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D. Álvaro Alonso Isla

Tutor:
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TUTOR: Dr. D. Miguel Ángel Martı́nez Prieto

Dr. D. Anı́bal Bregón Bregón
DEPARTAMENTO: Departamento de Informática
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Resumen del TFM

El sistema distribuido Hadoop se está volviendo cada vez más popular a la hora de al-
macenar y procesar grandes cantidades de datos (Big Data). Al estar compuesto por
muchas máquinas, su sistema de ficheros, llamado HDFS (Hadoop Distributed File Sys-
tem), también es distribuido. Al ser HDFS un sistema de almacenamiento distinto a los
tradicionales, se han desarrollado nuevos formatos de almacenamiento de ficheros para
ajustarse a las caracterı́sticas particulares de HDFS. En este trabajo estudiamos estos
nuevos formatos de ficheros, prestando especial atención a sus caracterı́sticas particulares,
con el fin de ser capaces de intuir cuál de ellos tendrá un mejor funcionamiento según las
necesidades de los datos que tengamos. Para alcanzar este objetivo, hemos propuesto un
marco teórico de comparación, con el que poder reconocer fácilmente qué formatos se
ajustan a nuestras necesidades. Además, hemos realizado un estudio experimental para
reforzar la comparación anterior, y poder obtener conclusiones sobre qué formatos son los
mejores para los casos expuestos. Para ello se han seleccionado dos conjuntos de datos
con distintas caracterı́sticas, y un grupo de consultas básicas, que se ejecutan con trabajos
MapReduce escritos en Java y a través de la herramienta Hive. El objetivo final de este
trabajo será ser capaces de identificar las distintas fortalezas y debilidades de los formatos
de almacenamiento.

Palabras clave
Big Data, Hadoop, HDFS, MapReduce, Formatos de Almacenamiento.
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Abstract

The distributed system Hadoop has become very popular for storing and process large
amounts of data (Big Data). As it is composed of many machines, its file system, called
HDFS (Hadoop Distributed File System), is also distributed. But as HDFS is not a tradi-
tional storage system, plenty of new file formats have been developed, to take advantage
of its features. In this work we study that new formats to find out their characteristics,
and being able to decide which ones can be better knowing the needs of our data. For
that goal, we have made a theoretical framework to compare them, and easily recognize
which formats fit our needs. Also we have made an experimental study to find out how the
formats work in some specific situations, selecting two very different datasets and a set of
simple queries, resolved with MapReduce jobs, written with Java or run using Hive tool.
The final goal of this work is to be able to identify the different strengths and weakenesses
of the file formats.

Keywords
Big Data, Hadoop, HDFS, MapReduce, File Formats.
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Chapter 1

Introduction

Since several years, the Big Data concept is becoming more and more popular, but
It is not something new. We can say that this concept reached maturity in 2013, when it
was introduced as a new term in the Oxford English Dictionary (OED) [1], where it is
defined as “Extremely large data sets that may be analysed computationally to reveal pat-
terns, trends, and associations, especially relating to human behaviour and interactions”.
However, this is not a very accurate definition; it only refers to the volume of the data and
some fields in which it can be used. Traditionally, Big Data has been characterized with
the so called 3 Vs [2], i.e., volume, velocity and variety.

The volume refers to the most famous characteristic of Big Data. It is simply the
storage space that the data uses. Years ago, a dataset between 10GB or 100GB could have
been considered Big Data. Nowadays the typical size at which a dataset is considered
Big Data is about 1TB. This is decided by the actual computation capacity, because Big
Data can also be defined as “data that exceeds the processing capacity of conventional
database systems” [3]. Thus, if the capacity of conventional databases increases, a dataset
considered Big Data some years ago, could be now not included in that group.

The next V is the velocity. This concept refers to the speed at which the data is
generated. In these days, the amount of data produced each second is immense. For
example, Youtube generates 300 hours of video every minute [4]. For systems that process
the data in real time is very hard to manage these data generation speeds. Because of this,
it is necessary to use new techniques to be able to process data as it is generated.

The last V is the variety. This characteristic can be understood in two different ways.
The first one is the variety in the data form and type, being possible to mix natural speech
text with multimedia, with structured data, or whichever type of information. And the
second aspect of the variety is related with the data structure. Most of the data generated
nowadays is produced by people, and it is written it in natural language. Thus, the majority
of the data is non structured data, which is much more difficult to process than when it
follows a structure.

Some authors add two more Vs to the previous three, thus having the Big Data 5 Vs
[5]. These new characteristics are Veracity and Value. Veracity refers to the data quality
or trustworthiness. It is important to take this into account because nowadays the majority
of the data is generated by people, and maybe not all the data can be trusted. And the
value means that the data has to produce a benefit. If there is no possibility of bring value
to the companies or the society, it is not worth to process that data.
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The last two Vs are the newest ones, and they make reference to the data meaning, not
just to its numerical characteristics. They are mostly related with where the data comes
from and if it has any utility.

As we have mentioned, the volume is the most significant of the Big Data characteris-
tics, however, the volume has more problems apart from having enough storage capacity.
The data is usually queried, and that queries must be resolved as fast as possible. With
very large amounts of data, this task is not easy.

One popular solution to solve the problems originated by the volume is to use dis-
tributed file systems. A distributed file system is just a set of machines that makes the role
of a single file system. Having many machines, the storage capacity is much higher, and
it is possible to increase a lot the parallelization of tasks. One distributed file system very
common in these days is the one used within Apache Hadoop.

Apache Hadoop [6, 7] is an open-source software framework, written in Java, that
allows a distributed processing and storage of very large volumes of data, in a computers
cluster composed of commodity hardware1. Hadoop can be divided into storage and pro-
cessing. The storage system of Hadoop is called HDFS (Hadoop Distributed File System)
[8, 9], and the processing part MapReduce [10].

1.1 Motivation
In this project we will focus only in the storage part of Hadoop, studying the different

file formats that have been developed for this environment. These new formats have
different characteristics, and depending on the structure of the data and its final use, one
format can be more suitable for some tasks than the others. But, how is it possible to know
which format is better in a specific situation? Although here have been different studies to
compare the formats between them and answer this question, there is no published work
covering and comparing all kind of formats in an exhaustive way.

For example, D. Plase [11] made a comparison between the two most known file for-
mats, Avro and Parquet. In her work the rest of the file formats were discarded because of
their theoretical limitations. For the selected ones, there is a comparison of the compres-
sion capacity and execution performance for a quite big number of datasets and queries,
taken from the TPC-H benchmark [12], and modifying some of them. The execution of
the queries have been done using Hive-MapReduce. However, the theoretical comparison
is very short, discarding all the other formats without giving them an opportunity in the
experimentation.

Another paper comparing two file formats in the Hadoop environment is the Thesis
written by Gavin So [13]. In this case, Parquet and JSON formats are compared. For the
experimentation part, the processing framework is not the native of Hadoop (MapReduce),
but a different one, called Spark [14], is used.

Z. Baranowski [15] makes a comparison including more than just two formats. In
this case, there is a comparison between different ways of storing data, and not just file
formats, including Hadoop databases like HBase[16]. However, the focus is made on the
experimental comparison, not making a big effort in the theoretical part.

1Commodity hardware refers to devices or device components that are easy to obtain, widely available,
and not expensive. Usually they are easily interchangeable with oher hardware of its type.
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Apart from the previously mentioned works, there have been several presentations
[17, 18] and some blog posts [19]. In this works the amount of file formats considered
is larger and almost all the most relevant formats are taken into account. Nevertheless,
there is a very little theoretical base to compare the formats between them without using
numbers, and almost all the importance of the content is focused on the experimental
results.

With all this information, we can conclude that the trend is to take one or more datasets
and try to make an experimental comparison between the formats. But the majority of
these studies either are not exhaustive when selecting the compared file formats, or do not
make a theoretical analysis that can be reflected the experimental results

As we have previously mentioned, depending on the data and the future use of that
data, a format can be better or worse for a particular purpose than the other. Thus, we
think that a theoretical comparison is very important, because with the theory is feasible
to have a general idea of which formats are better for any possible situation. By making
an experimental comparison only that specific scenario (or another very similar) is taken
into account.

1.2 Objectives and Results of the Work

In this work we want to cover that lack of a theoretical comparison between all the
most important formats. To reach this goal, we have designed a comparison framework,
including some of the most important aspects to take into account in a Hadoop environ-
ment.

For this purpose we formulate the following research hypothesis:

Hypothesis It is possible to figure out which file formats have a better performance in
a specific situation of data structure and queries.

However, we think that the experimental part is still very important. For this reason,
we have also done an experimental comparison using two very different datasets and a
set of basic queries. With this experimentation we can enrich the theoretical comparison
with some conclusions, useful for similar scenarios to the one used, and test if the theory
is reflected.

To test the hypothesis, there are two main objectives in this project:

• To make a theoretical comparison of the formats using a proposed framework.
This framework has to cover the most important aspects for HDFS, that can affect
the performance. Apart from the comparison, it is also important to make a detailed
description of each format characteristics, as they can add new information that can
affect the performance.

• To make an experimental comparison of that formats with two different datasets.
With this second objective we pretend to verify if the conclusions made in the theo-
retical framework can predict the results obtained in this experimental comparison.
Also, it is possible to enrich the theory.

3



1.3 Methodology
Due to the two objectives that this project has, we can distinguish between two very

differentiated methodologies, one qualitative and another quantitative. According to Guba
and Lincoln [20], this includes the two possible paradigms of a research methodology,
calling the qualitative methodology naturalistic paradigm, and the quantitative rational-
istic paradigm.

The first objective of creating a theoretical framework involves the qualitative method-
ology. This means that it is not considered a specific scenario, just the characteristics of
each format, independently of the type of data stored. The focus is to be able to have a
theoretical idea of each format and the differences between them. For this goal, it is very
important to make an effort studying the specific particularities of each file format, and in
which aspects they differ from the rest.

This comparison can be considered the main goal of the project, as it allows to have
a global idea of which format will work better with any specific data and queries. This is
useful for every situation, and allows the data scientists to know which format can have
better performance on their datasets and their data needs.

After this first theoretical part, we have proposed an experimental environment (quan-
titative methodology) to test the file formats. Despite we can theoretically suspect which
is the better format for a known scenario, in some cases the decision is not so easy and it
is possible to have doubts. Thus, making an experimental study, the general knowledge of
the formats can be enriched, deducing more particularities of each format, or discovering
how these particularities affect the performance in similar scenarios than the ones used.

This second approach is based on the rationalistic paradigm. This means that we will
focus on the study of particular scenarios, trying to make generalizations from that specific
situations. These generalizations could be less useful than the naturalistic paradigm in
some situations, because it is possible to have very different data or queries to the ones
used.

With all this, we can propose a research question, that we try to solve in this project.
The question would be, it is possible to figure out which format is better knowing the sce-
nario?. This is a very general question that we have divided into two sub-questions, each
one related with one of the two objectives. It is possible to make a theoretical framework
to specify the differences between each format? And, it is possible to make a generaliza-
tion of the file formats performance by making experiments in specific scenarios?.

1.4 Document structure
The present work is divided into 6 different chapters. The first one is the introduction

that we have already made.
In Chapter 2 we make a review of the general aspects of a distributed file system, the

most typical architectures and how the fault tolerance is managed.
Once it is explained what is a distributed file system, we have to study the Hadoop

storage system (HDFS). To do it, we first study a former file system by Google (called
the Google File System, GFS), which forms the basis of HDFS. By having a general idea
on GFS, is easy to understand the HDFS architecture, how the read and write operations

4



are done, and how the cluster robustness is managed. All these things are explained in
Chapter 3.

Up to this point, all the necessary previous theory is explained, so we focus on the
file formats comparison. Firstly, the theoretical comparison is done in Chapter 4. In this
chapter all the considered file formats are explained, and at the end of the chapter we
summarize their similarities and differences with a proposed framework.

After the theoretical comparison, we present the experimentation part in Chapter 5,
where we explain the experimental framework used, including the datasets and queries, as
well as the characteristics of our cluster. Once the environment is described, the obtained
results are shown.

Finally, we present a summary of all the conclusions that we have obtained along the
whole project, including the future work, in Chapter 6.

5



6



Chapter 2

Distributed file systems

As we have mentioned at the beginning of Chapter 1.4, the distributed file systems are
a solution to the problems derived from the Big Data volume.

A distributed file system (DFS) [21] is just a set of remote computers that acts as a
single file system. It has advantages, such as the opportunity of easily sharing files, or the
scalability capacity by just adding new computers to the system. As a file system, it has
to be able to store data and to allow users to retrieve it. A DFS must provide the same
operations as a traditional local file system. The primitive operations of a file system are
read, write, modify and delete files.

In this chapter we are going to explain the main characteristics of DFSs, and how they
work. First, we define some basic concepts related with distributed file systems. After
that, in the following section, we will detail their characteristics, including transparency,
scalability, remote access, multiple access, naming and fault tolerance. Once we know the
main characteristics of the DFS’s, we will explain the principal types of architectures they
can have, distinguishing between centralized and not centralized architectures. Finally,
we focus in one of the main characteristic in a DFS, the fault tolerance.

2.1 Basic concepts
In distributed file systems we can find three main actors, a client, a server and a service.

A service is a software running on one or more machines, that provides some function-
ality to a client. The client is a process that requests a service to a server. The server
is a software running in one machine that receives requests from clients and orders the
execution of services. Using this terminology we can say that a DFS provides file ser-
vices to clients. Each machine of the system is usually called node. These nodes are the
ones responsible of storing the files. A file may not be stored only in one node, it can be
replicated, split into different parts, or both things.

The file services are the primitive operations mentioned before (read, write, modify
and delete), applied to the files stored in the nodes. Depending on where the files are
stored we can talk about local resources or remote resources. A local resource means
that the files needed to satisfy the client request are stored in the same machine where the
service is running. If that is not the case, and the files are stored in another one, we talk
about remote resources. When dealing with remote resources it is necessary to move the
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files between nodes, and this transport means that the performance is worse.
Usually the clients do not know where the remote resources are stored. For this task

there is a namespace, that is responsible of linking the names of the files with their data
location. It can be a file with a direct description of the location for each file name, but
there are also different ways to manage the namespace, as we will see later.

2.2 Characteristics

2.2.1 Transparency
We have defined a DFS as a system acting like a conventional, centralized file system.

Thus, the multiplicity and dispersion of servers and storage devices have to be transparent
to clients.

We can distinguish different types of transparency in a distributed file system. The
main one is the network transparency, which means that the interaction of clients is the
same as in a local file system. The clients do not need to know the details of where the
files are stored or even that there are multiple machines

In this dimension there are included the access transparency and location transparency.
Access transparency means that resources are requested by clients in a uniform, single
way, regardless of how the file access has to be performed on each node. The location
transparency allows the clients to be unaware of where the file is stored. Thus, the request
made by a client will be always the same, independently of in which machine the file is
stored. It is worth noting that there is a strong dependency between these two transparency
properties.

The other transparency type is the user mobility. The client can access the DFS with
any machine belonging to the system. The clients will have the same interaction regardless
of the machine they are accessing with.

In addition, all the other problems resulting from the distribution, such as multiple
access to a file, or the machine or communication faults, are completely transparent to the
clients. All these problems are managed by the DFS, and therefore, the client does not
need to take care of them.

2.2.2 Naming
The naming refers to the mapping between the name of the files and their data location.

It is the way the DFS knows which data correspond to a certain name. For this task, it is
used the namespace. There are different approaches to implement it. Here we are going
to explain three of them.

The first technique, and the easiest one, is to directly omit the namespace. With this
approach the file name explicitly indicates the location of the data, usually using the syn-
tax ”host:local file direction”. This technique has one main disadvantage, and it is that
the location transparency is lost. Thus, we do not consider this approach valid for DFSs,
as we have considered the characteristic of transparency as mandatory.

The second one is based on linking directories in each individual machine. The idea
is the same as the mount command in UNIX. Once a directory is attached locally in a
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machine, its files can be named in a local way. Using this approach we can found that the
shared namespace is not the same for all the machines. Usually, this fact is perceived as a
serious problem for DFSs.

The last technique is to use a single namespace stored in a file. Every machine of the
system must have access to this file. The idea is to make a query to this global namespace
to find the direction of a resource, knowing its name; just like in a conventional file system.
The main problem of this approach is to make visible the same namespace for every node.
One possibility is to maintain this whole namespace in one specific machine, and query
there whenever it is needed, like in a master-slave architecture.

An alternative for the technique of storing the namespace in a single machine, is to
replicate the namespace file to every node of the DFS. With this approach the main prob-
lem is to maintain all the replicas updated, and take decisions when some nodes have
different values in their namespace.

This last technique has a variation that can avoid problems when the namespace grows
too much. It consist of having different levels. The idea is to split the namespace file into
parts and store them in different nodes. To know where these parts are stored, a “father”
namespace file is created for pointing to the location of the original namespace file parts.

2.2.3 Scalability

One of the main reasons for the creation of DFSs is their scalability, as they can store
much more and compute much faster than a single machine.

The storage scalability refers to the capacity of storing enormous amounts of data.
This is possible because the distributed file system has lot of machines, having each one
some storage capacity. Even if the data amount grows enough to take up all the storage
capacity, it is always possible to add new machines to the system, adding their storage
capacity to the distributed file system.

The only problem regarding storage scalability will appear, in some cases, when man-
aging the namespace. When there is one single namespace file for all the system (third
technique explained in previous section) and the number of files grows too much, the
namespace will also grow. A very big namespace may be difficult to manage if it is stored
only in one machine, or the queries to it can be slow because of its large volume. A
solution to this problem is the variation of a “father namespace”.

The other type of scalability is the computational scalability. The computation may
not be a typical problem of file systems (it is more related with higher levels like data
analytics). However, the reading and writing tasks can be considered computation. If it is
requested to read or write a very big file, the time of this request can be very high using a
single machine. But if we spread the file into different machines, it would be possible to
read or write in parallel, reducing a lot the time taken to finish the task.

This parallelization is possible if these large files are spread into different machines.
This spread makes more difficult the task of namespace, as one file has different directions,
and can cause a great increase on the namespace size.
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2.2.4 Remote Multiple Access

The other main characteristic of the DFSs is to have the possibility to access from
multiple points and the ability of easily sharing files.

Having remote access to the file system means that it is not necessary to be physically
near the data to access it. When making a request (i.e., read or write) to a remote file, firstly
it is necessary to find which machine stores it (using the namespace). When the machine
storing the file (server) is known, a data transfer between the client and the server is done,
so the request can be satisfied.

There is one alternative to the transfer of the whole file from the server to the client.
It consists in calling a remote service. Instead of transferring the complete file, a prepro-
cessing in the server is made. This is possible when the requested data is not the entire
file; for example when only some records of the file are requested. The idea is to extract
only the necessary data of the file and send it to the client.

Regardless of this possibility it is very important to make an appropriate usage of the
cache memories. It is possible to avoid lot of file readings from disks using the caches
memories, because that files can has being accessed before and the needed data can be
still stored locally in the cache. Thus, a reading from disk is avoided and the request is
answered quicker since the cache data retrieving is faster.

As well as being able to access from any machine of the system, more than one client
or machine can access to the same file at the same time (multiple access). This can
become a problem when some of these accesses modify the file.

In the case of two simultaneous writings, the first client’s modifications done can be
lost, because the second one does not take into account the previous changes. And if one
client reads a file just before it has been modified by another one it will be working with
the file out-of-date without the modifications.

These problems can be solved using permissions and blocks. Thus, two or more dif-
ferent processes can read the same file, but if one is writing, the file is blocked and no
one can read or write on it until the first process finish the writing. These permissions and
blocks can be more or less restrictives, depending on the system necessities.

2.3 Architectures

We have explained what is a DFS and its characteristics. However there are many
ways in which a file system can be built, depending on how its architecture its organized.
We are going to distinguish two main groups of architectures, the centralized and the
decentralized. These architectures refer only to the server side, the clients just access to
these systems.

The centralized architectures are characterized by having one main node called mas-
ter. This master node is responsible for storing all the metadata of the file system, spe-
cially the namespace, and to receive the clients requests. In this type of architecture the
master does not store any file data, and the rest of nodes are the ones that do this work.
The responsibility of the master is to receive the clients requests and answer them by just
indicating the node where the requested data is. Thus, its main job is the naming. Once
the client knows in which node is stored the data (or in which it can write the data), it
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just makes the request directly to the node. The master can be also responsible of making
itself the requests to the nodes, and then answer the client with the requested data; but this
approach would lead to a possible overloading of the master node (because it must make
much more operations), and an unnecessary moving of data (the data has to be moved
from the node where it is stored to the master, and then to the client).

The two main examples of centralized architectures are the Hadoop Distributed File
System [9] and the Google File System [22]. These two file systems will be explained in
the next chapter.

There is an alternative inside the centralized architectures, and it lies in having more
than one node acting as the master. The concept is the same as when there is one single
master, but just making a sub-distributed system for the master. This is useful because,
in some cases, the namespace can grow a lot and store it in only one node can become
a bottleneck. An example of this approach is implemented in the Ceph distributed file
system [23].

On the other hand, the decentralized architectures are the ones in which there is not
a master, and all the nodes are equivalents. In this case, the main problem is where the
namespace is stored, and where the client has to make the requests.

An easy option is to not store the namespace and make the user responsible for know
where each file is stored. Then it is only needed to make an FTP (File Transfer Proto-
col) [24] connection to the node. This approach is not suitable, as the transparency is
completely lost. Using our definition of DFS we can not consider this option.

The solution to this problem is to store the namespace inside the nodes. It is obvious
that the complete namespace can not be stored in every single node, as it can grow large
enough to be a problem of space and, what is more important, whenever the namespace
changes, that changes must be updated on every node. This makes the alternative of
storing the namespace in each node as not viable.

The proper way of storing the namespace inside the nodes is to store only a piece of
it in each node. This may not be easy, as it is necessary to find a proper way to split the
namespace and when a query is done, know to which part access. An approach of this
splitting, based on connecting a directory to only one node and splitting the namespace in
a tree form, is done by the Newcastle connection [25].

Finally, there is the option of not storing a namespace and know the files location by
other ways, such as calculating a hash code for knowing where to store each file. This
approach can be done with entire files, or even with only blocks or pieces of files (in the
cases in which the files are large). One example of a DFS that uses this technique is the
GlusterFS [26].

2.4 Fault tolerance
Once we know how a DFS architecture works, we have to take into account that a lot

of nodes are needed in the system to take advantage of its characteristics. Having lot of
machines has the benefit of a great storage scalability, but when this number grows too
much, the probability of failure from any of them grows as well. At some point it is sure
that the machines failures will occur. Thus, the distributed file systems must be able to
maintain the files consistency even if some machines fail.
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Svobodova [27] defined two file properties related with the fault tolerance: “A file is
recoverable if it is possible to revert it to an earlier consistent state when an operation
on it fails or is aborted by the client. A file will be called robust if it is guaranteed to
survive crashes of the storage device and decays of the storage medium”. A DFS should
be recoverable and robust.

The most probable fault in a distributed file system is the machines crash, loosing all
their data. As there are a lot of nodes conforming the distributed file system, the crash of
any of them is very common. It is not recommended to try to avoid the device crashes, but
just assume them. For solving this problem, the main solution is the creation of replicas
of data in other nodes. Even the namespace must be replicated, as it can also be lost. This
will make the files robust.

Other possible fault is the corruption of files. As the previous problem, it is com-
monly resolved using replicas, the corruption of files usually affects only to one of the
replicas. The corruption is solved by just removing the corrupted replica and creating a
new one. Another possibility is to add additional information to the files to make possible
the recovery of the files to a previous stable state. This alternative is very useful when
there are more than one replica corrupted and it is not possible to ensure which of the
replicas is the good one. These solutions ensure the files to be robust and recoverable.

Finally, there can be another problem in a DFS, the communication faults. This
problem occurs when it is made a request and there is no answer. It can occur because the
receiver machine has crashed or because of connection problems. Whichever the problem
is, there are two main solutions, to resend the request or to try to connect to another
machine. The first solution is obvious, just resend and wait. If there is still no answer, the
second solution is used, and the request is sent to another node. If the request is a read
one, it is sent to a machine that stores a replica of the file requested; and if the request is a
write one, it can be sent to any machine that can stores it; in this case the namespace must
be updated.
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Chapter 3

Hadoop Distributed File System

Up to now we have explained the general characteristics of a DFS. In this chapter we
will focus on a specific system, the Hadoop Distributed File System (HDFS) [8, 9].
HDFS is a distributed file system based on a centralized architecture, in which there is
one single master node and a lot of slave nodes that store the data.

It is a system based on the Google File System (GFS). Thus, many characteristics are
shared for both file systems. The main shared characteristic is that they are designed to run
using commodity hardware. Commodity hardware refers to devices that are inexpensive
and easy to obtain; the main example are the personal computers (PC).

In this chapter we are going to explain the architecture of HDFS, how the reading and
writing operations are done, and how it maintains the robustness of the files. But, since
HDFS is strongly based on GFS, we will first explain GFS prior going to the details of
HDFS. This first file system has some assumptions that HDFS has also inherit. Most of
them are related with the general DFS characteristics:

• It is assumed that there will be hardware failures in the nodes. As these file systems
use many of devices, it is usual that some of them fail.It is not worthy to make an
effort trying to solve this problem, it is just assumed.

• As they are DFS, there will be multiple reads and writes at the same time. This
means that two or more different clients can be modifying the same file simultane-
ously needing to manage this simultaneous accesses. Even knowing this, both file
systems do not try to solve the problem of loosing data or read out-dated files; this
can be managed by upper layers or tools running on top of the file system. This is a
hard problem for these file systems to solve on their own, so they do not try to do it.

• The files stored in the file systems will be usually very large files, meaning by ”very
large” of the order of gygabytes or even terabytes in size. This lead to two different
problems, the simply fact that there are very big files difficult to store in one single
node; and that there will be required a great disk storage capacity. For example,
there are clusters that stores petabytes of data [28].

• It is better to move computation rather than moving data. That is, it is preferred
to make the computation in a far away node that has the data locally rather than
moving the data to the nearest node. This is because for moving computation there
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is very few data moving throw the net, but moving the data (taking into account that
files are very big) is very expensive.

• The data reads will be for large pieces of data in streaming or very short pieces of
random data. The streaming read is not a problem, because the data is normally
allocated contiguous. For the writings, it is supposed that the majority of them will
be similar to the large streaming reads, and very few will be small writes. Once a
file is written, it is very strange to modify it; the modification is possible, but as it is
very uncommon it is not optimized.

3.1 GFS
It is well known that Google is one of the biggest companies around the world, and

some of its products provides storing and processing via Internet (such as Google Drive).
Because of the amount of users Google has, they must deal with an enormous data pro-
cessing demand. A distributed file system called Google File System (GFS) [22] is the
solution to this problem. GFS provides very scalable storing and processing capacities.
Nowadays there are deployed many GFS clusters for different purposes. The biggest ones
have over 1000 nodes and more than 300TB of disk storage.

As mentioned in the previous chapter, a distributed file system must provide shar-
ing capacities. GFS supports simultaneous connections of clients to the same data. For
concurrent reads and writes on files GFS uses file snapshots and atomic record append
operations.

GFS is designed as a master-slave architecture with two types of nodes: one master
node and many chunkservers. The master is only one and does not contain any data; it
only has metadata, including the namespace. The chunkservers are the ones which store
the data. Typically the chunkservers are Linux running a user-level server process.

Data files are divided into chunks of fixed size (usually 64MB), that are stored only
in the chunkservers local disk. The chunks size is not necessary the size of the files or
the operative system blocks. Each chunk has an identifier called chunk handler, of 64 bit
size. GFS assumes that hardware fails are common, so it is possible that a chunkserver
fails and loose all its data. Because of this possibility every chunk must have different
replicas, typically 3. A replica is a copy of the chunk that is stored in a different node
than the original chunk or any other replica. The replicas must be updated if the chunk
data changes.

As GFS architecture is master-slave, all the requests go to the master, and there is only
one. Because of this, it is important to give the less work as possible to this node. For
example, the master never does read or write tasks. For this read and write operations the
client requests to the master the identity of the chunkservers that store the data (read) or
where the data can be written (write); so the master just need to access the namespace and
answer with the direction of the corresponding nodes.

As we have mentioned before, the master node only contains metadata of the file sys-
tem. There are three types of metadata inside the master: the namespace and file-to-chunk
mapping, chunkservers status, and a log. The namespace contains the information about
where each file, and its chunks, is allocated to make possible the reads. It is necessary to
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know where the file is to order the chunkserver to respond the read task. This namespace
is stored in memory, so the master can locate the chunkservers as quick as possible, with-
out reading from disk. Because of this in memory storing, the size of the namespace is
limited by the master’s memory size (once the memory is full it is not possible to store
more namespace information). This is not considered a big problem because of the facility
to compress this type of metadata.

In the namespace metadata the master must store some specific information about
chunks, in order to provide data consistency. For each file, it is saved the information of
every chunk and in which chunkserver it is stored, in the order of the replicas. Each chunk
has a version number (if two chunks of the same data have different version number, then
something is wrong). For chunks modification (or chunk mutation) all the changes done
are temporally saved in an ordered list, and these modifications are applied to all the
replicas in the same order.

The master node also stores the chunkservers status. This job is done using heartbeat
messages every few minutes. Each chunkserver sends a heartbeat message periodically to
the master node. With this messages, the master can detect when a chunkserver fails (if
it does not receive heartbeats from that node). This data is also stored in main memory,
and there is no size problems because it is usually very little data and has a small storage
volume.

The log is the only persistent data stored in the master node. Here it is stored all the
critical metadata changes, so it is possible to know all changes done and, if necessary,
make a metadata backup. The read and write operations are not stored in this log, only
the metadata changes.

Finally, to verify the data consistency, in a similar way as the heartbeats, there is a
periodically handshaking process with the master for every chunkserver. In his handshake
the master can check if the chunks are synchronized or not (if every chunk of the replicas
makes the same handshake). If the handshaking determines that the data is not consistent
it is necessary to solve it. In the case of not being able to solve the data consistency, it is
made a backup to a consistent previous state (just in extreme situations).

3.2 HDFS Architecture
Once we know how the architecture of GFS is, it will be easy to understand HDFS’s

architecture [29], since it is strongly based on the distributed file system of Google.
HDFS has a master-slave architecture. There is a single Namenode, that stores the file

system namespace and receives clients requests; and a large number of Datanodes. As in
GFS, the Namenode (master) does not store the files data, and the Datanodes are the ones
in which the files are stored. The machines typically run a GNU/Linux operating system.

The Datanodes are responsible for storing the data. The same way as the chunks
of GFS, this data is divided into blocks, by default of 128MB. Originally the block size
was of 64MB, like in GFS, but from Hadoop 2.7.3 it was changed to 128MB. This large
block size is normally used because of the assumption of large reads of contiguous data,
favoring the seek time, but slowing small reads, as the blocks are read entire. Also this
large block size is because of the initial assumption of having very large files in the file
system, and very few small ones. And what is more, one of the main reasons of enlarging
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Figure 3.1: HDFS architecture

the block size is to improve the performance of the Namenode, as it has to manage a
smaller number of blocks.

As in the GFS architecture, the blocks must be replicated on different Datanodes (by
default 3 replicas per block). This is done because of the high probability of hardware
failure in the nodes. Note that this replication is only useful for Datanodes; we will see
what happens when the Namenode fails in section 3.4.3.

The HDFS namespace is designed as a hierarchy of files and directories. These files
and directories are represented in the Namenode by inodes, which record attributes like
permissions, modification and access times, and disk space quotas. The Namenode main-
tains the namespace tree and the mapping between file blocks and Datanodes (the physical
location of file data).

The namespace in HDFS is stored entirely in main memory, and it is only allocated
in the Namenode. This means that the namespace, and therefore the number of files, is
limited by the amount of memory the Namenode has. The inodes data and the list of
the blocks belonging to each file are called the image. The image is saved on persistent
storage in the Namenode periodically. This copy of the image is called checkpoint.

The Namenode also stores a modification log of the image, called the journal, in its
local disk. The location where the block replicas are stored is not part of the image,
because this data is updated on real time by heartbeats, sent from the Datanodes to the
Namenode periodically.

Apart from the Datanodes and the Namenode it is important to notice that there are
HDFS clients that request reading and writing operations. Again like in GFS, the Namen-
ode does not deal with read and write requests from the clients. Instead of reading and
writing, it only answers in which Datanodes the data is stored (in a reading request), or in
which Datanode the client can write, including where to allocate the replicas (in writing
request).
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Figure 3.2: HDFS writing operation

An overview of the architectures of HDFS is shown in Figure 3.1. It is important to
remember again that the clients directly request readings and writings to the Datanodes
freeing the Namenode from that responsibility. Although in the figure the master is out of
any rack, it can be inside one; there is no restriction on where it must be located.

3.3 HDFS Writing and Reading
If we look carefully to Figure 3.1 we can see that the client is the one in charge of

requesting the writing and reading tasks. As mentioned in the previous section, the Na-
menode is not able to do these tasks and the Datanodes are the ones that receive the
reading and writing requests.

The writing task is illustrated in Figure 3.2. First, the client sends a message to the
Namenode requesting the writing of a new file (1). The Namenode performs various
checks to ensure that the file does not already exist, and that the client has permissions to
write; if it does not have permissions or the file exists, the writing process fails. If this
step does not fail, the Namenode sends an acknowledgement message to the client (2).
The Namenode makes a record of the new file with a new inode.

Once the client has the approval of the Namenode, it splits the file into blocks and, for
each one, requests to the Namenode for the directions of the Datanodes where the blocks
can be written (3). This request is made to the Namenode, because it is stored there the
location and information about the Datanodes and how many blocks they are storing, and
the client does not know where is better to write the data.

When the Namenode sends to the client the direction of all the Datanodes where the
data will be stored (one Datanode for each replica of the block) (4), the client sends a writ-
ing request to the nearest node (5), including the direction of the rest of the nodes where
the replicas will be stored. This first Datanode saves the block in its local disk and sends
a writing request to the next Datanode of the list to store the next replica (6). This process
is repeated with the next Datanode until all the replicas has been saved in the Datanodes.
When the last Datanode stores the last block replica, it sends an acknowledgement mes-
sage to the previous node (7), and this one another to the previous, and so on. When the
first Datanode receives its acknowledgement message, it sends another one to the client
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to inform that the writing process has been done successfully (8), and the writing task is
finished. Steps (3) to (8) are repeated for every block of the file.

The reading task is easier than the writing one. It is shown an example of a 2 blocks
file reading in figure 3.3. As in the writing operation, the first step is a request from the
client to the Namenode asking for which are the blocks of the file, and where they are
stored (1). The Namenode sends the location of the blocks (including all the replicas) to
the client.

Once the client has which blocks it needs and where to find them, it sends a reading
request to the nearest Datanode that contains a replica of the first block (2). When the
client receives the data of the first block, it repeats the same process with the next blocks
in order (3).

A reading or writing operation can fail, because of multiple reasons. What is done in
these situations is explained in Section 3.4.2.

3.4 HDFS Blocks Robustness
Knowing that Hadoop is built assuming that there will be hardware failures, it is very

important to make sure that the data will be always available, even if any node fails. The
main solution to this problem is to replicate everything.

3.4.1 Replication
As explained in the previous section, HDFS uses blocks to store the data files, and

these blocks are equivalent to the chunks of GFS, but instead of being of 64MB, by default
they are of 128MB. The files are broken into pieces of this block size and spread throw
the cluster. But we know that a node storing a block can fail. Because of this, the data
blocks must be replicated; typically each block has 3 replicas (as in GFS).

The Namenode makes all decisions regarding replication of blocks. The replication
philosophy in HDFS is to store the replicas the nearest as possible (trying to reduce the
data flow through the cluster), but guaranteeing the fewer replica loss when a hardware
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failure occur. By default, the first replica is stored in the client node (the Datanode where
the client is), as it is the nearest one; the second one in a different Datanode of the same
rack; and the last one in a Datanode of a different rack. Thus, if a entire rack fails, there
will be at least one replica available. If there are additional replicas they are randomly
placed. For example, in Figure 3.4 it is shown how three different blocks would be stored
using 3 replicas each.

The Namenode must know the location of all the replicas, but it does not ask for this
directly to the Datanodes. The Datanodes are the ones that send periodically heartbeat
messages to the Namenode with the information of the blocks they are storing. If one
Datanode does not send any heartbeat for a long time, the Namenode assumes that that
Datanode has fail and orders to write another replica of the blocks that the broken node
was storing.

The heartbeat messages do not only contain which blocks the Datanodes are storing,
they also include a checksum for each block, to guarantee that they are not corrupted. If
the Namenode discovers that one checksum is different to the other replicas ones, it orders
to the Datanode with the wrong checksum to delete the block, and orders to write another
replica of the block (not necessarily in the same Datanode).

If one Datanode has several wrong checksums in its blocks it is considered as broken
and it is sent a shut down order to it. In this case, all the blocks of the Datanode are
rewritten in other nodes, using their replicas to not rewrite corrupted blocks.

3.4.2 Reading/writing Failure

As we have seen in Section 3.3, the read and write operations can fail, usually because
a Datanode does not answer. Reading failures occur when requesting one block from a
Datanode, and it does not answer. This has an easy solution. Just read the block from
another Datanode that contains a replica of the block. If the Datanode is broken, the
Namenode will notice this when it does not receive any heartbeat message from that node.
The client does not need to report anything to the Namenode, because the problem could
be a network failure, and does not mean that he Datanode is broken.

The writing failure is not so easy. When a Datanode fails, it is just skipped and the
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block is only written into the rest of Datanodes. In this case, the block that is being written
gets a new identity, and this new identity is notified to the Namenode, so it can change the
block identity in the namespace. With this new identity, if the failed Datanode has really
stored the block (it is not broken, but a connection problem with the acknowledgement
happened), the Namenode will notice this when it receives the corresponding heartbeat
message. When this happens, the block with old identity will be ordered to be deleted.

3.4.3 Namenode Failure
We have seen what happens when a Datanode fails. But what happens if it is the

Namenode the one which fails? It is possible to restore a Namenode by using another
node. This auxiliary Namenode is called Backup node. This Backup node receives a real
time copy of the checkpoint and journal mentioned in Section 3.2, and they are stored into
persistent memory (disk). This real time copy is not very difficult to store when all the
changes done by the Namenode are notified to de Backup node.

Using the checkpoints and journal it is possible to restore the Namenode by copying to
main memory the checkpoint to restore the image and applying the changes stored in the
journal. The replicas placement of the blocks are restored easily because the Datanodes
will be sending the blocks they have, periodically, using the heartbeats.

Even this last part of restoring the location of the blocks can be avoided by sending the
heartbeats both to the Namenode and to the Backup node. This means that the Datanodes
and the clients send their messages to the Namenode and to the Backup node. Thus, the
Backup node will have the same data as the Namenode, and when the Namenode fails,
the Datanodes and clients can continue acting the same way without knowing that the
Namenode has fail (it is transparent for them).
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Chapter 4

HDFS storage formats

Because of HDFS characteristics, new formats for storing files have been developed,
trying to use the distributed file system features in their advantage. The main facts to take
into account are the large size of the files, and that they are split into blocks spread around
different nodes.

These file formats are designed to store structured data that can be described with
a schema (more or less complex). The storage of unstructured data (natural language)
is not so common and has been less studied in this environment. Thus, we can assume
that, in these file formats, data can be described with rows (or records) and columns. The
mentioned schema describes the structure of the rows. One simple example of this type
of data is a plain table, but it can be more complex, such as data with nested structures.

Knowing that structured data can be described as rows and columns, there are two
possibilities when storing it; writing one row after another, or store each complete col-
umn together. The traditional way is storing by rows, and the formats that do this are
classified as row formats. However, in many cases better reading performance can be
obtained if the data is organized in a columnar format, where the values of the columns
are stored together. A columnar format can read just the required columns without pass-
ing through the unnecessary ones. And what is more, storing by columns allows to have
together values of the same type, that probably are homogeneous; thus, is easier to have a
more efficient storage and get better results with compression. Nevertheless, it has some
disadvantages, like having difficulties for adding new records to the file after it has been
written, or taking a lot of time for a complete scan of the data (data scanning is usually
required by rows).

Each format storage orientation can work better than the other one depending on the
situation, being very good and fast for some operations and very slow for others. For
a medium term there is a mixed possibility, that consists of making a split of the file
by rows, and for each group of rows make a columnar storage. This alternative takes
advantage of the columnar format inside each row group, and lowers its problems due to
the row splits. Because of this balanced performance, this mixed approach is the one used
by the column-oriented formats in HDFS.

In this chapter we are going to study the main file formats used in HDFS. After ex-
plaining each one we will compare them. To make this comparison, we have designed a
framework with some important features for HDFS formats. This framework includes
the following aspects:

21



• Storage orientation. The orientation refers to the type of format, row or columnar.

• Splitability. If the format allows to split the file into different blocks.

• Compression. The types of compression that the file format allows. In Hadoop
the most common compression codecs are Gzip [30], Deflate [31], Bzip2 [32],
Snappy[33] and LZO [34].

• Human readable. This property refers to the formats that store the data in a way that
humans can read it. The opposite is a binary serialization, not possible to read for
humans, but readable for machines. The binary serialization has the advantage that
can avoid unnecessary text, having less storage volume for the file.

• Schema storage. As we have mentioned, the structured data can be described with a
schema. Some of the formats explicitly stores this schema, but some others do not,
and the client must know the schema for making queries.

• Schema evolution. The schema does not need to be fixed. It can change over time.
For some formats it is possible to change the schema. With the changed schema
new records can be added with the new row structure. This possibility of changing
the schema is called schema evolution.

• Complex data types. We have mentioned that the schema can be more or less com-
plex. The easiest schema would be one with all primitive type values (numeric
types, string, boolean and byte), and one more complicated would be one with
complex data in a column (inner structs, arrays,...). There are formats that natively
can store data with complex types; others can not.

• Data append. This characteristic refers to the possibility of adding new data to
the file without rewriting it entirely. Updating or removing records is not taken
into account because in this environment, to modify the data is usually done by
processing the old one and creating a complete new data.

• Random access. Some queries to the data just need to access to some specific val-
ues, and some formats allow to know in which blocks that values can be. Thus, it is
avoided reading unnecessary blocks.

• MapReduce compatibility. As MapReduce is the original computation framework
of Hadoop, it is important for the file formats to be able to use them with this
framework. There are more computation frameworks that can be used in Hadoop,
but MapReduce is the most important and the most used one.

At the end of the chapter there is a final table to compare all the formats with this
framework.
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4.1 Text files

The most used file formats for every platform are the text files. These text format files
are the ones that store the data in a human readable way. In this section we are going to
explain two of the most popular text file formats, CSV and JSON. Both of them can be
used with MapReduce easily.

4.1.1 CSV

A CSV file (comma-separated values) is a delimited text format. It uses the comma to
separate the different columns of each row. A file stored with CSV can be represented in
a plain table.

It is a row-oriented format, and can be easily split by dividing the file into groups
of rows. Each block (row group) can be compressed with any compression codec sup-
ported by Hadoop. Some compression codecs allow splits, so the entire CSV file can be
compressed and after that split it.

In some cases the schema is defined in the first row of the file, but just the names of the
columns are represented (not the type). In many cases this information does not appear.
Thus, we do not consider that the CSV explicitly stores the schema. The data structure
can not change over the time, the number and type of the columns must be always the
same.

The data stored in a CSV file must have primitive types. Complex types are not sup-
ported by default (but it is possible to represent enum values).

The access to the data have to be done in a sequential way, not being able to skip any
block. There is no metadata to know anything about the values inside the blocks.

Despite all these disadvantages, CSV format has some advantages. Data appends are
possible. Adding new rows is possible, with the only restriction of not changing the
number of columns, just by adding them at the end of the file.

4.1.2 JSON

JSON is another human readable file format. It is a row-oriented, key-value text for-
mat. Again it can be easily split by making row groups. JSON files can be compressed
and then split, or compress each split individually. As CSV, the compression codecs that
can be used with this format are any allowed in Hadoop.

JSON files do not have any explicit schema stored, but it is possible to know the
columns names as they are written in every row of the file (the key of that key-value pairs
is the column name). Even the data do not have to follow a specific schema. This means
that the schema evolution is possible without any restriction. But this has the disadvantage
that the data can loose the structure and be very heterogeneous (there can be different
records with no similarities in their structure). To add new records, they are just added at
the end of the file.

JSON allows any data type, including complex data like structs or arrays. However,
there are no metadata in these files. Thus, the access to specific records or values has to
be doing a sequential read. There is no possibility of skipping unnecessary blocks.
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4.2 SequenceFiles

A SequenceFile [35, 36] is a flat file format based on key-value pairs, with one key
and value per row. One of the main uses of SequenceFiles is to put small files into a larger
single file, using one key-value pair to store each small file (key the file name, and value
the file content). For example, if there are 100,000 files of 10KB, it is possible to store
all them into one single SequenceFile. This is a big advantage as the Hadoop Namenode
does not need to store the metadata of all that small files, and it only has information
about the SequenceFile. Besides this use, the temporary outputs of MapReduce jobs are
stored using SequenceFiles. Thus, it is obvious that it is possible to use this format with
the MapReduce framework.

A SequenceFile has a header with the file information, such as the compression type
(or if it is compressed), the version number, the classes of the keys and values, etc. After
that header it is written the list of records, and a sync-marker every few ones. These
records contains metadata about the length of the whole record and of the key, and the
raw data of the key and value. This structure can be seen in Figure 4.1.

The sync marker permits seeking to a random point in a SequenceFile. This is impor-
tant to make the SequenceFiles splitable. The splits can not break records.

For the compression there are two possibilities, the record compression and the block
compression. The record compression just compress the value of each record, as the ex-
ample of Figure 4.1 shows. The compression techniques can be any supported by Hadoop.

In the block compression a set of records are compressed into a single block. Each
block stores the number of records, the length of all the keys, the compressed keys, the
length of the values, and the compressed values. Thus, the block compression can be seen
as something similar to a column-orientated storage, as all the keys are stored together,
the same as the values. These blocks are not related with the HDFS blocks. Between each
block a sync marker is written. This structure is shown in Figure 4.2.

The splitability using block compression is the same as the record one, just taking into
account to not divide any block. A block must be stored in a single split.
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The block compression provides better compression ratio tha then record one. There-
fore, block compression is generally preferred when using SequenceFiles.

SequenceFile is considered a row-oriented format. However,in the very special situa-
tion in which the data schema has only two columns (one stored in the key and the other
in the value) and it is used with block compression, the storage would be like a colum-
nar format. But as this is a very strange and uncommon situation, SequenceFile is just
considered a row format.

Talking about a schema in SequenceFiles is not so obvious. It just stores a key and
a value, if there is a structured data inside one of them, it is not known by this format.
The only ”schema” stored by SequenceFiles is the key and value classes. In some cases,
if we are storing only a 2 columns data, this key and value classes can be acting as a
complete data schema; but this is not the usual scenario. Most of the times it is necessary
to know how the data is structured, and there is no schema stored in the SequenceFile.
Thus, we can not consider a schema evolution, not having either a schema. Even if we
consider the key and value classes as a schema, this classes can not be changed after being
established. Also, we will not consider that SequenceFiles support complex data types,
because the classes allowed for key and value are just simple types (such a string, bytes,
integer values).

Similar as JSON and CSV files, data can be added without any problem. Any key-
value pair can be written, just appending it at the end.

However, unlike text files, SequenFiles do store metadata. It is few, but there are
sync markers that can be used to jump to a specific record or block. This can be useful
if the keys are ordered and can be used as an index. Thus, in some very specific cases
SequenceFiles can help random access queries to data. However, we will not consider
that they provide random access to data, as these situations are very uncommon.

The SequenceFile is the base for other type of files such as the MapFiles. A MapFile
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is a directory that contains two SequenceFiles, a data file and an index file. The idea is to
have the data in one SequenceFile and an index for faster access in another SequenceFile.
The data file contains all the key-value records; each key must be greater than, or equal,
to the previous one. And the index is just a list of the keys with the starting byte position
of the corresponding key. The index is loaded entirely into main memory, but if it is too
large, it is possible to load only a fraction of it.

4.3 Avro
Apache Avro [37, 38] is a data serialization system, but it is also considered a file

format.
Similar to JSON format, Avro is prepared to store more complex data than simply

comma-separated values (CSV) or key-value pairs (SequenceFiles). It supports fields with
complex types such as structs or arrays. Avro is a nice file format to represent complex
data structures within a MapReduce job.

The records structure is defined using a schema, that is present at every moment. This
schema is usually written in JSON and it is stored in the metadata header of the Avro files,
making them self-describing. Therefore an Avro file can be divided into schema and data.

Avro was one of the first formats to include schema evolution. The schema of an Avro
file can be changed to a new one, after data has been written to disk using an older version
of that schema. This is very useful when appending new records, being able to add new
columns easily not needing to rewrite the whole file. There are some restrictions for the
schema changes, such as that data types can not be changed. The idea is to be able to
add new fields when writing new records, or read old ones but without some unnecessary
columns. To append new records is easy, just adding them at the end of the file.

Avro serializes the data using a binary encoding. The data is not tagged with any type
information, because the writing schema is always available. The schema is required to
parse data. It is possible to use a JSON serialization on the data, but it is only used for
testing as it is slower and consumes more storage space. The details of the encoding are
described in the Apache Avro Documentation [38].

Apart from the binary encoding, it is possible to compress the data of an Avro file. The
compression codecs allowed by Avro are Deflate and Snappy. Avro files are also splittable
by dividing the data into blocks (groups of rows). Each block is compressed, if selected,
independently. Each one has a header including the number of records inside it and the
block length. The structure of Avro is the one shown in Figure 4.3. There is a file header
that contains firstly four bytes (ASCII ’O’, ’b’, ’j’, followed by 1), the file metadata, such
as the schema or the compression used, and a sync marker. After the header the blocks
are stored, with their respective block header.

Although Avro stores metadata in its files, there is no information about the values
of the data. Thus, it is not possible to skip blocks when just a few specific records are
requested. It is not possible to know if a record fits a query or not, it is necessary to read
all the blocks.

Inside the blocks the records are stored using a row orientation. This means that a
entire record is stored one after another. Avro stores the rows in a similar way as JSON
does, but changing the text with a binary serialization. Thus, it is possible to store complex
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types, like nested structures or arrays. Avro also has the possibility of using columnar a
storage by using its variation Trevni.

Trevni [39] is the columnar format of Avro. To allow scalable, distributed query eval-
uation, datasets are partitioned into row groups, containing distinct collections of rows.
Each row group is organized in column-major order, while row groups form a row-major
partitioning of the entire dataset. Each row group is a separate file, and all values of a
column are stored together.

By default, each Trevni file has the same size as a HDFS block. This moderates the
memory impact of the Namenode since no small files are stored.

Each column in Trevni is composed of blocks of around 64KB. The sequence of blocks
is indexed, and thus it is possible a random access within the column. A header with
metadata is stored at file, column and block levels.

This format is not very used, as other columnar formats are preferred, because they
have been designed from the beginning for being a column-oriented format. Trevni is just
an adaptation from Avro.

4.4 RCFiles

RCFile (Record Columnar File) [40] is one of the firsts column-oriented formats of
the Hadoop environment, designed for systems using MapReduce jobs. It is considered a
columnar format, but as Trevni does, it applies the concept of making first an horizontal
partition and then storing that partitions by columns (in general, all the column-oriented
formats uses this split by rows). Thus, it combines the advantages of both store types. The
row partitions are the equivalent to the Trevni Blocks, so it is guaranteed that any partition
is stored entirely in the same node.
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As there are row partitions, it is obvious that the RCFiles are splittable. These parti-
tions are called row groups. That is to say, all the records stored in RCFile are divided
into row groups, all of the same size. It is possible to store just one or multiple row groups
in a HDFS block.

A row group is composed of a sync marker, to separate contiguous row groups inside a
HDFS block; a metadata header with the version, the number of records stored in the row
group, the compression used, and how many bytes there are in each column; and finally
the data of the records, stored by columns. This is shown in Figure 4.4.

RCFiles allow compression. The header and the data are compressed independently.
The header is encoded using RLE (Run Length Encoding) algorithm [41]. The data part is
not compressed as a whole unit. To take advantage of the columnar storage, each column
is compressed independently using the Gzip algorithm. Even it is a heavy algorithm, by
dividing the file into row groups makes the decompression phase faster. The Gzip algo-
rithm can be changed by another of the ones supported by Hadoop, but by default this is
de compression codec used. It is also possible to store the columns without compression,
which means that they will be written in plain text.

The column concept of RCFile is very simple. Even, there is no information about the
data type they are storing. All the values of a column are treated as a stream of bytes, it
does not matter their original types. Complex types, like arrays or structs, are not managed
by RCFiles and are stored as if they were a simple string. Thus, RCFile does not support
complex type data.

Besides not knowing the original data type and store the data as a stream of bytes,
there is no other information about the schema, not even the columns name; they are
managed using their order. For example, the first column in one row group is always the
first column in every row group.

RCFile does not allow arbitrary data writing operations. It is only possible to add
records at the end of the file. When a record is added, it is firstly stored in memory. When
there are enough records in memory, each column of them is written at the end of each
column holder, and the file header is updated. When to write the records from memory
depends on the number of records and the limit size of the memory buffer. It is to be
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expected that schema evolution is not considered in RCFiles, the number of columns is
fixed.

When processing a row group, RCFile does not need to fully read the whole content
of the row group into memory. Rather, it only reads the metadata header and the needed
columns of the row group. Thus, it can skip unnecessary columns and take advantage of
column storage. However, RCFile does not decompress all the loaded columns, it uses
lazy decompression. This means that a column will not be decompressed until it is sure
that its data is necessary for the execution. It is useful due to the WHERE conditions in
a query. If a condition cannot be satisfied by all the records in a row group, then RCFile
does not decompress any additional column to resolve the query.

Even though, RCFiles are not the better alternative for random access queries with
very few records affected, due to the fact that the entire columns in each row partition
have to be decompressed and can not access directly to only one value of a column. Also,
there is no metadata information about what are the values of the columns, and so it is not
possible to skip row groups when searching a specific record or few records.

4.5 ORC
Apache ORC (Optimized Row Columnar) [42], as its name says, is an optimization of

the RCFile format. RCFiles manages all data as bytes, whichever the data type is. Thus, it
is not possible to take advantage of the type to make storage more efficient. Also, RCFiles
do not allow schema evolution. And what is more, the RCFiles decompression can be very
slow, as it is necessary to decompress a whole column of a row partition to access any data
of it. ORC files were design to solve these handicaps. It was also developed with the idea
of being efficient when using it with Hive and MapReduce.

The same as RCFile, it is a column-oriented format. But it also makes row partitions
to make the file easily splittable. These row splits of ORC files are called stripes. Inside
each stripe, the storage is columnar. The stripes are, by default, of 256MB. This size is
much larger than the RCFile row groups to avoid many small reads when analyzing a
whole column or a big amount of data.

A complete ORC file can be divided into stripes, a footer and a postscript, as shown in
Figure 4.5. Each stripe has an index, the data and a stripe footer. The stripe index stores
statistics about the values in each column of the stripe. The data are just the columns, each
one divided into a set of streams. One column inside a stripe can have multiple streams.
In each column there is an index entry every 10,000 rows to being able to jump to a
particular row very quickly. It stores statistics for those rows, specifically, the minimum
and maximum values, making easier queries requesting a specific record. Finally, there is
a stripe footer that stores the location where each stream is located, and the encoding used
for each column (as each column can use a different encoding depending on its type).

A the end of the file, after all the stripes, there is a file footer. This footer has the
location of each stripe, the types description (the schema), and the count, min, max and
sum statistics for every column across the whole file. The columns types can be complex,
allowing struct, list, map and union types.

All the stripes and the footer can be compressed, and to know which is the compression
technique used there is a postscript, stored after the footer. This postscript contains the
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compression codec used and the compressed footer size. The compression codec used
can be Snappy, Zlib [43] or none. Every part of the ORC file except for the Postscript is
compressed with that codec.

In addition to this generic file compression, there is a lightweight compression over
each stream. This compression depends on the data types, and can be configured. Thus,
it is possible to use different compression techniques on integer columns and string ones,
for example, to improve the compression efficiency.

Apart from the lightweight compression, each column is serialized according to its
type. For example, the integer columns are serialized using RLE; string columns use
dictionaries; struct columns are not directly serialized and creates a child column for each
field of the struct; the list columns have one child column to store all the list values. This
serialization is made at stream level, storing the data in a non human-readable way. Over
this serialization, it is made the lightweight compression depending on the column data
type.

For it last versions, ORC allows some schema evolution, such as deleting columns,
reorder them, or change some columns types. Adding columns is possible, but by ap-
pending the new columns data at the end of the file. However, this format was developed
thinking on a write-once file format, so edits were implemented by using auxiliary files
where insert, update, and delete operations are recorded. Adding new records is also pos-
sible using the same technique used in RCFiles, store first the records in memory, and
when there are several records add them to the file with a new stripe.

4.6 Parquet
The previous seen columnar formats where developed thinking only in the MapReduce

framework, but there are plenty more tools and computation frameworks to query data in
the Hadoop environment. Apache Parquet [44] is another columnar format that has as one
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of its main characteristics the interoperability. Parquet can store nested data structures in
a flat columnar format by using the technique explained on the Dremel paper from Google
[45].

Parquet is language independent, so it can be used both by Java and C++. And what
is more, there are converters to a lot of tools such as Hive, Hbase, Impala, Pig, etc. These
converters are just to pass from the Parquet format to the tool models and vice versa.

Parquet is an excellent format to store nested data, meaning by nested data that which
has not a flat schema and has complex types such as lists or structs. This nested schema
can be represented graphically as a tree. The columns that are finally stored are the
same as the leaf nodes of that tree. It does not matter if a leaf node is representing
a list type field. In the example of Figure 4.6 the columns would be name, employ-
ers.name, employers.emails, contact.emails, contact.phone number.extension and con-
tact.phone number.number.

With this representation there are two main problems, what happens when there are
nested lists? (a list of lists), and what if a field has NULL value and it is not a leaf node?
(for example, using the schema of the Figure 4.6, we can a have contact with a NULL
value).

For both situations the solution is to store two integers for each value, called definition
level and repetition level [46].

The definition level indicates at which level of the schema the NULL value occurs.
It can take values from 0 up to the maximum level of the column. To explain it is eas-
ier to use the example of Figure 4.6, with the contact.phone number.number column.
If the NULL value is at contact, the definition level will be 0, if the NULL value is
at contact.phone number the definition level will be 1, and if the NULL value is con-
tact.phone number.number it will be 2. If the value is not NULL the definition level will
be 3 (the maximum level of the column). Thus, it is possible to know at which level the
NULL field is. This example is shown in Figure 4.7.

And for the other case, in which there are nested lists the repetition level indicates
when to start a new list and at which level. Suppose we have two nested lists (level1 that
contains level2). A 0 at the repetition level indicates the first element of level1 and a new
level2 list (it represent the first element of a record). A value of 1 marks a new element
of level1, and a new level2 list. And finally, if the repetition level is 2 means that is just
a new element of the level2 list. This is extensible for any level of nesting. This example
with employers.emails column is shown in Figure 4.8 using employers as level1 list and
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emails as level2.
Both, the definition and repetition levels are optional. In some cases they are not

needed. In a flat table they are not necessary and can be omitted to avoid storing that extra
space.

Once this definition and repetition levels are designed, it is possible an ease complex
columns storage. However, as the other columnar formats seen, Parquet does not make
a pure columnar storage. Instead firstly makes row groups, that internally stores data by
columns. The row groups size is configurable, and they are usually between 50MB and
1GB. Each of the columns in a row group is called column chunk. And inside each one, the
data is stored using smaller blocks called pages. This pages are compressed independently
(like the ORC streams), so they have to be large enough for the compression to be efficient.
The pages are the minimum unit to read when accessing a single record. A page contains
a metadata header (with the number of records, maximum and minimum values,...), the
repetition and definition levels, and the data. To find the columns start locations, the
schema and other metadata, there is a footer at the end of the Parquet file. This whole file
structure can be seen in Figure 4.9

As it can be deduced, Parquet files are splittable by just dividing the file by the row
groups, having each partition one or more entire row groups.
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About the encoding, each page is encoded independently, just to improve the random
access to the data. The definition and repetition levels inside the pages are encoded using
RLE. For the data inside the pages there are used different techniques depending on the
data type (as done in ORC files). Thus, the serialization is optimized for the data type.
The encoding used for each page is marked in the page header.

Even each page is encoded individually, it is possible to compress entire blocks (row
groups) using any compression codec allowed by Parquet. It is possible to use Gzip,
LZO and Snappy codecs, or not use any compression codec above the Parquet internal
serialization.

As the design of Parquet can be seen very similar to the ORC files, it is easy to deduce
that the schema evolution of Parquet is limited, as it is also developed thinking just in
write-once data. A Parquet file can only change its schema by adding new columns at the
end of the file. However, adding new records to the file is not taken into account, so for
append new data it is necessary to create a new file.

4.7 Comparison
Up to now, we have explained each HDFS file format in an individual way. In this

section we will make comparisons between them, using the framework described at the
beginning of the chapter. An overview of the comparison is shown in Table 4.1.

First of all, it is very important to know that there is not a perfect format, better than
any other. Depending on the data structure and the queries done to the data, one format
could be better or worse.

As we are working in a Hadoop environment, it is obvious that we will need to split
the files and spread them through different nodes. Fortunately, all the considered formats
are splittable, and can be partitioned without any problem.

Once we know that all of our file formats can be split, maybe one of the main aspects
to take into account is if we prefer columnar or row storage. If the data has a lot of
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CSV JSON SequeceFile Avro RCFile ORC Parquet

Storage orientation Row Row Row1 Row Column Column Column
Splitability Yes Yes Yes Yes Yes Yes Yes

Compression All All All
Deflate,
Snappy All

Zlib,
Snappy

Gzip, LZO,
Snappy

Human readable Yes Yes Yes No No2 No No
Schema storage No No No Yes No Yes Yes
Schema evolution No Yes No Yes No Limited Limited
Complex data types No Yes No Yes No Yes Yes
Data append Yes Yes Yes Yes Yes Yes No
Random access No No No No No Yes Yes
MapReduce Yes Yes Yes Yes Yes Yes Yes

Table 4.1: File formats comparison table

columns, and very few of them are involved in most of the queries, it would be better
a column-oriented format; that can be RCFile, ORC or Parquet. Otherwise, it could be
better a row-oriented format, because columnar formats are slower when a lot (or all) the
columns are read.

Another very important aspect when working with Big Data is the compression, be-
cause with a good compression it is possible to reduce greatly the files storage volume,
without loosing a lot of querying performance. Most of the formats allow all the typical
Hadoop compressions; except Avro, ORC and Parquet. In Avro and ORC there are only
2 possible compression codecs allowed, Snappy and another codec based on Deflate (Zlib
for ORC and directly Deflate for Avro). Parquet allows Gzip, LZO and Snappy. This is
not a very big disadvantage, as they are good compression options. But if another codec
is preferred or even needed, there is no possibility to use them with these file formats.

Without taking into account the compression, each format makes a serialization to
store the data. As it was mentioned at the beginning of the chapter, the data can be
serialized in human-readable way or as binary data. The human-readable serialization is
not recommended as it is necessary to write a lot of unnecessary information, not needed
when it is read by a machine. The text file formats (CSV, JSON) and SequenceFile do
not make a binary serialization of data. All the other formats make by default a binary
serialization trying to reduce the amount of written data, and save storage space.

Regardless of how the data is stored, it is important to know which is the data struc-
tured to make queries to it. In many situations, the client would not know which is exactly
the data schema, and it is a big advantage to have that schema explicitly stored in the file.
Otherwise the client is forced to know the data structure previously to make the queries.
The text formats and SequenceFile do not store information about the data schema, or the

1In some very specific situations SequenceFile can be stored as a columnar format. Specifically, when
it has a two columns schema (one column in the key, and the other one in the value), and selecting a block
compression. However this is a very uncommon situation and thus SequenceFile is not considered as a
column-oriented format

2RCFile is not considered human readable, because columns are compressed by default with Gzip codec.
But if it is configured to not compress the columns, they will be written in plain text, which means it will
be human readable.
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types. RCFile stores the columns data type, but there is no more information. Thus, we
do not consider that RCFile stores a schema. In Avro, Parquet and ORC files it is stored a
complete explicit schema with all the necessary information about the data structure; and
if we do not want the client to be bound to know the data schema in advance we should
use one of these three formats.

In this mentioned schema the columns types are specified. Depending the format we
use, we can store complex data types, like inner structures or arrays; or just be able to
use primitive types columns. The formats that do not allow complex data types are CSV,
SequenceFile and RCFile. If we want to store complex columns we would have to use
JSON, Avro, ORC or Parquet.

Related with the schema, in some formats, it is possible to change it without rewriting
the entire file. This concept, called schema evolution, was firstly done by Avro, that allows
to change the schema as we want. The only restriction is not to change a column type.
JSON can make a similar schema evolution as each row is totally independent from the
rest; but as there is no column types specification, they can also be changed. Parquet and
ORC (in its last versions) also allow some schema evolution, with not so much freedom
as in Avro, because it is not possible o remove or change data, just add new columns. This
restriction is just because these columnar formats were designed thinking in write-once
data.

This though of write-once data is stronger in Parquet. This format does not allow to
add new records to the file. It just allows to add new columns, adding them at the end of
the file (not very efficient). The rest of columnar formats do allow to add new records by
storing them in main memory until there are enough to write a new block. But it is not
efficient if a client just want to add one or very few rows. To store data that is going to
increase little by little is better to use a row-oriented format.

We refer now to data access, and taking into account that one of the assumptions of
Hadoop is that data reads are of very large pieces of data, one aspect that it is not usually
optimized is the access to a specific record, or very few records. This is not considered
in many cases, because the typical request is to process big amounts of data that are
written contiguous. Thus, to access to one single record usually needs to scan sequentially
the entire file. This type of queries usually have better performance in column-oriented
formats, as they only need to search throw the requested columns, and have more facilities
for adding indexes. Among the seen formats, the ones that makes easier these specific
records searching are ORC and parquet, that include metadata about the values of the
columns inside each partition, telling the maximum and minimum value of the columns
in that piece of data. This metadata allows to skip reading entire blocks if the searched
value is not in that range.

Finally, all the file formats studied are compatible with MapReduce, and can be used
as input or output of MapReduce jobs. However, it is important to highlight that RCFile
and ORC have been specifically designed for MapReduce, and they would probably have
better performance than other formats designed for much more frameworks. Thus, if we
need to store data that will be accessed using different computation frameworks and tools,
it could be better to use other formats that allow more interoperability, like Parquet.

With all this, we can conclude what we have said at the beginning of the section.
There is no a perfect format. Depending on the data structure and for what that data will
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be used, one format can be better than another. For example, if we want to storage a file
with a very complex structure (nested columns, arrays, etc.) that will be just written once,
and we want to search for very specific records often, we will probably choose ORC or
Parquet.

Once the theoretical study and comparison of the HDFS file formats has been done, it
is time to start with the experimental one. The next chapter presents the results obtained
with the experimentation, and we can check if the conclusions obtained here are correct.
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Chapter 5

Experimental results

Now that we have a general idea on how each file format works, tests will be per-
formed in different scenarios to contrast the experimental results against our theoretical
conclusions. In this chapter we will show how such experimentation has been carried out,
the results we have obtained and the main conclusions.

5.1 Methodology
Before starting with the numerical results, it is necessary to explain how the experi-

mentation have been done. First of all, the computation framework selected for resolving
the queries has been MapReduce, as it is the main framework in Hadoop.

5.1.1 Mapreduce
Hadoop MapReduce [10] is a software framework designed to ease the development

of applications that have to process large amounts of data (Big Data) in big clusters of
commodity hardware, like Hadoop. For this goal, it is based on parallelization.

First, the input data is divided into independent pieces (for example HDFS blocks).
Such blocks of data are processed in parallel, in a first phase called map. The processing
made to each piece of data is called map task. Once all the map tasks have finished, the
results of this phase are sorted (merging all the outputs), and after that, this data is once
again split into pieces. The next phase, called reduce, takes these splits as input. Each one
of these pieces of data is processed independently by a reduce task. The outputs of this
phase are written into the file system (HDFS). This complete process is called MapReduce
job.

The main idea of the MapReduce framework is the independence of each map or
reduce task. Thus, it is possible to completely parallelize the map and the reduce phases.
Different map tasks can be executed in distinct nodes; and the same happens with the
reduce tasks.

Since we are working on a Hadoop cluster, the nodes that execute the map and reduce
tasks are the same ones that store the data, the Datanodes. And all the entire MapReduce
job is managed by a single master, called TaskTracker. This TaskTracker is run in a
Datanode. Managing the TaskTrackers it is the JobTracker, that is a master that creates
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and runs the jobs (it creates the TaskTrackers). There is only one single JobTracker in the
cluster.

The JobTracker is responsible of the resources management, tracking resources avail-
ability and TaskTrackers life cycle. It is also in charge of rescheduling failed tasks (map
or reduce tasks that have failed) and monitoring them. The TaskTracker executes the tasks
as scheduled by the JobTracker.

A map task has as input a list of key-value pairs. That list is processed in the map
phase, and it is returned as another list, also of key-value pairs. The output pairs can be
of different type than the input ones. By default, a map task executes one function (called
map function) for each pair. Its output is a set of key-value pairs; not necessarily only one.

The output of all the maps is grouped by lists of values that have the same key. Then,
a reduce function is executed for each of that groups. Each reduce function produces a
list of values. The output of the reduce tasks is the final output of the MarReduce job, and
it is written into HDFS. Thus, a MapReduce job transforms a list of key-value pairs into a
list of values.

The most typical example of MapReduce is the ”word count”. In this example we
have a text, and we want to know the number of occurrences of each word in that text.
The map inputs are the lines as value, and numerical key (the key can take any value, as
we will not use it in this case). Each map function breaks the line into words, and outputs
a key-value pair for each word, with the word as key, and the number of occurrences of
the word in the line as value. For the reduce input, the pairs are grouped by words, and
each reduce function just needs to sum all the values it has as input. Finally we would
have that each reduce obtains the number of occurrences of a word, having one function
for each different word.

Hive

Programming MapReduce tasks is not straightforward, as it is necessary to think with
key-value pairs, and how the data is managed with that pairs. The map output and reduce
input sometimes can be a bit tricky. Also, it is required to write low level programs in
Java to use this framework. A solution to these difficulties is Apache Hive.

Apache Hive [47, 48] is a data warehouse software that makes easier the data reading,
writing and management with MapReduce, by using a SQL-like syntax (called HQL).
Thus, it is not necessary to be aware of the framework details, and just by knowing SQL
it is possible to take advantage of all its benefits.

For this reason, Hive has been selected for the majority of the queries used in this
project’s experimentation. The rest ones are written with a custom Java MapReduce script,
as it has been more convenient. The reasons of this decision are explained later on.

5.1.2 Datasets
After explaining the computation framework in which the experimentation will be

done, we are going to describe the the benchmark we have used. We decided to use two
datasets with very different characteristics.

The first of the datasets selected is one composed of ADS-B (Automatic Dependent
Surveillance - Broadcast) [49] messages. ADS-B information messages are sent by air-
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crafts to determines their position (and some more data) via satellite navigation. The
aircraft periodically broadcasts that messages, and thus it is possible to track it. Currently,
we can find many ADS-B data providers, both open and private. One of the most im-
portant providers is Opensky1 [50], since it offers free access to large amounts of data,
collected through its network, and makes them accessible for researchers worldwide. The
ADSB messages used in this project have been collected from Opensky.

The data collected from Opensky has been parsed to a CSV format. Originally it is
stored using JSON, but it has a plain table structure and it is easily transformable to CSV.
We have used the data from the month of January of 2018. The entire data in CSV without
compression has a volume of 364.16GB, with 2,150,817,499 rows, divided into files of
approximately 1GB. The schema of this dataset is very simple, with very few columns
(just 20). There is no complex types in any column, all of the types are primitive. This
schema is available in Appendix A.

The other dataset is the GitHub log [51]. This log archives the public GitHub timeline
in JSON files (one file per hour). Basically, it contains all the public actions done in
GitHub. It has a much more complex structure than the Opensky data. Originally it had
more than 700 columns (considering a column each field with a primitive type), but since
we have carried out our research using a proprietary cluster, as we will describe later, with
a default and fixed configuration of Hive, we had no possibility of storing a column with
more than 40000 characters in its type (a column called “payload” stores almost all the
columns inside it and it is not possible to store its type metadata). Thus, we have made a
schema reduction to allow Hive to store that very complex column. The final result is a
schema with 236 different columns, including nested structures and arrays of structures.
This schema is shown in Appendix B.

Using this reduction in the schema, we have used the log of the months from January
to April of 2018. This data has been “cut” to fix it to our reduced schema. And the
final result is a dataset of 195.46GB without compression and 163,939,857 records. This
dataset is divided into a large number of small files, each one of approximately 200MB.

Both datasets do not have a very big size, but we have considered their size enough for
a proof of concept. The Opensky dataset is larger as it has more simple data, and GitHub
log is smaller because it has a more complex structure.

5.1.3 Considered Formats
Knowing the datasets, we have to decide which formats we are going to use. As we are

trying to make a complete comparison, we have selected the most popular formats, that
are text, SequenceFile, Avro, RCFile, ORC and Parquet. For the text format, it is used
CSV with Opensky and JSON with the GitHub log. Thus we do not need to transform
from CSV to JSON or vice versa.

Another aspect to consider is the compression. As there are many possibilities, we
have to select only some of them to be able to make the experimentation in a reasonable
time. Thus we have decided to use the Gzip and Snappy compressions, and also the for-
mats without any compression. Gzip is one of the most important and used compression
codecs, and Snappy is available for every file format. Also it is important to know the

1https://opensky-network.org/
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difference between using or not compression, and thus we use the formats without any
codec. It is worth noting that Avro and ORC do not allow to compress their format with
Gzip. The only compression codec used for these cases is Snappy.

Thus, for each of the two datasets we would have 16 different combinations of file
format and compression codec. Three for text files, SequenceFile, RCFile and Parquet
(Snappy, Gzip and no compression), and two for Avro and ORC (Snappy and no com-
pression).

5.1.4 Queries

Once we have selected the datasets and formats that we are going to use, its time to
define the queries. For each of the combinations we will make more or less the same
queries, varying very little between the two datasets.

We can differentiate two different types of queries, table scans and SELECT queries.
The table scans make a complete dataset read, row by row, or an entire column scan. These
queries are made with MapReduce scripts, as making them with Hive would produce
a very big output, and Hive stores it as temporary data. This means that the data size
can be even duplicated. With a custom MapReduce script we are able to just read the
data and make null output for the MapReduce job. Thus, we avoid writing very large of
unnecessary data.

The SELECT queries are queries made in SQL language, and have a very small output.
These queries are done using Hive, as heir output is very small and the written temporary
files do not have a big impact.

Including both types, it is possible to differentiate five queries. Query 1 is a complete
scan of the dataset, made row by row (script in MapReduce). Query 2 is a entire column
read (script in MapReduce). Query 3 is a count of how many records does the dataset have
(Hive). Query 4 is a search of a specific record, selecting it by its id (Hive). And query 5
is a search of the ids of the records that fulfills a simple condition of “greater than” in a
column, being the condition very restrictive (Hive).

The GitHub log data have two versions of queries 2 and 5. This is because in these
queries there is a column read, and it is possible to test what happens if this column is a
very nested one. GitHub log has many nested structures and allows to makes this test.

Opensky

• Query 1: Complete dataset read.

• Query 2: Read the column ’id’.

• Query 3: SELECT count(*) FROM opensky

• Query 4: SELECT * FROM opensky WHERE id=”osky-abf2ea-1522188075”

• Query 5: SELECT id,altitude FROM opensky WHERE altitude>30000
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GitHub log

• Query 1: Complete dataset read.

• Query 2.1: Read the column ’id’.

• Query 2.2: Read the column ’payload.pull request.base.repo.owner.login’.

• Query 3: SELECT count(*) FROM githublog

• Query 4: SELECT * FROM githublog WHERE id=”7044822816”

• Query 5.1: SELECT id FROM githublog WHERE id>”7607000000”

• Query 5.2: SELECT id,payload.pull request.base.repo.owner.id FROM githublog
WHERE payload.pull request.base.repo.owner.id>37000000

5.1.5 Experimentation environment
Finally, it is important to describe where the experimentation has been done, so the

results can be contextualized.
The environment used is a Cloudera Hadoop system, property of Boeing Research and

Technology Europe. The versions of the used software are Cloudera 5.14.2, HDFS 2.6.0,
MapReduce 2.6.0 and Hive 1.1.0.

The cluster uses for MapReduce jobs 7 different nodes (we will call them node0 to
node6). Node0, node1, node2 and node3 have each 128GB of main memory, a hard disk
with 8 SDD of 1TB and 5 HDD of 5TB, and 40 cores. Node4 has 256GB of main memory,
a hard disk with 8 SDD of 1TB and 5 HDD of 5TB, and 40 cores. Node5 and node6 have
256GB of main memory, a hard disk with 8 SDD of 4TB, and 48 cores.

5.1.6 Used Parameters
The performance aspects that we have considered are the execution time of the entire

MapReduce job, the number of map tasks launched, and the add of all the map tasks
memory peak, that would be equivalent to the job memory peak value. We do not con-
sider the reduce tasks, as the selected queries only need the map phase and do not require
reduce.

Each query is executed three times for each of the combinations of dataset, file format
and compression codec, and the file performance results is the average value of the three
executions. To guarantee the experiment validity, we calculate the variation coefficient
(VC), that is a percentage of the standard deviation, for each of the considered measures.
If the VC is greater than 10% for any of them, the query is repeated again three times, and
the previous values are discarded.
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Figure 5.1: Opensky format sizes

Plain Snappy Gzip

CSV 364.16 163.32 99.333
SequenceFile 381.99 167.87 102.57
Avro 362.48 160.94 -
RCFile 318.25 120.99 68.413
ORC 260.02 105.53 -
Parquet 131.27 86.01 61.918

Table 5.1: Opensky format sizes (GB)

5.2 Results
Now that we know all the experimental environment, and all the proves that we are

making, it is time to see the performance results for each of the queries and datasets.

5.2.1 Opensky
Before starting with the queries, it is very important to take a look to the storage

size that each file format use. Depending on the format serialization and the selected
compression codec we can store the same amount of data with different sizes.

The different storage volumes of each file format and compression is represented in
the graphic of Figure 5.1 and Table 5.1. In this graphic we take as reference the CSV
format, that represents the original data.

We can appreciate that the best compression rates are obtained with the column-
oriented file formats. This is because storing all column values together ease a better
compression rate, because within a same column values are similar.

The dataset stored with SequenceFile requires a 4.89%, 2.78% and 3.25% more stor-
age space than CSV (in plain, Snappy and Gzip respectively). This is because Sequence-
File stores the same rows adding one key per each one. Thus, we have the same data plus
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keys, which adds even more volume to the files.
Avro requires 0.47% less size with no compression and 1.46% less with Snappy than

CSV; this is more or less the same size as the text format. This is due to the fact that Avro
serialization does not compress too much, and it even adds keys inside each row. We can
guess that Avro was designed not thinking in make smaller CSV files, but more prepared
for JSON style structures.

RCFile does not provide a very big advantage when using it without any compression
codec, as it is only 12.61% smaller. But we have to take into account that its default
configuration uses Gzip codec. With Snappy or Gzip compression we obtain much better
rates than in the row-oriented formats, having a compression of 25.92% with Snappy
and 31.13% with GZip. Here it is possible to see that column-oriented formats ease the
compression by storing similar values together.

ORC serialization makes a the lightweight compression before the general one. This
adds the advantage of reaching better compression ratios, having files 28.6% smaller with
no compression. But it is necessary to use a compression codec over the ORC serialization
to reduce notably the files volume, as we obtain better ratios (35.38% smaller files with
Snappy).

The last column-oriented format, Parquet, is the one that reaches the smallest sizes,
having files 63.93% smaller with no compression, 47.34% with Snappy, and 37.67% with
Gzip. In the theory we saw that it uses also a previous compression for each page depend-
ing on the data type, as ORC does. But comparing he compression rates, we can see that
without any compression codec, Parquet obtains much better storage results.

Finally, talking about compression codecs in general, we can observe that using a
compression over the file formats allows to have much smaller files, reaching up to a
quarter of the original size using Gzip, or almost one third with Snappy. Thus, if the
storage capacity of our system is not very large, it is a very good idea to use compression
codecs over the files.

Now that we have seen the storage sizes of each of the file formats and compression
codecs, we start with the performance of the queries for each of them.

Query 1

The first of the queries is the complete scan of the files, made by rows. This query is
made using a MapReduce script. The performances of this query are shown in the three
graphics of Figure 5.2 and Table 5.2. The first graphic shows the average execution time
for each file format and compression, the second one the average memory peak, and the
third one the number of map tasks. In the table there are shown all the results obtained
from the three executions of each format, including execution time, memory peak and
number of map tasks. Also it is shown the average value, the standard deviation and the
variation coefficient.

We can observe that the most restrictive compression codecs provide much better per-
formance than the file formats without any compression, being the formats compressed
with Gzip the ones getting better results; for example, with CSV format Gzip is 53.37%
faster than with no compression. This may seem not obvious, because having compres-
sion over some data implies to decompress before accessing it. But MapReduce uses a
parallelization process, in which the data is split into different map tasks; and by having
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Figure 5.2: Opensky query 1 performance
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run 1 run 2 run 3 Average Desv. VC

time (sec) 243 236 233 237.3333 5.1316 0.0216
CSV-Plain mem.(GB) 1130.7030 1137.0915 1154.0796 1140.6247 12.0822 0.0106

maps 3040 3040 3040 3040 0 0

time (sec) 441 430 425 432 8.1854 0.032
CSV-Snappy mem.(GB) 168.6873 165.7842 163.1847 165.8854 2.7527 0.0059

maps 1250 1250 1250 1250 0 0

time (sec) 109 109 114 110.6667 2.8868 0.0261
CSV-Gzip mem.(GB) 367.8700 370.6483 373.2353 370.5845 2.6832 0.0072

maps 830 830 830 830 0 0

time (sec) 324 290 310 308 17.088 0.0555
SeqF-Plain mem.(GB) 1209.2886 1221.0791 1197.7321 1209.3666 11.6737 0.0097

maps 3221 3221 3221 3221 0 0

time (sec) 158 153 154 155 2.6458 0.0171
SeqF-Snappy mem.(GB) 578.4998 568.7232 561.7734 569.6654 8.4029 0.0148

maps 1524 1524 1524 1524 0 0

time (sec) 83 85 87 85 2 0.0235
SeqF-Gzip mem.(GB) 422.0018 426.9561 427.5538 425.5039 3.0476 0.0072

maps 1064 1064 1064 1064 0 0

time (sec) 420 375 396 397 22.5167 0.0567
Avro-Plain mem.(GB) 1234.7048 1212.8505 1214.4151 1220.6568 12.1910 0.0100

maps 3036 3036 3036 3036 0 0

time (sec) 317 319 322 319.3333 2.5166 0.0079
Avro-Snappy mem.(GB) 704.6404 700.2435 694.5995 699.8278 5.0333 0.0072

maps 1575 1575 1575 1575 0 0

time (sec) 357 370 385 370.6667 14.0119 0.0378
RCFile-Plain mem.(GB) 1088.0207 1102.2412 1122.5886 1104.2835 17.3742 0.0157

maps 2700 2700 2700 2700 0 0

time (sec) 235 229 234 232.6667 3.2146 0.0138
RCFile-Snappy mem.(GB) 488.9639 498.2054 506.6350 497.9348 8.8386 0.0178

maps 1156 1156 1156 1156 0 0

time (sec) 213 183 190 195.3333 15.695 0.0803
RCFile-Gzip mem.(GB) 326.7258 324.3799 328.4282 326.5113 2.0326 0.0062

maps 760 760 760 760 0 0

time (sec) 320 317 322 319.6667 2.5166 0.0079
ORC-Plain mem.(GB) 638.9058 648.3744 651.2856 646.1886 6.4729 0.01

maps 770 770 770 770 0 0

time (sec) 256 265 261 260.6667 4.5092 0.0173
ORC-Snappy mem.(GB) 370.9429 374.0291 370.618 371.8633 1.8827 0.0051

maps 416 416 416 416 0 0

time (sec) 929 921 906 918.6667 11.6762 0.0127
Parquet-Plain mem.(GB) 1042.7736 1053.024 1051.2971 1049.0316 5.4879 0.0052

maps 1183 1183 1183 1183 0 0

time (sec) 726 738 735 733 6.245 0.0085
Parquet-Snappy mem.(GB) 716.6175 726.9941 738.6478 727.4198 11.0213 0.0152

maps 823 823 823 823 0 0

time (sec) 706 697 690 697.6667 8.0208 0.0115
Parquet-Gzip mem.(GB) 658.3433 670.2001 660.4688 663.0041 6.3219 0.0095

maps 759 759 759 759 0 0

Table 5.2: Opensky query 1 results
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smaller data, we have less map tasks, needing less time to schedule them or repeating the
failed ones (less map tasks implies less failed tasks). Also we have blocks with more data
inside them, and it takes less time to read a entire block decompressing it, than reading
many small blocks without decompressing them.

Another remarkable aspect is that Parquet is the format that performed the worst with
this query with an execution time 3.87 times slower than CSV, without using compression.
This is because the query is resolved reading by rows and being a column-oriented format
is a handicap for this type of queries. However, RCFile and ORC do not take so much
time to execute the job.

After Parquet, Avro is the next worse format looking at the execution time, being 1.67
times slower than the text format when no compression is used. It seems that reading a
file in Avro takes more time than reading it using the plain text format. And it does not
provide a lower memory peak or less map tasks than the rest of formats.

The SequenceFile format has the expected results, as it just takes a little bit more time
(29.95% more with no compression); slightly greater memory peak and few more map
tasks. This is because it is the same as the CSV format, just adding a key that only implies
more storage volume.

The other two column-oriented formats, RCFile and ORC have had a very good per-
formance, taking into account that they are column-oriented formats, and this query is
hard for them, as they need to search every row field inside each column. They just have
an execution 1.56 times slower for RCFile and 1.34 times for ORC, without using com-
pression. It is also remarkable the very few resources used by ORC, that has launched
very few maps (only 770 with no compression, having CSV 3040) and has the lowest
memory peak values (56.65% lower than CSV without compression).

Finally, we would like to emphasize that the format that had a smaller execution time
in this full scan query has been the CSV format, with an average of 237.33 seconds;
despite it is supposed to be one of the worst formats, as it is human readable. Moreover,
it does not consume more resources than the majority of the other formats. Nevertheless,
we have to take into account that a full scan without doing anything else is not a very
common action.

Query 2

Now is time for the other MapReduce scripted query, the complete read of a single
column. In this query the best formats should be the column-oriented ones, as the values
of a column are stored together. The results of this query are shown in Figure 5.3 and
Table 5.3.

Again we see that the better performance results are the ones of the compressed
datasets, having an execution time in CSV 41.51% and 52.63% faster with Snappy and
Gzip compressions than with no compression. Thus we can guess that in MapReduce jobs
it is more important the the size and number of blocks than the time taken to decompress
the data.

In this query the results are the expected ones. The fastest execution times have been
obtained by RCFile, ORC and Parquet, reaching RCFile with Gzip an execution time of
only 89 seconds; and the slowest ones have been CSV and SequenceFile, having CSV
with Gzip an execution time of 137.67 seconds.
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run 1 run 2 run 3 Average Desv. VC

time (sec) 294 288 290 290.6667 3.0551 0.0105
CSV-Plain mem.(GB) 1147.9906 1154.9474 1137.8888 1146.9422 8.5775 0.0075

maps 3040 3040 3040 3040 0 0

time (sec) 181 168 161 170 10.1489 0.0597
CSV-Snappy mem.(GB) 577.8688 579.0908 581.0590 579.3395 1.6096 0.0028

maps 1250 1250 1250 1250 0 0

time (sec) 136 143 134 137.6667 4.7258 0.0343
CSV-Gzip mem.(GB) 377.0761 377.8835 381.0979 378.6858 2.1276 0.0056

maps 830 830 830 830 0 0

time (sec) 379 335 367 360.3333 22.745 0.0631
SeqF-Plain mem.(GB) 1281.8952 1285.2409 1273.3653 1280.1671 6.1235 0.0048

maps 3221 3221 3221 3221 0 0

time (sec) 188 187 190 188.3333 1.5275 0.0081
SeqF-Snappy mem.(GB) 614.7622 617.4241 613.275 615.1538 2.1021 0.0034

maps 1524 1524 1524 1524 0 0

time (sec) 121 112 111 114.6667 5.5076 0.048
SeqF-Gzip mem.(GB) 449.9415 455.8492 446.7915 450.8607 4.5983 0.0102

maps 1064 1064 1064 1064 0 0

time (sec) 209 233 228 223.3333 12.6623 0.0567
Avro-Plain mem.(GB) 1148.8208 1126.8438 1131.6216 1135.7621 11.5587 0.0102

maps 3036 3036 3036 3036 0 0

time (sec) 151 160 160 157 5.1962 0.0331
Avro-Snappy mem.(GB) 606.7438 607.2778 603.7252 605.9156 1.9156 0.0032

maps 1575 1575 1575 1575 0 0

time (sec) 220 205 228 217.6667 11.6762 0.0536
RCFile-Plain mem.(GB) 1028.62 1042.6504 1042.6504 1037.9736 8.1004 0.0078

maps 2700 2700 2700 2700 0 0

time (sec) 129 125 133 129 4 0.031
RCFile-Snappy mem.(GB) 428.0213 435.2849 439.3113 434.2058 5.7218 0.0132

maps 1156 1156 1156 1156 0 0

time (sec) 88 91 88 89 1.7321 0.0195
RCFile-Gzip mem.(GB) 289.0431 285.7162 284.6591 286.4728 2.2878 0.008

maps 760 760 760 760 0 0

time (sec) 209 205 208 207.3333 2.0817 0.01
ORC-Plain mem.(GB) 685.8854 675.7823 665.0035 675.5571 10.4427 0.0155

maps 770 770 770 770 0 0

time (sec) 173 169 180 174 5.5678 0.032
ORC-Snappy mem.(GB) 372.9662 368.6809 374.2737 371.9736 2.9256 0.0079

maps 416 416 416 416 0 0

time (sec) 165 145 157 155.6667 10.0664 0.0647
Parquet-Plain mem.(GB) 888.5021 885.6411 894.2849 889.476 4.4035 0.005

maps 1183 1183 1183 1183 0 0

time (sec) 109 116 116 113.6667 4.0415 0.0356
Parquet-Snappy mem.(GB) 565.8508 557.397 558.5341 560.594 4.5879 0.0082

maps 823 823 823 823 0 0

time (sec) 101 103 117 107 8.7178 0.0815
Parquet-Gzip mem.(GB) 437.0639 435.556 438.5178 437.0459 1.481 0.0034

maps 759 759 759 759 0 0

Table 5.3: Opensky query 2 results

48



However, it is remarkable that Avro has a good performance in this single column
read; taking into account the bad performance in the previous full scan query. Avro is
even 9.77% faster than ORC, using both of them the Snappy compression.

If we may select a single format with a better performance would be RCFile when
using Gzip compression, because it has the fastest execution time, with 89 seconds, only
760 map tasks, and it have a low memory peak, under 300GB. Also ORC has a very low
usage of resources, but using the Snappy compression codec does not have a very good
execution time, being even 2.35% slower than the CSV format.

It is worth noting that the number of map tasks is the same as in query 1, so this
number is probably related with the files size and the used format, and not with the query.
This in theory seems obvious, as the processing of the queries is made inside the map
tasks, and the number of these tasks is defined in advance.

Query 3

The next query is the count. This query is made with Hive, and it is just a count of
all the rows that the dataset has. For this query it is very important the metadata stored
by the format, as it allows to not read any data and just read the blocks metadata to know
how many rows there are inside. The performance of this query is shown in Figure 5.4
and Table 5.4.

For this query there is a single format better than any other, that is Parquet. It has
the fastest execution time, with no more than 53 seconds for any compression option, the
lowest memory peak, with only 225.84GB when no compression is used, and a very low
number of map tasks. This means that Parquet in this case makes a very good use of its
metadata, not reading the entire blocks and just taking into account the headers.

ORC and RCFiles also have a good execution time, being ORC 54.44% and RCFile
21.44% faster than CSV without compression. However, it looks like they use too much
resources for just reading the metadata. They have a memory peak 59.5% and 152.8%
higher (ORC and RCFile respectively) than Parquet without compression. We presume
this could be because the entire blocks are loaded into main memory, but just the metadata
is read, not doing anything with the the blocks data. It would be better if there was no
necessity of loading the entire blocks into memory and just loading the metadata.

Now talking about the row-oriented formats, CSV is the fastest of the three, being
Avro the slowest one, having an execution time 43% higher than the text format without
compression. All of them have a much higher execution time than the column-oriented
formats. This is probably because of the lack of metadata, needing to read each record
just to add one to the count. However, Avro contains metadata of how many records there
are in each of its blocks; but seems that this data is not used with this query. SequenceFile,
as before, has a slightly worse performance than the text format in every aspect.

In this query the number of maps is different from the first two queries, probably
because Hive configuration is different from MapReduce default one.
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run 1 run 2 run 3 Average Desv. VC

time (sec) 186 179 176 180.3333 5.1316 0.0285
CSV-Plain mem.(GB) 651.1885 643.8105 633.4194 642.8061 8.927 0.0139

maps 1082 1082 1082 1082 0 0

time (sec) 136 138 130 134.6667 4.1633 0.0309
CSV-Snappy mem.(GB) 258.5566 261.7808 262.1054 260.8143 1.9619 0.0075

maps 413 413 413 413 0 0

time (sec) 79 72 76 75.667 3.5119 0.0464
CSV-Gzip mem.(GB) 158.3127 161.384 164.1259 161.2742 2.9082 0.018

maps 213 213 213 213 0 0

time (sec) 248 236 259 247.6667 11.5036 0.0464
SeqF-Plain mem.(GB) 716.5535 702.294 716.0801 711.6425 8.0995 0.0114

maps 1121 1121 1121 1121 0 0

time (sec) 105 110 104 106.3333 3.2146 0.0302
SeqF-Snappy mem.(GB) 299.8765 305.5052 304.4909 303.2909 3.0001 0.0099

maps 472 472 472 472 0 0

time (sec) 90 90 94 91.3333 2.3094 0.0253
SeqF-Gzip mem.(GB) 186.4595 185.3464 183.1129 184.9729 1.7043 0.0092

maps 293 293 293 293 0 0

time (sec) 260 254 261 258.3333 3.7859 0.0147
Avro-Plain mem.(GB) 697.4 698.209 702.9777 699.5289 3.014 0.0043

maps 1069 1069 1069 1069 0 0

time (sec) 184 191 209 194.6667 12.8970 0.0663
Avro-Snappy mem.(GB) 369.623 371.083 376.7791 372.495 3.7813 0.0102

maps 590 590 590 590 0 0

time (sec) 135 150 140 141.6667 7.6376 0.0539
RCFile-Plain mem.(GB) 564.6362 572.208 572.7287 569.8576 4.5294 0.0079

maps 942 942 942 942 0 0

time (sec) 74 72 75 73.6667 1.5275 0.0207
RCFile-Snappy mem.(GB) 210.0078 210.138 210.3691 210.1716 0.183 0.0009

maps 334 334 334 334 0 0

time (sec) 41 46 45 44 2.6458 0.0601
RCFile-Gzip mem.(GB) 117.5749 119.4525 117.5031 118.1768 1.1054 0.0094

maps 186 186 186 186 0 0

time (sec) 94 104 102 100 5.2915 0.0529
ORC-Plain mem.(GB) 358.7742 361.9996 357.4637 359.4125 2.3343 0.0065

maps 686 686 686 686 0 0

time (sec) 50 43 42 45 4.3589 0.0969
ORC-Snappy mem.(GB) 171.8806 171.2257 170.8405 171.3156 0.5259 0.0031

maps 288 288 288 288 0 0

time (sec) 50 57 53 53.3333 3.5119 0.0658
Parquet-Plain mem.(GB) 225.6203 227.6035 224.2918 225.8385 1.6666 0.0074

maps 355 355 355 355 0 0

time (sec) 40 41 37 39.3333 2.0817 0.0529
Parquet-Snappy mem.(GB) 138.715 140.4669 141.8997 140.3605 1.595 0.0114

maps 219 219 219 219 0 0

time (sec) 35 36 37 36 1 0.0278
Parquet-Gzip mem.(GB) 104.1195 104.258 103.5866 103.988 0.3545 0.0034

maps 167 167 167 167 0 0

Table 5.4: Opensky query 3 results
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Query 4

The query 4 is the single record search. This means that it is made a query by the
column “id” that only returns one single record. Even only one column is required for
the restriction, all of them are returned in the resulting record. Again in this query it is
important to have metadata to be able to skip entire blocks if it is sure that the record can
not be in them. The results of this query are shown in Figure 5.5 and Table 5.5.

Again, Avro is the one with worst performance, having the highest execution time
(241.67 seconds without compression) and a big use of resources, specially with Snappy
compression, reaching almost the 600GB. This is probably because it needs to read the
entire file to know if a record accomplish the restriction used (in this case to have a specific
value in the column “id”). CSV and SequenceFile also have to do this entire read, but they
are faster making a complete scan, as we saw in query 1.

In theory the formats that should be faster in this query are ORC and Parquet, that have
metadata about the maximum and minimum values of their column blocks. However
RCFile is as fast as ORC and Parquet are in this query, being even 44.91% faster than
Parquet with Gzip compression. This could be because it has not been possible to skip
many blocks with their metadata.

With all this, we can say that the best format for this query in this dataset has been
RCFile with the Gzip compression. It is not an expected result, as we had considered it
not to ease the random access to data. Also, the use of memory of this format has been
very low, being the only one under 100GB.

Here the number of map tasks are the same as in query 3, so we can now be almost
sure that the number of map tasks depends just on the files size.

Query 5

The last query done for this dataset has been the query 5. This query requests the id
of the records that have an altitude higher than 30000 meters. This is a extremely high
value, that only very special flights can reach. Thus, very few records would accomplish
this restriction. The performance results for his query are shown in Figure 5.6 and Table
5.6. For this query it is important the formats metadata to be able to skip blocks.

Once again we can see that Avro is the one having the worst performance, reaching
the highest execution time, with almost 250 seconds with no compression, and more than
150 with Snappy; and also has a high usage of resources. The CSV and SequenceFile
formats are better than Avro, using less resources (37.17% and 31.22% less respectively,
when using Snappy), except SequenceFile without compression, and doing the job faster
(48.36% CSV and 44.26% SequenceFile, with Snappy).

As expected, the formats with better performance are the column-oriented ones. Now
the RCFile format is 43.75% slower than ORC and 21.05% slower than Parquet, using
Snappy compression. This is probably because now ORC and Parquet have made a better
use of their metadata, being able to skip more blocks and avoid unnecessary readings.
However, The usage of memory do not reflect this fact, as Parquet consumes 67.17% and
89.74% more memory than RCFile when Snappy and Gzip compressions are used. This
should be because now Parquet is loading the entire blocks into memory, even if they are
skipped later.
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Figure 5.5: Opensky query 4 performance
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run 1 run 2 run 3 Average Desv. VC

time (sec) 157 153 163 157.6667 5.0332 0.0319
CSV-Plain mem.(GB) 415.0875 421.8078 425.9711 420.9555 5.4916 0.013

maps 1082 1082 1082 1082 0 0

time (sec) 104 109 114 109 6.0277 0.0433
CSV-Snappy mem.(GB) 158.4278 160.0691 162.7903 160.429 2.2034 0.0137

maps 413 413 413 413 0 0

time (sec) 69 68 75 70.667 3.7859 0.0536
CSV-Gzip mem.(GB) 107.7545 105.9577 104.9237 106.212 1.4324 0.0135

maps 213 213 213 213 0 0

time (sec) 198 200 199 199 1 0.005
SeqF-Plain mem.(GB) 443.2609 441.6829 449.1871 444.7103 3.9565 0.0089

maps 1121 1121 1121 1121 0 0

time (sec) 145 133 140 139.3333 5 0.0459
SeqF-Snappy mem.(GB) 185.2279 186.6246 186.5723 186.1416 0.7917 0.0043

maps 472 472 472 472 0 0

time (sec) 91 96 99 95.3333 4.0415 0.0424
SeqF-Gzip mem.(GB) 116.1417 116.669 114.9504 115.9204 0.8804 0.0076

maps 293 293 293 293 0 0

time (sec) 245 244 236 241.6667 4.9329 0.0204
Avro-Plain mem.(GB) 435.4667 427.367 427.4054 430.0797 4.6653 0.0108

maps 1069 1069 1069 1069 0 0

time (sec) 194 183 182 186.3333 6.6583 0.0357
Avro-Snappy mem.(GB) 268.0768 271.1302 275.6012 271.6028 3.7844 0.0139

maps 590 590 590 590 0 0

time (sec) 187 176 179 180.6667 5.6862 0.0315
RCFile-Plain mem.(GB) 363.5963 360.1676 359.4725 361.0788 2.2078 0.0061

maps 942 942 942 942 0 0

time (sec) 80 81 85 82 2.6458 0.0323
RCFile-Snappy mem.(GB) 130.5852 128.2059 128.7931 129.1947 1.2394 0.0096

maps 334 334 334 334 0 0

time (sec) 53 50 54 52.3333 2.0817 0.0398
RCFile-Gzip mem.(GB) 72.5933 71.7396 70.3801 71.571 1.1162 0.0156

maps 186 186 186 186 0 0

time (sec) 140 143 144 142.3333 2.0817 0.0146
ORC-Plain mem.(GB) 409.6368 413.5612 409.5248 410.9076 2.2987 0.0056

maps 686 686 686 686 0 0

time (sec) 79 75 83 79 4 0.0506
ORC-Snappy mem.(GB) 177.1493 178.9722 177.0178 177.7131 1.0924 0.0061

maps 288 288 288 288 0 0

time (sec) 169 182 175 175.3333 6.5064 0.0371
Parquet-Plain mem.(GB) 343.8616 346.7982 342.921 344.5269 2.0224 0.0059

maps 355 355 355 355 0 0

time (sec) 111 122 114 115.6667 5.6862 0.0492
Parquet-Snappy mem.(GB) 225.1929 220.7882 222.9916 222.9909 2.2024 0.0099

maps 219 219 219 219 0 0

time (sec) 92 95 98 95 3 0.0316
Parquet-Gzip mem.(GB) 166.9893 165.3912 167.1807 166.5204 0.9826 0.0059

maps 167 167 167 167 0 0

Table 5.5: Opensky query 4 results
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run 1 run 2 run 3 Average Desv. VC

time (sec) 164 174 162 166.6667 6.4291 0.0386
CSV-Plain mem.(GB) 426.9127 433.009 437.2222 432.3813 5.1833 0.012

maps 1082 1082 1082 1082 0 0

time (sec) 94 90 100 94.6667 5.0332 0.0532
CSV-Snappy mem.(GB) 168.9436 170.1211 169.2552 169.4399 0.6101 0.0036

maps 413 413 413 413 0 0

time (sec) 68 79 75 74 5.5678 0.0752
CSV-Gzip mem.(GB) 110.6496 113.3134 110.3602 111.4411 1.628 0.0146

maps 213 213 213 213 0 0

time (sec) 204 212 208 208 4 0.0192
SeqF-Plain mem.(GB) 458.5225 465.2582 470.2504 464.6770 5.8855 0.0127

maps 1121 1121 1121 1121 0 0

time (sec) 100 108 99 102.3333 4.9329 0.0482
SeqF-Snappy mem.(GB) 187.7981 185.6609 183.4868 185.6486 2.1556 0.0116

maps 472 472 472 472 0 0

time (sec) 90 84 93 89 4.5826 0.0515
SeqF-Gzip mem.(GB) 120.9506 119.0239 116.7041 118.8929 2.1263 0.0179

maps 293 293 293 293 0 0

time (sec) 248 246 246 246.6667 1.1547 0.0047
Avro-Plain mem.(GB) 441.3357 437.3284 434.7875 437.8172 3.3014 0.0075

maps 1069 1069 1069 1069 0 0

time (sec) 192 179 180 183.6667 7.2342 0.0394
Avro-Snappy mem.(GB) 266.9053 272.0406 269.5324 269.4928 2.5679 0.0095

maps 590 590 590 590 0 0

time (sec) 135 130 132 132.3333 2.5166 0.019
RCFile-Plain mem.(GB) 373.4748 379.118 375.2776 375.9568 2.8823 0.0077

maps 942 942 942 942 0 0

time (sec) 67 69 70 68.6667 1.5275 0.0222
RCFile-Snappy mem.(GB) 133.0986 130.9384 129.6539 131.2303 1.7408 0.0133

maps 334 334 334 334 0 0

time (sec) 50 49 48 49 1 0.0204
RCFile-Gzip mem.(GB) 78.4674 78.2689 79.2707 78.669 0.5305 0.0067

maps 186 186 186 186 0 0

time (sec) 84 89 94 89 5 0.0562
ORC-Plain mem.(GB) 317.9462 317.5583 315.0083 316.8376 1.596 0.005

maps 686 686 686 686 0 0

time (sec) 48 44 53 48.3333 4.5092 0.0933
ORC-Snappy mem.(GB) 112.8209 112.109 111.4543 112.1281 0.6835 0.0061

maps 288 288 288 288 0 0

time (sec) 92 87 86 88.3333 3.2146 0.0364
Parquet-Plain mem.(GB) 337.4675 331.0759 334.3138 334.2858 3.1959 0.0096

maps 355 355 355 355 0 0

time (sec) 56 59 55 56.6667 2.0817 0.0367
Parquet-Snappy mem.(GB) 217.6367 221.3561 218.3700 219.1210 1.9701 0.009

maps 219 219 219 219 0 0

time (sec) 49 52 49 50 1.7321 0.0346
Parquet-Gzip mem.(GB) 147.6998 147.4945 149.0786 148.091 0.8614 0.0058

maps 167 167 167 167 0 0

Table 5.6: Opensky query 5 results
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Figure 5.7: GitHub log format sizes

This worse performance of Parquet has not an obvious reason, as we saw in query 3
that parquet was the better managing metadata and not loading unnecessary blocks. This
contradiction may be because of the different types of metadata it is managing.

Again the number of maps is the same as in query 4, so we can conclude that the
number of map tasks of a query depends only on the configuration and the files size.

5.2.2 Github log
Opposite to the Opensky dataset, we have considered the GitHub log one, that is

smaller, but with a much more complex structure. It has many columns, and lot of them
have complex types, including inner structures and arrays of structures.

We must take into account that some of the formats do not allow complex types in
their columns, so we need to make some processing to be able to perform read and write
operations with them. With SequenceFile the solution is very simple; just use the entire
row as value and treat it as a string (that is the same thing done with Opensky). But with
RCFile the solution is not so easy. As this format only allows to store plain tables, we
have had to flatten the structure. Thus we loose the nested structure and just manage a
plain table. We need to have this fact present during all the results.

To analyze the results obtained with this dataset we will follow the same dynamic as
with Opensky. First of all, the storage volume of each format is one of the main aspects
that we have to care about. The data sizes for each format are shown in Figure 5.7 and
Table 5.7.

We can observe that the graphic is quite distinct than the one showing the sizes of
Opensky dataset. Here we have very differentiated JSON and SequenceFile formats,
that for every compression option have the biggest storage volumes (almost 200GB with
no compression, over 50GB for Snappy, and over 30GB with Snappy). SequenceFile is
slightly bigger than the text file, because the first one is stored the same way as JSON, but
adding a numeric key for each row; for example, with no compression SequenceFile has
2% more storage volume than JSON.
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Plain Snappy Gzip

CSV 195.46 54.339 34.604
SequenceFile 199.38 56.334 36.321
Avro 115.06 41.287 -
RCFile 101.86 38.679 24.996
ORC 68.976 32.829 -
Parquet 87.95 42.945 28.893

Table 5.7: GitHub log format sizes (GB)

Avro has much better compression rates than with CSV data, reducing the original
data 41.02% with no compression and 24.03% with Snappy. This is possible because the
Avro structure is very similar o a JSON one. Thus, it is easier for this format to take
advantage of its binary serialization, maintaining the same structure and compressing the
data. For example, Avro does not need to write the entire key names each time they occur.

However, the smallest sizes are reached by the column-oriented formats. From among
all of them, ORC has the best rate without using any compression codec (reaching a
volume 64.71% smaller), unlike what happened with the Opensky data, in which Parquet
was the best one. It seems that ORC has a better lightweight compression performance
when it deals with many columns, in contrast to Parquet, that is 27.51% larger than ORC.
This can happen because of the definition and repetition levels stored by Parquet; or a
better columns serialization techniques by ORC.

When using compression codecs, RCFile is the one that reaches the smallest size,
when it is used with Gzip, having a size of less than 25GB. Nevertheless, it is probable
that ORC could reach better compression rates if it were possible to use it with Gzip, as
with Snappy compression ORC is 15.12% smaller than RCFile.

It is worth noting that there is a huge difference of storage volume between using or
not compression codecs, as it happened with Opensky; for example, with JSON the Gzip
compression obtains a size 5.64 times smaller than without using any compression. Thus,
we can say that if the storage capacity is a problem, the usage of a compression codec is
almost compulsory.

Query 1

First we tested the query 1, that is the full scan of the entire dataset, made by rows.
The performance of this query for each format is represented graphically in the figure 5.8.

The most flashy aspect that we can see in the graphics is the fact that for all of the
formats there is a same number of map tasks. This is probably because we are working
with a dataset composed of many small files, and each file is processed entirely with a
single map. Thus, we have 2880 map tasks for every format and compression codec. This
is a good opportunity to get a better idea of which format makes a bigger usage of memory
inside each map task.

The highest memory peaks are reached by ORC and Parquet, being 132.38% and
160.36% larger, respectively, than the one obtained by JSON, when no compression is
used. Even they are the ones with smallest file sizes, the usage of memory is very high.

58



 0

 100

 200

 300

 400

 500

 600

 700

J
S
O
N

S
e
q
u
e
n
c
e
F
i
l
e

A
v
r
o

R
C
F
i
l
e

O
R
C

P
a
r
q
u
e
t

s
e
c
o
n
d
s

Query 1 − Execution time

Plain
Snappy

Gzip

 0

 500

 1000

 1500

 2000

 2500

 3000

J
S
O
N

S
e
q
u
e
n
c
e
F
i
l
e

A
v
r
o

R
C
F
i
l
e

O
R
C

P
a
r
q
u
e
t

G
B

Query 1 − Memory peak

Plain
Snappy

Gzip

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

J
S
O
N

S
e
q
u
e
n
c
e
F
i
l
e

A
v
r
o

R
C
F
i
l
e

O
R
C

P
a
r
q
u
e
t

n
u
m
b
e
r
 
o
f
 
m
a
p
s

Query 1 − Launched maps

Plain
Snappy

Gzip

Figure 5.8: GitHub log query 1 performance
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run 1 run 2 run 3 Average Desv. VC

time (sec) 229 228 228 228.3333 0.5774 0.0025
JSON-Plain mem.(GB) 1111.3218 1079.638 1080.7392 1090.5664 17.9832 0.0165

maps 2880 2880 2880 2880 0 0

time (sec) 277 261 264 267.3333 8.5049 0.0318
JSON-Snappy mem.(GB) 1114.6334 1093.8567 1102.531 1103.6737 10.4354 0.0095

maps 2880 2880 2880 2880 0 0

time (sec) 155 141 163 153 11.1355 0.0728
JSON-Gzip mem.(GB) 1132.434 1197.8774 1235.2272 1188.5129 52.0325 0.0438

maps 2880 2880 2880 2880 0 0

time (sec) 254 233 253 246.6667 11.8462 0.048
SeqF-Plain mem.(GB) 1146.8443 1149.677 1130.1325 1142.2179 10.5617 0.0092

maps 2880 2880 2880 2880 0 0

time (sec) 249 261 262 257.3333 7.2342 0.0281
SeqF-Snappy mem.(GB) 1126.719 1144.6001 1102.639 1124.6527 21.0567 0.0187

maps 2880 2880 2880 2880 0 0

time (sec) 249 251 247 249 2 0.008
SeqF-Gzip mem.(GB) 1118.4939 1084.2121 1075.7878 1092.8313 22.6202 0.0207

maps 2880 2880 2880 2880 0 0

time (sec) 257 244 241 247.3333 8.5049 0.0344
Avro-Plain mem.(GB) 1624.933 1672.9498 1664.6185 1654.1671 25.6579 0.0155

maps 2880 2880 2880 2880 0 0

time (sec) 397 374 396 389 13 0.0334
Avro-Snappy mem.(GB) 1521.3261 1537.2088 1485.7575 1514.7641 26.3458 0.0174

maps 2880 2880 2880 2880 0 0

time (sec) 237 223 220 226.6667 9.0738 0.04
RCFile-Plain mem.(GB) 1202.5244 1239.0932 1282.3127 1241.3101 39.9403 0.0322

maps 2880 2880 2880 2880 0 0

time (sec) 214 180 196 196.6667 17.0098 0.0865
RCFile-Snappy mem.(GB) 1221.6956 1270.0992 1290.8145 1260.8698 35.4717 0.0281

maps 2880 2880 2880 2880 0 0

time (sec) 245 234 220 233 12.53 0.0538
RCFile-Gzip mem.(GB) 1207.1254 1225.5703 1194.8697 1209.1885 15.4539 0.0128

maps 2880 2880 2880 2880 0 0

time (sec) 352 336 322 336.6667 15.0111 0.0446
ORC-Plain mem.(GB) 2624.4902 2546.989 2429.3436 2533.6076 98.2591 0.0388

maps 2880 2880 2880 2880 0 0

time (sec) 225 228 219 224 4.5826 0.0205
ORC-Snappy mem.(GB) 1907.1739 1948.1781 1961.3867 1938.9129 28.2691 0.0146

maps 2880 2880 2880 2880 0 0

time (sec) 681 692 684 685.6667 5.6862 0.0083
Parquet-Plain mem.(GB) 2937.2068 2836.5781 2741.6662 2838.4837 97.7842 0.0344

maps 2880 2880 2880 2880 0 0

time (sec) 539 513 522 524.6667 13.2035 0.0252
Parquet-Snappy mem.(GB) 2218.6109 2295.641 2316.6691 2276.9737 51.6256 0.0227

maps 2880 2880 2880 2880 0 0

time (sec) 491 510 514 505 12.2882 0.0243
Parquet-Gzip mem.(GB) 1982.775 2079.1378 2170.308 2077.4069 93.7785 0.0451

maps 2880 2880 2880 2880 0 0

Table 5.8: GitHub log query 1 results
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Also, these columnar formats have not very good execution times, being Parquet the one
taking more time to make the full scan, with a very big difference, having its lower value
over 500 seconds, using Gzip codec. As it is a column format, this is something under-
standable.

RCFile, despite being also a column-oriented format, has a very good performance,
with a low execution time, around the 200 seconds for each compression option, and not
very high memory usage, under the 1500GB. This is something not very common, as
the columnar formats do not have good performance when reading by rows. Something
similar happened with Opensky, having both ORC and RCFile good execution times.
Thus, we can intuit that they have been optimized for not being so much harmed by row
scans. It is important to remember that RCFile do not manage complex columns and all
them are stored as simple ones.

The row-oriented formats have more predictable results, being the fastest ones the
human-readable, as they do no need to deserialize the data. Avro has a worse execution
time when it is used with Snappy codec, lasting 57.48% more than when no compression
is used.

In contrast to the results obtained with Opensky, the usage of compression with the
formats do not make a reduction of time in the executions. Now that we are dealing with
very small files, it is not possible to have a smaller number of map tasks, and thus, there
are not better execution times. Nevertheless, the compression codecs do not have a worse
performance (except with Avro), so it remains beneficial to use compression codecs, as
the reduction of files size is very significant.

Also, it is important to remark that the memory peaks are even higher than the ones
seen in the Opensky dataset, even being he GitHub log data much smaller. This can be
because of the large number of map tasks.

Query 2.1

The next query is the query 2, that reads a complete column. For this dataset we have
made two variations, requesting first one simple column, and for the next query a very
nested one. Firstly we are going to see the simplest one, that we have called query 2.1.
The column we are reading now is “id”. In Figure 5.9 and Table 5.9 we can see the results
obtained for this query.

Again we have the same number of map tasks for all of the formats (2880), as we
are working with very small files, and with the default MapReduce configuration, there is
only one file for each map task.

As in the previous query, we can see that using a compression codec does not makes
the execution time shorter. But as we said previously, it is still recommended to use a
compression codec because there is a great reduction of storage resources, and the con-
sumption of time and memory is not increased.

Looking at the execution times, the results are the expected ones. The fastest formats
are the columnar ones, always under 300 seconds, and the row-oriented are the slowest,
that last always more than 300 seconds, except plain Avro. It is necessary to highlight that
Avro has a good performance when using it without any compression codec. It is even
the second fastest without compression, just a 6.13% slower than RCFile. But when using
it with Snappy, the time taken to resolve the query is 87.86% slower, almost doubling
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run 1 run 2 run 3 Average Desv. VC

time (sec) 303 305 290 299.3333 8.1445 0.0272
JSON-Plain mem.(GB) 1288.1599 1329.4583 1304.3581 1307.3254 20.8085 0.0159

maps 2880 2880 2880 2880 0 0

time (sec) 360 372 360 364 6.9282 0.019
JSON-Snappy mem.(GB) 1280.8716 1277.9128 1221.7229 1260.1691 33.3282 0.0264

maps 2880 2880 2880 2880 0 0

time (sec) 222 206 213 213.6667 8.0208 0.0375
JSON-Gzip mem.(GB) 1311.7926 1311.0449 1331.235 1318.0242 11.447 0.0087

maps 2880 2880 2880 2880 0 0

time (sec) 307 307 299 304.3333 4.6188 0.0152
SeqF-Plain mem.(GB) 1288.3797 1343.3806 1378.107 1336.6224 45.2438 0.0338

maps 2880 2880 2880 2880 0 0

time (sec) 324 328 327 326.3333 2.0817 0.0064
SeqF-Snappy mem.(GB) 1291.4937 1338.2846 1306.139 1311.9724 23.9346 0.0182

maps 2880 2880 2880 2880 0 0

time (sec) 319 313 317 316.3333 3.0551 0.0097
SeqF-Gzip mem.(GB) 1276.848 1272.9409 1275.4613 1275.0834 1.9808 0.0016

maps 2880 2880 2880 2880 0 0

time (sec) 173 174 173 173.3333 0.5774 0.0033
Avro-Plain mem.(GB) 1480.1266 1484.6262 1434.2083 1466.3203 27.9007 0.019

maps 2880 2880 2880 2880 0 0

time (sec) 331 313 333 325.6667 11.0151 0.0338
Avro-Snappy mem.(GB) 1449.9317 1478.4229 1464.3875 1464.2474 14.2461 0.0097

maps 2880 2880 2880 2880 0 0

time (sec) 166 161 163 163.3333 2.5166 0.0154
RCFile-Plain mem.(GB) 972.533 965.4238 923.09 953.6823 26.7311 0.028

maps 2880 2880 2880 2880 0 0

time (sec) 144 121 135 133.3333 11.5902 0.0869
RCFile-Snappy mem.(GB) 966.1714 923.5923 905.8316 931.8651 31.0089 0.0333

maps 2880 2880 2880 2880 0 0

time (sec) 195 170 163 176 16.8226 0.0956
RCFile-Gzip mem.(GB) 954.704 977.5978 940.6935 957.6651 18.6295 0.0195

maps 2880 2880 2880 2880 0 0

time (sec) 234 245 210 229.6667 17.8979 0.0779
ORC-Plain mem.(GB) 2608.1496 2717.9267 2599.5066 2641.861 66.0164 0.025

maps 2880 2880 2880 2880 0 0

time (sec) 150 162 167 159.6667 8.7369 0.0547
ORC-Snappy mem.(GB) 1909.6842 1975.4155 1878.6202 1921.24 49.4215 0.0257

maps 2880 2880 2880 2880 0 0

time (sec) 279 269 278 275.3333 5.5076 0.02
Parquet-Plain mem.(GB) 1293.4583 1342.8166 1277.1932 1304.4894 34.1742 0.0262

maps 2880 2880 2880 2880 0 0

time (sec) 236 223 217 225.3333 9.7125 0.0431
Parquet-Snappy mem.(GB) 1334.9071 1369.9484 1331.3432 1345.3996 21.3344 0.0159

maps 2880 2880 2880 2880 0 0

time (sec) 212 222 225 219.6667 6.8069 0.031
Parquet-Gzip mem.(GB) 1323.4625 1332.5017 1320.4293 1325.4645 6.2803 0.0047

maps 2880 2880 2880 2880 0 0

Table 5.9: GitHub log query 2.1 results
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it. Thus we do not consider Avro a good option, as it is necessary to use it with no
compression to have a good performance.

The rest of row-oriented formats have the expected performance. They have an ex-
ecution time longer than the sequential reading, as they have to read the entire file and
just take the requested column; for example, plain JSON is 31.14% slower than in query
1. Similarly to what happened in all the previous queries, the SequenceFile has the same
results as the text file, but slightly worse, being a little bit slower and using almost the
same memory.

Now focusing on the column-oriented formats, Parquet is the slowest, with more than
200 seconds for every compression option, and RCFile the fastest, that has an execution
time of 133.33 seconds with Snappy compression. This is probably because both RCFile
and ORC have been designed just thinking in MapReduce, and Parquet has, as one of its
main characteristics, compatibility with many more tools and frameworks. Also, RCfile is
the simplest format, and in some cases, like these simple queries of reading one column,
the simpler the file format is, the better performance it has.

ORC with Snappy compression seems to be also a good option for this query if we
just look at the execution time (159.67 seconds). But the memory used by this format is
much larger than the rest, reaching a peak of almost 2000GB, while no other format have
even 1500GB of memory peak.

The formats that seems to still take advantage of the usage of compression codecs,
referring just to execution time and memory peaks, are the columnar ones, especially
with Snappy, that has an execution time 18.19% and 20.45% faster with Snappy and Gzip
respectively.

Query 2.2

After making a query that just read a very simple column, it is interesting to make an-
other query that reads a column that is not at a first level, but in a very nested column. The
selected column for this query has been “payload.pull request.base.repo.owner.login”.
This column has a simple type (string), but it is in a sixth nested level. It is also a col-
umn that contains a lot of null values, even in higher levels (many records have NULL
“pull request”). Figure 5.10 and Table 5.10 show the performance of this query 2.2.

The results we have obtained are very similar to the ones seen in the previous query.
Thus we can assume that the location of a column, referring to the level of nesting, is not
something that affects the performance of the query. As could be expected, the use of
resources is the same as in the query 2.1.

It is easy to guess that in the column-oriented formats there is no difference between
requesting a simple column or a very nested one, as every column is stored together and
they do not need to search through different levels of nested structures to find the values.

The row-oriented formats do have a slightly worse performance than in the simple
column read; for example plain JSON is 6.24% slower than in query 2.1. This may be
because they need to search the requested value through the data structures, going level by
level. JSON (and so, SequenceFile storing JSON) and Avro are based on a DOM tree, and
to find one value inside lot of structures is not so straightforward. However, the difference
is not very significant.
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run 1 run 2 run 3 Average Desv. VC

time (sec) 328 316 309 317.6667 9.609 0.0302
JSON-Plain mem.(GB) 1288.0167 1317.7313 1276.5917 1294.1132 21.2366 0.0164

maps 2880 2880 2880 2880 0 0

time (sec) 367 364 361 364 3 0.0082
JSON-Snappy mem.(GB) 1283.982 1238.0154 1296.4993 1272.8322 30.7949 0.0242

maps 2880 2880 2880 2880 0 0

time (sec) 218 218 236 224 10.3923 0.0464
JSON-Gzip mem.(GB) 1312.5817 1314.1962 1386.8844 1337.8874 42.4403 0.0317

maps 2880 2880 2880 2880 0 0

time (sec) 323 312 298 311 12.53 0.0403
SeqF-Plain mem.(GB) 1295.4929 1274.8298 1252.6477 1274.3235 21.4271 0.0168

maps 2880 2880 2880 2880 0 0

time (sec) 329 327 332 329.3333 2.5166 0.0076
SeqF-Snappy mem.(GB) 1294.8008 1244.692 1267.6565 1269.0498 25.0834 0.0198

maps 2880 2880 2880 2880 0 0

time (sec) 344 316 318 326 15.6205 0.0479
SeqF-Gzip mem.(GB) 1280.12 1267.562 1273.152 1273.6114 6.2916 0.0049

maps 2880 2880 2880 2880 0 0

time (sec) 197 212 228 212.3333 15.5027 0.073
Avro-Plain mem.(GB) 1443.8832 1485.8713 1434.3562 1454.7036 27.4092 0.0188

maps 2880 2880 2880 2880 0 0

time (sec) 347 343 345 345 2 0.0058
Avro-Snappy mem.(GB) 1440.9226 1371.1675 1489.986 1434.0253 59.7088 0.0416

maps 2880 2880 2880 2880 0 0

time (sec) 173 165 162 166.6667 5.6862 0.0341
RCFile-Plain mem.(GB) 968.4505 1017.2895 1049.3545 1011.6982 40.7407 0.0403

maps 2880 2880 2880 2880 0 0

time (sec) 140 124 138 134 8.7178 0.0651
RCFile-Snappy mem.(GB) 959.1721 1003.8599 956.4677 973.1666 26.6156 0.0273

maps 2880 2880 2880 2880 0 0

time (sec) 175 165 165 168.3333 5.7735 0.0343
RCFile-Gzip mem.(GB) 940.3637 979.2196 996.5811 972.0548 28.7854 0.0296

maps 2880 2880 2880 2880 0 0

time (sec) 280 267 256 267.6667 12.0139 0.0449
ORC-Plain mem.(GB) 2587.2373 2529.7489 2491.4485 2536.1449 48.2136 0.019

maps 2880 2880 2880 2880 0 0

time (sec) 170 168 162 166.6667 4.1633 0.025
ORC-Snappy mem.(GB) 1908.429 1867.2642 1940.1249 1905.2727 36.5327 0.0192

maps 2880 2880 2880 2880 0 0

time (sec) 279 275 290 281.3333 7.7675 0.0276
Parquet-Plain mem.(GB) 1292.8724 1260.7316 1279.8947 1277.8329 16.1693 0.0127

maps 2880 2880 2880 2880 0 0

time (sec) 228 229 237 231.3333 4.9329 0.0213
Parquet-Snappy mem.(GB) 1326.3562 1367.3937 1406.5012 1366.7504 40.0763 0.0293

maps 2880 2880 2880 2880 0 0

time (sec) 227 225 219 223.6667 4.1633 0.0186
Parquet-Gzip mem.(GB) 1319.0871 1380.6884 1432.5885 1377.4547 56.8198 0.0412

maps 2880 2880 2880 2880 0 0

Table 5.10: GitHub log query 2.2 results
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Query 3

Now we start with the Hive queries. The first one is the query 3. This is the same
count query done in the Opensky dataset. For having good performance it is important to
have metadata in the file header. The results of this query are shown in Figure 5.11 and
Table 5.11.

First of all we can notice that the number of map tasks is now different from the ones
obtained in the MapReduce queries. This is because Hive do not use the same configura-
tion as the default MapReduce. Here, each map task processes more than one single file.
Thus the number of map tasks is reduced under 200 for almost all the formats when using
compression.

Considering general performance, once again the best formats for this counting query
are the columnar ones. This is because of their metadata. The human-readable formats do
not have any information about the number of rows inside each block. Thus, they need to
read the records to count how many there are.

We can notice that the human readable formats have a better performance, in execution
time, memory peak and number of maps, when they are used with a compression codec.
This is because the number of map tasks is much lower when using compression codecs.
In the previous queries this did not happen because the number of map tasks was the same
for all. Also, the data does not need to be decompressed. It is only necessary to count the
records, we do not want to know what is inside them.

Avro is again different from the rest of formats, as it has a very similar execution
time when it uses Snappy compression than when it uses no compression. Although, the
memory usage and the number of maps are much smaller when using the compression
codec. Even it has information about the number of records inside each block, it seems
that it does not use that metadata, as it has almost the same execution time as JSON
without using compression (just 5.37% faster), and 95.34% slower when using Snappy.

The best formats in every aspect for this query, are the column-oriented ones. They
have the smallest files and they have information about the number of records inside their
metadata. The slowest of the three is Parquet (over 100 seconds with no compression),
unlike when we were using the Opensky data, when it was the fastest. This could be
because the number of records information is inside the metadata of each page; and there
is, at least, one page for every column chunk, and one column chunk for each column
inside a row group. ORC and RCFile have this information in the row group metadata.
Thus, Parquet has to read more than 200 headers metadata for each row group, while
RCFile and ORC just read one value.

If we have to select one best format for this query would be ORC. It is the fastest
one, lasting less than 50 seconds with or without compression, so it has a good manage-
ment of the metadata, and it uses very few memory (the only one under 200GB with no
compression, and under 100GB for Snappy).

The use of resources is much smaller than the one seen in the three previous queries,
having all memory peaks under 600GB, unlike the MapReduce queries, in which the
memory peaks were even higher than 2000GB. This is mostly because of the much smaller
number of map tasks.
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run 1 run 2 run 3 Average Desv. VC

time (sec) 184 181 195 186.6667 7.3711 0.0395
JSON-Plain mem.(GB) 531.8244 514.0508 511.7376 519.2043 10.9904 0.0212

maps 716 716 716 716 0 0

time (sec) 93 86 81 86.6667 6.0277 0.0696
JSON-Snappy mem.(GB) 168.3842 162.8932 168.184 166.4871 3.114 0.0187

maps 219 219 219 219 0 0

time (sec) 64 63 60 62.3333 2.0817 0.0334
JSON-Gzip mem.(GB) 109.563 111.2262 108.2453 109.6782 1.4938 0.0136

maps 142 142 142 142 0 0

time (sec) 199 200 195 198 2.6458 0.0134
SeqF-Plain mem.(GB) 540.9447 547.1223 526.058 538.0417 10.828 0.0201

maps 726 726 726 726 0 0

time (sec) 107 93 100 100 7 0.07
SeqF-Snappy mem.(GB) 176.6223 180.9496 190.7824 182.7848 7.2562 0.0397

maps 227 227 227 227 0 0

time (sec) 70 68 68 68.6667 1.1547 0.0168
SeqF-Gzip mem.(GB) 115.3382 116.5712 117.1774 116.3623 0.9372 0.0081

maps 149 149 149 149 0 0

time (sec) 181 171 177 176.3333 5.0332 0.0285
Avro-Plain mem.(GB) 366.4475 357.301 363.5788 362.4424 4.6779 0.0129

maps 444 444 444 444 0 0

time (sec) 169 169 165 167.6667 2.3094 0.0138
Avro-Snappy mem.(GB) 136.9774 139.9114 143.6536 140.1808 3.3463 0.0239

maps 168 168 168 168 0 0

time (sec) 66 59 62 62.3333 3.5119 0.0563
RCFile-Plain mem.(GB) 275.4747 290.7746 293.6242 286.6245 9.7605 0.0341

maps 396 396 396 396 0 0

time (sec) 33 37 35 35 2 0.0571
RCFile-Snappy mem.(GB) 110.262 109.5541 114.2463 111.3542 2.5296 0.0227

maps 158 158 158 158 0 0

time (sec) 27 26 23 25.3333 2.0817 0.0822
RCFile-Gzip mem.(GB) 71.6812 69.3358 67.5511 69.5227 2.0714 0.0298

maps 103 103 103 103 0 0

time (sec) 44 44 38 42 3.4641 0.0825
ORC-Plain mem.(GB) 190.3954 184.8663 179.1133 184.7917 5.6414 0.0305

maps 274 274 274 274 0 0

time (sec) 22 22 21 21.6667 0.5774 0.0266
ORC-Snappy mem.(GB) 62.7575 64.3835 65.5450 64.2287 1.4002 0.0218

maps 135 135 135 135 0 0

time (sec) 159 158 141 152.6667 10.116 0.0663
Parquet-Plain mem.(GB) 413.0379 398.437 403.3696 404.9482 7.4273 0.0183

maps 346 346 346 346 0 0

time (sec) 103 99 102 101.3333 2.0817 0.0205
Parquet-Snappy mem.(GB) 207.1419 210.1475 210.3051 209.1982 1.7825 0.0085

maps 174 174 174 174 0 0

time (sec) 89 88 97 91.3333 4.9329 0.054
Parquet-Gzip mem.(GB) 138.6923 134.3401 139.7849 137.6058 2.8804 0.0209

maps 119 119 119 119 0 0

Table 5.11: GitHub log query 3 results
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Query 4

The next query is the query 4. This is a single record search. To find that row we
use the column “id”, more specifically the record with the value “7044822816”. The
performance results of this query can be seen in Figure 5.12 and Table 5.12.

We can observe that, as there are very few columns affected, the most efficient usage
of resources and time is reached by the column-oriented formats. It is obvious that if
there are very few columns needed to find the record, in these formats it can be avoided
the unnecessary read of all the other columns; even if for the final record all the fields are
requested.

Again, the number of map tasks is directly proportional with the execution time and
with the memory usage. Except for Avro, that last 6% more using Snappy codec than
when it uses no compression. Taking into account all the previous queries, this is probably
because the Snappy decompression is very slow for the Avro serialized data in a many
complex columns situation; we do not know if this statement can be generalized for other
scenarios as in the Opensky dataset this performance worsening with compression did not
happen.

The row-oriented formats are much slower than the column-oriented ones. The colum-
nar formats have an execution time under than 50 seconds (except for RCFile with no
compression), and the row ones do not lower that time in any case. This is because the
columnar files do not need to read more than 200 columns just to access to one or two of
them. Thus, RCFile, ORC and Parquet read only the column “id”, and only if they find
the requested record, read the rest of columns to return the entire row. This allows to skip
a great number of unnecessary data reads. The row formats can not skip columns, because
of their storage orientation.

Inside the columnar formats group, ORC is fastest one, being 36.92% faster than
Parquet, and 66.33% faster than RCFile, both without using compression. Even, ORC
using Snappy compression is faster than any other combination (with only 17 seconds).
The reason is probably that it was specifically designed for Hive and MapReduce, so it is
feasible that ORC is faster than Parquet. And also, as it is an optimization of RCFile, it is
not surprising that ORC is faster.

Query 5.1

The query 5 is divided into two different queries, as we have previously done with
query 2. We will make a filter by the column “id” in this query 5.1, and in the next one
we will filter by a very nested column. The filter done here is to select the ids higher than
“7607000000”. This is a very restrictive query, that very few records accomplish. The
rest of the columns are not requested. We can find the results of this query in Figure 5.13
and Table 5.13.

The performances of this query are very similar to the ones seen in previous ones. The
best execution times and usage of resources are obtained in the column-oriented formats,
and the row ones are up 5.63 times slower, comparing, for example ORC and JSON with
Snappy compression. Avro continues having a worse execution time with Snappy (9.52%
slower), so the theory of slow decompression for its serialization in this type of data is
stronger.
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run 1 run 2 run 3 Average Desv. VC

time (sec) 175 172 182 176.3333 5.1316 0.0291
JSON-Plain mem.(GB) 354.1893 347.7608 353.4189 351.7897 3.5103 0.01

maps 716 716 716 716 0 0

time (sec) 81 79 71 77 5.2915 0.0687
JSON-Snappy mem.(GB) 114.8108 111.9635 107.5566 111.4436 3.6549 0.0328

maps 219 219 219 219 0 0

time (sec) 63 56 57 58.6667 3.7859 0.0645
JSON-Gzip mem.(GB) 75.0492 75.2893 73.9718 74.7701 0.7017 0.0094

maps 142 142 142 142 0 0

time (sec) 175 175 167 172.3333 4.6188 0.0268
SeqF-Plain mem.(GB) 359.5041 360.9134 345.506 355.3078 8.5178 0.024

maps 726 726 726 726 0 0

time (sec) 84 80 81 81.6667 2.0817 0.0255
SeqF-Snappy mem.(GB) 121.1713 127.3365 128.4838 125.6639 3.9327 0.0313

maps 227 227 227 227 0 0

time (sec) 60 61 60 60.3333 0.5774 0.0096
SeqF-Gzip mem.(GB) 78.2657 75.4434 74.3065 76.0052 2.0385 0.0268

maps 149 149 149 149 0 0

time (sec) 150 156 156 154 3.4641 0.0225
Avro-Plain mem.(GB) 250.3505 249.6621 247.8245 249.279 1.3058 0.0052

maps 444 444 444 444 0 0

time (sec) 162 168 163 164.3333 3.2146 0.0196
Avro-Snappy mem.(GB) 93.7144 94.5494 91.3228 93.1955 1.6747 0.018

maps 168 168 168 168 0 0

time (sec) 85 82 84 83.6667 1.5275 0.0183
RCFile-Plain mem.(GB) 181.4096 189.798 197.7733 189.6603 8.1827 0.0431

maps 396 396 396 396 0 0

time (sec) 33 37 37 35.6667 2.3094 0.0647
RCFile-Snappy mem.(GB) 72.9717 73.7518 78.1289 74.9508 2.7798 0.0371

maps 158 158 158 158 0 0

time (sec) 29 28 26 27.6667 1.5275 0.0552
RCFile-Gzip mem.(GB) 47.912 50.2697 52.4891 50.2236 2.2889 0.0456

maps 103 103 103 103 0 0

time (sec) 27 28 27 27.3333 0.5774 0.0211
ORC-Plain mem.(GB) 126.8697 130.6313 131.8044 129.7685 2.5781 0.0199

maps 274 274 274 274 0 0

time (sec) 18 17 16 17 1 0.0588
ORC-Snappy mem.(GB) 62.7628 59.9316 59.3725 60.689 1.8177 0.03

maps 135 135 135 135 0 0

time (sec) 39 46 45 43.3333 3.7859 0.0874
Parquet-Plain mem.(GB) 158.1578 150.8525 155.8548 154.955 3.7348 0.0241

maps 346 346 346 346 0 0

time (sec) 31 32 28 30.3333 2.0817 0.0686
Parquet-Snappy mem.(GB) 80.8347 80.5275 80.4824 80.6149 0.1917 0.0024

maps 174 174 174 174 0 0

time (sec) 23 22 21 22 1 0.0455
Parquet-Gzip mem.(GB) 55.3364 56.1145 58.3085 56.5865 1.5413 0.0272

maps 119 119 119 119 0 0

Table 5.12: GitHub log query 4 results
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run 1 run 2 run 3 Average Desv. VC

time (sec) 178 173 170 173.6667 4.0415 0.0233
JSON-Plain mem.(GB) 353.9083 366.3234 357.8907 359.3742 6.3391 0.0176

maps 716 716 716 716 0 0

time (sec) 87 93 79 86.3333 7.0238 0.0814
JSON-Snappy mem.(GB) 114.6645 111.7646 117.1561 114.5284 2.6983 0.0236

maps 219 219 219 219 0 0

time (sec) 59 56 50 55 4.5826 0.0833
JSON-Gzip mem.(GB) 75.0104 77.2089 81.3612 77.8602 3.2251 0.0414

maps 142 142 142 142 0 0

time (sec) 174 170 173 172.3333 2.0817 0.0121
SeqF-Plain mem.(GB) 359.4693 357.388 370.5398 362.4657 7.0694 0.0195

maps 726 726 726 726 0 0

time (sec) 82 88 78 82.6667 5.0332 0.0609
SeqF-Snappy mem.(GB) 120.6574 118.2539 115.2089 118.0401 2.7306 0.0231

maps 227 227 227 227 0 0

time (sec) 62 63 63 62.6667 0.5774 0.0092
SeqF-Gzip mem.(GB) 77.8691 81.5406 82.9186 80.7761 2.6101 0.0323

maps 149 149 149 149 0 0

time (sec) 147 146 148 147 1 0.0068
Avro-Plain mem.(GB) 250.5735 246.5192 238.638 245.2436 6.0691 0.0247

maps 444 444 444 444 0 0

time (sec) 158 164 161 161 3 0.0186
Avro-Snappy mem.(GB) 93.9889 92.6881 95.6732 94.1168 1.4966 0.0159

maps 168 168 168 168 0 0

time (sec) 46 52 45 47.6667 3.7859 0.0794
RCFile-Plain mem.(GB) 184.2929 180.8098 177.4051 180.836 3.444 0.019

maps 396 396 396 396 0 0

time (sec) 24 28 36 29.3333 6.1101 0.2083
RCFile-Snappy mem.(GB) 74.4698 78.2291 76.6113 76.4367 1.8857 0.0247

maps 158 158 158 158 0 0

time (sec) 21 20 19 20 1 0.05
RCFile-Gzip mem.(GB) 48.0471 46.7311 48.0045 47.5942 0.7478 0.0157

maps 103 103 103 103 0 0

time (sec) 25 28 30 27.6667 2.5166 0.091
ORC-Plain mem.(GB) 126.4434 126.0325 122.2162 124.8974 2.331 0.0187

maps 274 274 274 274 0 0

time (sec) 15 15 16 15.3333 0.5774 0.0377
ORC-Snappy mem.(GB) 62.7809 65.0781 67.8062 65.2217 2.5157 0.0386

maps 135 135 135 135 0 0

time (sec) 46 45 51 47.3333 3.2146 0.0679
Parquet-Plain mem.(GB) 164.5961 163.7599 163.0394 163.7985 0.7791 0.0048

maps 346 346 346 346 0 0

time (sec) 34 34 33 33.6667 0.5774 0.0171
Parquet-Snappy mem.(GB) 83.546 80.5893 76.9982 80.3778 3.279 0.0408

maps 174 174 174 174 0 0

time (sec) 25 26 25 25.3333 0.5774 0.0228
Parquet-Gzip mem.(GB) 55.7879 57.4599 60.0766 57.7748 2.1616 0.0374

maps 119 119 119 119 0 0

Table 5.13: GitHub log query 5.1 results
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Once again, ORC is the format with better overall performance, with the best execu-
tion time and one of the lowest memory peaks and number of map tasks. However, RCFile
also has a good performance, taking into account that this format do not have metadata to
know the range of the values inside a column, being almost as fast as Parquet, with only
0.7% more seconds with no compression. Parquet and ORC do have information about
maximum and minimum values of a column inside each block, but Parquet is 71.08%
slower than ORC with no compression.

Query 5.2

Now that we have proved what happens with a simple column, we will make the filter
by a very nested one. In this query we have requested the id for those records with a
“payload.pull request.base.repo.owner.id” value over “37000000”. Again this is a very
restrictive query, with very few records that fulfill it. Also, in this column there are a lot
of null values. It is worth noting that that for this query we are requesting two columns
(the id and payload.pull request.base.repo.owner.id), but as there are more than 200, the
overall results differences should not be significant. This results are shown in Figure 5.14
and Table 5.14.

The obtained performances are slightly different to the ones seen in the query 5.1.
Even though the row-oriented formats numbers are roughly the same, the columnar ones
are not.

The first fact to highlight is that Parquet has a much worse performance, being 2.79
times slower and using 139.74% more memory than in the previous query, when no com-
pression is used. Even parquet is supposed to work well with complex data schemas,
when we request a very nested column the time taken to resolve it is doubled, and the
same happens with the memory peaks.

The other important fact that we can observe is that RCFile has been faster than ORC
in this case (16.12% and 34.69% faster for plain and Snappy respectively), and it has
also used less memory (34.82% and 47.36% less with no compression and with Snappy
respectively). This is because of the mentioned situation of this format when storing
complex types, that simulates a plain table with no complex type data. Thus, RCFile does
not need to deal with a very nested column, for this format it is just a simple one.

75



 0

 50

 100

 150

 200

J
S
O
N

S
e
q
u
e
n
c
e
F
i
l
e

A
v
r
o

R
C
F
i
l
e

O
R
C

P
a
r
q
u
e
t

s
e
c
o
n
d
s

Query 5.2 − Execution time

Plain
Snappy

Gzip

 0

 100

 200

 300

 400

J
S
O
N

S
e
q
u
e
n
c
e
F
i
l
e

A
v
r
o

R
C
F
i
l
e

O
R
C

P
a
r
q
u
e
t

G
B

Query 5.2 − Memory peak

Plain
Snappy

Gzip

 0

 200

 400

 600

 800

J
S
O
N

S
e
q
u
e
n
c
e
F
i
l
e

A
v
r
o

R
C
F
i
l
e

O
R
C

P
a
r
q
u
e
t

n
u
m
b
e
r
 
o
f
 
m
a
p
s

Query 5.2 − Launched maps

Plain
Snappy

Gzip

Figure 5.14: GitHub log query 5.2 performance

76



run 1 run 2 run 3 Average Desv. VC

time (sec) 178 174 173 175 2.6458 0.0151
JSON-Plain mem.(GB) 352.8366 355.1195 354.0435 353.9999 1.1421 0.0032

maps 716 716 716 716 0 0

time (sec) 88 85 98 90.3333 6.8069 0.0754
JSON-Snappy mem.(GB) 112.9644 113.4298 109.5652 111.9865 2.1097 0.0188

maps 219 219 219 219 0 0

time (sec) 60 57 59 58.6667 1.5275 0.026
JSON-Gzip mem.(GB) 73.8045 73.986 75.3829 74.3911 0.8637 0.0116

maps 142 142 142 142 0 0

time (sec) 174 169 170 171 2.6458 0.0155
SeqF-Plain mem.(GB) 357.8866 368.2331 377.542 367.8872 9.8323 0.0267

maps 726 726 726 726 0 0

time (sec) 87 76 80 81 5.5678 0.0687
SeqF-Snappy mem.(GB) 119.8389 119.0264 121.3271 120.0641 1.1668 0.0097

maps 227 227 227 227 0 0

time (sec) 61 64 62 62.3333 1.5275 0.0245
SeqF-Gzip mem.(GB) 77.4336 75.9879 76.0396 76.487 0.8202 0.0107

maps 149 149 149 149 0 0

time (sec) 148 146 150 148 2 0.0135
Avro-Plain mem.(GB) 250.549 247.8456 237.9565 245.4504 6.6291 0.027

maps 444 444 444 444 0 0

time (sec) 158 160 164 160.6667 3.0551 0.019
Avro-Snappy mem.(GB) 93.8958 90.8912 90.7165 91.8345 1.7873 0.0195

maps 168 168 168 168 0 0

time (sec) 56 52 48 52 4 0.0769
RCFile-Plain mem.(GB) 184.434 190.1238 193.932 189.4966 4.7799 0.0252

maps 396 396 396 396 0 0

time (sec) 32 31 33 32 1 0.0313
RCFile-Snappy mem.(GB) 72.0013 69.8125 69.8907 70.5682 1.2418 0.0176

maps 158 158 158 158 0 0

time (sec) 24 26 23 24.3333 1.5275 0.0628
RCFile-Gzip mem.(GB) 47.4683 46.7259 49.35 47.8481 1.3527 0.0283

maps 103 103 103 103 0 0

time (sec) 64 61 61 62 1.7321 0.0279
ORC-Plain mem.(GB) 290.5569 286.5443 295.2008 290.7673 4.3321 0.0149

maps 274 274 274 274 0 0

time (sec) 48 49 50 49 1 0.0204
ORC-Snappy mem.(GB) 130.3437 135.6395 133.2441 133.0758 2.6519 0.0199

maps 135 135 135 135 0 0

time (sec) 129 123 145 132.3333 11.3725 0.0859
Parquet-Plain mem.(GB) 395.1833 382.8418 400.0735 392.6995 8.8803 0.0226

maps 346 346 346 346 0 0

time (sec) 101 95 93 96.3333 4.1633 0.0432
Parquet-Snappy mem.(GB) 199.4257 205.0834 198.0962 200.8684 3.7103 0.0185

maps 174 174 174 174 0 0

time (sec) 87 82 83 84 2.6458 0.0315
Parquet-Gzip mem.(GB) 134.7944 133.2604 139.501 135.8519 3.2519 0.0239

maps 119 119 119 119 0 0

Table 5.14: GitHub log query 5.2 results
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Chapter 6

Conclusions

In this work we have studied the distributed file systems, focusing in HDFS and its
file formats. In particular, we have made a study of the characteristics of each of the main
formats of HDFS, comparing each one with a proposed framework. With this theoreti-
cal study, we are able to guess which format is better for a specific situation of data and
queries. To check if the conclusions obtained are valid, we have done a experimental
study, using two different datasets; one very simple, and another one with complex data
types and nested structures. For each dataset we have made a set of simple queries us-
ing each different format with some compression options (Gzip and Snappy). With this
experimentation we have enriched and verified the conclusions obtained with the theory.

First of all, the most important thing is to know that there is there is no perfect
format. No one is better than the rest in all the situations for all kind of data, usage, and
data structure.

In the first part of this work, in which we have studied the characteristics of the file
formats, we have learned to make a first filter of which ones can fit our needs. For ex-
ample, if we have a data with complex type columns, RCFile is not suitable for it, as it
does not support complex types. Also, such theoretical study allowed us to make guesses
about the expected performance of the different formats. For example, if we are going to
store data to be processed with MapReduce jobs, and only few columns are needed for
each process, the theoretically best formats should be ORC and RCFile. But if we want
to use that data with many frameworks and tools, we would probably prefer Parquet, as it
is easily usable with plenty of tools and frameworks.

However, this qualitative study is not enough in many situations. The theory in some
cases does not reflect the reality, because very little details are omitted or not considered;
or even there is a theoretical tie between some formats. Thus, it is helpful to have some
performance number for some specific situations. With that results we generalized some
conclusions to enrich the previous theoretical information.

With the experimentation we have learned some new things about the performance of
the formats in a MapReduce environment. First of all, it is very important the number of
map tasks. Despite having many maps allows a big parallelization, the number of maps
should not be much greater than the parallelization capacity. If we have too many map
tasks, we will loose lot of time with scheduling and starting/ending of tasks. Thus, the
compression is crucial when working with big amounts of data. By using a compression
codec we will have less map tasks, and thus, faster jobs with less usage of resources;
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and also big saves of disk storage. Our conclusion is to always use compression when
working with MapReduce.

Another very important aspect to consider is the number of columns, and how many
of them would be usually requested when querying the data. If we need very few columns
for our queries, the columnar formats have a better performance than the row-oriented
ones. However, if the data is stored for making full scans of it, it is probably better to use
a row-oriented format.

Focusing now in specific formats, it is important to highlight that in our experimenta-
tion Avro do not have a very good performance in many cases, not making a big compres-
sion with its serialization, and having execution times even slower than text formats. And
what is more, it seems that the blocks metadata is not used, as for the count queries the
execution times has been very slow; even it has stored the number or records per block.

On the opposite side, ORC has reached maybe the best results when using it with
Hive. Nevertheless, when using it with our MapReduce scripts the memory peaks were
much higher. This means that the configuration of Hive with ORC may be optimized.
Therefore, if we want to use a column-oriented format with Hive, ORC could be our best
option.

This change of performance between Hive and MapReduce default scripts led us to
another conclusion. In many cases, the configuration of a MapReduce job can change
completely the performance. An example of this is the difference between just processing
one small file per map task, or process several. With several files per map task, the number
of tasks would be smaller, and that can mean a better performance and faster queries.

6.1 Future work
Despite all the conclusions we have made, there are a lot of scenarios that we have not

considered and we do not know which format is better in that cases.
We have selected relatively small datasets, that do not even reach 1TB of data, that is

what we have considered Big Data nowadays. The decision of the data size has been made
due to existing restrictions of time and cluster resources consumption, as several projects,
not only ours, cohabit in the same cluster. A new experimental study with larger datasets
will be made soon on a dedicated cluster with larger resources in order to, first, confirm
our current conclusions, and second, the perform scalability experiments with different
sizes on the same datasets.

Also, we have selected very simple queries, that in the majority of cases only affects
one or two columns. Some other more complex queries cloud be of interest, as not always
simple queries are needed. For example the usage of more than one restriction could lead
to different performance results.

Another characteristic of the selected scenario for the experimentation is that have just
focused on MapReduce and Hive. However, there are more computation frameworks that
could be included in the study. For example, Spark [14] has become popular, as it is better
when making iterative jobs or interactive analytics.
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Appendix A

Opensky Schema

opensky
{

string id;
string time;
string icao24;
string callsign;
string origin country;
double time position;
double time velocity;
double longitude;
double latitude;
double altitude;
boolean on ground;
double velocity;
double heading;
double vertical rate;
string sensors;
double baro altitude;
double squawk;
boolean spi;
string position source;
string date;

}
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Appendix B

GitHub log Schema

message github
{

struct actor
{

string avatar url;
string display login;
string gravatar id;
string id;
string login;
string url;

}
string created at;
string id;
struct org
{

string avatar url;
string gravatar id;
string id;
string login;
string url;

}
struct payload
{

string action;
array commits
{

struct author
{

string name;
}
string message;

}
struct forkee
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{
string archive url;
string assignees url;
string blobs url;
string branches url;
string clone url;
string collaborators url;
string comments url;
string commits url;
string compare url;
string contents url;
string contributors url;
string created at;
string default branch;
string deployments url;
string description;
string downloads url;
string events url;
boolean fork;
int32 forks;
int32 forks count;
string forks url;
string full name;
string git commits url;
string git refs url;
string git tags url;
string git url;
boolean has downloads;
boolean has issues;
boolean has pages;
boolean has projects;
boolean has wiki;
string homepage;
string hooks url;
string html url;
string id;
string issue comment url;
string issue events url;
string issues url;
string keys url;
string labels url;
string language;
string languages url;
string merges url;
string milestones url;
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string mirror url;
string name;
string notifications url;
int32 open issues;
int32 open issues count;
struct owner
{

string avatar url;
string events url;
string followers url;
string following url;
string gists url;
string gravatar id;
string html url;
string id;
string login;
string organizations url;
string received events url;
string repos url;
boolean site admin;
string starred url;
string subscriptions url;
string type;
string url;

}
boolean private;
boolean public;
string pulls url;
string pushed at;
string releases url;
int32 size;
string ssh url;
string stargazers url;
string statuses url;
string subscribers url;
string subscription url;
string svn url;
string tags url;
string trees url;
string updated at;
string url;
int32 watchers;
int32 watchers count;

}
string head;
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struct issue
{

struct assignee
{

string avatar url;
string events url;
string gists url;
string html url;
string id;
string login;
string organizations url;
string repos url;
boolean site admin;
string starred url;
string subscriptions url;
string type;
string url;

}
array assignees
{

string avatar url;
string events url;
string followers url;
string following url;
string gists url;
string gravatar id;
string html url;
string id;
string login;
string organizations url;
string received events url;
string repos url;
boolean site admin;
string starred url;
string subscriptions url;
string type;
string url;

}
string author association;
string body;
string closed at;
int32 comments;
string comments url;
string created at;
string events url;
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string html url;
string id;
array labels
{

string color;
boolean default;
string id;
string name;
string url;

}
string labels url;
boolean locked;
struct milestone
{

string closed at;
int32 closed issues;
string created at;
struct creator
{

string avatar url;
string events url;
string followers url;
string following url;
string gists url;
string gravatar id;
string html url;
string id;
string login;
string organizations url;
string received events url;
string repos url;
boolean site admin;
string starred url;
string subscriptions url;
string type;
string url;

}
string description;
string due on;
string html url;
string id;
string labels url;
int32 number;
int32 open issues;
string state;
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string title;
string updated at;
string url;

}
int32 number;
struct pull request
{

string diff url;
string html url;
string patch url;
string url;

}
string repository url;
string state;
string title;
string updated at;
string url;
struct user
{

string avatar url;
string events url;
string followers url;
string following url;
string gists url;
string gravatar id;
string html url;
string id;
string login;
string repos url;
boolean site admin;
string starred url;
string subscriptions url;
string type;
string url;

}
}
string master branch;
int32 number;
array pages
{

string action;
string title;

}
struct pull request
{
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struct base
{

string ref;
struct repo
{

string id;
struct owner
{

string id;
string login;

}
string url;

}
struct user
{

string id;
string login;

}
}
string id;
struct user
{

string id;
string login;

}
}
string push id;
struct release
{

array assets
{

string id;
string label;
string name;
int32 size;
struct uploader
{

string id;
string login;
string url;

}
string url;

}
struct author
{
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string id;
string login;

}
string id;

}
int32 size;

}
boolean public;
struct repo
{

string id;
string name;
string url;

}
string type;

}
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