchronize process data exchange
with the host application. Depending on the configured mode, this mechanism insures data
consistency over the entire data image and helps synchronizing host application and network. This
register holds the configured handshake mode. For details on the handshake mechanism refer to
section 4.2 on page 94.

Value Definition / Description

0x00 For compatibility reasons
This value is identical to 0x04 – Buffered Host Controlled IO Data Transfer

0x02 Buffered Device Controlled IO Data Transfer
0x03 Uncontrolled Mode
0x04 Buffered Host Controlled IO Data Transfer
Other values are reserved

Table 52: Handshake Mode

Host Watchdog (All Implementations)

The protocol stack supervises the host system using the watchdog function. If the application fails to
copy the value from the device watchdog location to the host watchdog location (page 57), the
protocol stack assumes that the host system has some sort of problem and shuts down all network
connections. For details on the watchdog function, refer to section 4.15 on page 59.

Error Count (All Implementations)

This field holds the total number of errors detected since power-up, respectively after reset. The
protocol stack counts all sorts of errors in this field no matter if they were network related or caused
internally. After power cycling, reset or channel initialization this counter is being cleared again.

Error Log Indicator (All Implementations)

Not supported yet: The error log indicator field holds the number of entries in the internal error log. If
all entries are read from the log, the field is set to zero.

Number of Input Process Data Handshake Errors

TBD

Number of Output Process Data Handshake Errors

TBD

Number of Synchronization Handshake Errors

This counter will be incremented if the device detects a not handled synchronization indication. This
field is not supported yet.

Synchronization Status

This field is reserved for future use.

Dual-Port Memory Definitions 64/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.5.2 Master Implementation

In addition to the Common Status Block outlined on page 59, a master firmware maintains the
following field. In slave protocol implementations this field is reserved for future use and set to zero.

Master Status

Start Offset Type Name Description

0x0010 Structure See common structure in Table 47

0x0038 UINT32 ulSlaveState Slave State
OK, FAILED (At Least One Slave) (see page 65)

0x003C UINT32 ulSlaveErrLogInd
Slave Error Log Indicator
Slave Diagnosis Data Available:
EMPTY, AVAILABLE (see page 65)

0x0040 UINT32 ulNumOfConfig
Slaves

Configured Slaves
Number of Configured Slaves On The Network
(see page 65)

0x0044 UINT32 ulNumOfActive
Slaves

Active Slaves
Number of Slaves Running Without Problems
(see page 65)

0x0048 UINT32 ulNumOfDiagSlaves
Faulted Slaves
Number of Slaves Reporting Diagnostic Issues
(see page 65)

0x004C UINT32 ulReserved Reserved
Set to 0

Table 53: Master Status

Master Status Structure Reference
typedef struct NETX_MASTER_STATUStag
{
 UINT32 ulSlaveState; /* slave state */
 UINT32 ulSlaveErrLogInd; /* slave error log Indicator */
 UINT32 ulNumOfConfigSlaves; /* number of configured slaves */
 UINT32 ulNumOfActiveSlaves; /* number of avtivated slaves */
 UINT32 ulNumOfDiagSlaves; /* number of faulted slaves */
 UINT32 ulReserved; /* */
} NETX_MASTER_STATUS;

Dual-Port Memory Definitions 65/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Slave State

The Slave State field indicates whether the master is in cyclic data exchange to all configured slaves.
If there is at least one slave missing or if the slave has a diagnostic request pending, the status
changes to FAILED. For protocols that support non-cyclic communication only, the slave state is set to
OK as soon as a valid configuration is found.

Value Definition / Description

0x00000000 UNDEFINED
0x00000001 OK

No fault
0x00000002 FAILED

At least one slave failed
Other values are reserved

Table 54: Slave State

Slave Error Log Indicator

Not supported yet: The error log indicator field holds the number of entries in the internal error log. If
all entries are read from the log, the field is set to zero.

Number of Configured Slaves

The firmware maintains a list of slaves to which the master has to open a connection. For example,
this list is derived from the configuration database created by SYCON.net. This field holds the number
of configured slaves.

Number of Active Slaves

The firmware maintains a list of slaves to which the master exchanges process data. This field holds
the number of active slaves. Ideally, the number of active slaves is equal to the number of configured
slaves. For certain fieldbus systems, it could be possible that a slave is shown as activated, but still
has a problem in terms of a diagnostic issue.

Number of Faulted Slaves

The firmware maintains a list of slaves that are missing on the network (although they are configured)
or report a diagnostic issue. As long as those indications are pending and not serviced, the field holds
a value unequal zero. If no more diagnostic information is pending, the field is set to zero again.

Other Elements

Today no structure elements for devices such as gateway type devices are defined. Those elements
may be included into or added to the structure when it becomes necessary in the future.

3.2.5.3 Slave Implementation

The slave firmware uses the common structure as outlined on page 59 only.

Dual-Port Memory Definitions 66/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.6 Extended Status Block (Protocol Specific)

The content of the channel specific status block is specific to the protocol stack and is defined in a
separate manual. Depending on the protocol executed on the netX, a status area may or may not be
used. It is always available in the default memory map (see page 51). This block can also be read
using the mailbox interface (see page 198 for details).

Extended Status Block (Channel Specific)

Offset Type Name Description

0x0050 UINT8 abExtendedStatus[172] Extended Status Area
Protocol Stack Specific Status Area

0x00FC UINT8 abReserved[3] Reserved, set to zero

0x00FF UINT8 bNumOfStateStruct Number of Structures
Number of Status Structures Following Below

0x0100 Structure tStatusStruct Status Structure Field
Status Field and its Properties

0x0108 Structure tStatusStruct Status Structure Field
Status Field and its Properties

… Structure tStatusStruct
Status Structure Field
Status Field and its Properties;
max. 32 Instances are Supported

… 0x01FF Unused Space is Set to Zero

Table 55: Extended Status Block

Extended Status Block Structure Reference
typedef struct NETX_EXTENDED_STATUS_BLOCKtag
{
 UINT8 abExtendedStatus[172];
 UINT8 abReserved[3];
 UNIT8 bNumStateStruct; /* number n of structures below */
 NETX_STATUS_STRUCTURE atStateStruct[32]; /* status structures, n-fold */
} NETX_EXTENDED_STATUS_BLOCK;

Extended Status Field

The definition of the Extended Status field structure is specific to the protocol stack and contains
additional information about network status (i.e. flags, error counters, events etc.). The exact definition
of this structure can be found in related Protocol API Manual. This size of the structure is 172 bytes.

Number of Status Structures

This field holds the number of Status Structures that follow this field. Up to 32 structures can be
defined. This field is set to zero if no such structure is defined.

Dual-Port Memory Definitions 67/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Status Structures

The Status Structures tStatusStruct are a collection of descriptors for a specific memory area in the
DPM. This location is used to maintain various protocol, device or implementation specific status
fields. The Status Structures contain definitions in terms of type, number of valid entries and start
offset of these fields in the communication channel. If the status information is configured to be located
in the IO data image of the channel, the status information and the IO data image are consistent and
updated together according to the configured handshake mode.

Extended Status Block (Channel Specific)

Offset Type Name Description

0x0100 + n UINT8 bStateArea Area
Location of the external state information

0x0101 + n UINT8 bStateTypeID
Type ID
Defines meaning and size of entity within this
state area

0x0102 + n UINT16 usNumOfStateEntries Number of State Entries
Number of state entries in the state area

0x0104 + n UINT32 ulStateOffset Byte start offset in the defined memory area

With n = 0, 8, 16, 24 … 248

Table 56: Extended State Structure

Status Structure Reference
typedef struct NETX_STATE_STRUCTURE_Ttag
{
 UINT8 bStateArea; /* location of state information */
 UINT8 bStateTypeID; /* meaning and size of entity */
 UINT16 usNumOfStateEntries; /* number of state entries */
 UINT32 ulStateOffset; /* byte start offset */
} NETX_STATE_STRUCTURE_T

Sub Block Type / Status Area

This field is used to identify the type of sub block in which the status field is located. The following
location types are defined.

Value Definition / Description
0 Input Data Image
1 High Priority Input Area
8 Output Data Image
9 High Priority Output Data Image
Other values are reserved

Table 57: Sub Block Type / Status Area

Dual-Port Memory Definitions 68/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Status Type ID

The Status Type ID indicates the type of the status information field. It implicitly defines meaning and
size of the entity within state field. This could be i.e. a list of one or more bits or even bytes per IO data
unit corresponding to the status definition of the specific protocol. The following types of status
information are defined. The list of supported type IDs can be found in the related Protocol API
manual.

Value Definition / Description
1 List of Configured Slaves (Bit Field)
2 List of Activated Slaves (Bit Field)
3 List of Faulted Slaves (Bit Field)
Other values are reserved

Table 58: Status Type ID

NOTE Not all of the status types are supported by every protocol stack.

Number of Status Entries

This field holds the number of the entries provided in the status information field. This number equals
to zero if no state entries are provided in the status information field. The status information field can
hold up to 65535 entries.

Status Offset

This field holds the offset to the start of the status information field location. The status information
field itself is located in this communication channel, in the area defined by “Sub Block Type”, begins at
“Status Offset” and consists of “Number of State Entries”. The information content is defined by
“Status Type ID”. The offset address is related to the beginning of corresponding communication
channel start address.

NOTE Depending on bStateTypeID and usNumOfStateEntries, the state field always allocates
memory space aligned to 32 bit entities (rounded up to the next double word).

Dual-Port Memory Definitions 69/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Example

This is an example of the state structures in the extended status block and state field definitions for
communication channel 0.

Figure 5: Example Status Structures

Dual-Port Memory Definitions 70/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

In the above example, the first entry in the Status Structure indicates that there is a status field located
in the output data image (bStateArea = 8) and ulStateOffset points to a location within the output data
image. bStateTypeID holds the type of information located in the output data image (list of configured
slaves, list of activated slaves or list of faulted slaves). The next entry, too, points to a location within
the output data image (bStateArea = 8), and so on.

NOTE If the status field is configured to be located in the IO data image of the channel, the status
filed and the IO data image are consistent and updated together according to the handshake
mode.

Dual-Port Memory Definitions 71/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.7 Channel Mailbox

The send and receive mailbox areas are used by fieldbus protocols utilizing a non-cyclic data
exchange mechanism. Another use of the mailbox system is to provide access to the firmware running
on the netX chip itself. The send mailbox is used to transfer data to the network or to the protocol
stack. The receive mailbox is used to transfer data from the network or from the protocol
stack. Fieldbus protocols utilizing non-cyclic data exchange mechanism are for example Modbus Plus
or Ethernet TCP/IP.

NOTE Each mailbox can hold one packet at a time. The netX firmware stores packets that are not
retrieved by the host application in a packet queue. This queue has limited space and may
fill up so new packets get lost. To avoid this, it is strongly recommended to frequently
empty the mailbox, even if the host application does not expect any packets at all.
Unexpected command packets should be returned to the sender with an Unknown
Command in the status field; unexpected reply messages can be discarded. For structure
information of the packet, see page 79 for details.

The size of send and receive mailbox is 1596 bytes each in the default memory layout. The mailboxes
are accompanied by counters that hold the number of waiting packages (for the receive mailbox),
respectively the number of packages that can be accepted (for the send mailbox).

Dual-Port Memory Definitions 72/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

A send/receive mailbox is always available in the communication channel. See page 79 for details on
mailboxes and packets.

Channel Mailboxes

Offset Type Name Description

0x0200 UINT16 usPackagesAccepted Packages Accepted
Number of Packages that can be Accepted

0x0202 UINT16 usReserved Reserved
Set to 0

0x0204 UINT8 abSendMbx[1596]
Send Mailbox
Non Cyclic Data To The Network or To the
Protocol Stack

0x0840 UINT16 usWaitingPackages
Packages Waiting
Counter of Packages that are Waiting to be
Processed

0x0842 UINT16 usReserved Reserved
Set to 0

0x0844 UINT8 abRecvMbx[1596]
Receive Mailbox
Non Cyclic Data From the Network or From the
Protocol Stack

Table 59: Channel Mailboxes

Channel Mailboxes Structure Reference
typedef struct NETX_SEND_MAILBOX_BLOCKtag
{
 UINT16 usPackagesAccepted;
 UINT16 usReserved;
 UINT8 abSendMbx[1596];
} NETX_SEND_MAILBOX_BLOCK;

typedef struct NETX_RECV_MAILBOX_BLOCKtag
{
 UINT16 usWaitingPackages;
 UINT16 usReserved;
 UINT8 abRecvMbx[1596];
} NETX_RECV_MAILBOX_BLOCK;

Dual-Port Memory Definitions 73/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.8 High Priority Output / Input Data Image

Not supported yet: The high priority output and input areas are used by fieldbus protocols for fast
cyclic process data. A high priority output and input data block is always present in the default memory
map (see page 51). This block can also be read using the mailbox interface (see page 80 for details).

High Priority Output / Input Data Image

Offset Type Name Description

0x0E80 UINT8 abPd1Output[64] High Priority Output Data Image
High Priority Cyclic Data To The Network

0x0EC0 UINT8 abPd1Input[64] High Priority Input Data Image
High Priority Cyclic Data From The Network

Table 60: High Priority Output / Input Data Image

In case of a network fault (e.g. disconnected network cable), a slave firmware keeps the last state of
the input data image and clears the Communicating flag in netX communication flags (see page 52).
The input data should not be evaluated.

3.2.9 Reserved Area

This area is reserved. This block is always available in the default memory map (see page 51).

Reserved Area

Offset Type Name Description

0x0F00 UINT8 abReserved[256] Reserved
Set to 0

Table 61: Reserved Area

Dual-Port Memory Definitions 74/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.2.10 Process Data Output/Input Image

The output and input data blocks are used by fieldbus protocols that support cyclic data exchange.
The output data image is used to transfer cyclic data to the network. The input data image is used to
transfer cyclic data from the network. Fieldbus protocols using cyclic data exchange mechanism
are PROFIBUS DPV0 or DeviceNet.

The size of the output and input data image are 5760 byte each in the default memory map. The
output and input data block are always available in the default memory map (see page 51).

Output and Input Data Image

Offset Type Name Description

0x1000 UINT8 abPd0Output[5760] Output Data Image
Cyclic Data To The Network

0x2680 UINT8 abPd0Input[5760] Input Data Image
Cyclic Data From The Network

Table 62: Output/Input Data Image

NOTE In case of a network fault (e.g. disconnected network cable), a slave firmware keeps the last
state of the input data and clears the Communicating flag in netX communication flags (see
page 52). In this case the input data should not be evaluated.

This block can also be read using the mailbox interface (see page 80 for details).

Dual-Port Memory Definitions 75/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

3.3 Handshake Channel
In the default layout, the handshake channel follows the system channel. It has a size of 256 bytes
and starts at address 0x0200. The handshake channel provides a mechanism that allows synchro-
nizing data transfer between the host system and the netX dual-port memory.

The handshake channel brings all handshake registers from other channel blocks together in one
location. Technically this is a preferred solution for PC based applications. There might be other
requirements in the future. Then the handshake register could be moved from the handshake block to
the beginning of each of the communication channel. For the default layout, the communication
channels already have a reserved space for the handshake available (see page 51).

There are three types of handshake cells.
! System Handshake Cells

are used by the host system to perform reset to the netX operating system or to indicate the
current state of either the host system or the netX

! Communication Channel Handshake Cells
are used to synchronize cyclic and non-cyclic data exchange over IO data images and mailboxes
for communication channels

! Application Handshake Cells
are not supported yet

NOTE If not mentioned otherwise, the offset addresses convention used in this section are always
related to the beginning of corresponding channel start address.

The firmware running on the netX chip can configure the handshake channel to be 16 bit or 8 bit wide.
Changing from one setting to another will not only change the width, it will also change the offset
addresses of these registers. The current width of the handshake registers can be found on page 39 in
section 3.1.2.

The handshake flags of the system channel are always 8 bit wide.

Please note: the data width of the handshake register is not the same as the width of the physical
interface used to access the dual-port memory.

NOTE In interrupt mode, when an 8 bit-host performs a read access to any of the 16 bit wide
handshake registers, the netX releases the interrupt as soon as the high byte or the low byte
was read. The read order (high byte first or low byte first) is irrelevant. An 8 bit-host shall use
polling mode instead of interrupt mode.

For compatibility reasons, the cells for the handshake block itself are present but not used and set to
zero. The application channels 0 and 1 are not supported yet and set to zero.

Dual-Port Memory Definitions 76/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Handshake Registers, 16 Bit Wide

If configured for 16 bit data width, the locations of the handshake register are as follows.

Handshake Channel

Offset Type Name Description

0x0000 UINT8 abData[2] System Channel, reserved, set to 0

0x0002 UINT8 bNetxFlags netX System Flags

0x0003 UINT8 bHostFlags Host System Flags

0x0004 UINT16 usNetxFlags Handshake Channel, reserved, set to 0

0x0006 UINT16 usHostFlags Handshake Channel, reserved, set to 0

0x0008 UINT16 usNetxFlags netX Communication Flags Channel 0

0x000A UINT16 usHostFlags Host Communication Flags Channel 0

0x000C UINT16 usNetxFlags netX Communication Flags Channel 1

0x000E UINT16 usHostFlags Host Communication Flags Channel 1

0x0010 UINT16 usNetxFlags netX Communication Flags Channel 2

0x0012 UINT16 usHostFlags Host Communication Flags Channel 2

0x0014 UINT16 usNetxFlags netX Communication Flags Channel 3

0x0016 UINT16 usHostFlags Host Communication Flags Channel 3

0x0018 UINT16 usNetxFlags Application Channel 0, not supported, set to 0

0x001A UINT16 usHostFlags Application Channel 0, not supported, set to 0

0x001C UINT16 usNetxFlags Application Channel 1, not supported, set to 0

0x001E UINT16 usHostFlags Application Channel 1, not supported, set to 0

0x0020 UINT16 ausReserved[224] Reserved, set to 0

Table 63: Handshake Channel (16 Bit Wide)

Dual-Port Memory Definitions 77/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Handshake Registers, 8 Bit Wide

If configured for 8 bit data width, the locations of the handshake register are as follows.

Handshake Channel

Offset Type Name Description

0x0000 UINT8 abData[2] Reserved, set to 0

0x0002 UINT8 bNetxFlags netX System Flags

0x0003 UINT8 bHostFlags Host System Flags

0x0004 UINT8 abData[2] Reserved, set to 0

0x0006 UINT8 bNetxFlags Handshake Channel, reserved, set to 0

0x0007 UINT8 bHostFlags Handshake Channel, reserved, set to 0

0x0008 UINT8 abData[2] Reserved, set to 0

0x000A UINT8 bNetxFlags netX Communication Flags Channel 0

0x000B UINT8 bHostFlags Host Communication Flags Channel 0

0x000C UINT8 abData[2] Reserved, set to 0

0x000E UINT8 bNetxFlags netX Communication Flags Channel 1

0x000F UINT8 bHostFlags Host Communication Flags Channel 1

0x0010 UINT8 abData[2] Reserved, set to 0

0x0012 UINT8 bNetxFlags netX Communication Flags Channel 2

0x0013 UINT8 bHostFlags Host Communication Flags Channel 2

0x0014 UINT8 abData[2] Reserved, set to 0

0x0016 UINT8 bNetxFlags netX Communication Flags Channel 3

0x0017 UINT8 bHostFlags Host Communication Flags Channel 3

0x0018 UINT8 abData[2] Reserved, set to 0

0x001A UINT8 bNetxFlags Application Channel 0, not supported, set to 0

0x001B UINT8 bHostFlags Application Channel 0, not supported, set to 0

0x001C UINT8 abData[2] Reserved, set to 0

0x001E UINT8 bNetxFlags Application Channel 1, not supported, set to 0

0x001F UINT8 bHostFlags Application Channel 1, not supported, set to 0

0x0020 UINT8 abData[448] Reserved, set to 0

Table 64: Handshake Channel (8 Bit Wide)

Dual-Port Memory Definitions 78/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Handshake Channel Structure Reference
typedef union NETX_HANDSHAKE_REGtag
{
 struct
 {
 UINT8 abData[2];
 UINT8 bNetxFlags; /* netX writes, 8 bit wide */
 UINT8 bHostFlags; /* host writes, 8 bit wide */
 } t8Bit;
 struct
 {
 UINT16 usNetxFlags; /* netX writes, 16 bit wide */
 UINT16 usHostFlags; /* host writes, 16 bit wide */
 } t16Bit;
 UINT32 ulReg;
} NETX_HANDSHAKE_REG;

typedef struct NETX_HANDSHAKE_CHANNELtag
{
 NETX_HANDSHAKE_REG tSysFlags; /* system handshake flags */
 NETX_HANDSHAKE_REG tHskFlags; /* not used */
 NETX_HANDSHAKE_REG tCommFlags0; /* channel 0 handshake flags */
 NETX_HANDSHAKE_REG tCommFlags1; /* channel 1 handshake flags */
 NETX_HANDSHAKE_REG tCommFlags2; /* channel 2 handshake flags */
 NETX_HANDSHAKE_REG tCommFlags3; /* channel 3 handshake flags */
 NETX_HANDSHAKE_REG tAppFlags0; /* not supported yet */
 NETX_HANDSHAKE_REG tAppFlags1; /* not supported yet */
 UINT32 aulReserved[56];
} NETX_HANDSHAKE_CHANNEL;

3.4 Application Channel
This application channel is reserved for user specific implementations. An application channel is not
yet supported.

Dual-Port Memory Function 79/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4 Dual-Port Memory Function

4.1 Non-Cyclic Data Exchange
The mailbox of a communication channel or system channel respectively, has two areas that are used
for non-cyclic message transfer to and from the netX.

! Send Mailbox (System / Communication Channel)
Packet transfer from host system to netX firmware

! Receive Mailbox (System / Communication Channel)
Packet transfer from netX firmware to host system

For a communication channel, send and receive mailbox areas are used by fieldbus protocols
providing a non-cyclic data exchange mechanism. Another use of the mailbox system is to allow
access to the firmware running on the netX chip for diagnostic and identification purposes. The
send mailbox is used to transfer cyclic data to the network or to the netX. The receive
mailbox is used to transfer cyclic data from the network or from the netX. Fieldbus protocols
utilizing non-cyclic data exchange mechanism are for example Modbus Plus or Ethernet TCP/IP.

It depends on the function of the firmware whether or not a mailbox is used. The location of the system
mailbox and the channel mailbox is described on page 50 respectively on page 66.

NOTE Each mailbox can hold one packet at a time. The netX firmware stores packets that are not
retrieved by the host application in an internal packet queue. This queue has limited space
and may fill up so new packets maybe lost. To avoid these deadlock situations, it is strongly
recommended to empty the mailbox frequently, even if packets are not expected by the
host application. Unexpected command packets should be returned to the sender with an
Unknown Command in the status field; unexpected reply messages can be discarded.

Dual-Port Memory Function 80/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.1 Messages or Packets

The non-cyclic packets through the netX mailbox have the following structure.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 Destination Queue Handle

ulSrc UINT32 Source Queue Handle

ulDestId UINT32 Destination Queue Reference

ulSrcId UINT32 Source Queue Reference

ulLen UINT32 Packet Data Length (in Bytes)

ulId UINT32 Packet Identification As Unique Number

ulState UINT32 Status / Error Code

ulCmd UINT32 Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData Structure Information

 … … User Data
Specific To The Command

Table 65: Packet Structure

The size of a packet is always at least 40 bytes. Depending on the command, a packet may or may
not have a payload in the data field (tData). If present, the content of the data field is specific to the
command or reply, respectively.

Destination Queue Handler

The ulDest field identifies a task queue in the context of the netX firmware. The task queue represents
the final receiver of the packet and is assigned to a protocol stack. The ulDest field has to be filled out
in any case. Otherwise, the netX operating system cannot route the packet.

Source Queue Handler

The ulSrc field identifies the sender of the packet. In the context of the netX firmware (inter-task
communication) this field holds the identifier of the sending task. Usually, a driver uses this field for its
own handle, but it can hold any handle of the sending process. The receiving task does not evaluate
this field and passes it back unchanged to the originator of the packet.

Destination Identifier

The ulDestId field identifies the destination of an unsolicited packet from the netX firmware to the host
system. It can hold any handle that helps to identify the receiver. Its use is mandatory for unsolicited
packets. The receiver of unsolicited packets has to register for this service (details are TBD).

Dual-Port Memory Function 81/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Source Identifier

The ulSrcId field identifies the originator of a packet. This field is used by a host application, which
passes a packet from an external process to an internal netX task. The ulSrcId field holds the handle
of the external process. When netX operating system returns the packet, the application can identify
the packet and returns it to the originating process. The receiving task on the netX does not evaluate
this field and passes it back unchanged. For inter-task communication, this field is not used.

Length of Data Field

The ulLen field holds the size of the data field tData in bytes. It defines the total size of the packet’s
payload that follows the packet’s header. Note, that the size of the header is not included in ulLen.
Depending on the command or reply, respectively, a data field may or may not be present in a packet.
If no data field is used, the length field is set to zero.

Identifier

The ulId field is used to identify a specific packet among others of the same kind. That way the
application or driver can match a specific reply or confirmation packet to a previous request packet.
The receiving task does not change this field and passes it back to the originator of the packet. Its use
is optional in most of the cases. But it is mandatory for fragmented packets! Example: Downloading
big amounts of data that does not fit into a single packet. For fragmented packets the identifier field is
incremented by one for every new packet.

Status / Error Code

The ulSta field is used in response or confirmation packets. It informs the originator of the packet
about success or failure of the execution of the command. The field may be also used to hold status
information in a request packet. Status and error codes that may be returned in ulSta are outlined in
section 7 on page 221.

Command / Response

The ulCmd field holds the command code or the response code, respectively. The command/response
is specific to the receiving task. If a task is not able to execute certain commands, it will return the
packet with an error indication. A command is always even (the least significant bit is zero). In the
response packet, the command code is incremented by one indicating a confirmation to the request
packet.

Extension

The extension field ulExt is used for controlling packets that are sent in a sequenced or fragmented
manner. The extension field indicates the first, last or a packet of a sequence. If fragmentation of
packets is not required, the extension field is set to zero.

Routing Information

The ulRout field is used internally by the netX firmware only. It has no meaning to a driver type
application and therefore set to zero.

User Data Field

The tData field contains the payload of the packet. Depending on the command or reply, respectively,
a packet may or may not have a data field. The length of the data field is given in the ulLen field.

Dual-Port Memory Function 82/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
typedef struct RCX_PACKET_HEADERtag
{
 UINT32 ulDest; /* Destination Queue Handler */
 UINT32 ulSrc; /* Source Queue Handler */
 UINT32 ulDestId; /* Destination Identifier */
 UINT32 ulSrcId; /* Source Identifier */
 UINT32 ulLen; /* Length of Data Field */
 UINT32 ulId; /* Packet Identifier */
 UINT32 ulState; /* Status / Error Code */
 UINT32 ulCmd; /* Command / Response */
 UINT32 ulExt; /* Extension Field */
 UINT32 ulRout; /* Routing Information */
} RCX_PACKET_HEADER;

4.1.2 About System and Channel Mailbox

The preferred way to address the netX operating system rcX is through the system mailbox and the
preferred way to address a protocol stack is through its channel mailbox. All mailboxes, however, have
a mechanism to route packets to any communication channel or the system channel. Therefore, the
destination identifier ulDest in a packet header has to be filled in according to the targeted receiver.
See the following image.

netX OS
rcX

AP Task 1

AP Task 2

ul
D

es
t =

 0
x0

0

ul
D

es
t =

 0
x0

1

ul
D

es
t =

 0
x0

2

ul
D

es
t =

 0
x2

0

ul
D

es
t =

 0
x0

0

ul
D

es
t =

 0
x0

1

ul
D

es
t =

 0
x0

2

ul
D

es
t =

 0
x2

0

ul
D

es
t =

 0
x0

0

ul
D

es
t =

 0
x0

1

ul
D

es
t =

 0
x0

2

ul
D

es
t =

 0
x2

0

System
Mailbox

Channel 1
Mailbox

Channel 0
Mainbox

Figure 6: Use of ulDest in Channel and System Mailbox

The above figure and table below illustrates the use of the destination identifier ulDest.

Dual-Port Memory Function 83/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

ulDest Description

0x00000000 Packet is passed to the netX operating system rcX

0x00000001 Packet is passed to communication channel 0

0x00000002 Packet is passed to communication channel 1

0x00000003 Packet is passed to communication channel 2

0x00000004 Packet is passed to communication channel 3

0x00000020 Packet is passed to ‘local’ communication or system channel

Else Reserved, Do Not Use

Table 66: Use of ulDest

A word about the channel identifier 0x00000020 (= Channel Token). The Channel Token is valid for
any mailbox. That way the application uses the same identifier for all packets without actually knowing
which mailbox or communication channel is applied. The packet stays ‘local’. The system mailbox is a
little bit different, because it is used to communicate to the netX operating system rcX. The rcX has its
own range of valid commands codes and differs from the communication channels.

If there is a reply packet, the netX operating system returns it to the same mailbox the request packet
went through. Consequently, the host application has to return its reply packet to the mailbox the
request was received from.

4.1.3 Command and Acknowledge

To ensure data consistency over the content of a mailbox, the firmware uses a pair of flags, each for
one direction. Engaging these flags gives access rights alternating to either the user application or the
netX firmware. If both application and netX firmware would access the mailbox at the same time, it
may cause loss of data or inconsistency.

As a general rule, if both flags have the same value (both are set or both are cleared), the process
which intends to write has access rights. If they have a different value, the process which intends to
read has access rights. The following table illustrates this mechanism.

Send Mailbox CMD Flag ACK Flag

Host System Has Write Access 0 0 netX Has NO Read Access

Host System Has NO Write Access 0 1 netX Has Read Access

Host System Has NO Write Access 1 0 netX Has Read Access

Host System Has Write Access 1 1 netX Has NO Read Access

Receive Mailbox CMD Flag ACK Flag

Host System Has NO Read Access 0 0 netX Has Write Access

Host System Has Read Access 0 1 netX Has NO Write Access

Host System Has Read Access 1 0 netX Has NO Write Access

Host System Has NO Read Access 1 1 netX Has Write Access

Table 67: Command and Acknowledge

Dual-Port Memory Function 84/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

The following flowcharts illustrates how the transfer mechanism (send and receive packets) works. In
order to send a packet, first the function checks if the size of the packet to be sent exceeds the
mailbox size. If both the Host Send Mailbox Command flag and the netX Send Mailbox Acknowledge
flag are either set or cleared, the host application is allowed to send the packet. When coping data to
mailbox is done, the host toggles the Host Send Mailbox Command flag to give control to the netX
firmware.

Send Packet

HCF_SEND_MBX_CMD = =
NCF_SEND_MBX_ACK?

Finish Fault

Copy Packet

Toggle
HCF_SEND_MBX_CMD

Wait for
NCF_SEND_MBX_ACK to

Change?

Timeout?

No

Yes

Yes

No

Yes No

Wait...

Packet Length < =
Mailbox Size?

Yes

No

HCF_SEND_MBX_CMD = =
NCF_SEND_MBX_ACK?

No

Yes

Figure 7: Send Packet Flowchart

Dual-Port Memory Function 85/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

In order to receive a packet, the function checks if the netX Receive Mailbox Command flag and the
Host Receive Mailbox Acknowledge flag have different values. If so, the host application is allowed to
access the mailbox. When coping data form mailbox is done, the host toggles the Host Receive
Mailbox Acknowledge flag to give control to the netX firmware.

Receive Packet

NCF_RECV_MBX_CMD = =
HCF_RECV_MBX_ACK?

Finish Fault

Copy Packet

Toggle
HCF_RECV_MBX_ACK

Wait for
NCF_RECV_MBX_CMD to

Change?

Timeout?

Yes

Yes

Yes

No

No

No

Wait...

NCF_RECV_MBX_CMD = =
HCF_RECV_MBX_ACK?

No

Yes

Figure 8: Receive Packet Flowchart

Dual-Port Memory Function 86/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.4 Using ulSrc and ulSrcId

Generally, a netX protocol stack is addressed through its communication channel mailbox. The
example below shows how a host application addresses a protocol stack running in the context of the
netX chip. The application is identified by a number (#444 in this example). The application consists of
three processes numbered #11, #22 and #33. These processes communicate through the channel
mailbox to the AP task of a protocol stack. See following image:

Application #444

netX Protocol stack
AP Task 1

P
ro

ce
ss

 #
22

P
ro

ce
ss

 #
33

P
ro

ce
ss

 #
11

Channel
Mainbox

Figure 9: Using ulSrc and ulSrcId

Example:

This example applies to command messages imitated by a process in the context of the host
application identified by number #444. If the process #22 sends a packet through the channel mailbox
to the AP task, the packet header has to be filled in as follows:

Destination Queue Handler ulDest = 32; /* 0x20: local channel mailbox */
Source Queue Handler ulSrc = 444; /* host application */
Destination Identifier ulDestId = 0; /* not used */
Source Identifier ulSrcId = 22; /* process number */

For packets through the channel mailbox, the application uses 32 (= 0x20, Channel Token) for the
destination queue handler ulDest. The source queue handler ulSrc and the source identifier ulSrcId
are used to identify the originator of a packet. The destination identifier ulDestId can be used to
address certain resources in the protocol stack. It is not used in this example. The source queue
handler ulSrc has to be filled in. Therefore its use is mandatory; the use of ulSrcId is optional.

The netX operating system passes the request packet to the protocol stack’s AP task. The protocol
stack then builds a reply to the packet and returns it to the mailbox. The application has to make sure
that the packet finds its way back to the originator (process #22 in the example).

Dual-Port Memory Function 87/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.5 How to Route rcX Packets

To route an rcX packet the source identifier ulSrcId and the source queues handler ulSrc in the packet
header hold the identification of the originating process. The router saves the original handle from
ulSrcId and ulSrc. The router uses a handle of its own choices for ulSrcId and ulSrc before it sends the
packet to the receiving process. That way the router can identify the corresponding reply packet and
matches the handle from that packet with the one stored earlier. Now the router replaces its handles
with the original handles and returns the packet to the originating process.

Dual-Port Memory Function 88/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.6 Client/Server Mechanism

4.1.6.1 Application as Client

The host application may send request packets to the netX firmware at any time (transition 1 " 2).
Depending on the protocol stack running on the netX, parallel packets are not permitted (see protocol
specific manual for details). The netX firmware sends a confirmation packet in return, signaling
success or failure (transition 3 " 4) while processing the request.

The host application has to register with the netX firmware in order to receive indication packets
(transition 5 " 6). Depending on the protocol stack, this is done either implicit (if application opens a
TCP/UDP socket) or explicit (if application wants to receive unsolicited DPV1 packets). Details on
when and how to register for certain events is described in the protocol specific manual. Depending on
the command code of the indication packet, a response packet to the netX firmware may or may not
be required (transition 7 " 8).

Figure 10: Transition Chart Application as Client

$ The host application sends request packets to the netX firmware.

% & The netX firmware sends a confirmation packet in return.

' (The host application receives indication packets from the netX firmware.

) * The host application sends response packet to the netX firmware (may not be required).

 Request Confirmation

 Indication Response

Application netX

$

%

&

'

(

)

*

Dual-Port Memory Function 89/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.6.2 Application as Server

The host application has to register with the netX firmware in order to receive indication packets
(unsolicited telegrams). Depending on the protocol stack, this is done either implicit (if application
opens a TCP/UDP socket) or explicit (if application wants to receive unsolicited DPV1 packets).
Details on when and how to register for certain events is described in the protocol specific manual.

When an appropriate event occurs and the host application is registered to receive such a notification,
the netX firmware passes an indication packet through the mailbox (transition 1 " 2). The host
application is expected to send a response packet back to the netX firmware (transition 3 " 4).

Figure 11: Transition Chart Application as Server

$ The netX firmware passes an indication packet through the mailbox.

% & The host application sends response packet to the netX firmware.
 Indication Response

Application netX

$

%

&

Dual-Port Memory Function 90/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.7 Transferring Fragmented Packets

The mechanism of transferring fragmented packets is used in situations, where a data block plus
packet header exceeds the size of the mailbox. The mechanism described in this section applies to
data blocks that reside in the context of a fieldbus protocol stack. It is not used to transfer files (e.g.
configuration up- or download) between a host application and the netX operating system rcX. How to
transfer files between application and netX is explained in section 4.10 Downloading Files to netX and
section 4.11 Uploading Files from netX.

Any request and response packet may be transferred in a fragmented manner without explicit mention
of it in other section of this manual or in the fieldbus related documentation. This is due to the variable
size of the mailboxes. Today for the default memory layout with its channel mailbox of almost 1600
byte, it is not very likely that packets need to be sent in a fragmented manner. But when the need
occurs (the mailbox appears to be too small and data block too big) the application on one side and
the netX firmware on the other shall be able to handle fragmented packets.

There might be an additional data header transferred in the data section tData of a fragmented packet.
This header may be transmitted more than once, depending on the implementation of the specific
protocol stack. Details of the implementation and whether or not a data header is being used can be
found in the documentation to the protocol stack.

NOTE When the size of a data block plus packet header would fit into a mailbox or packet at once,
the fragmented packet transport mechanism shall not be used.

4.1.7.1 Extension and Identifier Field

While transferring fragmented packets, two elements of the packet header receive special attention.
For one, there is the extension field ulExt. The field extension is used for controlling fragmented
packets. The extension field indicates a single packet or a packet of a sequence (first, middle or last).
The following definitions apply to the extension field.

Value Definition / Description

0x00000000 NO SEQUENCED PACKET
0x00000080 FIRST PACKET OF SEQUENCE
0x000000C0 SEQUENCED PACKET
0x00000040 LAST PACKET OF SEQUENCE

Table 68: Extension and Identifier Field

The other important field is the identifier field ulId. The identifier field is used to identify a specific
packet among others. It holds the sequence number, which gets incremented by one for every new
packet. The identifier field does not necessarily need to start with zero for a new sequence. It may hold
any value as long as it gets incremented by one for the next packet.

NOTE A data block must be sent in the order of its original sequence. Sequence numbers must not
be skipped or used twice. The firmware cannot re-assemble a data block that is out of its
original order.

Dual-Port Memory Function 91/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.7.2 Procedure

The sections below shows packet by packet the use of the command field ulCmd, the identifier field
ulId and the extension field ulExt from the packet header while transferring fragmented data block
between host application and netX firmware. Note that every request packet has a confirmation
packet.

Download Request, Initiated by the Host Application

In this scenario the application knows that the data packet to send is too big to fit into the one packet
at once. Hence the application sets the First Packet of Sequence bit in the extension field ulExt; the
netX firmware on the other side can expect at least one more packet. The fragmented download is
always finalized with Last Packet of Sequence set in the extension field.

Pkt App Task ulCmd ulId ulExt Remark

0 + CMD X+0 F First Fragment, Request

1 , CMD+1 X+0 F First Fragment, Confirmation

2 + CMD X+1 M Middle Fragment, Request

3 , CMD+1 X+1 M Middle Fragment, Confirmation

… … … Middle Fragment, …

n + CMD X+(n/2) L Last Fragment, Request

N+1 , CMD+1 X+(n/2) L Last Fragment, Confirmation

Table 69: Download Request (CMD = download command; F = First; M = Middle; L = Last)

Upload Request, Initiated by the Host Application

In this scenario the host application requests a block of data from the netX firmware. The application
may not know the size of the data block that is going to be transferred. Hence the request packet sent
by the application indicates No Sequence in the extension field ulExt. The firmware sends a reply back
with the First Packet of Sequence bit set, indicating that there are one or more packets to come. The
fragmented upload is always finalized with Last Packet of Sequence bit set in the extension field.

Pkt App Task ulCmd ulId ulExt Remark

0 + CMD X+0 N No Fragment, Request

1 , CMD+1 X+0 F First Fragment, Confirmation

2 + CMD X+1 M Middle Fragment, Request

3 , CMD+1 X+1 M Middle Fragment, Confirmation

… … … Middle Fragment, …

n + CMD X+(n/2) M Middle Fragment, Request

n+1 , CMD+1 X+(n/2) L Last Fragment, Confirmation

Table 70: Upload Request (CMD = upload command; N = None; F = First; M = Middle; L = Last)

Dual-Port Memory Function 92/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.7.3 Abort Fragmented Packets Request

A data block transfer should be aborted when a sequence number in the identifier field ulId is skipped
or used twice. Failure in handling the extension flags in ulExt result a sequence fault, too. In case the
receiving process runs out of memory to store the data, the Out of Memory fault code shall be used.

To abort the sequence of fragmented data blocks, the receiving or sending process may send a
packet with the packet’s original command code (in this example: ulCmd = CMD, CMD is fieldbus
dependent) at any time during the process. Additionally, the length field ulLen is set to zero and the
extension field ulExt is set to indicate the last sequenced packet. In a regular sequence, the
combination of last packet bit set and zero data length is invalid.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 Destination Queue Handle

ulSrc UINT32 Source Queue Handle

ulDestId UINT32 Destination Queue Reference

ulSrcId UINT32 Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32
0xC02B0024
0xC0000010

Status
Packet out of Sequence
Out Of Memory

ulCmd UINT32 CMD Command

ulExt UINT32
0x00000040

Extension
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information

For the abort request packet, ulSta holds the error / status code. The following codes are used to
indicate a sequence or memory error, respectively.
/* PACKET OUT OF SEQUENCE */
#define RCX_E_PACKET_OUT_OF_SEQ 0xC000000F

/* OUT OF MEMORY */
#define RCX_E_PACKET_OUT_OF_MEMORY 0xC0000010

Dual-Port Memory Function 93/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.1.7.4 Abort Fragmented Packet Confirmation

The receiver of the abort request returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32
0

Status / Error Code
RCX_S_OK (always)

ulCmd UINT32 CMD+1 Confirmation

ulExt UINT32
0x00000040

Extension
Last Packet of Sequence

ulRout UINT32 Routing Information, Don’t Care, Don’t Use

The receiver returns a packet with original command code plus one (in this example: ulCmd = CMD+1,
CMD is fieldbus dependent). The length field ulLen is set to zero and the extension field ulExt is set to
indicate the last sequenced packet.

Dual-Port Memory Function 94/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.2 Input / Output Data Image

4.2.1 DPM Mode

In DPM mode the netX firmware provides a memory range that is read and written alternating by the
netX firmware and the host system. By default the data transfer mode is set to DPM mode.

4.2.2 DMA Mode

In DMA mode, all data transfer is initiated by the netX firmware because the netX firmware is the DMA
bus master. DMA transfer can be turned on individually for each of the communication channels but it
can only be applied to the input / output data images. All other memory areas are in DPM mode.

The host system has to provide source and destination buffers and turn on DMA mode after the
configuration of the firmware has been completed. During runtime the host system toggles appropriate
handshake bits (PD_IN_CMD and PD_OUT_CMD) to start the DMA transfer.

The netX supports 8 DMA channels, which are assigned to communication channels as outlined in the
table below.

Communication Channel DMA Channel Data Image

0 Input Data
0

1 Output Data

2 Input Data
1

3 Output Data

4 Input Data
2

5 Output Data

6 Input Data
3

7 Output Data

Table 71: DMA Channel Assignment

Not all protocol stacks support I/O data transfer by DMA. Refer to the protocol specific documentation
to find out whether or not DMA transfer is supported.

NOTE Only PCI cards support DMA mode.

Dual-Port Memory Function 95/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.2.3 Process Data Handshake Modes

The netX firmware allows controlling the transfer of data independently for inputs and outputs.
Therefore the process data handshake is carried out individually for input and output image. The
handshake cells are located in the handshake channel (see pages 75 and 52 for details). The
following data exchange modes are supported.

Mode Controlled by Consistency Supported by

Buffered Host (Application/Driver) Yes Master & Slave Firmware

Table 72: Process Data Handshake Modes

4.2.4 Buffered, Host Controlled Mode

The Buffered data transfer mode can be used for both master and slave type devices. In “buffered”
mode, the protocol stack handles the exchange of data between internal buffers and the process data
images in the dual-port memory with the application via a handshake mechanism. Once copied
from/into the input/output area, the host application gives control over the dual-port memory to the
protocol stack. When the protocol stack has finished copying, the control is given back to the host
application, and so on.

NOTE The network cycle and the task cycle of the host application are not synchronized but
consistent.

! If the host application is faster than the network cycle, it might be possible that data in the output
buffers is overwritten without ever being sent to the network. As for the other direction, the host
application may read the same input values over several read cycles.

! If the host application is slower than the network cycle, the protocol stack overwrites the input
buffer with new data received from the network, which were never received by the host
application. The output data on the network will be the same over several network cycles.

For each valid bus cycle the protocol stack updates the process data in the internal input buffer. When
the application toggles the appropriate input handshake bit, the protocol stack copies the data from the
internal IN buffer into the input data image of the dual-port memory. Now the application can copy data
from the dual-port memory and then give control back to the protocol stack by toggling the appropriate
input handshake bit. When the application/driver toggles the output handshake bit, the protocol stack
copies the data from the output data image of the dual-port memory into the internal buffer. From there
the data is transferred to the network. The protocol stack toggles the appropriate handshake bits back,
indicating to the application that the transfer is finished and a new data exchange cycle may start.

This mode guarantees data consistency over both input and output area.

Dual-Port Memory Function 96/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Step-by-Step Procedure

Figure 12 – Step 1: Buffered, Controlled Mode

Step 1 The protocol stack sends data from the internal OUT buffer to the network and receives data
from the network in the internal IN buffer.

Figure 13 – Step 2: Buffered, Controlled Mode

Step 2 The application has control over the dual-port memory and exchanges data with the input
and output data images in the dual-port memory. The application then toggles the handshake bits,
giving control over the dual-port memory to the protocol stack.

Figure 14 – Step 3: Buffered, Controlled Mode

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

Dual-Port Memory Function 97/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Step 3 The protocol stack copies the content of the output data image into the internal OUT buffer
and from the IN buffer to the input data image.

Figure 15 – Step 4: Buffered, Controlled Mode

Step 4 The protocol stack toggles the handshake bits, giving control back to the application. Now
the protocol stack uses the new output data image from the OUT buffer to send it to the network and
receives data into the internal IN buffer. The cycle starts over.

Time Related View

! Output Data Exchange

Figure 16 – Time Related: Buffered, Controlled, Output Data

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

Application Network DPM Buffer

$ %

&
'

-
Data

Handshake

t

Dual-Port Memory Function 98/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

. The protocol stack constantly transmits data from the buffer to the network.

/ The application has control over the dual-port memory and can copy data to the
output data image.

0 The application then toggles the handshake bits, giving control over the dual-port
memory to the protocol stack.

1 The protocol stack copies the content of the output data image into the internal OUT
buffer.

2 The protocol stack toggles the handshake bits, giving control back to the
application.

3 Once updated, the protocol stack uses the new data from the internal buffer and
sends it to the network. The cycle starts over with step 1.

! Input Data Exchange

Figure 17 – Time Related: Buffered, Controlled, Input Data

-' The protocol stack constantly receives data from the network into the buffer.

4 The application has control over the dual-port memory input data image and
exchanges data with the input data image in the dual-port memory.

5 The application then toggles the handshake bits, giving control over the dual-port
memory to the netX protocol stack.

6 The protocol stack copies the latest content of the internal IN buffer to the input data
image of the dual-port memory.

7 The protocol stack then toggles the handshake bits, giving control back to the
application.

'- The protocol stack receives data from the network into the buffer. The cycle starts over with the
first step.

NOTE In case of a network fault (e.g. disconnected network cable), a slave firmware keeps the last
state of the input data image. As soon as the firmware detects the network fault, it clears the
Communicating flag in netX communication flags (see page 52); the input data should not be
evaluated anymore.

Application Network DPM Buffer

$

%

&

'

-
Data

Handshake

t

Dual-Port Memory Function 99/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.3 Input / Output Data Status
The input / output data status is defined, but not supported yet.

4.3.1 About Input/Output Data Status

Some fieldbus systems require additional information regarding the state of input and output process
data (PROFINET for example). The status field contains information whether the data is valid and if
the data is sent / received in good condition. The status information field precedes the data field. If
present, the size of the status information field is 4 byte (UINT32) or one byte (UINT8).

The status field is located in front of the I/O data memory location. Therefore, it is located before the
actual offset address of the I/O data.

The I/O status field is a double word (UINT32), a byte (UINT8) or nonexistent (configurable). The size
of the I/O status field is obtained by the application via the mailbox interface. The size of the I/O status
field can be changed only by downloading a new configuration. The status field may be present for the
input and output data area. It is called Provider Status. Both input and output data have a provider
status field. A status field is present internally in the protocol stack for output data. It is called
Consumer Status. The consumer status returns a feedback whether or not the data could be
processed. The consumer status is maintained by the protocol stack or controlled via the packet
interface. The least significant byte of the status is fieldbus independent. If present, the remaining 3
bytes can be used fieldbus dependent. Therefore, it is described in a separate manual.

4.3.2 Provider State

4.3.2.1 Input Data Status

For master implementations, the input data status field indicates whether the data following this field is
valid. The status is either transferred by the originator of the data or generated locally in the netX
firmware.

If the Generated flag is set to True (= generated locally), the master firmware set the status to Good
for slaves that are healthy and available on the network; otherwise it is set to Bad. If the Generated
flag is set to False (= generated remotely), the status information shown in the field is generated and
transmitted by the originator of the data (for instance PROFINET supports this feature). For slave
implementations if generated locally (Generated flag is True) the data status is set to Good, if the
slave has a faultless connection to the network master.

The lower nibble of the data status field is specific to the underlying fieldbus and therefore described in
a separate manual.

Dual-Port Memory Function 100/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 Fieldbus Specific

 Reserved, set to zero

 Generated
0 = Remote
1 = Locally

 Provider State
0 = Stop
1 = Run

 Data State
0 = Bad
1 = Good

unused, set to zero

Table 73: Input Data Status

The following common status flags are defined:

Bit No. Definition / Description

0…3 Fieldbus Specific, Refer to Protocol Manual
4 Reserved, set to zero
5 GENERATED

The Generated flag indicates where the status was generated.
6 PROVIDER STATE

The Provider State indicates whether or not the provider of the data is running or has been
stopped.

7 DATA STATE
The Data State indicates whether the data is valid (Good, Bad).

Other values are reserved

Table 74: Input Data Status

Dual-Port Memory Function 101/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.3.2.2 Output Data Status

The output status data field indicates whether the data following this field is valid. The status flags are
generated by the application. The application indicates its own status and therefore this field is also a
provider status. The choices are Good or Bad for the data state flag and Run or Stop for the provider
state flag.

The lower nibble of the data status field is specific to the underlying fieldbus and therefore described in
a separate manual.

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 Fieldbus Specific

 Reserved, set to zero

 Provider State
0 = Stop
1 = Run

 Data State
0 = Bad
1 = Good

unused, set to zero

Table 75: Output Data Status

The following common status flags are defined:

Bit No. Definition / Description

0…3 Fieldbus Specific, Refer to Protocol Manual
4, 5 Reserved, set to zero
6 PROVIDER STATE

The Provider State indicates whether or not the provider of the data is running or has been
stopped.

7 DATA STATE
The Data State indicates whether the data is valid (Good, Bad).

Other values are reserved

Table 76: Output Data Status

4.3.3 Consumer State

Not supported yet.

Dual-Port Memory Function 102/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.4 Start / Stop Communication

4.4.1 Controlled or Automatic Start

The firmware has the option to start network communication after power up automatically. Whether or
not the network communication will be started automatically is configurable. However, the preferred
option is called Controlled start of communication. It forces the channel firmware to wait for the host
application to allow network connection being opened by setting the Bus On flag in the Application
Change of State register in the channel’s control block (see page 57). Consequently, the protocol
stack will not allow opening network connections and does not exchange any cyclic process data until
the Bus On flag is set.

The second option enables the channel firmware to open network connections automatically without
interacting with the host application. It is called Automatic start of communication. This method is not
recommended, because the host application has no control over the network connection status. In this
case the Bus On flag is not evaluated.

NOTE For the default dual-port memory layout, the Controlled Start of communication is the default
method used.

4.4.2 Start / Stop Communication through Dual-Port Memory

4.4.2.1 (Re-)Start Communication

To allow the protocol stack to open connections or to allow connections to be opened, the application
sets the Bus On flag in the Application Change of State register in the channel’s control block (see
page 57). When firmware has established a cyclic connection to at least one network mode, the
channel firmware sets the Communicating flag in the netX Communication Flags register (see page
52).

4.4.2.2 Stop Communication

To force the channel firmware to disable all network connections, the host application clears the Bus
On flag in the Application Change of State register in the channel’s control block (see page 57). The
firmware then closes all open network connections. A slave protocol stack would reject attempts to re-
open a connection, until the application allows opening network connections again (Bus On flag is
set). When all connections are closed, the channel firmware clears the Communicating flag in the netX
Communication Flags register on page 52.

Dual-Port Memory Function 103/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.4.3 Start / Stop Communication through Packets

The command is used to force the protocol stack to start or stop network communication. To do so, a
request packet is passed through the channel mailbox to the protocol stack. Starting and stopping
network communication affects the Bus On flag (in Communication Change of State register as
described on page 57.

4.4.3.1 Start / Stop Communication Request

The application uses the following packet in order to start or stop network communication. The packet
is send through the channel mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F30

Command
Start/Stop Communication

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulParam UINT32
0x00000001
0x00000002

Parameter
Start Communication
Stop communication

Packet Structure Reference
/* START – STOP COMMUNICATION REQUEST */
#define RCX_START_STOP_COMM_REQ 0x00002F30

typedef struct RCX_START_STOP_COMM_REQ_DATA_Ttag
{
 UINT32 ulParam; /* start/stop communication */
} RCX_START_STOP_COMM_REQ_DATA_T;

typedef struct RCX_START_STOP_COMM_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_START_STOP_COMM_REQ_DATA_T tData; /* packet data */
} RCX_START_STOP_COMM_REQ_T;

Dual-Port Memory Function 104/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.4.3.2 Start / Stop Communication Confirmation

The firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F31

Confirmation
Start / Stop Communication

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* START – STOP COMMUNICATION CONFIRMATION */
#define RCX_START_STOP_COMM_CNF RCX_START_STOP_COMM_REQ+1

typedef struct RCX_START_STOP_COMM_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_START_STOP_COMM_CNF_T;

Dual-Port Memory Function 105/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.5 Lock Configuration
The lock configuration mechanism is used to prevent the configuration settings from being deleted,
altered, overwritten or otherwise changed. The netX firmware rejects those attempts when the
Configuration Locked flag is set. Locking and unlocking the configuration of a channel firmware can be
achieved through either direct access to the dual-port memory or to pass a packet through the channel
mailbox.

Exceptions for certain field buses are explicitly mentioned in the documentation of the protocol stack.

4.5.1 Lock Configuration through Dual-Port Memory

If the host application whishes to lock the configuration settings, it sets the Lock Configuration flag in
the control block (see page 57). As a result, the channel firmware sets the Configuration Locked flag in
the status block (see page 59), indicating that the current configuration settings are locked. To unlock
a configuration the application has to clear the Lock Configuration flag in the control block.

4.5.2 Lock Configuration through Packets

The packet below is used to lock or unlock a configuration. The request packet is passed through the
channel mailbox only. Locking and unlocking a configuration through this packet affects the
Configuration Locked flag in the control block (see page 57). The protocol stack modifies this flag in
order to signal its current state.

Dual-Port Memory Function 106/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.5.2.1 Lock / Unlock Configuration Request

The application uses the following packet in order to lock or unlock the current configuration. The
packet is send through the channel mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F32

Command
Lock/Unlock Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulParam UINT32
0x00000001
0x00000002

Parameter
Lock Configuration
Unlock Configuration

Packet Structure Reference
/* LOCK – UNLOCK CONFIGURATION REQUEST */
#define RCX_LOCK_UNLOCK_CONFIG_REQ 0x00002F32

typedef struct RCX_LOCK_UNLOCK_CONFIG_REQ_DATA_Ttag
{
 UINT32 ulParam; /* lock/unlock parameter */
} RCX_LOCK_UNLOCK_CONFIG_REQ_DATA_T;

typedef struct RCX_LOCK_UNLOCK_CONFIG_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_LOCK_UNLOCK_CONFIG_REQ_DATA_T tData; /* packet data */
} RCX_LOCK_UNLOCK_CONFIG_REQ_T;

Dual-Port Memory Function 107/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.5.2.2 Lock / Unlock Configuration Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F33

Confirmation
Lock/Unlock Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* LOCK – UNLOCK CONFIGURATION CONFIRMATION */
#define RCX_LOCK_UNLOCK_CONFIG_CNF RCX_LOCK_UNLOCK_CONFIG_REQ+1

typedef struct RCX_LOCK_UNLOCK_CONFIG_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_LOCK_UNLOCK_CONFIG_CNF_T;

Dual-Port Memory Function 108/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.6 Determining DPM Layout
From an application standpoint, the logical layout of the dual-port memory can be determined by
evaluating the content of system channel information block (see page 28). This block holds information
about the remaining seven channels. Among other things, the channel information block includes
length and type of the channels (or application) in the dual-port memory. That way the application is
able to gather information regarding the physical layout given by the firmware.

The content of a channel (or the logical layout) can be IO process data image, mailboxes, information
regarding network status and other things. This information is obtained from the netX firmware using
non-cyclic messages via the mailbox system (see below).

The layout of the dual-port memory may change when the configuration changes. For example, if
more slaves are added to the configuration, usually the length of the IO process data image increases,
too. With the new size of the IO images, the following blocks and channels may be relocated.

4.6.1 Default Memory Layout

The protocol stack will set the default memory map flag in the ulSystemCOS variable in system status
block in 46, indicating that the default memory layout is used (see page 51). Then its total size is 16
KByte and not variable like with the dynamic approach. System and handshake channel are included
in the size of 16 KByte.

4.6.2 Obtaining Logical Layout

To obtain the logical layout of a channel, the application has to send a message to the firmware
through the system block’s mailbox area. The protocol stack replies with one or more messages
containing the description of the channel. Each memory area of the channel has an offset address and
an identifier to indicate the type of area. The type can be one of the following: IO process data image,
send/receive mailbox, parameter, status or port specific area.

Dual-Port Memory Function 109/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.6.2.1 Channel Definition

The following structure is located in the system channel information block (see page 36). It is an
example for the communication channel 1. The structure indicates whether the channel is present. If
the channel type is NOT AVAILABLE, the channel is not present and no information from this structure
should be evaluated.

Channel Structure taken from System Channel Information Block

Address Channel Area Structure

 Data Type Description

0x0060 UINT8 Channel Type = COMMUNICATION (see page 38)

 UINT8 Channel ID, Channel Number

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks in this Channel

 UINT32 Size of Channel in Bytes

 UINT16 Communication Class (Master, Slave…)

 UINT16 Protocol Class (PROFIBUS, PROFINET…)

 UINT16 Protocol Conformance Class (DPV1, DPV2…)

… 0x006F

Communication
Channel 1

UINT8[2] Reserved

Table 77: Block Definition (Example for Communication Channel 1)

4.6.3 Mechanism

4.6.3.1 Determining Memory Block Number

Evaluating the structure outlined on page 36, the application generates a request message through
the system block to obtain more information regarding the structure of the channel. Using the position
of the structure in the system channel information block, the application knows which of the channels
are available. The first channel following the handshake channel is the communication channel 0; the
next entry represents the second communication channel, and so on.

4.6.3.2 Obtain Area or Block Information

The application creates further messages through the system channel mailbox with the channel ID
number bChannelId from channel information block (see page 36) using the command message from
below. The netX firmware returns a confirmation message with the number of areas or blocks present
in the given memory block.

With the number of blocks, the application is able to create another message to the netX firmware
through the system block mailbox. The netX firmware returns a confirmation message with the identity,
type, start offset and length of the block. In addition, the reply message contains the data direction of
the block (host system to netX or netX to host system) as well as the transfer mode (DPM or DMA).

Dual-Port Memory Function 110/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.6.3.3 Get Block Information Request

The following request message is sent to the netX firmware to obtain block information. The message
is sent through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification As Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EF8

Command
Get Block Information Request

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulAreaIndex UINT32 0 … 7 Area Index (see below)

 ulSubblock
Index UINT32 0 … 0xFFFFFFFF Sub Block Index (see below)

Packet Structure Reference
/* GET BLOCK INFORMATION REQUEST */
#define RCX_DPM_GET_BLOCK_INFO_REQ 0x00001EF8

typedef struct RCX_DPM_GET_BLOCK_INFO_REQ_DATA_Ttag
{
 UINT32 ulAreaIndex; /* area index */
 UINT32 ulSubblockIndex; /* sub block index */
} RCX_DPM_GET_BLOCK_INFO_REQ_DATA_T;

typedef struct RCX_DPM_GET_BLOCK_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DPM_GET_BLOCK_INFO_REQ_DATA_T tData; /* packet data */
} RCX_DPM_GET_BLOCK_INFO_REQ_T;

Area Index

This field holds the index of the channel. The system channel is identified by an index number of 0; the
handshake has index 1, the first communication channel has index 2 and so on.

Sub Block Index

The sub block index field identifies each of the blocks that reside in the dual-port memory interface for
the specified communication channel (communication channel area, see above). The sub block index
ranges from 0 to bNumberOfBlocks from the Channel Information Block field on page 36.

Dual-Port Memory Function 111/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.6.3.4 Get Block Information Confirmation

The firmware replies with the following message.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
28
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification As Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EF9

Confirmation
Get Block Information Confirmation

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulAreaIndex UINT32 0, 1, … 7 Area Index (Channel Number)

 ulSubblock
Index UINT32 0 … 0xFFFFFFFF Number of Sub Blocks (see below)

 ulType UINT32 0 … 0x0009 Type of Sub Block (see below)

 ulOffset UINT32 0 … 0xFFFFFFFF Offset of Sub Block within the Area

 ulSize UINT32 0 … 65535 Size of Sub Block (see below)

 usFlags UINT16 0 ... 0x0023 Flags of Sub Block (see below)

 usHandshake
Mode UINT16 0 … 0x0004 Handshake Mode (see below)

 usHandshake
Bit UINT16 0 … 0x00FF Bit Position in the Handshake Register

 usReserved UINT16 0 Reserved

Dual-Port Memory Function 112/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* GET BLOCK INFORMATION CONFIRMATION */
#define RCX_DPM_GET_BLOCK_INFO_CNF RCX_DPM_GET_BLOCK_INFO_REQ+1

typedef struct RCX_DPM_GET_BLOCK_INFO_CNF_DATA_Ttag
{
 UINT32 ulAreaIndex; /* area index */
 UINT32 ulSubblockIndex; /* number of sub block */
 UINT32 ulType; /* type of sub block */
 UINT32 ulOffset; /* offset of this sub block within the area */
 UINT32 ulSize; /* size of the sub block */
 UINT16 usFlags; /* flags of the sub block */
 UINT16 usHandshakeMode; /* handshake mode */
 UINT16 usHandshakeBit; /* bit position in the handshake register */
 UINT16 usReserved; /* reserved */
} RCX_DPM_GET_BLOCK_INFO_CNF_DATA_T;

typedef struct RCX_DPM_GET_BLOCK_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DPM_GET_BLOCK_INFO_CNF_DATA_T tData; /* packet data */
} RCX_DPM_GET_BLOCK_INFO_CNF_T;

Area Index

This field defines the channel number that the block belongs to. The system channel has the number
0; the handshake channel has the number 1; the first communication channel has the number 2 and
so on (max. 7).

Sub Block Index

This field holds the number of the block.

Sub Block Type

This field is used to identify the type of sub block. The following types are defined.

Value Definition / Description

0x0000 UNDEFINED
0x0001 UNKNOWN
0x0002 PROCESS DATA IMAGE
0x0003 HIGH PRIORITY DATA IMAGE
0x0004 MAILBOX
0x0005 CONTROL
0x0006 COMMON STATUS
0x0007 EXTENDED STATUS
0x0008 USER
0x0009 RESERVED
Other values are reserved

Table 78: Sub Block Type

Offset

This field holds the offset of the block based on the start offset of the channel.

Dual-Port Memory Function 113/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Size

The size field holds the length of the block section in multiples of bytes.

Transmission Flags

The flags field is separated into nibbles (4 bit entities). The lower nibble is the Transmission Direction
and holds information regarding the data direction from the view point of the application. The
transmission type nibble in this location holds the type of how to exchange data with this sub block.

Bit No. Definition / Description

0-3 Transfer Direction
0 UNDEFINED
1 IN (netX to Host System)
2 OUT (Host System to netX)
3 IN – OUT (Bi-Directional)
Other values are reserved

4-7 Transmission Type
0 UNDEFINED
1 DPM (Dual-Port Memory)
2 DMA (Direct Memory Access)
Other values are reserved

8-15 Reserved, set to 0

Table 79: Transmission Flags

Handshake Mode

The handshake mode is defined only for IO data images.

Value Definition / Description

0x0000 UNKNOWN
0x0003 UNCONTROLLED
0x0004 BUFFERED, HOST CONTROLLED
Other values are reserved

Table 80: Hand Shake Mode

Handshake Position

The handshake cells either can be in the handshake channel or (in the future and therefore not
supported yet) they can be located at the beginning of each channel. See pages 75 and 52 for details.

NOTE Not all combinations of values from this structure are allowed. Some are even contradictory
and do not make sense.

Dual-Port Memory Function 114/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7 Identifying netX Hardware
The netX chip on Hilscher products use a Security EEPROM to store certain hardware and product
related information that helps to identify a netX hardware. The netX operating system reads the
Security Memory during power-up reset and copies certain information into the dual-port memory to
the system information block. For example, a configuration tool like SYCON.net can evaluate the
information and use them to decide whether a firmware file should be downloaded. If the information in
the firmware file does not match the information read from the dual-port memory, the attempt to
download could be rejected.

The following fields are relevant to identify a netX hardware:

! Device Number, Device Identification

! Serial Number

! Hardware Assembly Options

! Manufacturer

! Production Date

! License Code

! Device Class

4.7.1 Security Memory

The Security Memory is divided into five zones total. Zones 1, 2, and 3 are readable and writeable by
a user application; zone 0 and the configuration zone are neither readable nor writable. Zones 1, 2
and 3 have each 32 bytes.

Zone 0 is encrypted and contains netX related hardware features and license information. Zone 0 is
neither readable nor writable.

Zone 1 is used for general hardware configuration settings like Ethernet MAC address and SDRAM
timing parameter. Zone 1 is readable and writeable.

Zone 2 is used for PCI configuration and operating system parameter. Zone 2 is readable and
writeable.

Zone 3 is fully under control of a user application running on the netX to store its data, if applicable.
Zone 3 is readable and writeable.

The Configuration Zone holds entries that are predefined by the manufacturer of the EEPROM. This
zone is written only during production. The Configuration Zone is neither readable nor writable. The
zone includes serial number, device number, hardware revision, production date, device class and
hardware compatibility. This information is shown in the system information block (Table 10 on page
28) and is part of the packet which is described in section Identifying netX Hardware through Packets
on page 121.

NOTE Usually it is not necessary to write to zones 1 or 2 nor is it recommended. Changes can
cause memory access faults, configuration or communication problems!

Zones 1 and 2 of the Security Memory are protected by a checksum (see page 120 for details).

Dual-Port Memory Function 115/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.1.1 Security Memory Read Request

An application uses the following packet in order to read from the Security EEPROM. The packet is
send through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EBC

Command
Read Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulZoneId UINT32 0x00000001
0x00000002
0x00000003

Zone Identifier
Zone 1
Zone 2
Zone 3

Packet Structure Reference
/* READ SECURITY EEPROM REQUEST */
#define RCX_SECURITY_EEPROM_READ_REQ 0x00001EBC

/* Memory Zones */
#define RCX_SECURITY_EEPROM_ZONE_1 0x00000001
#define RCX_SECURITY_EEPROM_ZONE_2 0x00000002
#define RCX_SECURITY_EEPROM_ZONE_3 0x00000003

typedef struct RCX_SECURITY_EEPROM_READ_REQ_DATA_Ttag
{
 UINT32 ulZoneId; /* zone identifier */
} RCX_SECURITY_EEPROM_READ_REQ_DATA_T;

typedef struct RCX_SECURITY_EEPROM_READ_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_SECURITY_EEPROM_READ_REQ_DATA_T tData; /* packet data */
} RCX_SECURITY_EEPROM_READ_REQ_T;

Dual-Port Memory Function 116/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.1.2 Security Memory Read Confirmation

The netX operating system returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
32
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EBD

Confirmation
Read Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 abZone
Data[32] UINT8 0 … 0xFF

Data from Zone X (X equal to 1, 2 or 3 (for
Configuration Zone)); size is 32

Packet Structure Reference
/* READ SECURITY EEPROM CONFIRMATION */
#define RCX_SECURITY_EEPROM_READ_CNF RCX_SECURITY_EEPROM_READ_REQ+1

typedef struct RCX_SECURITY_EEPROM_READ_CNF_DATA_Ttag
{
 UINT8 abZoneData[32]; /* zone data */
} RCX_SECURITY_EEPROM_READ_CNF_DATA_T;

typedef struct RCX_SECURITY_EEPROM_READ_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_SECURITY_EEPROM_READ_CNF_DATA_T tData; /* packet data */
} RCX_SECURITY_EEPROM_READ_CNF_T;

Zone Data

The zone data field holds data that is returned from Zone X (X equal to 1, 2 or 3).

Dual-Port Memory Function 117/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.1.3 Security Memory Write Request

An application uses the following packet in order to write to the Security EEPROM. The packet is sent
through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 36 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EBE

Command
Write Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulZoneId UINT32 0x00000001
0x00000002
0x00000003

Zone Identifier
Zone 1
Zone 2
Zone 3

 abZone
Data[32] UINT8 0 ... 0xFF Data for Zone X (X equal to 1, 2 or 3);

Size is 32

Packet Structure Reference
/* WRITE SECURITY EEPROM REQUEST */
#define RCX_SECURITY_EEPROM_WRITE_REQ 0x00001EBE

/* Memory Zones */
#define RCX_SECURITY_EEPROM_ZONE_1 0x00000001
#define RCX_SECURITY_EEPROM_ZONE_2 0x00000002
#define RCX_SECURITY_EEPROM_ZONE_3 0x00000003

typedef struct RCX_SECURITY_EEPROM_WRITE_REQ_DATA_Ttag
{
 UINT32 ulZoneId; /* zone ID, see RCX_SECURITY_EEPROM_ZONE_x */
 UINT8 abZoneData[32]; /* zone data */
} RCX_SECURITY_EEPROM_WRITE_REQ_DATA_T;

typedef struct RCX_SECURITY_EEPROM_WRITE_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_SECURITY_EEPROM_WRITE_REQ_DATA_T tData; /* packet data */
} RCX_SECURITY_EEPROM_WRITE_REQ_T;

The configuration zone and zone 0 are neither readable nor writable.

Dual-Port Memory Function 118/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.1.4 Security Memory Write Confirmation

The netX operating system returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EBF

Confirmation
Write Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* WRITE SECURITY EEPROM CONFIRMATION */
#define RCX_SECURITY_EEPROM_WRITE_CNF RCX_SECURITY_EEPROM_WRITE_REQ+1

typedef struct RCX_SECURITY_EEPROM_WRITE_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_SECURITY_EEPROM_WRITE_CNF_T;

Data Field

There is no data field returned in the write security EEPROM confirmation packet.

NOTE To avoid changing essential parameters in the security memory by accident, the application
must read the entire zone first, modify fields as required and write the entire zone afterwards.
Channing parameter like SDRAM register or PCI settings may cause unwanted behavior of
the netX chip and it might get into a state where no further operation is possible.

Dual-Port Memory Function 119/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.1.5 Security Memory Zones

Zone 1 – Hardware Configuration

Offset Type Name Description

0x00 UINT8 MacAddress[6] Ethernet Medium Access Address, 6 Bytes

0x06 UINT32 SdramGeneralCtrl SDRAM control register value

0x0A UINT32 SdramTimingCtrl SDRAM timing register value

0x0E UINT8 SdramSizeExp SDRAM size in Mbytes

0x0F UINT16 HwOptions[4] Hardware Assembly Option, 4 Words

0x17 UINT8 BootOption Boot Option

0x18 UINT8 Reserved[6] Reserved, 6 Bytes

0x1E UINT8 Zone1Revision Revision Structure of Zone 1

0x1F UINT8 Zone1Checksum Checksum of Byte 0 to 30

Table 81: Hardware Configuration (Zone 1)

Zone 2 – PCI System and OS Settings

Offset Type Name Description

0x00 UINT16 PciVendorID

0x02 UINT16 PciDeviceID

0x04 UINT8 PciSubClassCode

0x05 UINT8 PciClassCode

0x06 UINT16 PciSubsystemVendorID

0x08 UINT16 PciSubsystemDeviceID

0x0A UINT8 PciSizeTarget[3]

0x0D UINT8 PciSizeIO

0x0E UINT8 PciSizeROM[3]

PCI Settings

0x11 UINT8 Reserved

0x12 UINT8 OsSettings[12] OS Related Information, 12 Bytes

0x1E UINT8 Zone2Revision Revision Structure of Zone 2

0x1F UINT8 Zone2Checksum Checksum of Byte 0 to 30

Table 82: PCI System and OS Setting (Zone 2)

Dual-Port Memory Function 120/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Zone 3 – User Specific Zone

Offset Type Name Description

0 – 0x1F UINT8 UserSpecific[32] Reserved, 32 Byte

Table 83: User Specific Zone (Zone 3)

Memory Zones Structure Reference
typedef struct RCX_SECURITY_MEMORY_ZONE1tag
{
 UINT8 MacAddress[6]; /* Ethernet medium access address */
 UINT32 SdramGeneralCtrl; /* SDRAM control register value */
 UINT32 SdramTimingCtrl; /* SDRAM timing register value */
 UINT8 SdramSizeExp; /* SDRAM size in Mbytes */
 UINT16 HwOptions[4]; /* hardware assembly option */
 UINT8 BootOption; /* boot option */
 UINT8 Reserved[6]; /* reserved (6 bytes) */
 UINT8 Zone1Revision; /* revision structure of zone 1 */
 UINT8 Zone1Checksum; /* checksum of byte 0 to 30 */
} RCX_SECURITY_MEMORY_ZONE1;

typedef struct RCX_SECURITY_MEMORY_ZONE2tag
{
 UINT16 PciVendorID; /* PCI settings */
 UINT16 PciDeviceID; /* PCI settings */
 UINT8 PciSubClassCode; /* PCI settings */
 UINT8 PciClassCode; /* PCI settings */
 UINT16 PciSubsystemVendorID; /* PCI settings */
 UINT16 PciSubsystemDeviceID; /* PCI settings */
 UINT8 PciSizeTarget[3]; /* PCI settings */
 UINT8 PciSizeIO; /* PCI settings */
 UINT8 PciSizeROM[3]; /* PCI settings */
 UINT8 Reserved;
 UINT8 OsSettings[12]; /* OS Related Information */
 UINT8 Zone2Revision; /* Revision Structure of Zone 2 */
 UINT8 Zone2Checksum; /* Checksum of Byte 0 to 30 */
} RCX_SECURITY_MEMORY_ZONE2;

typedef struct RCX_SECURITY_MEMORY_ZONE3tag
{
 UINT8 UserSpecific[32]; /* user specific area */
} RCX_SECURITY_MEMORY_ZONE3;

4.7.1.6 Checksum

Zones 0, 1 and 2 of the Security Memory are protected by a checksum. The netX operating system
provides functions that automatically calculate the checksum when the zones 1 and 2 are written. So
in a packet to write these zones the checksum field is set to zero. The packet to read these zones
returns the checksum stored in the Security Memory.

Dual-Port Memory Function 121/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.1.7 Dual-Port Memory Default Values

In case the Security Memory is not found or provides inconsistent data, the netX operating system
copies the following default values into the system information block (see page 28).

! Device Number, Device Identification Set to zero

! Serial Number Set to zero

! Hardware Assembly Options Set to NOT AVAILABLE

! Manufacturer Set to UNDEFINED

! Production Date Set to zero for both, production year and week

! License Code Set to zero

! Device Class Set to UNDEFINED

4.7.2 Identifying netX Hardware through Packets

The command returns the device number, hardware assembly options, serial number and revision
information of the netX hardware. The request packet is passed through the system mailbox only.

4.7.2.1 Identify Hardware Request

The application uses the following packet in order to identify netX hardware. The packet is send
through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EB8

Command
Identify Hardware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* IDENTIFY FIRMWARE REQUEST */
#define RCX_HW_IDENTIFY_REQ 0x00001EB8

typedef struct RCX_HW_IDENTIFY_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_HW_IDENTIFY_REQ_T;

Dual-Port Memory Function 122/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.2.2 Identify Hardware Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
36
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EB9

Confirmation
Identify Hardware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulDevice
Number UINT32 0 … 0xFFFFFFFF Device Number / Identification (see page 29)

 ulSerial
Number UINT32 0 … 0xFFFFFFFF Serial Number (see page 29)

 ausHw
Options[4] UINT16 0 … 0xFFFF Hardware Assembly Option (see page 329)

 usDeviceClass UINT16 0 … 0xFFFF netX Device Class (see page 33)

 bHwRevision UINT8 0 … 0xFF Hardware Revision Index (see page 34)

 bHw
Compatibility UINT8 0 … 0xFF Hardware Compatibility Index (see page 35)

ulBootType UINT32 0 … 8

Hardware Boot Type
See Table 84 page 123.

ulChipType UINT32 0 … 4

Chip Type
See Table 85 page 123.

 ulChipStep UINT32 0 … 0x000000FF Chip Step

 ulRomcode
Revision UINT32 0 … 0x00000FFF ROM Code Revision

Dual-Port Memory Function 123/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* HARDWARE IDENTIFY CONFIRMATION */
#define RCX_HW_IDENTIFY_CNF RCX_HW_IDENTIFY_REQ+1

typedef struct RCX_HW_IDENTIFY_CNF_DATA_Ttag
{
 UINT32 ulDeviceNumber; /* device number / identification */
 UINT32 ulSerialNumber; /* serial number */
 UINT16 ausHwOptions[4]; /* hardware options */
 UINT16 usDeviceClass; /* device class */
 UINT8 bHwRevision; /* hardware revision */
 UINT8 bHwCompatibility; /* hardware compatibility */
 UINT32 ulBootType; /* boot type */
 UINT32 ulChipTyp; /* chip type */
 UINT32 ulChipStep; /* chip step */
 UINT32 ulRomcodeRevision; /* rom code revision */
} RCX_HW_IDENTIFY_CNF_DATA_T;

typedef struct RCX_HW_IDENTIFY_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_HW_IDENTIFY_CNF_DATA_T tData; /* packet data */
} RCX_HW_IDENTIFY_CNF_T;

The structure above is returned, if ulSta is RCX_S_OK. Otherwise, no structure is returned.

Boot Type

This field indicates how the netX operating system was started.

Value Definition / Description

0x00000000 ROM Loader: PARALLEL FLASH (SRAM Bus)
0x00000001 ROM Loader: PARALLEL FLASH (Extension Bus)
0x00000002 ROM Loader: DUAL-PORT MEMORY
0x00000003 ROM Loader: PCI INTERFACE
0x00000004 ROM Loader: MULTIMEDIA CARD
0x00000005 ROM Loader: I²C BUS
0x00000006 ROM Loader: SERIAL FLASH
0x00000007 2nd Stage Boot Loader: SERIAL FLASH
0x00000008 2nd Stage Boot Loader: RAM
Other values are reserved

Table 84: Boot Type

Chip Type

This field indicates the type of chip that is used.

Value Definition / Description

0x00000000 Unknown
0x00000001 netX 500
0x00000002 netX 100
0x00000003 netX 50
0x00000004 netX 10
Other values are reserved

Table 85: Chip Type

Dual-Port Memory Function 124/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.2.3 License Information Request

The application uses the following packet in order to obtain license information from the netX firmware.
The packet is send through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EF4

Command
License Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* OBTAIN LICENSE INFORMATION REQUEST */
#define RCX_HW_LICENSE_INFO_REQ 0x00001EF4

typedef struct RCX_HW_LICENSE_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_HW_LICENSE_INFO_REQ_T;

Dual-Port Memory Function 125/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.2.4 License Information Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
12
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EF5

Confirmation
License Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulLicense
Flags1 UINT32 0 … 0xFFFFFFFF License Flags 1

 ulLicense
Flags2 UINT32 0 … 0xFFFFFFFF License Flags 2

 usNetx
LicenseID UINT16 0 … 0xFFFF netX License Identification

 usNetxLicense
Flags UINT16 0 … 0xFFFF netX License Flags

Packet Structure Reference
/* OBTAIN LICENSE INFORMATION CONFIRMATION */
#define RCX_HW_LICENSE_INFO_CNF RCX_HW_LICENSE_INFO_REQ+1

typedef struct RCX_HW_LICENSE_INFO_CNF_DATA_Ttag
{
 UINT32 ulLicenseFlags1; /* License Flags 1 */
 UINT32 ulLicenseFlags2; /* License Flags 2 */
 UINT16 usNetxLicenseID; /* License ID */
 UINT16 usNetxLicenseFlags; /* License Flags */
} RCX_HW_LICENSE_INFO_CNF_DATA_T;

typedef struct RCX_HW_LICENSE_INFO_CNFtag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_HW_LICENSE_INFO_CNF_DATA_T tData; /* packet data */
} RCX_HW_LICENSE_INFO_CNF_T;

Dual-Port Memory Function 126/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

License Code

These fields contain licensing information that is available for the netX chip. All four fields (License
Flags 1, License Flags 2, netX License ID & netX License Flags) help identifying available licenses. If
the license information fields are equal to zero, a license or license code is not set. See page 32 for
details.

4.7.2.5 Read Hardware Information Request

The application uses the following packet in order to obtain information about the netX hardware. The
packet is send through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EF6

Command
Read Hardware Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* READ HARDWARE INFORMATION REQUEST */
#define RCX_HW_HARDWARE_INFO_REQ 0x00001EF6

typedef struct RCX_HW_HARDWARE_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_HW_HARDWARE_INFO_REQ_T;

Dual-Port Memory Function 127/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.7.2.6 Read Hardware Information Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
56
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EF7

Confirmation
Read Hardware Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulDevice
Number UINT32 0 … 0xFFFFFFFF Device Number / Identification (see page 29)

 ulSerial
Number UINT32 0 … 0xFFFFFFFF Serial Number (see page 29)

 ausHw
Options[4]

Array of
UINT16 0 … 0xFFFF Hardware Assembly Option (see page 429)

 usManu-
facturer UINT16 0 … 0xFFFF

Manufacturer Code / Manufacturer Location
(see page 31)

 usProduction
Date UINT16 0 … 0xFFFF Production Date (see page 31)

 ulLicense
Flags1 UINT32 0 … 0xFFFFFFFF License Flags 1 (see page 32)

 ulLicense
Flags2 UINT32 0 … 0xFFFFFFFF License Flags 2 (see page 32)

 usNetx
LicenseID UINT16 0 … 0xFFFF netX License Identification (see page 32)

 usNetxLicense
Flags UINT16 0 … 0xFFFF netX License Flags (see page 32)

usDeviceClass UINT16 0 … 0xFFFF netX Device Class (see page 33)

bHwRevision UINT8 0 …0xFFFF Hardware Revision Index (see page 34)

 continued next page

mailto:it.support@hilscher.com
mailto:it.support@hilscher.com
mailto:it.support@hilscher.com
mailto:it.support@hilscher.com

Dual-Port Memory Function 128/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

 bHw

Compatibility UINT8 0 Hardware Compatibility Index (see page 35)

 ulHardware
Features1 UINT32 0

Hardware Features 1
Not used, set to 0

 ulHardware
Features2 UINT32 0

Hardware Features 2
Not used, set to 0

bBootOption UINT8 0

Boot Option
Not used, set to 0

bReserved[11] Array of

UINT8 0
Reserved
Reserved, set to 0

Packet Structure Reference
/* READ HARDWARE INFORMATION CONFIRMATION */
#define RCX_HW_HARDWARE_INFO_CNF RCX_HW_HARDWARE_INFO_REQ+1

typedef struct RCX_HW_HARDWARE_INFO_CNF_DATA_Ttag
{
 UINT32 ulDeviceNumber; /* device number */
 UINT32 ulSerialNumber; /* serial number */
 UINT16 ausHwOptions[4]; /* hardware assembly options */
 UINT16 usManufacturer; /* device manufacturer */
 UINT16 usProductionDate; /* production date */
 UINT32 ulLicenseFlags1; /* license flags 1 */
 UINT32 ulLicenseFlags2; /* license flags 2 */
 UINT16 usNetxLicenseID; /* license ID */
 UINT16 usNetxLicenseFlags; /* license flags */
 UINT16 usDeviceClass; /* device class */
 UINT8 bHwRevision; /* hardware revision */
 UINT8 bHwCompatibility; /* hardware compatibility */
 UINT32 ulHardwareFeatures1; /* not used, set to 0 */
 UINT32 ulHardwareFeatures2; /* not used, set to 0 */
 UINT8 bBootOption; /* not used, set to 0 */
 UINT8 bReserved[11]; /* reserved, set to 0 */
} RCX_HW_HARDWARE_INFO_CNF_DATA_T;

typedef struct RCX_HW_HARDWARE_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_HW_HARDWARE_INFO_CNF_DATA_T tData; /* packet data */
} RCX_HW_HARDWARE_INFO_CNF_T;

Dual-Port Memory Function 129/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.8 Identifying Channel Firmware
The request returns the name string, version and date of the boot loader, operating system or protocol
stack running on the netX chip, depending on the kind of firmware that is executed. The request
packet is passed through the system mailbox to request information about the boot loader and
operating system and through the channel mailbox to request information about the protocol stack,
respectively.

4.8.1 Identifying Channel Firmware Request

Depending on the requirements, the packet is passed through the system mailbox to obtain operating
system information, or it is passed through the channel mailbox to obtain protocol stack related
information.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EB6

Command
Identify Channel Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 don’t care
0 … 3

0xFFFFFFFF

Channel Identification
if ulDest = CHANNEL
Communication Channel Firmware
System Channel

Packet Structure Reference
/* IDENTIFY FIRMWARE REQUEST */
#define RCX_FIRMWARE_IDENTIFY_REQ 0x00001EB6

/*Channel Identification */
#define RCX_SYSTEM_CHANNEL 0xFFFFFFFF
#define RCX_COMM_CHANNEL_0 0x00000000
#define RCX_COMM_CHANNEL_1 0x00000001
#define RCX_COMM_CHANNEL_2 0x00000002
#define RCX_COMM_CHANNEL_3 0x00000003

typedef struct RCX_FIRMWARE_IDENTIFY_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel ID */
} RCX_FIRMWARE_IDENTIFY_REQ_DATA_T;

Dual-Port Memory Function 130/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

typedef struct RCX_FIRMWARE_IDENTIFY_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FIRMWARE_IDENTIFY_REQ_DATA_T tData; /* packet data */
} RCX_FIRMWARE_IDENTIFY_REQ_T;

Only if the packet is sent through the system channel, ulChannelId is evaluated. Otherwise
ulChannelId is ignored.

If the boot loader is active, the request above returns its version. Once a firmware is loaded, the boot
loader is erased from the memory. Then packet returns the version of the operating system. In both
cases RCX_PACKET_DEST_SYSTEM is used for ulDest and the packet is passed through the system
mailbox.

NOTE Boot loader and operating system (or firmware respectively) does not reside on the netX chip
side by side.

4.8.2 Identifying Channel Firmware Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
76
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EB7

Confirmation
Identify Channel Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

tFwVersion Structure Firmware Version

see below

tFwName Structure Firmware Name

see below

tFwDate Structure Firmware Date

see below

The netX firmware returns the following structure, if ulSta is RCX_S_OK. Otherwise only the packet
header is returned and no data structure.

Dual-Port Memory Function 131/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* IDENTIFY FIRMWARE CONFIRMATION */
#define RCX_FIRMWARE_IDENTIFY_CNF RCX_FIRMWARE_IDENTIFY_REQ+1

typedef struct RCX_FW_VERSION_Ttag
{
 UINT16 usMajor; /* firmware major version */
 UINT16 usMinor; /* firmware minor version */
 UINT16 usBuild; /* firmware build */
 UINT16 usRevision; /* firmware revision */
} RCX_FW_VERSION_T;

typedef struct RCX_FW_NAME_Ttag
{
 UINT8 bNameLength; /* length of firmware name */
 UINT8 abName[63]; /* firmware name */
} RCX_FW_NAME_T;

typedef struct RCX_FW_DATE_Ttag
{
 UINT16 usYear; /* firmware creation year */
 UINT8 bMonth; /* firmware creation month */
 UINT8 bDay; /* firmware creation day */
} RCX_FW_DATE_T;

typedef struct RCX_FW_IDENTIFICATION_Ttag
{
 RCX_FW_VERSION_T tFwVersion; /* firmware version */
 RCX_FW_NAME_T tFwName; /* firmware name */
 RCX_FW_DATE_T tFwDate; /* firmware date */
} RCX_FW_IDENTIFICATION_T;

typedef struct RCX_FIRMWARE_IDENTIFY_CNF_DATA_Ttag
{
 RCX_FW_IDENTIFICATION_T tFirmwareIdentification; /* firmware ID */
} RCX_FIRMWARE_IDENTIFY_CNF_DATA_T;

typedef struct RCX_FIRMWARE_IDENTIFY_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FIRMWARE_IDENTIFY_CNF_DATA_T tData; /* packet data */
} RCX_FIRMWARE_IDENTIFY_CNF_T;

Version

The version field is described on page 210.

Name

This field holds the name of the firmware comprised of ASCII characters. The first byte of the field
holds the length of the following valid characters. Unused bytes are set to zero. The name string is
limited to 63 characters.

Date

This field holds the date of the release of the firmware. The first element holds the year; the second
element holds the month (range 1 … 12); the third element holds the day (range 1 … 31).

Dual-Port Memory Function 132/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9 Reset Command

4.9.1 System Reset vs. Channel Initialization

There are several methods to restart the netX firmware. The first is called System Reset. The system
reset affects the netX operating system rcX and the protocol stacks. It forces the chip to immediately
stop all running protocol stacks and the rcX itself. During the system reset, the netX is performing an
internal memory check and other functions to insure the integrity of the netX chip itself.

The Channel Initialization as the second method affects a communication channel only. The channel
firmware then reads and evaluates the configuration settings (or SYCON.net database, if available)
again. The operating system is not affected. There are no particular tests performed during a channel
initialization.

A third method to reset the netX chip is called Boot Start. When a system reset is executed with the
boot start flag set, no firmware is started. The netX remains in boot loader mode.

NOTE A system reset, channel initialization and boot start may cause all network connection to be
interrupted immediately regardless of their current state.

NOTE During a HW-Reset and during the time when the 2nd stage loader starts the Firmware, the
content of the dual port memory can be 0xFFFF or 0x0BAD for a short period of time.

4.9.2 Resetting netX through Dual-Port Memory

To reset the entire netX firmware, the host application has to set the HSF_RESET bit in the
bHostSysFlags register to perform a system wide reset, respectively the APP_COS_INIT flag for a
channel initialization in the ulApplicationCOS variable in the control block of the channel. The system
reset and the channel initialization are handled differently by the firmware (see above).

4.9.2.1 System Reset

To reset the netX operating system rcX and all communication channels the host application has to
write 0x55AA55AA (System Reset Cookie) to the ulSystemCommandCOS variable in the system
control block (see page 45). Then the HSF_RESET flag in bHostSysFlags (see page 43) has to be
set. If the operating system does not find 0x55AA55AA in the ulSystemCommandCOS variable, the
reset command is being ignored.

The operating system clears the NSF_READY flag in bNetxFlags in the system handshake register
(page 42), indicating that the system wide reset is in progress. During the reset all communication
channel tasks are stopped regardless of their current state. The rcX operating system flushes the
entire dual-port memory and writes all memory locations to zero. After the reset the rcX is finished
without complications and all protocol stacks are started properly, the NSF_READY flag is set again.
Otherwise, the NSF_ERROR flag in bNetxFlags in the system handshake register is set and an error
code is being written in ulSystemError in the system status block (see page 46) that helps identifying
possible problems.

Value Definition / Description
0x55AA55AA SYSTEM RESET COOKIE

Table 86: System Reset Cookie

Dual-Port Memory Function 133/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

The image below illustrates the steps the host application has to perform in order to execute a system-
wide reset on the netX chip through the dual-port memory.

System Rest

NSF_READY Bit Set?

FinishFault

Write Reset Cookie

Set HSF_RESET Bit

Timeout?

NSF_READY Bit Cleared?

Timeout?

NSF_READY Bit Set?

Yes

Yes

Yes

Yes

Yes

No

No

No No

No

Figure 18: System Reset Flowchart

Timing

The duration of the reset outlined above, depends on the firmware. Typically the NSF_READY flag is
cleared within around 100 – 500 ms after the HSF_RESET Flag was set. When cleared, the
NSF_READY bit will be set again after around 0.5 – 5 s. Generally, the reset should not take more
than 6 s.

Dual-Port Memory Function 134/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9.2.2 Channel Initialization

In order to force the protocol stack to restart and evaluate the configuration parameter again, the
application can set the APP_COS_INIT flag in the ulApplicationCOS register in the control block or
send a reset packet to the communication channel. All open network connections are interrupted
immediately regardless of their current state. If the database is locked, re-initializing the channel is not
allowed (see pages 57 and 59).

Changing flags in the ulApplicationCOS register requires the application also to toggle the host
change of state command flag in the host communication flags register (see page 54). Only then, the
netX protocol stack recognizes the reset command.

During channel initialization the RCX_COMM_COS_READY flag and the RCX_COMM_COS_RUN
flag are cleared together. The RCX_COMM_COS_READY flag stays cleared for at least 20 ms before
it is set again indicating that the initialization has been finished. The RCX_COMM_COS_RUN flag is
set, if a valid configuration was found. Otherwise it stays cleared.

After the initialization process has finished, the protocol stack checks ulApplicationCOS register. If the
RCX_APP_COS_BUS_ON flag and the RCX_APP_COS_BUS_ON_ENABLE flag set, network
communication will be restored automatically. The same is true for the Lock Configuration feature
(RCX_APP_COS_LOCK_CONFIG / RCX_APP_COS_LOCK_CONFIG_ENABLE) and the DMA data
transfer mechanism (RCX_APP_COS_DMA / RCX_APP_COS_DMA_ENABLE).

The image below illustrates the steps the host application has to perform in order to execute a channel
initialization on the protocol stack through the dual-port memory.

Dual-Port Memory Function 135/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Channel Initialization

HCF_HOST_COS_CMD ==
NCF_HOST_COS_ACK?

Finish Fault

Set RCX_APP_COS_INIT
Set RCX_APP_COS_INIT_ENABLE

Yes

Yes
Yes

Yes

Yes No

No

No

No

Toggle HCF_HOST_COS_CMD

Wait...

HCF_HOST_COS_CMD ==
NCF_HOST_COS_ACK?

Wait... Timeout?

RCX_COMM_COS_READY Set?

Timeout?

HCF_HOST_COS_CMD ==
NCF_HOST_COS_ACK?

HCF_HOST_COS_CMD ==
NCF_HOST_COS_ACK?

Wait... Timeout?

RCX_COMM_COS_READY Set?

No

No

Yes

Yes No

NoYes

No

Yes

Clear RCX_APP_COS_INIT_ENABLE

Figure 19: Channel Initialization Flowchart

Dual-Port Memory Function 136/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9.2.3 Boot Start

The Boot Start feature uses a flag from the bHostFlags in the system handshake register on page 43 If
the HSF_BOOTSTART flag is set while a system reset is executed the netX operating system is
forced to stay in boot loader mode after the system reset has finished. A firmware that might reside on
the chip is not started. If the flag is cleared during reset, the firmware is being started.

To enable the boot loader mode, do the following:

2. Set HSF_BOOTSTART flag in bHostFlags in the host system flags in the system handshake
register.

3. Write the system reset cookie into the ulSystemCommandCOS variable in the system control
block.

4. Set the HSF_RESET flag in bHostFlags in the host system flags in the system handshake
register. The system reset is being executed as outlined above.

NOTE The Boot Start feature is not available on cifX 50 cards.

Dual-Port Memory Function 137/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9.3 System Reset through Packets

Instead of using the dual-port memory, netX chip can be reset using a packet. The request packet is
passed through the system mailbox. All open network connections are interrupted immediately
regardless of their current state. If the database is locked, re-initializing the channel is not allowed (see
pages 57 and 59).

4.9.3.1 Reset Request

The application uses the following packet in order to reset netX chip. The reset packet is send through
the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E00

Command
System Reset

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

 ulTimeToReset UINT32 0 … 0xFFFFFFFF Time Delay to Reset in ms

ulResetMode UINT32 0

Reset Mode
Not used, set to zero

Packet Structure Reference
/* CHANNEL RESET REQUEST */
#define RCX_FIRMWARE_RESET_REQ 0x00001E00

typedef struct RCX_FIRMWARE_RESET_REQ_DATA_Ttag
{
 UINT32 ulTimeToReset; /* time to reset in ms */
 UINT32 ulResetMode; /* reset mode parameter */
} RCX_FIRMWARE_RESET_REQ_DATA_T;

typedef struct RCX_FIRMWARE_RESET_REQtag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FIRMWARE_RESET_REQ_DATA_T tData; /* packet data */
} RCX_FIRMWARE_RESET_REQ_T;

Dual-Port Memory Function 138/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9.3.2 Reset Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E01

Confirmation
System Reset

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* CHANNEL RESET CONFIRMATION */
#define RCX_CHANNEL_RESET_CNF RCX_CHANNEL_RESET_REQ+1

typedef struct RCX_FIRMWARE_RESET_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_FIRMWARE_RESET_CNF_T;

Dual-Port Memory Function 139/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9.3.3 Channel Initialization Request

Compared to the system reset, the channel initialization affects the designated channel only. A
channel initialization forces the protocol stack to immediately close all network connections and start
over. While the stack is started the configuration settings are evaluated again. The packet is send
through the channel mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F80

Command
Channel Initialization

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information, Not Used

Packet Structure Reference
/* CHANNEL INITIALIZATION REQUEST */
#define RCX_CHANNEL_INIT_REQ 0x00002F80

typedef struct RCX_CHANNEL_INIT_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_CHANNEL_INIT_REQ_T;

Dual-Port Memory Function 140/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.9.3.4 Channel Initialization Confirmation

The channel firmware returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F81

Confirmation
Channel Initialization

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* CHANNEL INITIALIZATION CONFIRMATION */
#define RCX_CHANNEL_INIT_CNF RCX_CHANNEL_INIT_REQ+1

typedef struct RCX_CHANNEL_INIT_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_CHANNEL_INIT_CNF_T;

Dual-Port Memory Function 141/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10 Downloading Files to netX
Any download to the netX chip is handled via rcX packages as described below. The netX operating
system rcX creates a file system where the files are stored. To download files to the netX, the user
application takes the file, splits it into smaller pieces that fit into the mailbox and sent them as rcX
packages to the netX. The rcX acknowledges each of the packets and may return an error code in the
reply, if a failure occurs.

Usually a file that has to be downloaded to the rcX (a firmware or configuration database for example)
does not fit into a single packet. The ulExt field is used for controlling packets that are sent in a
sequenced manner. It indicates the first, last and a packet in the sequence.

NOTE The user application must send the file in the order of its original sequence. The ulId field in
the packet holds a sequence number and is incremented by one for each new packet.
Sequence numbers shall not be skipped or used twice. The rcX cannot re-assemble a file
that is out of its natural order.

Dual-Port Memory Function 142/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.1 File Download

The download procedure starts with a file download request packet. The user application provides at
least the file length and file name. The rcX responds with the maximum packet data size, which can be
used in the following file data download packages. Then the application has to transfer the entire file
by sending as much data packets as necessary. Each packet will be acknowledged by the rcX. The
download is finished with the last packet.

Figure 20: Flowchart Download

If an error occurs during the download, the process must be canceled by sending a download abort
command.

Dual-Port Memory Function 143/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.1.1 File Download Request

The packet below is the first request to be sent to the rcX operating system to start a file download.
The application provides the length of the file and its name in the request packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 18 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E62

Command:
File Download Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

ulXferType UINT32 1

Download Transfer Type
File Transfer

 ulMaxBlock
Size UINT32 1 … m

Max Block Size
Maximum Size of Block per Packet

ulFileLength UINT32 File Length

File size to be downloaded

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 n

Length of Name
Length of the Following File Name (in Bytes)

abFileName[n] UINT8 0x20 … 0x7F

File Name
ASCII string, Zero Terminated; Size is n

Packet Structure Reference
/* FILE DOWNLOAD REQUEST */
#define RCX_FILE_DOWNLOAD_REQ 0x00001E62

/* NO SEQUENCED PACKET */
#define RCX_PACKET_SEQ_NONE 0x00000000

/* TRANSFER FILE */
#define RCX_FILE_XFER_FILE 0x00000001

/* TRANSFER INTO FILE SYSTEM */
#define RCX_FILE_XFER_FILESYSTEM 0x00000001

/* TRANSFER MODULE */
#define RCX_FILE_XFER_MODULE 0x00000002

Dual-Port Memory Function 144/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

/* Channel Number */
#define RCX_SYSTEM_CHANNEL 0xFFFFFFFF
#define RCX_COMM_CHANNEL_0 0x00000000
#define RCX_COMM_CHANNEL_1 0x00000001
#define RCX_COMM_CHANNEL_2 0x00000002
#define RCX_COMM_CHANNEL_3 0x00000003

typedef struct RCX_FILE_DOWNLOAD_REQ_DATA_Ttag
{
 UINT32 ulXferType;
 UINT32 ulMaxBlockSize;
 UINT32 ulFileLength;
 UINT32 ulChannelNo;
 UINT16 usFileNameLength;
 /* a NULL-terminated file name follows here */
 /* UINT8 abFileName[]; */
} RCX_FILE_DOWNLOAD_REQ_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_DOWNLOAD_REQ_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_REQ_T;

Dual-Port Memory Function 145/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.1.2 File Download Confirmation

The rcX operating system returns the following confirmation packet. It contains the size of the data
block that can be transferred in one packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E63

Confirmation
File Download

ulExt UINT32 0x00000000 Extension

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulMaxBlock
Size UINT32 1 … n

Max Block Size
Maximum Size of Block per Packet

Packet Structure Reference
/* FILE DOWNLOAD CONFIRMATION */
#define RCX_FILE_DOWNLOAD_CNF RCX_FILE_DOWNLOAD_REQ+1

typedef struct RCX_FILE_DOWNLOAD_CNF_DATA_Ttag
{
 UINT32 ulMaxBlockSize;
} RCX_FILE_DOWNLOAD_CNF_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_DOWNLOAD_CNF_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_CNF_T;

Block Size

The block size is returned in the reply packet, if ulSta is equal to RCX_S_OK. Otherwise no data field is
returned.

Dual-Port Memory Function 146/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.2 File Data Download

4.10.2.1 File Data Download Request

This packet is used to transfer a block of data to the netX operating system rcX to be stored on the file
system. The term data block is used to describe a portion of a file. The data block in the packet is
identified by a block or sequence number and is secured through a continuous CRC32 checksum.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E64

Command
File Data Download

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

ulBlockNo UINT32 0 ... m

Block Number
Block or Sequence Number

ulChksum UINT32 S

Checksum
CRC32 Polynomial

 abData[n] UINT8 0 … 0xFF File Data Block (Size is n)

Packet Structure Reference
/* FILE DATA DOWNLOAD */
#define RCX_FILE_DATA_DOWNLOAD_REQ 0x00001E64

/* PACKET SEQUENCE */
#define RCX_PACKET_SEQ_NONE 0x00000000
#define RCX_PACKET_SEQ_FIRST 0x00000080
#define RCX_PACKET_SEQ_MIDDLE 0x000000C0
#define RCX_PACKET_SEQ_LAST 0x00000040

typedef struct RCX_FILE_DOWNLOAD_DATA_REQ_DATA_Ttag
{
 UINT32 ulBlockNo; /* block number */
 UINT32 ulChksum; /* cumulative CRC-32 checksum */
 /* data block follows here */
 /* UINT8 abData[]; */
} RCX_FILE_DOWNLOAD_DATA_REQ_DATA_T;

Dual-Port Memory Function 147/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

typedef struct RCX_FILE_DOWNLOAD_DATA_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_DOWNLOAD_DATA_REQ_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_DATA_REQ_T;

The block or sequence number ulBlockNo starts with zero for the first data packet and is incremented
by one for each following packet. The checksum in ulChksum is calculated as a CRC32 polynomial. It
is a calculated continuously over all data packets that were sent already. A sample to calculate the
checksum is included in the toolkit for netX based products.

NOTE If the download fails, the rcX returns an error code in ulSta. The user application then has to
send an abort request packet (see page 149) and start over.

Dual-Port Memory Function 148/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.2.2 File Data Download Confirmation

The rcX operating system returns the following confirmation packet. It contains the expected CRC32
checksum of the data block.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E65

Confirmation
File Data Download

ulExt UINT32
0x00000000

Extension:
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulExpected
Crc32 UINT32 S

Checksum
Expected CRC32 Polynomial

Packet Structure Reference
/* FILE DATA DOWNLOAD CONFIRMATION */
#define RCX_FILE_DATA_DOWNLOAD_CNF RCX_FILE_DATA_DOWNLOAD_REQ+1

/* PACKET SEQUENCE */
#define RCX_PACKET_SEQ_NONE 0x00000000

typedef struct RCX_FILE_DOWNLOAD_DATA_CNF_DATA_Ttag
{
 UINT32 ulExpectedCrc32; /* expected CRC-32 checksum */
} RCX_FILE_DOWNLOAD_DATA_CNF_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_DATA_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_DOWNLOAD_DATA_CNF_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_DATA_CNF_T;

Checksum

The checksum is returned in the reply that was calculated for the request packet, if ulSta is equal to
RCX_S_OK. Otherwise no data field is returned.

Dual-Port Memory Function 149/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.3 Abort File Download

4.10.3.1 Abort File Download Request

If necessary, the application can abort the download procedure at any time. If an error occurs during
downloading a file (the rcX operating system returns ulSta not equal to RCX_S_OK), the user
application has to abort the download procedure by sending the abort command outlined below.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E66

Command
Abort Download Request

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 0x00000000 Routing Information, Not Used

Packet Structure Reference
/* ABORT DOWNLOAD REQUEST */
#define RCX_FILE_DOWNLOAD_ABORT_REQ 0x00001E66

typedef struct RCX_FILE_DOWNLOAD_ABORT_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_FILE_DOWNLOAD_ABORT_REQ_T;

Dual-Port Memory Function 150/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.10.3.2 Abort File Download Confirmation

The rcX operating system returns the following confirmation packet, indicating that the download was
aborted.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E67

Confirmation
Abort Download Confirmation

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* ABORT DOWNLOAD REQUEST */
#define RCX_FILE_DOWNLOAD_ABORT_CNF RCX_FILE_DOWNLOAD_ABORT_REQ+1

typedef struct RCX_FILE_DOWNLOAD_ABORT_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_FILE_DOWNLOAD_ABORT_CNF_T;

Data Field

There is no data field returned in the Abort Download confirmation packet.

Dual-Port Memory Function 151/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11 Uploading Files from netX
As for the download, uploading is handled via packets. The upload file is selected by its file name.
During the upload request, the file name is transferred to the rcX. If the requested file exists, the rcX
returns all necessary file information in the response. Then the host application creates file read
request packets. In return the rcX send response packets holding portions of the file data. Then the
user application sends the next request packet. The application has to continue sending read request
packets until the entire file is transferred. Receiving the last response packet finishes the upload
process.

Usually a file which is uploaded from the rcX does not fit into a single packet. The ulExt field is used
for controlling packets that are sent in a sequenced manner. It indicates the first, last or a sequenced
packet.

NOTE The rcX sends the file in the order of its original sequence. The ulId field in the packet holds
a sequence number and is incremented by one for each new packet. Sequence numbers
shall not be skipped or used twice.

Dual-Port Memory Function 152/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.1 File Upload

The netX operating system offers a function to read the content of the file system. This information can
be used by the host application to search for a specific file (TBD). See following flowchart of how to
upload a file from the netX chip.

Figure 21: Flowchart File Upload

If an error occurs, during uploading a file, the process must be canceled by sending an upload abort
command.

Dual-Port Memory Function 153/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.1.1 File Upload Request

The packet below is the first request to be sent to the rcX operating system to start a file upload. The
application provides the length of the file and its name in the request packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 14 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E60

Command
File Upload Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

ulXferType UINT32 1

Transfer Type:
rcX File Transfer

 ulMaxBlock
Size UINT32 1 … m

Max Block Size
Maximum Size of Block per Packet

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 n

Length of Name
Length of Following File Name (in Bytes)

abFileName[n] UINT8 0x20 … 0x7F

File Name
ASCII String, Zero Terminated (Length is n)

Packet Structure Reference
/* FILE UPLOAD COMMAND */
#define RCX_FILE_UPLOAD_REQ 0x00001E60

/* PACKET SEQUENCE */
#define RCX_PACKET_SEQ_NONE 0x00000000

/* TRANSFER TYPE */
#define RCX_FILE_XFER 0x00000001

/* CHANNEL Number */
#define RCX_SYSTEM_CHANNEL 0xFFFFFFFF
#define RCX_COMM_CHANNEL_0 0x00000000
#define RCX_COMM_CHANNEL_1 0x00000001
#define RCX_COMM_CHANNEL_2 0x00000002
#define RCX_COMM_CHANNEL_3 0x00000003

Dual-Port Memory Function 154/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

typedef struct RCX_FILE_UPLOAD_REQ_DATA_Ttag
{
 UINT32 ulXferType; /* transfer type */
 UINT32 ulMaxBlockSize; /* block size */
 UINT32 ulChannelNo; /* channel number */
 UINT16 usFileNameLength; /* length of file name */
 /* a NULL-terminated file name follows here */
 /* UINT8 abFileName[]; file name */
} RCX_FILE_UPLOAD_REQ_DATA_T;

typedef struct RCX_FILE_UPLOAD_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_UPLOAD_REQ_DATA_T tData; /* packet data */
} RCX_FILE_UPLOAD_REQ_T;

Dual-Port Memory Function 155/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.1.2 File Upload Confirmation

The rcX operating system returns the following confirmation packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E61

Confirmation
File Upload

ulExt UINT32 0x00000000 Extension

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulMaxBlock
Size UINT32 1 … n

Max Block Size
Maximum Size of Block per Packet

ulFileLength UINT32 1 … p

File Length
Total File Length (in Bytes)

Packet Structure Reference
/* FILE UPLOAD CONFIRMATION */
#define RCX_FILE_UPLOAD_CNF RCX_FILE_UPLOAD_REQ+1

/* PACKET SEQUENCE */
#define RCX_PACKET_SEQ_NONE 0x00000000

typedef struct RCX_FILE_UPLOAD_CNF_DATA_Ttag
{
 UINT32 ulMaxBlockSize; /* maximum block size possible */
 UINT32 ulFileLength; /* file size to transfer */
} RCX_FILE_UPLOAD_CNF_DATA_T;

typedef struct RCX_FILE_UPLOAD_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_UPLOAD_CNF_DATA_T tData; /* packet data */
} RCX_FILE_UPLOAD_CNF_T;

Dual-Port Memory Function 156/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.2 File Data Upload

4.11.2.1 File Data Upload Request

This packet is used to transfer a block of data from the rcX file system to the user application. The
term data block is used to describe a portion of a file. The data block in the packet is identified by a
block or sequence number and is secured through a continuous CRC32 checksum.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E6E

Command
File Data Upload

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information, Not Used

Packet Structure Reference
/* FILE DATA UPLOAD REQUEST */
#define RCX_FILE_DATA_UPLOAD_REQ 0x00001E6E

/* PACKET SEQUENCE */
#define RCX_PACKET_SEQ_NONE 0x00000000
#define RCX_PACKET_SEQ_FIRST 0x00000080
#define RCX_PACKET_SEQ_MIDDLE 0x000000C0
#define RCX_PACKET_SEQ_LAST 0x00000040

typedef struct RCX_FILE_UPLOAD_DATA_REQ_Ttag
{
 PACKET_HEADER tHead; /* packet header */
} RCX_FILE_UPLOAD_DATA_REQ_T;

Dual-Port Memory Function 157/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.2.2 File Data Upload Confirmation

The rcX operating system returns the following confirmation packet. It contains the block number and
the expected CRC32 checksum of the data block.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 Form Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 8 + n Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E6F

Confirmation
File Data Upload

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

ulBlockNo UINT32 0 ... m

Block Number
Block or Sequence Number

ulChksum UINT32 S

Checksum
CRC32 Polynomial

 abData[n] UINT8 0 … 0xFF File Data Block (Size is n)

Packet Structure Reference
/* FILE DATA UPLOAD CONFIRMATION */
#define RCX_FILE_DATA_UPLOAD_CNF RCX_FILE_DATA_UPLOAD_REQ+1

/* PACKET SEQUENCE */
#define RCX_PACKET_SEQ_NONE 0x00000000

typedef struct RCX_FILE_UPLOAD_DATA_CNF_DATA_Ttag
{
 UINT32 ulBlockNo; /* block number starting from 0 */
 UINT32 ulChksum; /* cumulative CRC-32 checksum */
 /* data block follows here */
 /* UINT8 abData[]; */
} RCX_FILE_UPLOAD_DATA_CNF_DATA_T;

typedef struct RCX_FILE_UPLOAD_DATA_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_UPLOAD_DATA_CNF_DATA_T tData; /* packet data */
} RCX_FILE_UPLOAD_DATA_CNF_T;

Dual-Port Memory Function 158/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Block Number, Checksum

The block number ulBlockNo starts with zero for the first data packet and is incremented by one for
every following packet. The checksum ulChksum is calculated as a CRC32 polynomial. It is a
calculated continuously over all data packets that were sent already. A sample to calculate the
checksum is included in the toolkit for netX based products.

The rcX sends the file in the order of its original sequence. Sequence numbers are not skipped or
used twice.

NOTE If the download fails, the user application has to abort the download and start over.

4.11.3 File Upload Abort

4.11.3.1 File Upload Abort Request

If necessary, the application can abort the upload procedure at any time. If an error occurs during
uploading a file (the rcX operating system returns ulSta not equal to RCX_S_OK), the user application
has to cancel the upload procedure by sending the abort command outlined below.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle:
SYSTEM

ulSrc UINT32 x Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E5E

Command
Abort Upload Request

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 0x00000000 Routing Information, Not Used

Packet Structure Reference
/* FILE ABORT UPLOAD REQUEST */
#define RCX_FILE_UPLOAD_ABORT_REQ 0x00001E5E

typedef struct RCX_FILE_UPLOAD_ABORT_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_FILE_UPLOAD_ABORT_REQ_T;

Dual-Port Memory Function 159/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.3.2 File Upload Abort Confirmation

The rcX operating system returns the following confirmation packet, indicating that the Upload was
aborted.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E5F

Confirmation
Abort Upload

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* FILE ABORT UPLOAD CONFIRMATION */
#define RCX_FILE_UPLOAD_ABORT_CNF RCX_FILE_UPLOAD_ABORT_REQ+1

typedef struct RCX_FILE_UPLOAD_ABORT_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_FILE_UPLOAD_ABORT_CNF_T;

Dual-Port Memory Function 160/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.11.4 Creating a CRC32 Checksum

This is an example which shows the generation of a CRC32 checksum.
/***/
/*! Create a CRC32 value from the given buffer data
* \param ulCRC continued CRC32 value
* \param pabBuffer buffer to create the CRC from
* \param ulLength buffer length
* \return CRC32 value */
/***/
static unsigned long CreateCRC32(unsigned long ulCRC,
 unsigned char* pabBuffer,
 unsigned long ulLength)
{
 if((0 == pabBuffer) || (0 == ulLength))
 {
 return ulCRC;
 }
 ulCRC = ulCRC ^ 0xffffffff;
 for(;ulLength > 0; --ulLength)
 {
 ulCRC = (Crc32Table[((ulCRC) ^ (*(pabBuffer++))) & 0xff] ^ ((ulCRC) >> 8));
 }
 return(ulCRC ^ 0xffffffff);
}

/***/
/*! CRC 32 lookup table */
/***/
static unsigned long Crc32Table[256]=
{
 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL,
 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL,
 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL,
 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL,
 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL,
 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL,
 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL,
 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL,
 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL,
 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL,
 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL,
 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL,
 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL,
 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL,
 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL,
 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL,
 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL,
 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL,
 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL,
 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL,
 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL,
 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL,
 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL,
 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL,
 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL,
 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL,
 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL,
 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL,
 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL,
 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL,
 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL,
 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL,
 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL,
 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL,
 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL,
 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL,
 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL
};

Dual-Port Memory Function 161/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.12 Read MD5 File Checksum
The rcX operating system offers a file checksum, based on a MD5 algorithm. This checksum can be
read for a given file.

4.12.1 MD5 File Checksum Request
Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E68

Command
Get MD5 File Checksum

ulExt UINT32
0x00000000

Extension
None

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 n

Length of Name
Length of the Following File Name (in Bytes)

abFileName[n] UINT8 0x20 … 0x7F

File Name
ASCII string, Zero Terminated; Size is n

Packet Structure Reference
/* REQUEST MD5 FILE CHECKSUM REQUEST */
#define RCX_FILE_GET_MD5_REQ 0x00001E68

typedef struct RCX_FILE_GET_MD5_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* 0 = Channel 0 ... 3 = Channel 3, */
 /* 0xFFFFFFFF = System, see RCX_FILE_xxxx */
 UINT16 usFileNameLength; /* length of NULL-terminated file name */

 /* a NULL-terminated file name will follow here */
} RCX_FILE_GET_MD5_REQ_DATA_T;

typedef struct RCX_FILE_GET_MD5_REQ_Ttag
{
 PACKET_HEADER tHead; /* packet header */
 RCX_FILE_GET_MD5_REQ_DATA_T tData; /* packet data */
} RCX_FILE_GET_MD5_REQ_T;

Dual-Port Memory Function 162/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.12.2 MD5 File Checksum Confirmation
Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 16 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E69

Confirmation
Get MD5 File Checksum

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 z Routing Information, Not Used

tData Structure Information

 abMD5[16] UNIT8 0 … 0xFF MD5 checksum

Packet Structure Reference
/* REQUEST MD5 FILE CHECKSUM REQUEST */
#define RCX_FILE_GET_MD5_CNF RCX_FILE_GET_MD5_REQ+1

typedef struct RCX_FILE_GET_MD5_CNF_DATA_Ttag
{
 UINT8 abMD5[16]; /* MD5 checksum */
} RCX_FILE_GET_MD5_CNF_DATA_T;

typedef struct RCX_FILE_GET_MD5_CNFtag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_GET_MD5_CNF_DATA_T tData; /* packet data */
} RCX_FILE_GET_MD5_CNF_T;

Dual-Port Memory Function 163/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.13 Delete a File
If the target hardware supports a FLASH based files system, all downloaded files like firmware files
and configuration files are stored in the FLASH memory. The following packet allows deletion of files
on the target files system.

4.13.1 File Delete Request
Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle:
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E6A

Command
File Delete Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 0 … n

Length of Name
Length of the Following File Name (in Bytes)

 abFileName[n] UINT8 0x20 … 0x7F
File Name
ASCII string, Zero Terminated; Size is n

Packet Structure Reference
/* FILE DELETE REQUEST */
#define RCX_FILE_DELETE_REQ 0x00001E6A

/* Channel Number */
#define RCX_SYSTEM_CHANNEL 0xFFFFFFFF
#define RCX_COMM_CHANNEL_0 0x00000000
#define RCX_COMM_CHANNEL_1 0x00000001
#define RCX_COMM_CHANNEL_2 0x00000002
#define RCX_COMM_CHANNEL_3 0x00000003

typedef struct RCX_FILE_DELETE_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* 0 = channel 0 ... 3 = channel 3 */
 /* 0xFFFFFFFF = system, see RCX_FILE_xxxx */
 UINT16 usFileNameLength; /* length of NULL-terminated file name */
 /* a NULL-terminated file name will follow here */
} RCX_FILE_DELETE_REQ_DATA_T;

Dual-Port Memory Function 164/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

typedef struct RCX_FILE_DELETE_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_FILE_DELETE_REQ_DATA_T tData; /* packet data */
} RCX_FILE_DELETE_REQ_T;

4.13.2 File Delete Confirmation
Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E6B

Command
File Delete Confirmation

ulExt UINT32 0x00000000 Extension

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* FILE DELETE REQUEST */
#define RCX_FILE_DELETE_CNF RCX_FILE_DELETE_REQ+1

typedef struct RCX_FILE_DELETE_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_FILE_DELETE_CNF_T;

Dual-Port Memory Function 165/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.14 List Directories and Files from File System
Directories and files in the rcX file system can be listed by the command outlined below.

4.14.1 Directory List Request
Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E70

Command
Directory List Request

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usDirName
Length UINT16 0 … n

Name Length
Length of the Directory Name (in Bytes)

abDirName[n] UINT8 0x20 … 0x7F

Directory Name
ASCII string, Zero Terminated; Size is n

Dual-Port Memory Function 166/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* DIRECTORY LIST REQUEST */
#define RCX_DIR_LIST_REQ 0x00001E70
/* Channel Number */
#define RCX_COMM_CHANNEL_0 0x00000000
#define RCX_COMM_CHANNEL_1 0x00000001
#define RCX_COMM_CHANNEL_2 0x00000002
#define RCX_COMM_CHANNEL_3 0x00000003

typedef struct RCX_DIR_LIST_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* 0 = channel 0 ... 3 = channel 3 */
 /* 0xFFFFFFFF = system, see RCX_FILE_xxxx */
 UINT16 usDirNameLength; /* length of NULL terminated string */
 /* a NULL-terminated name string will follow here */
} RCX_DIR_LIST_REQ_DATA_T;

typedef struct RCX_DIR_LIST_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DIR_LIST_REQ_DATA_T tData; /* packet data */
} POST RCX_DIR_LIST_REQ_T;

Dual-Port Memory Function 167/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.14.2 Directory List Confirmation
Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
24
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E71

Confirmation
Directory List Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 szName[16] UINT8 File Name

 ulFileSize UINT32 1 … m File Size in Bytes

bFileType UINT8 1

2

File Type
Directory
File

 bReserved UINT8 0 Reserved, unused

 usReserved2 UINT16 0 Reserved, unused

Packet Structure Reference
/* DIRECTORY LIST CONFIRMATION */
#define RCX_DIR_LIST_CNF RCX_DIR_LIST_REQ+1

/* TYPE: DIRECTORY */
#define RCX_DIR_LIST_CNF_FILE_TYPE_DIRECTORY 0x00000001

/* TYPE: FILE */
#define RCX_DIR_LIST_CNF_FILE_TYPE_FILE 0x00000002

typedef struct RCX_DIR_LIST_CNF_DATA_Ttag
{
 UINT8 szName[16]; /* file name */
 UINT32 ulFileSize; /* file size */
 UINT8 bFileType; /* file type */
 UINT8 bReserved; /* reserved, set to 0 */
 UINT16 usReserved2 /* reserved, set to 0 */
} RCX_DIR_LIST_CNF_DATA_T;

typedef struct RCX_DIR_LIST_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DIR_LIST_CNF_DATA_T tData; /* packet data */
} RCX_DIR_LIST_CNF_T;

Dual-Port Memory Function 168/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.15 Host / Device Watchdog
The host watchdog and the device watchdog cell in the control block of each of the communication
channel allow the operating system running on the netX supervising the host application and vice
versa. There is no watchdog function for the system block or for the handshake channel. The
watchdog for the channels is located in the control block respectively in the status block (see pages 57
and 59 for details).

4.15.1 Function

The netX firmware reads the content of the device watchdog cell, increments the value by one and
copies it back into the host watchdog location. Now the application has to copy the new value from the
host watchdog location into the device watchdog location. Copying the host watchdog cell to the
device watchdog cell has to happen in the configured watchdog time. When the overflow occurs, the
firmware starts over and a one appears in the host watchdog cell. A zero turns off the watchdog and
therefore never appears in the host watchdog cell in the regular process.

The minimum watchdog time is 20 ms. The application can start the watchdog function by copying any
value unequal to zero into device watchdog cell. A zero in the device watchdog location stops the
watchdog function. The watchdog timeout is configurable in SYCON.net and downloaded to the netX
firmware.

If the application fails to copy the value from the host watchdog location to the device watchdog
location within the configured watchdog time, the protocol stack will interrupt all network connections
immediately regardless of their current state. If the watchdog tripped, power cycling, channel reset or
channel initialization allows the communication channel to open network connections again.

Value Definition / Description

0x00000000 WATCHDOG OFF

Table 87: Watchdog Off

Dual-Port Memory Function 169/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.15.2 Get Watchdog Time Request

The application uses the following packet in order to read the current watchdog time from the
communication channel. Since there is a watchdog per communication channel, the packet is send
through the channel mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F02

Command
Get Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* GET WATCHDOG TIME REQUEST */
#define RCX_GET_WATCHDOG_TIME_REQ 0x00002F02

typedef struct RCX_GET_WATCHDOG_TIME_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_GET_WATCHDOG_TIME_REQ_T;

Dual-Port Memory Function 170/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.15.3 Get Watchdog Time Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F03

Confirmation
Get Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulWdgTime UINT32 0, 20 … 0xFFFF Watchdog Time

Packet Structure Reference
/* GET WATCHDOG TIME CONFIRMATION */
#define RCX_GET_WATCHDOG_TIME_CNF RCX_GET_WATCHDOG_TIME_REQ+1

typedef struct RCX_GET_WATCHDOG_TIME_CNF_DATA_Ttag
{
 UINT32 ulWdgTime; /* current watchdog time */
} RCX_GET_WATCHDOG_TIME_CNF_DATA_T;

typedef struct RCX_GET_WATCHDOG_TIME_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_GET_WATCHDOG_TIME_CNF_DATA_T tData; /* packet data */
} RCX_GET_WATCHDOG_TIME_CNF_T;

Dual-Port Memory Function 171/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.15.4 Set Watchdog Time Request

The application uses the following packet in order to set the watchdog time for the netX operating
system RCX. The packet is send through the system mailbox to the netX operating system.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F04

Command
Set Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulWdgTime UINT32 0, 20 … 0xFFFF Watchdog Time

Packet Structure Reference
/* SET WATCHDOG TIME REQUEST */
#define RCX_SET_WATCHDOG_TIME_REQ 0x00002F04

typedef struct RCX_SET_WATCHDOG_TIME_REQ_DATA_Ttag
{
 UINT32 ulWdgTime; /* new watchdog time */
} RCX_SET_WATCHDOG_TIME_REQ_DATA_T;

typedef struct RCX_SET_WATCHDOG_TIME_REQtag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_SET_WATCHDOG_TIME_REQ_DATA tData; /* packet data */
} RCX_SET_WATCHDOG_TIME_REQ;

Dual-Port Memory Function 172/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.15.5 Set Watchdog Time Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F05

Confirmation
Set Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* SET WATCHDOG TIME CONFIRMATION */
#define RCX_SET_WATCHDOG_TIME_CNF RCX_SET_WATCHDOG_TIME_REQ+1

typedef struct RCX_SET_WATCHDOG_TIME_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_SET_WATCHDOG_TIME_CNF_T;

Dual-Port Memory Function 173/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.16 Set MAC Address
An Ethernet based firmware/hardware always requires an MAC address and usually this MAC address
is stored in the security memory. For slave protocols, if no security memory is connected to the netX
chip, the Set MAC Address function is used to hand a MAC address to the firmware. Using the Set
MAC Address function with a security memory connected to the netX chip causes the stored MAC
address to be overwritten (master and slave protocols).

If no security memory is connected to the netX chip, the protocol stack waits for the host application to
provide a MAC address. After a MAC address was received, the protocol stack either evaluates the
configuration database or expects “warm-start” packets for commissioning purposes.

NOTE The netX firmware stores only one MAC address. If applicable, this address incremented by
one is used for the second Ethernet port and incremented by 2 for the third port and so on.
That means one netX chip uses up to 4 consecutive MAC addresses base on the initial MAC
address configured.

If not stored is the security memory, the MAC address is lost after power cycle.

Dual-Port Memory Function 174/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.16.1 Set MAC Address Request

The application uses the following packet in order to set a MAC Address for any firmware. The packet
is send through the system mailbox to the netX operating system.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 12 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EEE

Command
Set MAC Address

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulParam UINT32
Bit Field

Parameter Field
See below

 abMacAddr[6] UINT8 MAC Address

 abPad[2] UINT8 0x00 Pad Bytes, Set to Zero

Packet Structure Reference
/* SET MAC ADDRESS REQUEST */
#define RCX_SET_MAC_ADDR_REQ 0x00001EEE

#define RCX_STORE_MAC_ADDRESS 0x00000001
#define RCX_FORCE_MAC_ADDRESS 0x00000002

typedef struct RCX_SET_MAC_ADDR_REQ_DATA_Ttag
{
 UINT32 ulParam; /* parameter bit field */
 UINT8 abMacAddr[6]; /* MAC address */
 UINT8 abPad[2]; /* pad bytes, set to zero */
} RCX_SET_MAC_ADDR_REQ_DATA_T;

typedef struct RCX_SET_MAC_ADDR_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_SET_MAC_ADDR_REQ_DATA_T tData; /* packet data */
} RCX_SET_MAC_ADDR_REQ_T;

Dual-Port Memory Function 175/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Parameter Field

ulParam

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 Store MAC Address

 Force MAC Address

Reserved, set to zero

Table 88: Set MAC Address Parameter Field

Bit No. Definition / Description

0 Store MAC Address (RCX_STORE_MAC_ADDRESS)
This flag needs to be set if a MAC address shall be written into the security memory in case
the MAC address field in the security memory is empty or set to 0, respectively. Otherwise
an error code is retuned. On success, the MAC address is stored permanently. The flag will
be ignored if no security memory is connected.

1 Force MAC Address (RCX_FORCE_MAC_ADDRESS)
This flag need to be set together with the Store MAC Address flag in order to overwrite an
existing MAC address in the security memory. The new MAC address is stored
permanently. The flag will be ignored if no security memory is connected.

2 … 31 Reserved, set to 0

Table 89: Set MAC Address Parameter Field

! Hardware without security memory (Slave Protocol)
The MAC address is stored temporarily and lost after reset or power cycling; neither the Store
flag nor the Force flag has a meaning.

! Hardware with security memory (Master or Slave Protocol)

o No MAC address stored in security memory or MAC address set to 0:
Set the Store flag in order to write the MAC address into the security memory and
store it permanently

o MAC address already stored in security memory:
Both the Store flag and the Force flag have to be set in order to overwrite the MAC
address into the security memory and store it permanently

Dual-Port Memory Function 176/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.16.2 Set MAC Address Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EEF

Confirmation
Set MAC Address

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* SET MAC ADDRESS CONFIRMATION */
#define RCX_SET_MAC_ADDR_CNF RCX_SET_MAC_ADDR_REQ+1

typedef struct RCX_SET_MAC_ADDR_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_SET_MAC_ADDR_CNF_T;

Data Field

There is no data field returned in the Set MAC Address confirmation packet.

Dual-Port Memory Function 177/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.17 Start Firmware on netX
The following packet is used to start (or instantiate for that matter) a firmware on netX when this
firmware is executed from RAM. If the netX firmware is executed from Flash, this packet has no effect.

4.17.1 Start Firmware Request

The application uses the following packet in order to start a firmware that is executed from RAM. The
packet is send through the system mailbox to the netX operating system. The channel number has to
be filled in to identify the firmware.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EC4

Command
Instantiate Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelNo UINT32 0 … 3

Channel Number
Communication Channel

Packet Structure Reference
/* INSTANTIATE FIRMWARE REQUEST */
#define RCX_CHANNEL_INSTANTIATE_REQ 0x00001EC4

/* Channel Number */
#define RCX_COMM_CHANNEL_0 0x00000000
#define RCX_COMM_CHANNEL_1 0x00000001
#define RCX_COMM_CHANNEL_2 0x00000002
#define RCX_COMM_CHANNEL_3 0x00000003

typedef struct RCX_CHANNEL_INSTANTIATE_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* channel number */
} RCX_CHANNEL_INSTANTIATE_REQ_DATA_T;

typedef struct RCX_CHANNEL_INSTANTIATE_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_CHANNEL_INSTANTIATE_REQ_DATA_T tData; /* packet data */
} RCX_CHANNEL_INSTANTIATE_REQ_T;

Dual-Port Memory Function 178/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.17.2 Start Firmware Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EC5

Confirmation
Instantiate Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* INSTANTIATE FIRMWARE CONFIRMATION */
#define RCX_CHANNEL_INSTANTIATE_CNF RCX_CHANNEL_INSTANTIATE_REQ+1

typedef struct RCX_CHANNEL_INSTANTIATE_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_CHANNEL_INSTANTIATE_CNF_T;

Dual-Port Memory Function 179/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.18 Register / Unregister an Application
This section describes the method to register or unregister with a protocol stack that is executed in the
context of the RCX operating system. For the host application it is necessary to register with a protocol
stack on netX in order to receive unsolicited data telegrams via the mailbox system. If not registered,
the application cannot receive such data telegrams from the protocol stack. The protocol stack returns
these requests to the originator with an error code. Otherwise without processing these packets, they
would queue up in the mailbox; the request would time out and causing a network failure.

The application can use the Source Queue Handle (ulSrc) to identify itself to benefit from the routing
capabilities of the packet header. The application source queue handle is copied into every indication
packet that is sent to the host application helping identifying the intended receiver. Otherwise 0 (zero)
is used for the source queue handle.

There is only one application that can register with the protocol stack at any given time. Other attempts
to register in parallel are rejected.

4.18.1 Register Application Request

The application uses the following packet in order to register itself with a protocol stack. The packet is
send through the channel mailbox to the protocol stack.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F10

Command
Register Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* REGISTER APPLICATION REQUEST */
#define RCX_REGISTER_APP_REQ 0x00002F10

typedef struct RCX_REGISTER_APP_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_REGISTER_APP_REQ_T;

Dual-Port Memory Function 180/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.18.2 Register Application Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F11

Confirmation
Register Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* REGISTER APPLICATION CONFIRMATION */
#define RCX_REGISTER_APP_CNF RCX_REGISTER_APP_REQ+1

typedef struct RCX_REGISTER_APP_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_REGISTER_APP_CNF_T;

Dual-Port Memory Function 181/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.18.3 Unregister Application Request

The application uses the following packet in order to undo the registration from above. The packet is
send through the channel mailbox to the protocol stack.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F12

Command
Unregister Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* UNREGISTER APPLICATION REQUEST */
#define RCX_UNREGISTER_APP_REQ 0x00002F12

typedef struct RCX_UNREGISTER_APP_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_UNREGISTER_APP_REQ_T;

Dual-Port Memory Function 182/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.18.4 Unregister Application Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F13

Confirmation
Unregister Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* UNREGISTER APPLICATION CONFIRMATION */
#define RCX_UNREGISTER_APP_CNF RCX_UNREGISTER_APP_REQ+1

typedef struct RCX_UNREGISTER_APP_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_UNREGISTER_APP_CNF_T;

Dual-Port Memory Function 183/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.19 Delete Configuration from the System
A slave protocol stack, which was configured via warm-start packet, stores is configuration settings in
RAM. During startup the firmware reads these configuration settings and processes them accordingly.

The following packet is used to delete the configuration from RAM. However, the configuration cannot
be deleted, as long as the Configuration Locked flag in ulCommunicationCOS is set. Deleting the
configuration settings will not interrupt data exchange with master devices. After channel initialization,
the protocol stack does not startup properly due to the missing configuration. The packet has no effect,
if the protocol stack is configured with a static database, which is a file in the netX operating system
RCX. If the protocol stack uses a static database (like a master firmware), the packet to delete a file
from the system in has to be used (see page 163 for details).

4.19.1 Delete Configuration Request

The application uses the following packet in order to delete the current configuration of the protocol
stack. The packet is send through the channel mailbox to the netX operating system.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F14

Command
Delete Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* DELETE CONFIGURATION REQUEST */
#define RCX_DELETE_CONFIG_REQ 0x00002F14

typedef struct RCX_DELETE_CONFIG_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_DELETE_CONFIG_REQ_T;

Dual-Port Memory Function 184/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.19.2 Delete Configuration Confirmation

The system channel returns the following packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F15

Confirmation
Delete Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* DELETE CONFIGURATION CONFIRMATION */
#define RCX_DELETE_CONFIG_CNF RCX_DELETE_CONFIG_REQ+1

typedef struct RCX_DELETE_CONFIG_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_DELETE_CONFIG_CNF_T;

Dual-Port Memory Function 185/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20 System Channel Information Blocks
The following packets are used to make certain data blocks available for read access through the
mailbox channel. These blocks are located in the system channel. Reading the data blocks might be
useful if a configuration tool like SYCON.net is connected via USB or such to the netX hardware.

If the requested data block exceeds the maximum mailbox size, the block is transferred in a
sequenced or fragmented manner (see page 90 for details).

4.20.1 Read System Information Block

The packet outlined in this section is used to request System Information Block. Therefore it is passed
through the system mailbox.

4.20.1.1 Read System Information Block Request

This packet is used to request the System Information Block as outlined on page 28.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E32

Command
Read System Information Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* READ SYSTEM INFORMATION BLOCK REQUEST */
#define RCX_SYSTEM_INFORMATION_BLOCK_REQ 0x00001E32

typedef struct RCX_READ_SYS_INFO_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_READ_SYS_INFO_BLOCK_REQ_T;

Dual-Port Memory Function 186/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.1.2 Read System Information Block Confirmation

The following packet is returned. The structure in the data portion of the packet is the System
Information Block from section 3.1.1.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
48
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E33

Confirmation
Read System Information Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tSystemInfo Structure System Information Block

(see page 28 for details)

Packet Structure Reference
/* READ SYSTEM INFORMATION BLOCK CONFIRMATION */
#define RCX_SYSTEM_INFORMATION_BLOCK_CNF RCX_SYSTEM_INFORMATION_BLOCK_REQ+1

typedef struct RCX_READ_SYS_INFO_BLOCK_CNF_DATA_Ttag
{
 NETX_SYSTEM_INFO_BLOCK tSystemInfo; /* packet data */
} RCX_READ_SYS_INFO_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_SYS_INFO_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_SYS_INFO_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_SYS_INFO_BLOCK_CNF_T;

Dual-Port Memory Function 187/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.2 Read Channel Information Block

The packet outlined in this section is used to request Channel Information Block. Therefore it is
passed through the system mailbox. There is one packet for each of the channels. The channels are
identified by their channel ID or port number. The total number of blocks is part of the structure of the
Channel Information Block of the system channel (see there).

4.20.2.1 Read Channel Information Block Request

This packet is used to request one section of the Channel Information Block as outlined on page 36.
Using channel ID, the application can request one block per packet.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E34

Command
Read Channel Information Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

Packet Structure Reference
/* READ CHANNEL INFORMATION BLOCK REQUEST */
#define RCX_CHANNEL_INFORMATION_BLOCK_REQ 0x00001E34

typedef struct RCX_READ_CHNL_INFO_BLOCK_REQ_DATA_Ttag
 UINT32 ulChannelId; /* channel id */
} RCX_READ_CHNL_INFO_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_CHNL_INFO_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_CHNL_INFO_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_CHNL_INFO_BLOCK_REQ_T;

Dual-Port Memory Function 188/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.2.2 Read Channel Information Block Confirmation

The following packet is returned by the firmware. The data portion of the packet is the channel
information block of either the system channel, handshake channel, communication channel or the
application channel.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
16
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E35

Confirmation
Read Channel Information Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tChannelInfo Structure Channel Information Block

(see page 36 for details)

Packet Structure Reference
/* READ CHANNEL INFORMATION BLOCK CONFIRMATION */
#define RCX_CHANNEL_INFORMATION_BLOCK_CNF RCX_CHANNEL_INFORMATION_BLOCK_REQ+1

typedef union NETX_CHANNEL_INFO_BLOCKtag
{
 NETX_SYSTEM_CHANNEL_INFO tSystem;
 NETX_HANDSHAKE_CHANNEL_INFO tHandshake;
 NETX_COMMUNICATION_CHANNEL_INFO tCom;
 NETX_APPLICATION_CHANNEL_INFO tApp;
} NETX_CHANNEL_INFO_BLOCK;

typedef struct RCX_READ_CHNL_INFO_BLOCK_CNF_DATA_Ttag
{
 NETX_CHANNEL_INFO_BLOCK tChannelInfo; /* channel info block */
} RCX_READ_CHNL_INFO_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_CHNL_INFO_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_CHNL_INFO_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_CHNL_INFO_BLOCK_CNF_T;

Dual-Port Memory Function 189/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.3 Read System Control Block

The packet outlined in this section is used to request System Control Block. Therefore it is passed
through the system mailbox.

4.20.3.1 Read System Control Block Request

This packet is used to request the System Control Block as outlined on page 45.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E36

Command
Read System Control Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* READ SYSTEM CONTROL BLOCK REQUEST */
#define RCX_SYSTEM_CONTROL_BLOCK_REQ 0x00001E36

typedef struct RCX_READ_SYS_CNTRL_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_READ_SYS_CNTRL_BLOCK_REQ_T;

Dual-Port Memory Function 190/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.3.2 Read System Control Block Confirmation

The following packet is returned by the firmware. The structure in the data portion of the packet is
identical to the structure outlined in section 3.1.5.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
8
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E37

Confirmation
Read System Control Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 tSystem
Control Structure System Control Block

(see page 45 for details)

Packet Structure Reference
/* READ SYSTEM CONTROL BLOCK CONFIRMATION */
#define RCX_SYSTEM_CONTROL_BLOCK_CNF RCX_SYSTEM_CONTROL_BLOCK_REQ+1

typedef struct RCX_READ_SYS_CNTRL_BLOCK_CNF_DATA_Ttag
{
 NETX_SYSTEM_CONTROL_BLOCK tSystemControl;
} RCX_READ_SYS_CNTRL_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_SYS_CNTRL_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_SYS_CNTRL_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_SYS_CNTRL_BLOCK_CNF_T;

Dual-Port Memory Function 191/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.4 Read System Status Block

The packet outlined in this section is used to request System Status Block. Therefore it is passed
through the system mailbox.

4.20.4.1 Read System Status Block Request

This packet is used to request the System Status Block as outlined on page 46.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E38

Command
Read System Status Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* READ SYSTEM STATUS BLOCK REQUEST */
#define RCX_SYSTEM_STATUS_BLOCK_REQ 0x00001E38

typedef struct RCX_READ_SYS_STATUS_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_READ_SYS_STATUS_BLOCK_REQ_T;

Dual-Port Memory Function 192/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.20.4.2 Read System Status Block Confirmation

The following packet is returned by the firmware. The structure in the data portion of the packet is
identical to the structure outlined in section 3.1.6.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
64
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E39

Confirmation
Read System Status Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tSystemState Structure System Status Block

(see page 46 for details)

Packet Structure Reference
/* READ SYSTEM STATUS BLOCK CONFIRMATION */
#define RCX_SYSTEM_STATUS_BLOCK_CNF RCX_SYSTEM_STATUS_BLOCK_REQ+1

typedef struct RCX_READ_SYS_STATUS_BLOCK_CNF_DATA_Ttag
{
 NETX_SYSTEM_STATUS_BLOCK tSystemState;
} RCX_READ_SYS_STATUS_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_SYS_STATUS_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_SYS_STATUS_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_SYS_STATUS_BLOCK_CNF_T;

Dual-Port Memory Function 193/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.21 Communication Channel Information Blocks
The following packets are used to make certain data blocks available for read access through the
communication channel mailbox. These blocks are located in the communication channel. Reading the
data blocks might be useful if a configuration tool like SYCON.net is connected via USB or such to the
netX hardware.

If the requested data block exceeds the maximum mailbox size, the block is transferred in a
sequenced or fragmented manner (see page 90 for details).

4.21.1 Read Communication Control Block

4.21.1.1 Read Communication Control Block Request

This packet is used to request the Communication Control Block as outlined on page 57. The firmware
ignores the Channel Identifier ulChannelId, if the packet is passed through the channel mailbox.
The length field, however, has to be set to 4.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E3A

Command
Read Communication Control Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

Dual-Port Memory Function 194/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* READ COMMUNICATION CONTROL BLOCK REQUEST */
#define RCX_CONTROL_BLOCK_REQ 0x00001E3A

typedef struct RCX_READ_COMM_CNTRL_BLOCK_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel identifier */
} RCX_READ_COMM_CNTRL_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_COMM_CNTRL_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_COMM_CNTRL_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_COMM_CNTRL_BLOCK_REQ_T;

Dual-Port Memory Function 195/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.21.1.2 Read Communication Control Block Confirmation

The following packet is returned by the firmware. The structure in the data portion of the packet is
identical to the structure outlined in section 3.2.4.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
8
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001E3B

Confirmation
Read Communication Control Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tControl Structure Communication Control Block

(see page 57 for details)

Packet Structure Reference
/* READ COMMUNICATION CONTROL BLOCK CONFIRMATION */
#define RCX_CONTROL_BLOCK_CNF RCX_CONTROL_BLOCK_REQ+1

typedef struct RCX_READ_COMM_CNTRL_BLOCK_CNF_DATA_Ttag
{
 NETX_CONTROL_BLOCK tControl; /* control block */
} RCX_READ_COMM_CNTRL_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_COMM_CNTRL_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_COMM_CNTRL_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_COMM_CNTRL_BLOCK_CNF_T;

Dual-Port Memory Function 196/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.21.2 Read Common Status Block

4.21.2.1 Read Common Status Block Request

This packet is used to request the common status block as outlined on page 59. The firmware ignores
the Channel Identifier ulChannelId, if the packet is passed through the channel mailbox. The length
however, has to be set to 4 in any case.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EFC

Command
Read Common Status Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

Packet Structure Reference
/* READ COMMON STATUS BLOCK REQUEST */
#define RCX_DPM_GET_COMMON_STATE_REQ 0x00001EFC

typedef struct RCX_READ_COMMON_STS_BLOCK_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel identifier */
} RCX_READ_COMMON_STS_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_COMMON_STS_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_COMMON_STS_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_COMMON_STS_BLOCK_REQ_T;

Dual-Port Memory Function 197/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.21.2.2 Read Common Status Block Confirmation

The following packet is returned by the firmware. The structure in the data portion of the packet is
identical to the structure outlined in section 3.2.5.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
64
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EFD

Confirmation
Read Common Status Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tCommonStatus Structure Common Status Block

(see page 59 for details)

Packet Structure Reference
/* READ COMMON STATUS BLOCK CONFIRMATION */
#define RCX_DPM_GET_COMMON_STATE_CNF RCX_DPM_GET_COMMON_STATE_REQ+1

typedef struct RCX_READ_COMMON_STS_BLOCK_CNF_DATA_Ttag
{
 NETX_COMMON_STATUS_BLOCK tCommonStatus; /* common status */
} RCX_READ_COMMON_STS_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_COMMON_STS_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_READ_COMMON_STS_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_COMMON_STS_BLOCK_CNF_T;

Dual-Port Memory Function 198/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.21.3 Read Extended Status Block

4.21.3.1 Read Extended Status Block Request

This packet is used to request the Extended Status Block as outlined on page 66. The firmware
ignores the Channel Identifier ulChannelId, if the packet is passed through the channel mailbox.
The length however, has to be set to 12.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 12 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EFE

Command
Read Extended Status Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulOffset UINT32 0 … 431 Byte offset in extended status block structure

 ulDataLen UINT32 1 … 432 Length in byte read

 ulChannel
Index UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

Packet Structure Reference
/* READ EXTENDED STATUS BLOCK REQUEST */
#define RCX_DPM_GET_EXTENDED_STATE_REQ 0x00001EFE

typedef struct RCX_DPM_GET_EXTENDED_STATE_REQ_DATA_Ttag
{
 UINT32 ulOffset; /* offset in extended status block */
 UINT32 ulDataLen; /* size of block to read */
 UINT32 ulChannelIndex; /* channel number */
} RCX_DPM_GET_EXTENDED_STATE_REQ_DATA_T;

typedef struct RCX_DPM_GET_EXTENDED_STATE_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DPM_GET_EXTENDED_STATE_REQ_DATA_T tData; /* packet data */
} RCX_DPM_GET_EXTENDED_STATE_REQ_T;

Dual-Port Memory Function 199/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.21.3.2 Read Extended Status Block Confirmation

The following packet is returned by the firmware. The structure in the data portion of the packet is
identical to the structure outlined in section 3.2.6.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
1 … 432

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001EFF

Confirmation
Read Extended Status Block

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 ulOffset UINT32 0 … 431 Byte offset in extended status block structure

 ulDataLen UINT32 1 … 432 Length in byte read

abData[432] UINT8 Extended Status Block

(see page 66 for details)

Packet Structure Reference
/* READ EXTENDED STATUS BLOCK CONFIRMATION */
#define RCX_DPM_GET_EXTENDED_STATE_CNF RCX_DPM_GET_EXTENDED_STATE_REQ+1

typedef struct RCX_DPM_GET_EXTENDED_STATE_CNF_DATA_Ttag
{
 UINT32 ulOffset; /* offset in extended status block */
 UINT32 ulDataLen; /* size of block returned */
 UINT8 abData[432]; /* data block */
} RCX_DPM_GET_EXTENDED_STATE_CNF_DATA_T;

typedef struct RCX_DPM_GET_EXTENDED_STATE_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DPM_GET_EXTENDED_STATE_CNF_DATA_T tData; /* packet data */
} RCX_DPM_GET_EXTENDED_STATE_CNF_T;

Dual-Port Memory Function 200/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.22 Read Performance Data through Packets

4.22.1 Read Performance Data Request

This packet is used to read performance data from the netX operating system.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001ED4

Command
Read Performance Data

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 usStartToken UINT16 0 … 0xFFFF

 usTokenCount UINT16 0 … 0xFFFF

Packet Structure Reference
/* READ PERFORMANCE COUNTER REQUEST */
#define RCX_GET_PERF_COUNTERS_REQ 0x00001ED4

typedef struct RCX_GET_PERF_COUNTERS_REQ_DATA_Ttag
{
 UINT16 usStartToken;
 UINT16 usTokenCount;
} RCX_GET_PERF_COUNTERS_REQ_DATA_T;

typedef struct RCX_GET_PERF_COUNTERS_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_GET_PERF_COUNTERS_REQ_DATA_T tData; /* packet data */
} RCX_GET_PERF_COUNTERS_REQ_T;

Dual-Port Memory Function 201/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.22.2 Read Performance Data Confirmation

The following packet is returned by the firmware.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4 + (8 x (n+1))

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00001ED4

Confirmation
Read Performance Data

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 usStartToken UINT16 0 … 0xFFFF

 usTokenCount UINT16 0 … 0xFFFF

 tPerfSystem
Uptime Structure RCX_PERF_COUNTER_DATA_T

structure definition see below

 tPerf
Counters[0] Structure RCX_PERF_COUNTER_DATA_T

structure definition see below

 … … …

 tPerf
Counters[n] Structure RCX_PERF_COUNTER_DATA_T

structure definition see below

Dual-Port Memory Function 202/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* READ PERFORMANCE COUNTER CONFIRMATION */
#define RCX_GET_PERF_COUNTERS_CNF RCX_GET_PERF_COUNTERS_REQ+1

typedef struct RCX_PERF_COUNTER_DATA_Ttag
{
 UINT32 ulNanosecondsLower;
 UINT32 ulNanosecondsUpper;
} RCX_PERF_COUNTER_DATA_T;

typedef struct RCX_GET_PERF_COUNTERS_CNF_DATA_Ttag
{
 UINT16 usStartToken;
 UINT16 usTokenCount;
 RCX_PERF_COUNTER_DATA_T tPerfSystemUptime;
/* dynamic array, length is given indirectly by ulLen */
 RCX_PERF_COUNTER_DATA_T tPerfCOunters[1];
} RCX_GET_PERF_COUNTERS_CNF_DATA_T;

typedef struct RCX_GET_PERF_COUNTERS_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_GET_PERF_COUNTERS_CNF_DATA_T tData; /* packet data */
} RCX_GET_PERF_COUNTERS_CNF_T;

Dual-Port Memory Function 203/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.23 Set Handshake Configuration

4.23.1 Set Handshake Configuration Request

The application uses the following packet in order to set the process data handshake mode. The
packet is send through the channel mailbox to the protocol stack.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F34

Command
Set Handshake Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 bPDInHskMode UINT8 Input process data handshake mode

bPDInSource UINT8 0

Input process data trigger source; unused, set
to zero

usPDInErrorTh UINT16 Threshold for input process data handshake

handling errors

 bPDOutHskMode UINT8 Output process data handshake mode

bPDOutSource UINT8 0

Output process data trigger source; unused,
set to zero

 usPDOut
ErrorTh UINT16 0 … 0xFFFF

Threshold for output process data handshake
handling errors

 bSyncHskMode UINT8 Synchronization handshake mode

 bSyncSource UINT8 Synchronization source

usSyncErrorTh UINT16 0 … 0xFFFF

Threshold for synchronization handshake
handling errors

 aul
Reserved[2] UINT32 0 Reserved for future use; set to zero

Dual-Port Memory Function 204/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* SET HANDSHAKE CONFIGURATION REQUEST */
#define RCX_SET_HANDSHAKE_CONFIG_REQ 0x00002F34

typedef struct RCX_SET_HANDSHAKE_CONFIG_REQ_DATA_Ttag
{
 UINT8 bPDInHskMode; /* input process data handshake mode */
 UINT8 bPDInSource; /* input process data trigger source */
 UINT16 usPDInErrorTh; /* threshold for input data handshake handling errors */
 UINT8 bPDOutHskMode; /* output process data handshake mode */
 UINT8 bPDOutSource; /* output process data trigger source */
 UINT16 usPDOutErrorTh; /* threshold for output data handshake handling errors */
 UINT8 bSyncHskMode; /* synchronization handshake mode */
 UINT8 bSyncSource; /* synchronization source */
 UINT16 usSyncErrorTh; /* threshold for sync handshake handling errors */
 UINT32 aulReserved[2]; /* reserved for future use */
} RCX_SET_HANDSHAKE_CONFIG_REQ_DATA_T;

typedef struct RCX_SET_HANDSHAKE_CONFIG_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_SET_HANDSHAKE_CONFIG_REQ_DATA_T tData; /* packet data */
} RCX_SET_HANDSHAKE_CONFIG_REQ_T;

Dual-Port Memory Function 205/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.23.2 Set Handshake Configuration Confirmation

The following packet is returned by the firmware.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F35

Confirmation
Set Handshake Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

Packet Structure Reference
/* SET HANDSHAKE CONFIGURATION CONFIRMATION */
#define RCX_SET_HANDSHAKE_CONFIG_CNF RCX_SET_HANDSHAKE_CONFIG_REQ+1

typedef struct RCX_SET_HANDSHAKE_CONFIG_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead; /* packet header */
} RCX_SET_HANDSHAKE_CONFIG_CNF_T;

Dual-Port Memory Function 206/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.24 Real-Time Clock
The netX hardware may support a real time clock. If present, the application uses the packets below to
set and get the time from the system. After power cycling, the time is set to a predefined value if the
clock has no auxiliary power supply (backup battery, gold cap…).

Refer to the user manuals for a specific device to find out whether or not the system supports an
internal clock.

4.24.1 Time Command Request

The application uses the packet below in order to set the clock, request the time or the status of the
clock. The packet is send through the system mailbox.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 12 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001ED8

Command
Time Command Request

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulTimeCmd UINT32 0x00000001
0x00000002
0x00000003

Time Commands
TIME_CMD_GETSTATE
TIME_CMD_GETTIME
TIME_CMD_SETTIME

ulData UINT32 0
0

Time in Seconds

Data
Content corresponds to command
for TIME_CMD_GETSTATE
for TIME_CMD_GETTIME
for TIME_CMD_SETTIME (see below)

 ulRes UINT32 0 Reserved, set to 0

Dual-Port Memory Function 207/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Packet Structure Reference
/* Time Packet Command */
#define RCX_TIME_COMMAND_REQ 0x00001ED8

/* Time Commands */
#define TIME_CMD_GETSTATE 0x00000001 /* get state */
#define TIME_CMD_GETTIME 0x00000002 /* get time */
#define TIME_CMD_SETTIME 0x00000003 /* set time */

typedef struct RCX_TIME_CMD_DATA_Ttag
{
 UINT32 ulTimeCmd; /* time command */
 UINT32 ulData; /* data, corresponds to command */
 UINT32 ulRes; /* Reserved */
} RCX_TIME_CMD_DATA_T;

typedef struct RCX_TIME_CMD_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_TIME_CMD_DATA_T tData; /* packet data */
} RCX_TIME_CMD_REQ_T;

Time Command Field

The time command field holds the sub function in the time command.

Value Definition / Description

0x00000001 TIME_CMD_GETSTATE returns the current status of the clock function
0x00000002 TIME_CMD_GETTIME returns the current time from the clock
0x00000003 TIME_CMD_SETTIME allows setting the time
Other values are resaved.

Data Field – Set Time

For the Set Time command, the data field holds the time in seconds since January, 1 1970 / 00:00:00
(midnight).

Otherwise this field is set to 0 (zero).

Dual-Port Memory Function 208/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

4.24.2 Time Command Confirmation

The following packet is returned by the firmware.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 12 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See below Status / Error Code, see Section 6

ulCmd UINT32
0x00001ED9

Command
Time Command Confirmation

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulTimeCmd UINT32 0x00000001
0x00000002
0x00000003

Time Commands
TIME_CMD_GETSTATE
TIME_CMD_GETTIME
TIME_CMD_SETTIME

ulData UINT32 Bit Field
Time in Seconds
Time in Seconds

Data
Content corresponds to command
for TIME_CMD_GETSTATE (see below)
for TIME_CMD_GETTIME (see below)
for TIME_CMD_SETTIME (see below)

 ulRes UINT32 0 Reserved, set to 0

Packet Structure Reference
/* Time Packet Command */
#define RCX_TIME_COMMAND_CNF RCX_TIME_COMMAND_REQ+1

/* Time Commands */
#define TIME_CMD_GETSTATE 0x00000001 /* get state */
#define TIME_CMD_GETTIME 0x00000002 /* get time */
#define TIME_CMD_SETTIME 0x00000003 /* set time */

/* Time RTC Status */
#define RX_RTC_TYPE_NONE 0 /* unknown RTC or not initialized */
#define RX_RTC_TYPE_INTERNAL 1 /* netX internal RTC */
#define RX_RTC_TYPE_EXTERNAL 2 /* external RTC via I2C */
#define RX_RTC_TYPE_EMULATED 3 /* system tick */

typedef struct RCX_TIME_CMD_DATA_Ttag
{
 UINT32 ulTimeCmd; /* time command */
 UINT32 ulData; /* corresponds to command */
 UINT32 ulRes; /* reserved */
} RCX_TIME_CMD_DATA_T;

Dual-Port Memory Function 209/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

typedef struct RCX_TIME_CMD_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_TIME_CMD_DATA_T tData; /* packet data */
} RCX_TIME_CMD_CNF_T;

Data Field – Get Status

For the Get Status command, the data field returns the following bit field.

ulData

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 Clock Type
00 = No RTC
01 = RTC internal
10 = RTC external
11 = RTC emulated

 Clock Status
0 = Time not valid
1 = Time valid

Unused, set to zero

Table 90: Clock Status

Bit No. Definition / Description

0-1 Clock Type
0 = No RTC Unknown RTC or driver not initialized
1 = RTC internal netX internal RTC using 32.768 kHz clock
2 = RTC external External RTC (PCF8563) connected via I2C
3 = RTC emulated No RTC hardware present, use system tick

2 Clock Status
0 = Time not valid Time was not set, RTC not initialized, battery failure, etc.
1 = Time valid Clock was initialized and time was set

Other values are reserved.

Table 91: Clock Status

Data Field – Get Time

For the Get Time command, the data field returns the time in seconds since January, 1 1970 /
00:00:00 (midnight).

Data Field – Set Time

For the Set Time command, this field contains the time information from the request.

Diagnostic 210/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5 Diagnostic

5.1 Versioning
Firmware and operating system versions consist of four parts. The version string is separated into a
Major, Minor, Build and Revision section.

The major number is increased for significant enhancements in functionality (backward compatibility
cannot be assumed); the minor number is incremented when new features or enhancement have been
added (backward compatibility is intended). The third number denotes bug fixes or a new firmware
build. The revision number is not used and set to zero. As an example, a firmware may at time jump
from version 1.80 to 1.85 indicating that significant features have been added.

The build number is set to one again, after the major number has been incremented. A zero value is
not valid for the build number.

Version Structure
typedef struct RCX_FW_VERSION_Ttag
{
 UINT16 usMajor; /* major version number */
 UINT16 usMinor; /* minor version number */
 UINT16 usBuild; /* build number */
 UINT16 usRevision; /* revision number */
} RCX_FW_VERSION_T;

Diagnostic 211/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.2 Network Connection State
This section explains how an application can obtain connection status information about slave devices
from a master firmware. Hence the packets below are applicable to master firmware only. A slave
firmware does not support this function and thus rejects such a request with an error code.

5.2.1 Mechanism

The application can request information about the status of network slaves in regards of their cyclic
connection. Non-cyclic connections are not handled here. The netX firmware returns a list of handles
that each represents a slave device. Note that a handle of a slave is not its MAC ID, station or node
address, nor an IP address. The following lists are available:

! List of Configured Slaves
This list represents all network nodes that are configured in the database that is created by
SYCON.net or is transferred to the channel firmware by the host application during startup.

! List of Activated Slaves
This list holds network nodes that are configured in the database and are actively
communicating to the network master. Note that is not a ‘Life List’! There might be other nodes
on the network, but those do not show up in this list.

! List of Faulted Slaves
This list contains handles of all configured nodes that currently encounter some sort of
connection problem or are otherwise faulty or even disconnected.

First the application sends a packet to the master firmware in order to obtain a handle for each of the
slaves depending on the type of list required. Note that these handles may change after
reconfiguration or power-on reset. Using such a handle in a second request, the host application
receives information about the slave’s current network status. The confirmation packet returns a data
field that is specific for the underlying fieldbus. The data returned is identified by a unique identification
number. The identification number references a specific structure. Identification number and structure
are described in the fieldbus related documentation and the corresponding C header file.

In a flawless network (all configured slaves are function properly) the list of configured slaves is
identical to the list of activated slaves. Both lists contain the same handles. In case of a slave failure,
the handle of this slave appears in the list of faulted slaves and not in the list of activated slaves. The
number of handles in the list of configured slaves remains constant.

The reason for a slave to fault differs from fieldbus to fieldbus. Obvious causes are a disconnected
network cable and inconsistent configuration or parameter data. Some fieldbus systems are capable of
transferring diagnostic information across the network in the event a node encounters some sort of
problem or fault. The level of diagnostic details returned in the confirmation packet heavily depends on
the underlying fieldbus system. For details refer to the fieldbus specific documentation.

Diagnostic 212/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.2.2 Obtain List of Slave Handles

5.2.2.1 Get Slave Handle Request

The host application uses the packet below in order to request a list of slaves depending on the
requested type of list (configured, activated or faulted).

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F08

Command
Get Slave Handle

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulParam UINT32 0x00000001
0x00000002
0x00000003

Parameter
List of Configured Slaves
List of Activated Slaves
List of Faulted Slaves

Packet Structure Reference
/* GET SLAVE HANDLE REQUEST */
#define RCX_GET_SLAVE_HANDLE_REQ 0x00002F08

/* LIST OF SLAVES */
#define RCX_LIST_CONF_SLAVES 0x00000001
#define RCX_LIST_ACTV_SLAVES 0x00000002
#define RCX_LIST_FAULTED_SLAVES 0x00000003

typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_Ttag
{
 UINT32 ulParam; /* requested list of slaves */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T;

typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T tData; /* packet data */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_T;

Diagnostic 213/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.2.2.2 Get Slave Handle Confirmation

The master firmware (channel firmware) returns a list of handles. Each of the handles represents a
slave device depending on the requested type of list (configured, activated or faulted).

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4 x (1+n)

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F09

Confirmation
Get Slave Handle

ulExt UINT32
0x00000000

Extension:
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

ulParam UINT32 0x00000001
0x00000002
0x00000003

Parameter
List of Configured Slaves
List of Activated Slaves
List of Faulted Slaves

 aulHandle[n] UINT32 0 … 0xFFFFFFFF Slave Handle, Number of Handles is n

Packet Structure Reference
/* GET SLAVE HANDLE CONFIRMATION */
#define RCX_GET_SLAVE_HANDLE_CNF RCX_GET_SLAVE_HANDLE_REQ+1

typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_Ttag
{
 UINT32 ulParam; /* list of slaves */
 /* list of handles follows here */
 /* UINT32 aulHandle[]; */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T

typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packer header */
 RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T tData; /* packet data */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_T;

Diagnostic 214/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.2.3 Obtain Slave Connection Information

5.2.3.1 Get Slave Connection Information Request

Using the handles from the section above, the application can request network status information for
each of the configured network slaves.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F0A

Command
Get Slave Connection Information Request

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulHandle UINT32 0 … 0xFFFFFFFF Slave Handle

Packet Structure Reference
/* SLAVE CONNECTION INFORMATION REQUEST */
#define RCX_GET_SLAVE_CONN_INFO_REQ 0x00002F0A

typedef struct RCX_GET_SLAVE_CONN_INFO_REQ_DATA_Ttag
{
 UINT32 ulHandle; /* slave handle */
} RCX_GET_SLAVE_CONN_INFO_REQ_DATA_T;

typedef struct RCX_GET_SLAVE_CONN_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packer header */
 RCX_GET_SLAVE_CONN_INFO_REQ_DATA_T tData; /* packet data */
} RCX_GET_SLAVE_CONN_INFO_REQ_T;

Diagnostic 215/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.2.3.2 Get Slave Connection Information Confirmation

The data returned in this packet is specific for the underlying fieldbus. It is identified by a unique
identification number. The identification number references a specific structure. Identification number
and structure are described in the fieldbus related documentation and the corresponding C header file.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
8+sizeof(tState)

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 6

ulCmd UINT32
0x00002F0B

Confirmation
Get Slave Connection Information

ulExt UINT32
0x00000000

Extension:
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulHandle UINT32 0 … 0xFFFFFFFF Slave Handle

 ulStructId UINT32 0 … 0xFFFFFFFF Structure Identification Number

tState STRUCT Fieldbus Specific Slave Status Information

(Refer to Fieldbus Documentation)

Packet Structure Reference
/* GET SLAVE CONNECTION INFORMATION CONFIRMATION */
#define RCX_GET_SLAVE_CONN_INFO_CNF RCX_GET_SLAVE_CONN_INFO_REQ+1

typedef struct RCX_GET_SLAVE_CONN_INFO_CNF_DATA_Ttag
{
 UINT32 ulHandle; /* slave handle */
 UINT32 ulStructId; /* structure identification number */
 /* fieldbus specific slave status information follows here */
} RCX_GET_SLAVE_CONN_INFO_CNF_DATA_T;

typedef struct RCX_GET_SLAVE_CONN_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_GET_SLAVE_CONN_INFO_CNF_DATA_T tData; /* packet data */
} RCX_GET_SLAVE_CONN_INFO_CNF_T;

Fieldbus Specific Slave Status Information

The structure tState contains at least a field that helps to unambiguously identify the node. Usually it is
its network address, like MAC ID, IP address or station address. If applicable, the structure may hold a
name string. For details refer to the fieldbus documentation.

Diagnostic 216/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.3 Obtain I/O Data Size Information
The application can request information about the length of the configured IO data image. The length
information is useful to adjust copy functions in terms of the amount of data that is being moved and
therewith streamline the copy process. Among other things, the packet returns the offset of the first
byte used in the I/O image and the length of configured I/O space.

5.3.1 Get DPM I/O Information Request

This packet is used to obtain offset and length of the used I/O data space of all process data areas for
the requested channel.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F0C

Command
Get I/O Data Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

Packet Structure Reference
/* GET DPM I/O INFORMATION REQUEST */
#define RCX_GET_DPM_IO_INFO_REQ 0x00002F0C

typedef struct RCX_GET_DPM_IO_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
} RCX_GET_DPM_IO_INFO_REQ_T;

Diagnostic 217/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.3.2 Get DPM I/O Information Confirmation

The confirmation packet returns offset and length of the requested input and the output data area. The
application may receive the packet in a sequenced manner. So the ulExt field has to be evaluated!

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4+(20 x n)

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code see Section 6

ulCmd UINT32
0x00002F0D

Confirmation
Get I/O Data Information

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 Z Routing Information, Don’t Care, Don’t Use

tData Structure Information

 ulNumIOBlock
Info UINT32 0 … 10 Number n of Block Definitions Below

tIoBlock[n] Array of

Structure
I/O Block Definition Structure(s)
RCX_DPM_IO_BLOCK_INFO

Packet Structure Reference
/* GET DPM I/O INFORMATION CONFIRMATION */
#define RCX_GET_DPM_IO_INFO_CNF RCX_GET_DPM_IO_INFO_REQ+1

typedef struct RCX_DPM_IO_BLOCK_INFO_Ttag
{
 UINT32 ulSubblockIndex; /* index of sub block */
 UINT32 ulType; /* type of sub block */
 UINT16 usFlags; /* flags of the sub block */
 UINT16 usReserved; /* reserved */
 UINT32 ulOffset; /* offset */
 UINT32 ulLength; /* length of I/O data in bytes */
} RCX_DPM_IO_BLOCK_INFO_T;

Diagnostic 218/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

typedef struct RCX_GET_DPM_IO_INFO_CNF_DATA_Ttag
{
 UINT32 ulNumIOBlockInfo; /* number of block definitions */
/*RCX_DPM_IO_BLOCK_INFO_T tIoBlock[]; I/O block definition */
} RCX_GET_DPM_IO_INFO_CNF_DATA_T;

typedef struct RCX_GET_DPM_IO_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_GET_DPM_IO_INFO_CNF_DATA_T tData; /* packet data */
} RCX_GET_DPM_IO_INFO_CNF_T;

Sub Block Index

This field holds the number of the block. It is the same number returned in the packet described on
page 111.

Sub Block Type

This field is used to identify the type of block. The following types are defined.

Value Definition / Description

0x0000 UNDEFINED
0x0001 UNKNOWN
0x0002 PROCESS DATA IMAGE
0x0003 HIGH PRIORITY DATA IMAGE
0x0004 MAILBOX
0x0005 CONTROL
0x0006 COMMON STATUS
0x0007 EXTENDED STATUS
0x0008 USER
0x0009 RESERVED
Other values are reserved

Table 92: Sub Block Type

Flags

The flags field holds information regarding the data transfer direction from the view point of the
application. The following flags are defined.

Value Definition / Description

0x0000 UNDEFINED
0x0001 IN (netX to Host System)
0x0002 OUT (Host System to netX)
0x0003 IN – OUT (Bi-Directional)
Other values are reserved

Table 93: Transfer Direction Flags

Diagnostic 219/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

The transmission type field in the flags location holds the type of how to exchange data with this block.
The choices are:

Value Definition / Description

0x0000 UNDEFINED
0x0010 DPM (Dual-Port Memory)
0x0020 DMA (Direct Memory Access)
Other values are reserved

Table 94: Transmission Type Flags

Offset

This field holds the offset of the first byte used in the data image based on the start offset of the I/O
data block of the channel.

Length

The length field holds the number of bytes consumed by the process data image. Status fields are not
included in the length.

Diagnostic 220/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

5.4 LEDs
There is only one system LED (SYS LED) per netX chip. The SYS LED is always present and
described below. But there are up to 4 LEDs per communication and application channel. These
LEDs, like the communication channel LED (COM LED), are network specific and are described in a
separate document.

5.4.1 System LED

The system status LED (SYS LED) is always available. It indicates the state of the system and its
protocol stacks. The following blink patterns are defined:

Color State Meaning

Flashing Cyclically at 1 Hz netX is in Boot Loader Mode and is Waiting for Firmware
Download

Yellow

Solid netX is in Boot Loader Mode, but an Error Occurred

Green Solid netX Operating System is Running and a Firmware is Started

Vellow /
Green Flashing Alternating 2nd Stage Bootloader ist active

Off N/A netX has no Power Supply or Hardware Defect Detected

Table 95: SYS LED

5.4.2 Communication Channel LEDs

The meaning of the communication channel LEDs (COM LED) depends on the implementation and is
described in a separate manual.

Status & Error Codes 221/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

6 Status & Error Codes
The following status and error codes may be returned in ulSta of the packet header or shown in the
ulCommunicationError field in the common status block. Not every of the codes outlined below are
supported by a specific protocol stack.

6.1 Packet Error Codes

Value Definition / Description
0x00000000 RCX_S_OK

Success, Status Okay
0xC0000001 RCX_E_FAIL

Fail
0xC0000002 RCX_E_UNEXPECTED

Unexpected
0xC0000003 RCX_E_OUTOFMEMORY

Out Of Memory
0xC0000004 RCX_E_UNKNOWN_COMMAND

Unknown Command
0xC0000005 RCX_E_UNKNOWN_DESTINATION

Unknown Destination
0xC0000006 RCX_E_UNKNOWN_DESTINATION_ID

Unknown Destination ID
0xC0000007 RCX_E_INVALID_PACKET_LEN

Invalid Packet Length
0xC0000008 RCX_E_INVALID_EXTENSION

Invalid Extension
0xC0000009 RCX_E_INVALID_PARAMETER

Invalid Parameter
0xC000000C RCX_E_WATCHDOG_TIMEOUT

Watchdog Timeout
0xC000000D RCX_E_INVALID_LIST_TYPE

Invalid List Type
0xC000000E RCX_E_UNKNOWN_HANDLE

Unknown Handle
0xC000000F RCX_E_PACKET_OUT_OF_SEQ

Out Of Sequence
0xC0000010 RCX_E_PACKET_OUT_OF_MEMORY

Out Of Memory
0xC0000011 RCX_E_QUE_PACKETDONE

Queue Packet Done
0xC0000012 RCX_E_QUE_SENDPACKET

Queue Send Packet
0xC0000013 RCX_E_POOL_PACKET_GET

Pool Packet Get
0xC0000015 RCX_E_POOL_GET_LOAD

Pool Get Load
0xC000001A RCX_E_REQUEST_RUNNING

Request Already Running
0xC0000100 RCX_E_INIT_FAULT

Initialization Fault
0xC0000101 RCX_E_DATABASE_ACCESS_FAILED

Database Access Failed

Status & Error Codes 222/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Value Definition / Description
0xC0000119 RCX_E_NOT_CONFIGURED

Not Configured
0xC0000120 RCX_E_CONFIGURATION_FAULT

Configuration Fault
0xC0000121 RCX_E_INCONSISTENT_DATA_SET

Inconsistent Data Set
0xC0000122 RCX_E_DATA_SET_MISMATCH

Data Set Mismatch
0xC0000123 RCX_E_INSUFFICIENT_LICENSE

Insufficient License
0xC0000124 RCX_E_PARAMETER_ERROR

Parameter Error
0xC0000125 RCX_E_INVALID_NETWORK_ADDRESS

Invalid Network Address
0xC0000126 RCX_E_NO_SECURITY_MEMORY

No Security Memory
0xC0000140 RCX_E_NETWORK_FAULT

Network Fault
0xC0000141 RCX_E_CONNECTION_CLOSED

Connection Closed
0xC0000142 RCX_E_CONNECTION_TIMEOUT

Connection Timeout
0xC0000143 RCX_E_LONELY_NETWORK

Lonely Network
0xC0000144 RCX_E_DUPLICATE_NODE

Duplicate Node
0xC0000145 RCX_E_CABLE_DISCONNECT

Cable Disconnected
0xC0000180 RCX_E_BUS_OFF

Network Node Bus Off
0xC0000181 RCX_E_CONFIG_LOCKED

Configuration Locked
0xC0000182 RCX_E_APPLICATION_NOT_READY

Application Not Ready
0xC002000C RCX_E_TIMER_APPL_PACKET_SENT

Timer App Packet Sent
0xC02B0001 RCX_E_QUE_UNKNOWN

Unknown Queue
0xC02B0002 RCX_E_QUE_INDEX_UNKNOWN

Unknown Queue Index
0xC02B0003 RCX_E_TASK_UNKNOWN

Unknown Task
0xC02B0004 RCX_E_TASK_INDEX_UNKNOWN

Unknown Task Index
0xC02B0005 RCX_E_TASK_HANDLE_INVALID

Invalid Task Handle
0xC02B0006 RCX_E_TASK_INFO_IDX_UNKNOWN

Unknown Index
0xC02B0007 RCX_E_FILE_XFR_TYPE_INVALID

Invalid Transfer Type
0xC02B0008 RCX_E_FILE_REQUEST_INCORRECT

Invalid File Request

Status & Error Codes 223/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Value Definition / Description
0xC02B000E RCX_E_TASK_INVALID

Invalid Task
0xC02B001D RCX_E_SEC_FAILED

Security EEPROM Access Failed
0xC02B001E RCX_E_EEPROM_DISABLED

EEPROM Disabled
0xC02B001F RCX_E_INVALID_EXT

Invalid Extension
0xC02B0020 RCX_E_SIZE_OUT_OF_RANGE

Block Size Out Of Range
0xC02B0021 RCX_E_INVALID_CHANNEL

Invalid Channel
0xC02B0022 RCX_E_INVALID_FILE_LEN

Invalid File Length
0xC02B0023 RCX_E_INVALID_CHAR_FOUND

Invalid Character Found
0xC02B0024 RCX_E_PACKET_OUT_OF_SEQ

Packet Out Of Sequence
0xC02B0025 RCX_E_SEC_NOT_ALLOWED

Not Allowed In Current State
0xC02B0026 RCX_E_SEC_INVALID_ZONE

Security EEPROM Invalid Zone
0xC02B0028 RCX_E_SEC_EEPROM_NOT_AVAIL

Security EEPROM Not Available
0xC02B0029 RCX_E_SEC_INVALID_CHECKSUM

Security EEPROM Invalid Checksum
0xC02B002A RCX_E_SEC_ZONE_NOT_WRITEABLE

Security EEPROM Zone Not Writeable
0xC02B002B RCX_E_SEC_READ_FAILED

Security EEPROM Read Failed
0xC02B002C RCX_E_SEC_WRITE_FAILED

Security EEPROM Write Failed
0xC02B002D RCX_E_SEC_ACCESS_DENIED

Security EEPROM Access Denied
0xC02B002E RCX_E_SEC_EEPROM_EMULATED

Security EEPROM Emulated
0xC02B0038 RCX_E_INVALID_BLOCK

Invalid Block
0xC02B0039 RCX_E_INVALID_STRUCT_NUMBER

Invalid Structure Number
0xC02B4352 RCX_E_INVALID_CHECKSUM

Invalid Checksum
0xC02B4B54 RCX_E_CONFIG_LOCKED

Configuration Locked
0xC02B4D52 RCX_E_SEC_ZONE_NOT_READABLE

Security EEPROM Zone Not Readable

Table 96: Status & Error Codes

Status & Error Codes 224/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

6.2 System Error Codes
The system error in the system status block field (see page 46) holds information about the general
status of the netX firmware stacks. An error code of zero indicates a faultless system. If the system
error field holds a value other than SUCCESS, the Error flag in the netX System flags is set (see page
42 for details).

Value Definition / Description
0x00000000 RCX_SYS_SUCCESS

Success
0x00000001 RCX_SYS_RAM_NOT_FOUND

RAM Not Found
0x00000002 RCX_SYS_RAM_TYPE

Invalid RAM Type
0x00000003 RCX_SYS_RAM_SIZE

Invalid RAM Size
0x00000004 RCX_SYS_RAM_TEST

Ram Test Failed
0x00000005 RCX_SYS_FLASH_NOT_FOUND

Flash Not Found
0x00000006 RCX_SYS_FLASH_TYPE

Invalid Flash Type
0x00000007 RCX_SYS_FLASH_SIZE

Invalid Flash Size
0x00000008 RCX_SYS_FLASH_TEST

Flash Test Failed
0x00000009 RCX_SYS_EEPROM_NOT_FOUND

EEPROM Not Found
0x0000000A RCX_SYS_EEPROM_TYPE

Invalid EEPROM Type
0x0000000B RCX_SYS_EEPROM_SIZE

Invalid EEPROM Size
0x0000000C RCX_SYS_EEPROM_TEST

EEPROM Test Failed
0x0000000D RCX_SYS_SECURE_EEPROM

Security EEPROM Failure
0x0000000E RCX_SYS_SECURE_EEPROM_NOT_INIT

Security EEPROM Not Initialized
0x0000000F RCX_SYS_FILE_SYSTEM_FAULT

File System Fault
0x00000010 RCX_SYS_VERSION_CONFLICT

Version Conflict
0x00000011 RCX_SYS_NOT_INITIALIZED

System Task Not Initialized
0x00000012 RCX_SYS_MEM_ALLOC

Memory Allocation Failed
Other values are reserved

Table 97: System Error Codes

Appendix 225/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

7 Appendix

7.1 Device Class

Device Description Value

Undefined Information about the device class is no available. 0x0000

Unclassifiable The device class is none of the defined ones. 0x0001

netX 500 The netX 500 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x0002

cifX A cifX card is a PCI network interface card for various fieldbus
protocols. It is based on netX 100 / 500 network controllers and
supports all Real-Time Ethernet system.

0x0003

comX 100 A comX 100 network interface module is used in embedded
systems to provide connectivity to the host system to various
fieldbus protocols. It is based on netX 100 / 500 network
controllers and supports all Real-Time Ethernet and fieldbus
systems.

0x0004

netX Evaluation
Board

The System Development Board is base for custom hardware and
software designs around netX. The board is available with various
types of memory and interfaces, touch LCD, switches and LEDs
for digital inputs and outputs.

0x0005

netDIMM The netDIMM uses the network controller netX based on the
DIMM-PC format. It supports fieldbus protocols like CANopen,
DeviceNet, PROFIBUS/MPI and has 2 Real-Time Ethernet ports
with Switch and Hub functionality to support EtherNet/IP,
EtherCAT, SERCOS III, Powerlink, PROFINET; a HMI version and
has on-board LCD and Touch controller.

0x0006

netX 100 The netX 100 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x0007

netHMI These types of boards are used as an evaluation platform for netX
terminal application under the Windows CE or Linux operating
systems. A color display, soft keys, LEDs, Ethernet and
PROFIBUS interfaces as well as a socket for Compact Flash
cards are available.

0x0008

netIO 50 The netIO 50 is an evaluation board with digital 32 bit input and 32
bit output data for all Ethernet based fieldbus system and uses the
netX 50 chip.

0x000A

netIO The netIO 100 is an evaluation board with digital 16 bit input and
16 bit output data for all Ethernet based fieldbus system and uses
the netX 100 chip.

0x000B

netX 50 The netX 50 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x000C

netPAC TBD 0x000D

netTAP 100 The netTAP 100 is a gateway system with two communication
interfaces. Depending on the specific type, the interfaces may be
serial, Ethernet or another fieldbus system.

0x000E

netSTICK The netSTICK devise allows evaluating network protocols and
application based on the netX 50 chip. It has an integrated debug
interface and comes with a development environment. It is
connected to the PC or notebook via its USB port.

0x000F

Appendix 226/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Device Description Value

netANALYZER The netANALYZER is a PCI card for jitter and delay measurement
in full duplex mode for Real-Time Ethernet protocols such as
EtherCAT, EtherNet/IP, Powerlink, PROFINET and SERCOS III.
The card is equipped with internal TAPs and features two bi-
directional Ethernet connections. To analyze the network traffic
the captured data then are transferred to Wireshark analysis
program using WinPcap-Format.

0x0010

netSWITCH TBD 0x0011

netLINK The netLINK is built into a D-Sub housing that has been designed
for accepting the PROFIBUS terminating resistors. It consists of a
complete Fieldbus Master together with a 10/100 Mbit/s Ethernet-
Interface

0x0012

netIC 50 The netIC is a ‘Single Chip Module’ in the dimensions of a DIL-32
IC. It is based on the netX 50 network controller and supports all
Real-Time Ethernet protocols.

0x0013

netPLC C100 The netPLC-C100 is a PCI card and works as a “Slot-PLC” in a
standard desktop PC. It combines fieldbus and PLC functionality
in one chip. While a PLC runtime and a fieldbus protocol operate
autonomous on the card the PC is visualizing the process at the
same time. The card has a memory-card slot, an additional power
supply and a backup battery.

0x0014

netPLC M100 The netPLC-M100 is a PLC CPU module and plugs on a carrier
board. It combines fieldbus and PLC functionality in one chip.
While a PLC runtime and a fieldbus protocol operate autonomous
on the card the carrier board is visualizing the process at the same
time. The card has a memory-card slot, an additional power
supply and a backup battery.

0x0015

netTAP 50 The netTAP 50 is a gateway system with two communication
interfaces. Depending on the type, the interfaces may be serial,
Ethernet or another fieldbus system.

0x0016

netBRICK 100 netBRICK is a gateway for harsh environments. It is mainly
compatible to the netTAP gateway.

0x0017

netPLC T100 The netPLC product line combines Fieldbus and PLC functionality
in one chip, integrated on PC-cards. It supports CoDeSys and
ProConOS eCLR or IBHsoftec PLC and PROFIBUS-DP master as
Fieldbus.

0x0018

netLINK PROXY netLINK PROXY integrates any PROFIBUS-DP slave in a
superordinated PROFINET network.

0x0019

netX 10 The netX 10 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x001A

netJACK 10 A netJACK 10 is an interface module for various fieldbus
protocols. It is based on netX 10 network controllers.

0x001B

netJACK 50 A netJACK 50 is an interface module for various fieldbus or real-
time Ethernet protocols. It is based on netX 50 network controllers.

0x001C

netJACK 100 A netJACK 100 is an interface module for various fieldbus
protocols. It is based on netX 100 network controllers.

0x001D

netJACK 500 A netJACK 500 is an interface module for various fieldbus or real-
time Ethernet protocols. It is based on netX 500 network
controllers.

0x001E

netLINK 10 USB The netLINK is built into a D-Sub housing for various fieldbus
protocols and has a USB interface.

0x001F

Appendix 227/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Device Description Value

comX 10 A comX 10 network interface module is used in embedded
systems to provide connectivity to the host system to various
fieldbus protocols. It is based on netX 10 network controllers and
supports all fieldbus systems.

0x0020

netIC 10 The netIC is a ‘Single Chip Module’ in the dimensions of a DIL-32
IC. It is based on the netX 10 network controller.

0x0021

comX 50 A comX 50 network interface module is used in embedded
systems to provide connectivity to the host system to various
fieldbus protocols. It is based on netX 50 network controllers and
supports all fieldbus systems.

0x0022

netRAPID 10 A netRAPID network interface module is designed for fast
prototyping and is used in embedded systems to provide
connectivity to the host system to various fieldbus protocols. It is
based on netX 10 network controllers.

0x0023

netRAPID 50 A netRAPID network interface module is designed for fast
prototyping and is used in embedded systems to provide
connectivity to the host system to various fieldbus protocols. It is
based on netX 50 network controllers.

0x0024

netSCADA T51 A netSCADA T51 is a gateway system with two communication
interfaces. Depending on the type, the interfaces may be serial,
Ethernet or another fieldbus system.

0x0025

netX 51 The netX 51 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x0026

netRAPID 51 A netRAPID network interface module is designed for fast
prototyping and is used in embedded systems to provide
connectivity to the host system to various fieldbus protocols. It is
based on netX 51 network controllers.

0x0027

EU5C Gateway The EU5C is a gateway system with two communication
interfaces. Depending on the type, the interfaces may be serial,
Ethernet or another fieldbus system.

0x0028

OEM Device Original Equipment Manufacturer (OEM) Device, no further
information available.

0xFFFE

Table 98: Device Class

Appendix 228/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

7.2 List of Figures
Figure 1: netX Firmware Block Diagram (Example) 14
Figure 2: Block Diagram Default Dual-Port Memory Layout 15
Figure 3: Lock Configuration (Example Using Enable Flag) 23
Figure 4: Accessing a Protocol Stack 26
Figure 5: Example Status Structures 69
Figure 6: Use of ulDest in Channel and System Mailbox 82
Figure 7: Send Packet Flowchart 84
Figure 8: Receive Packet Flowchart 85
Figure 9: Using ulSrc and ulSrcId 86
Figure 10: Transition Chart Application as Client 88
Figure 11: Transition Chart Application as Server 89
Figure 12 – Step 1: Buffered, Controlled Mode 96
Figure 13 – Step 2: Buffered, Controlled Mode 96
Figure 14 – Step 3: Buffered, Controlled Mode 96
Figure 15 – Step 4: Buffered, Controlled Mode 97
Figure 16 – Time Related: Buffered, Controlled, Output Data 97
Figure 17 – Time Related: Buffered, Controlled, Input Data 98
Figure 18: System Reset Flowchart 133
Figure 19: Channel Initialization Flowchart 135
Figure 20: Flowchart Download 142
Figure 21: Flowchart File Upload 152

Appendix 229/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

7.3 List of Tables
Table 1: List of Revisions 8
Table 2: Terms, Abbreviations and Definitions 10
Table 3: Memory Configuration (Overview) 16
Table 4: System Channel (Overview) 17
Table 5: Handshake Channel 17
Table 6: Communication Channel 18
Table 7: Application Channel 18
Table 8: Default Memory Mapping 20
Table 9: System Channel Structure 27
Table 10: System Information Block 28
Table 11: netX Identification, netX Cookie 29
Table 12: Hardware Assembly Options (xC Port 0 … 3) 31
Table 13: Manufacturer 31
Table 14: Production Date 31
Table 15: License Flags 1 32
Table 16: License Flags 1 32
Table 17: License Flags 2 33
Table 18: License Flags 2 33
Table 19: Device Class 34
Table 20: Channel Information Block 37
Table 21: Channel Type 38
Table 22: Size / Position of Handshake Cells 39
Table 23: Communication Class 40
Table 24: Protocol and Task Class 41
Table 25: netX System Flags 42
Table 26: netX System Flags 43
Table 27: Host System Flags 43
Table 28: Host System Flags 44
Table 29: System Handshake Block 44
Table 30: System Control Block 45
Table 31: System Status Block 46
Table 32: System Change of State 47
Table 33: System Status Field 47
Table 34: System Status Field 47
Table 35: Hardware Features Field 48
Table 36: Hardware Features Field 49
Table 37: System Mailbox 50
Table 38: Default Communication Channel Layout 51
Table 39: netX Communication Channel Flags 52
Table 40: netX Communication Channel Flags 53
Table 41: Host Communication Flags 54
Table 42: Host Communication Flags 55
Table 43: Communication Handshake Block 56
Table 44: Communication Control Block 57
Table 45: Application Change of State 57
Table 46: Application Change of State 58
Table 47: Common Status Block 60
Table 48: Communication State of Change 61
Table 49: Communication State of Change 61

Appendix 230/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Table 50: Communication State 62
Table 51: Structure Version 62
Table 52: Handshake Mode 63
Table 53: Master Status 64
Table 54: Slave State 65
Table 55: Extended Status Block 66
Table 56: Extended State Structure 67
Table 57: Sub Block Type / Status Area 67
Table 58: Status Type ID 68
Table 59: Channel Mailboxes 72
Table 60: High Priority Output / Input Data Image 73
Table 61: Reserved Area 73
Table 62: Output/Input Data Image 74
Table 63: Handshake Channel (16 Bit Wide) 76
Table 64: Handshake Channel (8 Bit Wide) 77
Table 65: Packet Structure 80
Table 66: Use of ulDest 83
Table 67: Command and Acknowledge 83
Table 68: Extension and Identifier Field 90
Table 69: Download Request (CMD = download command; F = First; M = Middle; L = Last) 91
Table 70: Upload Request (CMD = upload command; N = None; F = First; M = Middle; L = Last) 91
Table 71: DMA Channel Assignment 94
Table 72: Process Data Handshake Modes 95
Table 73: Input Data Status 100
Table 74: Input Data Status 100
Table 75: Output Data Status 101
Table 76: Output Data Status 101
Table 77: Block Definition (Example for Communication Channel 1) 109
Table 78: Sub Block Type 112
Table 79: Transmission Flags 113
Table 80: Hand Shake Mode 113
Table 81: Hardware Configuration (Zone 1) 119
Table 82: PCI System and OS Setting (Zone 2) 119
Table 83: User Specific Zone (Zone 3) 120
Table 84: Boot Type 123
Table 85: Chip Type 123
Table 86: System Reset Cookie 132
Table 87: Watchdog Off 168
Table 88: Set MAC Address Parameter Field 175
Table 89: Set MAC Address Parameter Field 175
Table 90: Clock Status 209
Table 91: Clock Status 209
Table 92: Sub Block Type 218
Table 93: Transfer Direction Flags 218
Table 94: Transmission Type Flags 219
Table 95: SYS LED 220
Table 96: Status & Error Codes 223
Table 97: System Error Codes 224
Table 98: Device Class 227
Table 99: Glossary 232

Glossary 231/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

8 Glossary

Term Description
See also
Page(s):

Area
Block

Process data image or other data structures of a channel using
handshake mechanism to synchronize access to the dual-port
memory; holds status information and diagnostic data of both
network related issues and firmware or task related issues

Change of State
(COS) Mechanism

Method to synchronize or manage read/write access to shared
memory blocks between the netX firmware on one side and the
user application on the other

22 | 42 | 52
657 | 60

Channel Communication path from the dual-port memory through the netX
firmware communication interfaces of the netX chip (" xC ports)
and back; it may also describe a protocol stack or an area in the
dual-port memory of the netX

14 | 27

Channel Mailbox

Area in the dual-port memory for a channel to use for non-cyclic
data exchange with other nodes on the network or to provide
access to the firmware running on the netX

24 | 16 | 66 |

Command
Acknowledge

Handshake mechanism to synchronize access to shared memory
blocks between the netX firmware and the user application; used
to ensure data consistency over data areas or block

21 | 42 | 88
52

Communication
Channel

Path from the dual-port memory through the netX firmware
communication interfaces of the netX chip (" xC ports) and back;
it may also describe a protocol stack or an area in the dual-port
memory of the netX

14 | 16 | 51 | 108

Confirmation Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request " Indication | Response " Confirmation

88

Data Status Additional information regarding the state of input and output
process data in the IO data image

99

Default Memory
Layout (DPM)

Small sized dual-port memory layout with is 16 KByte (one system
channel, one handshake channel & one communication channel)

16 | 27

DPM
Dual-Port Memory

Shared memory between the netX firmware an the host
application; data can be read and written unsynchronized or
synchronized (" Handshake, " Command / Acknowledge); is
divided into channels; each channel divides its area into blocks
with specific meaning

13 | 15 | 16
27 | 108

Enable Flag
Mechanism

The enable flags are used to selectively set flags without
interfering with other flags (or commands, respectively) in the
same register. The application has to enable these commands
before signaling the change to the netX protocol stack.

23 | 57 | 59

File Upload
File Download

Set of packets to used transfer files from the host system to the
netX file system or from the netX file system to the host system

142 | 152

Firmware Loadable and executable protocol stack providing networking
access for fieldbus system through the netX chip

14

Handshake
Handshake Flags
Handshake Block

The handshake mechanism is used to synchronize data exchange
between two different processes, for example the netX dual-port
memory and the host application. Following the rules of
synchronization ensures consistency of data blocks while reading
or writing.

22 | 42 | 52 | 75

Host, Host System,
Host Application

Program that runs on the host controller, typically a PLC program
or other control program

14

Indication Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request " Indication | Response " Confirmation

88

Initialization
Channel Reset

Reset function that affects one communication channel only, as
apposed to the system-wide reset that affects the entire chip

132 | 132 | 134
137

Glossary 232/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

Term Description
See also
Page(s):

Lock Configuration Function to protect the configuration settings against being
overwritten or otherwise changed

52 | 105

Packet
Packet Structure

Mailbox message structure used to transfer non-cyclic data
packets between the netX firmware and the host application via
the mailbox system (" Channel Mailbox, " System Mailbox);
consists of a 40 byte header and a variable size of payload

80

Process Data Image Cyclic input and output data exchanged with nodes on the
network;

24 | 15 | 94

Protocol Stack Usually a firmware is comprised of a system a handshake channel
and a netX communication channel. A communication channel is a
protocol stack like PROFINET or DeviceNet. A netX can have
different independently operating protocol stacks, which can be
executed concurrently in the context of the rcX operating system.

14 | 51

Request Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request " Indication | Response " Confirmation

88

Reset
System Reset

Reset function that affects the entire system including the
operating system (" rcX) and all communication channels

132

Response Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request " Indication | Response " Confirmation

88

Security Memory
Security EEPROM

Use to store certain hardware and product related information to
help identifying a netX hardware

114

SYS LED System LED 220

System Channel Communication path from the dual-port memory into the netX
operating system and back; provides information of the system
state and allows controlling certain functions, like (system) reset
(" Reset)

14 | 27

System Mailbox Used for a non-cyclic data exchange or to provide access to the
firmware running on the netX (send and receive mailbox)

24 | 16 | 50 |

Watchdog
Host Watchdog
Device Watchdog

Allows the netX operating system supervising the host application
and vice versa; host system copies content from the host
watchdog cell; netX reads from host watchdog cell, increments
value and writes it into the device watchdog cell; if copying
exceeds the configure timeout period, the netX firmware shuts
down network communication

57 | 59 | 168

xC Port Serial communication interface to a fieldbus or network, integrated
processor on the netX chip

14 | 629

Table 99: Glossary

Contact 233/233

Dual-Port Memory Interface | netX based Products
DOC060302DPM12EN | Revision 12 | English | 2012-03 | Released | Public © Hilscher, 2006-2012

9 Contact
Headquarters

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69500 Bron
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
New Delhi - 110 025
Phone: +91 11 40515640
E-Mail: info@hilscher.in

Italy
Hilscher Italia srl
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea
Hilscher Korea Inc.
Suwon, 443-734
Phone: +82 (0) 31-695-5515
E-Mail: info@hilscher.kr

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

	1 Introduction
	1.1 About this Document
	1.2 List of Revisions
	1.3 Terms, Abbreviations and Definitions
	1.4 References
	1.5 Limitations
	1.6 Legal Notes
	1.6.1 Copyright
	1.6.2 Important Notes
	1.6.3 Exclusion of Liability
	1.6.4 Export

	2 Dual-Port Memory Structure
	2.1 Boot Procedure
	2.2 netX Firmware
	2.3 Dual-Port Memory Layout
	2.3.1 Dual-Port Memory Channels
	2.3.1.1 System Channel
	2.3.1.2 Handshake Channel
	2.3.1.3 Communication Channels
	2.3.1.4 Application Channels

	2.3.2 Default Dual-Port Memory Mapping
	2.3.3 Working with the Variable Layout

	2.4 Data Transfer Mechanism
	2.4.1 Command and Acknowledge
	2.4.2 Handshake Registers and Flags
	2.4.3 Change of State Mechanism
	2.4.4 Enable Flag Mechanism
	2.4.5 Mailbox
	2.4.6 Input and Output Data Blocks
	2.4.7 Control Block
	2.4.8 Status Block

	2.5 Accessing a Protocol Stack

	3 Dual-Port Memory Definitions
	3.1 System Channel
	3.1.1 System Information Block
	3.1.2 Channel Information Block
	3.1.3 System Handshake Register
	3.1.3.1 netX System Flags
	3.1.3.2 Host System Flags

	3.1.4 System Handshake Block
	3.1.5 System Control Block
	3.1.6 System Status Block
	3.1.7 System Mailbox

	3.2 Communication Channel
	3.2.1 Default Memory Layout
	3.2.2 Channel Handshake Register
	3.2.2.1 netX Communication Flags
	3.2.2.2 Host Communication Flags

	3.2.3 Reserved Block
	3.2.4 Control Block
	3.2.5 Common Status Block
	3.2.5.1 All Implementations
	3.2.5.2 Master Implementation
	3.2.5.3 Slave Implementation

	3.2.6 Extended Status Block (Protocol Specific)
	3.2.7 Channel Mailbox
	3.2.8 High Priority Output / Input Data Image
	3.2.9 Reserved Area
	3.2.10 Process Data Output/Input Image

	3.3 Handshake Channel
	3.4 Application Channel

	4 Dual-Port Memory Function
	4.1 Non-Cyclic Data Exchange
	4.1.1 Messages or Packets
	4.1.2 About System and Channel Mailbox
	4.1.3 Command and Acknowledge
	4.1.4 Using ulSrc and ulSrcId
	4.1.5 How to Route rcX Packets
	4.1.6 Client/Server Mechanism
	4.1.6.1 Application as Client
	4.1.6.2 Application as Server

	4.1.7 Transferring Fragmented Packets
	4.1.7.1 Extension and Identifier Field
	4.1.7.2 Procedure
	4.1.7.3 Abort Fragmented Packets Request
	4.1.7.4 Abort Fragmented Packet Confirmation

	4.2 Input / Output Data Image
	4.2.1 DPM Mode
	4.2.2 DMA Mode
	4.2.3 Process Data Handshake Modes
	4.2.4 Buffered, Host Controlled Mode

	4.3 Input / Output Data Status
	4.3.1 About Input/Output Data Status
	4.3.2 Provider State
	4.3.2.1 Input Data Status
	4.3.2.2 Output Data Status

	4.3.3 Consumer State

	4.4 Start / Stop Communication
	4.4.1 Controlled or Automatic Start
	4.4.2 Start / Stop Communication through Dual-Port Memory
	4.4.2.1 (Re-)Start Communication
	4.4.2.2 Stop Communication

	4.4.3 Start / Stop Communication through Packets
	4.4.3.1 Start / Stop Communication Request
	4.4.3.2 Start / Stop Communication Confirmation

	4.5 Lock Configuration
	4.5.1 Lock Configuration through Dual-Port Memory
	4.5.2 Lock Configuration through Packets
	4.5.2.1 Lock / Unlock Configuration Request
	4.5.2.2 Lock / Unlock Configuration Confirmation

	4.6 Determining DPM Layout
	4.6.1 Default Memory Layout
	4.6.2 Obtaining Logical Layout
	4.6.2.1 Channel Definition

	4.6.3 Mechanism
	4.6.3.1 Determining Memory Block Number
	4.6.3.2 Obtain Area or Block Information
	4.6.3.3 Get Block Information Request
	4.6.3.4 Get Block Information Confirmation

	4.7 Identifying netX Hardware
	4.7.1 Security Memory
	4.7.1.1 Security Memory Read Request
	4.7.1.2 Security Memory Read Confirmation
	4.7.1.3 Security Memory Write Request
	4.7.1.4 Security Memory Write Confirmation
	4.7.1.5 Security Memory Zones
	4.7.1.6 Checksum
	4.7.1.7 Dual-Port Memory Default Values

	4.7.2 Identifying netX Hardware through Packets
	4.7.2.1 Identify Hardware Request
	4.7.2.2 Identify Hardware Confirmation
	4.7.2.3 License Information Request
	4.7.2.4 License Information Confirmation
	4.7.2.5 Read Hardware Information Request
	4.7.2.6 Read Hardware Information Confirmation

	4.8 Identifying Channel Firmware
	4.8.1 Identifying Channel Firmware Request
	4.8.2 Identifying Channel Firmware Confirmation

	4.9 Reset Command
	4.9.1 System Reset vs. Channel Initialization
	4.9.2 Resetting netX through Dual-Port Memory
	4.9.2.1 System Reset
	4.9.2.2 Channel Initialization
	4.9.2.3 Boot Start

	4.9.3 System Reset through Packets
	4.9.3.1 Reset Request
	4.9.3.2 Reset Confirmation
	4.9.3.3 Channel Initialization Request
	4.9.3.4 Channel Initialization Confirmation

	4.10 Downloading Files to netX
	4.10.1 File Download
	4.10.1.1 File Download Request
	4.10.1.2 File Download Confirmation

	4.10.2 File Data Download
	4.10.2.1 File Data Download Request
	4.10.2.2 File Data Download Confirmation

	4.10.3 Abort File Download
	4.10.3.1 Abort File Download Request
	4.10.3.2 Abort File Download Confirmation

	4.11 Uploading Files from netX
	4.11.1 File Upload
	4.11.1.1 File Upload Request
	4.11.1.2 File Upload Confirmation

	4.11.2 File Data Upload
	4.11.2.1 File Data Upload Request
	4.11.2.2 File Data Upload Confirmation

	4.11.3 File Upload Abort
	4.11.3.1 File Upload Abort Request
	4.11.3.2 File Upload Abort Confirmation

	4.11.4 Creating a CRC32 Checksum

	4.12 Read MD5 File Checksum
	4.12.1 MD5 File Checksum Request
	4.12.2 MD5 File Checksum Confirmation

	4.13 Delete a File
	4.13.1 File Delete Request
	4.13.2 File Delete Confirmation

	4.14 List Directories and Files from File System
	4.14.1 Directory List Request
	4.14.2 Directory List Confirmation

	4.15 Host / Device Watchdog
	4.15.1 Function
	4.15.2 Get Watchdog Time Request
	4.15.3 Get Watchdog Time Confirmation
	4.15.4 Set Watchdog Time Request
	4.15.5 Set Watchdog Time Confirmation

	4.16 Set MAC Address
	4.16.1 Set MAC Address Request
	4.16.2 Set MAC Address Confirmation

	4.17 Start Firmware on netX
	4.17.1 Start Firmware Request
	4.17.2 Start Firmware Confirmation

	4.18 Register / Unregister an Application
	4.18.1 Register Application Request
	4.18.2 Register Application Confirmation
	4.18.3 Unregister Application Request
	4.18.4 Unregister Application Confirmation

	4.19 Delete Configuration from the System
	4.19.1 Delete Configuration Request
	4.19.2 Delete Configuration Confirmation

	4.20 System Channel Information Blocks
	4.20.1 Read System Information Block
	4.20.1.1 Read System Information Block Request
	4.20.1.2 Read System Information Block Confirmation

	4.20.2 Read Channel Information Block
	4.20.2.1 Read Channel Information Block Request
	4.20.2.2 Read Channel Information Block Confirmation

	4.20.3 Read System Control Block
	4.20.3.1 Read System Control Block Request
	4.20.3.2 Read System Control Block Confirmation

	4.20.4 Read System Status Block
	4.20.4.1 Read System Status Block Request
	4.20.4.2 Read System Status Block Confirmation

	4.21 Communication Channel Information Blocks
	4.21.1 Read Communication Control Block
	4.21.1.1 Read Communication Control Block Request
	4.21.1.2 Read Communication Control Block Confirmation

	4.21.2 Read Common Status Block
	4.21.2.1 Read Common Status Block Request
	4.21.2.2 Read Common Status Block Confirmation

	4.21.3 Read Extended Status Block
	4.21.3.1 Read Extended Status Block Request
	4.21.3.2 Read Extended Status Block Confirmation

	4.22 Read Performance Data through Packets
	4.22.1 Read Performance Data Request
	4.22.2 Read Performance Data Confirmation

	4.23 Set Handshake Configuration
	4.23.1 Set Handshake Configuration Request
	4.23.2 Set Handshake Configuration Confirmation

	4.24 Real-Time Clock
	4.24.1 Time Command Request
	4.24.2 Time Command Confirmation

	5 Diagnostic
	5.1 Versioning
	5.2 Network Connection State
	5.2.1 Mechanism
	5.2.2 Obtain List of Slave Handles
	5.2.2.1 Get Slave Handle Request
	5.2.2.2 Get Slave Handle Confirmation

	5.2.3 Obtain Slave Connection Information
	5.2.3.1 Get Slave Connection Information Request
	5.2.3.2 Get Slave Connection Information Confirmation

	5.3 Obtain I/O Data Size Information
	5.3.1 Get DPM I/O Information Request
	5.3.2 Get DPM I/O Information Confirmation

	5.4 LEDs
	5.4.1 System LED
	5.4.2 Communication Channel LEDs

	6 Status & Error Codes
	6.1 Packet Error Codes
	6.2 System Error Codes

	7 Appendix
	7.1 Device Class
	7.2 List of Figures
	7.3 List of Tables

	8 Glossary
	9 Contact

