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Received 13 July 2014; Accepted 18 December 2014

Academic Editor: Hiroyuki Hashiguchi
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Air trajectory calculations are commonly found in a variety of atmospheric analyses. However, most of reported research usually
focuses upon the transport of pollutants via trajectory routes and not on the trajectory itself. This paper explores the major areas of
research in which air trajectory analyses are applied with an effort to gain deeper insights into the key points which highlight the
necessity of such analyses. Ranging from meteorological applications to their links with living beings, air trajectory calculations
become important tool especiallywhen alternative procedures do not seempossible.This review covers the reports published during
last few years illustrating the geographical distribution of trajectory applications and highlighting the regions where trajectory
application research proves most active and useful. As a result, relatively unexplored areas such as microorganism transport are
also included, suggesting the possible ways in which successful use of air trajectory research should be extended.

1. Introduction

Atmospheric processes such as air pollution, dispersion
of hazardous substances, or meteorological episodes have
a noticeable impact on the life of human beings. These
processes may be better understood when air trajectories are
also included in the studies. Although a simple approach is to
assume straight trajectories, experience reveals a more com-
plex evolution [1]. Among the techniques used to investigate
air trajectories, experimental determination is not common-
place, since complex and expensive measuring campaigns are
involved.Another choice is the use of satellites [2, 3], although
mathematical models are systematically applied.

Most applied models include HYSPLIT, where dispersion
and deposition may be considered [4], the FLEXTRAmodel,
which permits boundary layer trajectories and calculations
with the vertical wind component equal to zero [5], or
the recent METEX, which accepts meteorological data in
different formats [6]. There are several reasons why models
are widely used. The main reason is that these are freely
available and prove extremely easy to apply since a reference

site is considered where trajectories either arriving or leaving
are calculated. In addition, input requirements are minimal.
A further advantage is their extreme versatility, since they
may be used not only for providing information about
air pathways but also, together with additional variables
such as temperature, moisture, or concentration, for giving
information about sources. Moreover, models are subject to
calibration and evaluation processes [7] and seem to evidence
a similar ability to simulate air trajectories, with differences
in formulations playing a secondary role [8]. The limitations
inherent in models are the same as in conventional weather
forecasts, since their accuracy may only be affected when
their input variables are sparse. Uncertainty visualization
methods have been proposed [9], and their results must be
interpreted applying knowledge ofmeteorology, location, and
the nature of possible pollution sources [10].

One noticeable feature of air trajectory models in any
study is that their usemay not be the objective of the research,
but they may be taken as the basis for further calculations.
Prominent among such applications is the widely used
potential source contribution function [11]. However, other
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less frequently applied applications should also bementioned.
The proposal of wind direction sectors is a simple way for
classifying air trajectories [12], which provides the basis for
trajectory sector analysis [13] and for the more elaborate
cluster analysis, which may be applied following different
techniques [14], with the aim to obtain flow patterns. The
recirculation factor was proposed some time ago although
it has rarely been used [15]. By contrast, roundness has
recently been applied in these calculations [16]. Trajectories
are also used for smoothing and interpolating concentrations
through the nonparametric regression procedure [17]. Tools
such as TrajStat have recently been developed to simplify
and facilitate easy visualisation of these calculations [18].
Trajectory statistics may be combined with detailed land
cover analysis and meteorological data to obtain information
concerning the history of air masses [19]. In addition, trans-
port models combined with satellite observations provide
a spatial and temporal distribution of concentrations and
improve air quality forecasts [20].

The current paper focuses on applications of air trajecto-
ries. Due to the satisfactory features of the models, fields of
application vary enormously. One application of trajectories
is identification of pollution sources such as deserts, which
are considered as natural sources of particulate matter [21].
Although urban and industrial areas are also identified
as sources of particulate matter, these are considered as
anthropogenic sources. Since the distance travelled by air
massmay differ from local to regional or long-range transport
affecting various atmospheric depositions and phenomena,
broad areas of trajectory applications should be considered.
In these latter cases, the air parcel may receive injections
from varying sources during its trip due to which its initial
properties may be altered considerably depending on surface
characteristics and travel time [22]. Moreover, models may
be validated and compared [23–25]. Widespread application
of air trajectories, which ensures their usefulness, justifies a
specific study in order to fill a gap in the area of applied
atmosphere research.

To accomplish this objective, research reports published
in recent years have been reviewed. One possible choice is
certain representative papers and the removal of collateral
treatments. However, the current paper considers an exten-
sive number of studies in order to secure precise knowledge
of research fields where the said technique is used, this
ranging from only meteorology to air pollution or pollen
spread. Proposing a classification is by no means easy due
to overlaps in the research covered by the various groups
suggested. However, establishing classes seems necessary if
information is to be simplified and if insights concerning the
type of application and targets pursued are to be gained. The
groups proposed are inhomogeneous both in the number of
papers published and in their geographical distribution. This
results in generation of knowledge more effectively out of
the research that involved multiple resources and the regions
where this analysis is applied. The reported studies have
been grouped into five categories, namely, (i) meteorological
applications, (ii) air chemistry, (iii) hazardous substances, (iv)
aerosols, and (v) living beings. These groups are divided into
several subgroups where the main applications or results are

presented. Although a close relationship between papers in
each group would be desirable, it is not easy to link various
studies as someworkers analyse isolated events, time intervals
of the studies do not overlap, airflows are conditioned by the
orography, there may be differences in measuring height, and
so forth.

However, air trajectory analysis sometimes fails to reveal
differences in air masses from widely varying geographical
regions. In such cases work needs to be carried out in order
to securemore precise knowledge of air trajectory application
limits.

2. Meteorological Applications

2.1. Cyclones and Synoptic Meteorology. Cyclone evolution
has been studied worldwide, particularly over oceans, such
as the southwestern South Atlantic Ocean [26] or over the
North Atlantic with the interpretation of potential vorticity
inversions [27].Over theNorthernHemisphere, extratropical
cyclones have been tracked and predictions verified [28].
The “Perfect Storm” cyclogenesis over the North Atlantic has
been analysed [29]. Determining the trajectory of medicanes,
intense storms over the Mediterranean similar to tropical
ones, is valuable because of the enormous potential damage
given the fact that coastal regions are densely populated [30].
The role of sea surface heat fluxes was considered over this
sea, the properties being modified in numerical simulations
to observe the evolution of the cyclone [31]. Over subtropical
East Asia, in spring 2004, air masses transported low O

3

concentrations to higher latitudes following the circulation
associated with the Sudal typhoon and the northern Hadley
cell [32]. The hybrid characteristics of a low pressure system
over the Tasman Sea with an erratic track before decay were
studied [33].

Other cyclonic circulations that have been analysed
include US tornadic environments [34], which are sub-
stantially higher than their European counterparts due to
blocking by the Alps and the colder sea surface over the
Atlantic Ocean [35]. Severe weather events (intense hail,
major convective gusts, or strong tornados) associated with
elevatedmixed-layer air were investigated in the northeastern
US [36]. The evolution of remnants of a haboob, a con-
vectively driven dust storm, was analysed in Phoenix, AZ,
where this is an unusual event [37]. Backward trajectories
were used to examine a warm-core meso-𝛽-scale vortex
formation associated with the “Super Derecho” convective
event observed on 8 May 2009 at Kansas [38].

Several examples illustrate general applications of air
circulation. The relationship between air trajectories and the
spatial synoptic classification was considered at Martinsburg,
WV [39]. A polar vortex was responsible for an advective
cooling event over almost the whole of Iran [40]. Gener-
alised frosts over southern South America were favoured
by remotely excited Rossby waves [41]. Air trajectories were
used to investigate transport from the planetary boundary
layer to the Asian summer monsoon anticyclone [42]. Eight
weather regimes were described in southeastern Queensland,
Australia. Four wet regimes observed preferentially during
summer were linked with shorter trajectories at lower levels
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than dry regimes, which were observed throughout the
year [43]. Two trajectory clusters were considered in the
Ross Sea Region, Antarctica, the oceanic/west Antarctic, and
continental/east Antarctic [44].

The relationship between wind and air trajectories has
occasionally been analysed and has revealed that the regional
prevailing NW winds over the East Mediterranean are
the strongest prior to cool events [45] and the air mass
transformation over the western North Pacific controls the
characteristics of the Yamase wind [46].

Recirculation processes are the meteorological features
responsible for high pollutant concentrations, such as those
observed over the EastMediterranean region [47] and during
O
3
episodes in the Lower FraserValley, Canada [48]. Stagnant

airflow was another noticeable meteorological feature that
determined enhanced concentration of particles in summer
over the coastal areas of the Yellow Sea and near Japan [49].

Orographic effects sometimes have a marked effect on
airflow, such as uplift in the Eastern Pyrenees, which deter-
mined and maintained heavy precipitation from 6 to 8
November 1982 [50], flow splitting and cyclogenesis in the
lee of Greenland, Denmark [51], atmospheric circulation at
Mount Rwenzori, Uganda [52], or the lifting process over
the North Pacific west of the California coast prior to heavy
precipitation over the Sierra Nevada [53].

Singular meteorological applications of air trajectories
include temporal changes in angular momentum used to
diagnose trajectories over large scale distances [54], investi-
gating the spatial structure of surface temperature by quan-
tification of the time that an air parcel spends over ocean
and land [55], the influence of fog on visibility [56], and
the influence of large scale subsidence in the meteorology of
major wildfire events in the northeast US [57] or describing
troposphere-stratosphere exchange over Asia [58, 59].

2.2. Atmospheric Moisture. Several studies have shown the
link between the origin of air masses and their moisture
content. Analysis of tropicalmoisture exports to theNorthern
Hemisphere revealed that it made a significant contribution
to regional precipitation and showed four activity centres: the
central and eastern PacificOcean, east SouthAmerica and the
adjacent AtlanticOcean, thewestern IndianOcean, andwest-
ern Australia [60, 61]. Analysis of the transport and trans-
formation of water in the tropical tropopause layer revealed
that deep convection moistened this layer [62]. Latitudinal
advection of moisture over the ocean has been investigated
andhas provided negative correlationswith latitude [63]. Two
clusters of intense water vapour transport from the Pacific
Ocean to the western coast of North America have been
established, the first associated with zonal trajectories and the
secondwithmeridional flows [64].Themajor directmoisture
sources for the Yangtze River Valley are over the valley itself,
withmajormoisture transport being over land, and the ocean
proving important in initiating moisture transfer [65]. The
Tibet Plateau, which has a major impact on the water cycle,
was revealed as a crossroad of air masses, air entering from
the NW and NE and flowing in two streams, one SW over
the Indian Ocean and another SE through the western North
Pacific [66]. High column water vapour conditions at Nauru,

in the western equatorial Pacific, were frequently associated
with weakened inflow from dry regions to the east of Nauru
[67]. Moisture corridors responsible for water vapour trans-
port from remote sources to the Snowy Mountains region,
Australia, where they determined precipitation events, were
identified [68]. Two moisture sources were detected in the
Galician/northern Portugal region: the Bay of Biscay and
the Tropical and Subtropical North Atlantic corridor [69]
and potential temperature and specific humidity of trajectory
clusters affecting the southwest of the Iberian Peninsula were
analysed [70].The variability of H

2
O in the Antarctic PBL has

also been explained, since aminimumH
2
O is observed when

air transits over the Antarctic Plateau [71].

2.3. Clouds. Air trajectory analysis revealed the noticeable
effect of aerosol on clouds. In Oklahoma, aerosols associated
with maritime and northerly air trajectories have a greater
effect on clouds than those from northwesterly trajectories,
which also exert local influence [72]. The influence of pre-
vious meteorological conditions on properties of subtrop-
ical clouds in the northeast Atlantic and their evolution
were studied by trajectory analysis [73]. Pollution from
the Shanghai-Nanjing and Jinan industrial areas in China
affected wintertime clouds and precipitation over the East
China Sea [74]. The region off the west coast of Africa was
divided into 1∘× 1∘ grid boxes where boxes associated with
aerosols of oceanic origin had a lower cloud fraction than
those associated with continental origin [75].

Trajectory analysis revealed that subsidence and advec-
tions from the SE and SW maintained an unusually dense
regional advection-radiation fog over Anhui, China, while
the northwesterly dry wind determined dissipation of the fog
[76].

Research into haze episodes in northwestern Thailand
revealed that air masses passed over dense biomass hotspots
before reaching the measuring site [77].

The relationship between ice in clouds and aerosols
was investigated in an extratropical cyclonic storm over the
western Pacific Ocean [78], and nucleation of ice was studied
on polar stratospheric clouds [79].

2.4. Precipitation. Establishing an initial relationship
between precipitation and air masses involves identifying
the origin of precipitation episodes. In Europe, over half the
observed precipitation in Belgrade, Serbia, corresponded
to airflow from the SW, SE, and NW [80]. Two flow types
were responsible for extreme rainwater pollution episodes in
the protected area of Wielkopolski National Park (western
central Poland) [81]. Back trajectories reaching four stations
in Europe, Oslo, Bremen, Smolensk, and Budapest, for days
with the highest amount of snowfall revealed that humid
air was transported over long distances and was shifted
from the low troposphere to the upper layers [82]. Wet
deposition in the southeastern Adriatic region is dominated
by precipitation from the Mediterranean Sea [83], and
Saharan dust transport across Europe determined “red” or
“blood” rains [84]. In South America, precipitation events
in the southern Peruvian Andes mainly occurred under
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weak flow regimes from nearby Amazon basin sources [85].
In North America, upstream air trajectories provided
information on moisture source regions and low level flow
affecting the southern Appalachians [86], and trajectories
with a Great Lakes connection determined higher snowfall
totals on parts of the higher elevation windward slopes in
the southern Appalachians [87]. Certain precipitation events
in Newfoundland, Canada, were associated with trajectories
originating in the Gulf of Mexico [88, 89]. In Asia, isotopic
composition of water across the Himalaya and eastern
Tibetan Plateau was controlled by local processes, although
air trajectories indicated changes in the mixing over the
plateau [90]. Westerly air masses in summer, and westerly
and polar air masses in winter, transported moisture for
precipitation events in the upper Urumqi River Basin, central
Asia [91]. Varied air masses affected Beijing, China, during
the Asian monsoon period [92]. Low pH of rain water has
been reported due to air masses originating from Gulf region
arriving at Hudegadde site located in an ecological sensitive
area of Western Ghats of India [93].

The contrast between marine and terrestrial air masses
was observed in Aveiro, Portugal [94], on the island of
Bermuda by nitrate composition [95], in Florianopolis,
Brazil, by air pollutant content [96], in the Yangtze River
Basin with 𝛿18O and 𝛿D concentration [97], and also near
Sydney, Australia, by the 𝛿18O composition of precipitation
[98]. Aerosol concentrationmay identify the type of air mass.
The advection of subtropical and tropical moisture caused
the most isotopically enriched precipitation in southern
California [99]. Two basic raindrop size evolutions were
observed during the Queensland Cloud Seeding Research
Program, one associated with continental air masses, with
relatively high aerosol concentrations and long air trajectories
over land, and the other related to maritime air masses with
lower aerosol concentrations [100].

Pollution sources may also be identified since enhanced
concentrations of trace elements in precipitation in a rural
area of South Korea were associated with industrialized areas
ofChina andmetropolitan areas of SouthKorea [101]. Aerosol
and precipitation data at the Maldives Climate Observatory
have been divided into two groups with pollution days with
airflow from the Indian subcontinent in a northeasterly sector
during winter and clear monsoon days with southerly flow
from the Indian Ocean with high concentrations attributed
to long-range transport from the Australian or African
continents [102].

Trajectory analysis in height may provide information
about pollution sources, such as advection in the middle
troposphere from Western Poland and Germany, which was
a possible source of pollution by fluorides in atmospheric
precipitation in Wielkopolski National Park, west central
Poland.However, short distance transport from local emitters
was the main source in the lower troposphere [103].

Increased concentration due to the absence of precipita-
tion has also been analysed at a remote site, Mt. Norikura,
Japan, where aerosol transport from sources to surface
without precipitation scavenging after entrainment in the free
troposphere enhanced mass concentration [104].

Types of trajectories may be identified by the composi-
tion of rainwater. A classification based on the relationship
between rainfall chemistry and air trajectories was estab-
lished in Minnesota [105].

Organic chemicals may be transported in the free tropo-
sphere by clouds, such as those formed in midwestern and
southeastern US, which determined hail storms in Toronto,
Canada, where these chemicals were recorded [106] and hail
occurrence in the North German Lowlands was studied by
the influence of atmospheric circulation [107].

Different air massmovement was responsible for unequal
sea-salt concentration of snow deposited in the Japan Alps
during the winter monsoon [108]. The relationship between
ice nuclei concentrations and air pathways was studied at
different altitudes in the Huangshan Mountains, SE China
[109]. Atmospheric transport from NW India and Nepal was
detected in snow composition from the Jima Yagzong glacier
in the central Himalayas [110], and high concentrations of
black carbon from south Asia were observed in the ice
cores of the Everest region in the monsoon season [111].
High dust concentrations in snow on Mt. Elbrus, Caucasus
Mountains, were transported from the Sahara, although
the Middle East was revealed as a secondary source [112].
Blocking high pressure systems over Scandinavia and the
advection of western European pollution determined high
concentrations of nitrogen deposited over Svalbard, Norway
[113]. Transport pathways and source regions of climate
proxies were considered in polar ice core analysis [114–116].

3. Air Chemistry Applications

3.1. Common Air Pollutants. Study of air pollution trans-
port is a direct application of air trajectory analysis. In
Israel, most air pollution is a consequence of long-range
transport from eastern and southern Europe [117], since
most air masses reaching this area reflect 2-3-day transport
times. On the contrary, severe air pollution atmospheric
conditions in Istanbul, Turkey, were attributed to a high
pressure system, which led to the formation of an exceptional
ground-based temperature inversion, long-range transport
of Saharan dust being excluded [118]. Large scale synoptic
air pollutant transport has been observed at high elevation
sites in the Alps [119]. Daily variations of pollutants in a
heavily industrialized area in central Spain have been studied
[120]. The scale of the NO

2
spatial-temporal variability in

the near-surface layer was estimated in the vicinities of
St. Petersburg, Russia [121]. In Asia, long distance sources
contributed to SO

2
recorded over Delhi, India, during winter,

with marine influence being noticeable during monsoon,
whereas regional sources prevailed during summer [122].The
heaviest air pollution episodes in Ürümqi, China, have been
analysed with synoptic patterns of atmospheric circulation
and air mass characteristics [123]. The close relationship
between air pollution and winter monsoon meteorology was
analysed in Hanoi, Vietnam [124]. In North America, trajec-
tories were also considered in a cluster analysis of pollutant
concentrations in Boston, MA [125]. The presence of long-
lived contaminants at remote sites was also investigated, as
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in the Yukon Territory where the Arctic Ocean, northern
Siberia, Canadian Yukon, and Northwest Territories were
sources of semivolatile organic compounds [126].

In contrast, clean sectors may be also identified. A study
of air mass trajectories arriving at Mace Head, Ireland,
revealed that the eastern North Atlantic is one of the cleanest
regions in the Northern Hemisphere [127].

Air transport between the US and Windsor, Canada, is
very frequent. However, its air quality should not be only
analysed from the air masses originating in the US [128].

Singular applications are the investigation of potential
sources of odour problems [129], identifying upwind sources,
which might affect air quality levels in Seoul, South Korea,
and downwind areas affected by this city [130] or identifying
sources from seven regions affecting two receptors in the
eastern US [131].

3.2. Ozone and Photochemistry. Several studies have proved
the usefulness of air trajectory analysis in photochemistry,
since precursors may be transported to form secondary
pollutants, which are also transported. This section first
focuses on O

3
records. In North America, increases in O

3

and CO concentrations at Whistler Mountain in British
Columbia, Canada, were attributed to fires in the Russian
Federation or Alaska and the Yukon Territory that were
transported by the prevailing westerly winds [132]. GIS
and back trajectory analyses indicated that mobile sources
contributed to O

3
formation over the Jackson region, MS

[133]. Weather patterns and trajectories were classified to
study high O

3
episodes in the Houston-Galveston-Brazoria

area [134]. The impact of wildfires on O
3
events was analysed

in the western US [135]. The warm conveyor belt of a cyclone
lofted pollutants responsible for O

3
high concentrations over

the western North Atlantic Ocean into the free troposphere
[136]. In Europe, exceptional meteorological conditions have
been considered to explain very high levels in Madrid, Spain
[137]. Air masses from industrialized continental Europe and
wildfire emissions determined high O

3
levels in southern

Italy, whereas the North African desert region was associated
with lower concentrations [138]. O

3
trends at Jungfraujoch,

Switzerland, were linked to the origin of airmasses [139]. Two
major routes of long-range transport were observed in the
Balkans, though both appeared with the same direction of
local winds in Patras, Greece. During the cold months, the
amount of O

3
transported was greater than that due to local

formation, with the opposite being true during warmmonths
[140]. In Asia, O

3
episodes in Malaysia were attributed

to regional transport from biomass burning in Sumatra,
Indonesia, as well as long-range transport from Indo-China
[141]. Moreover, transport, airflow pattern, stagnation, and
the boundary layer height determined the concentrations
recorded at certain sites in India and the Bay of Bengal [142–
148]. In China, transport from eastern, central, and southern
China, specifically linked with tropical cyclones, was a factor
determining the high levels measured in Hong Kong [149].
Stagnation and recirculation of air, together with intense
solar radiation, high temperature, and long-range transport
of pollutants, were responsible for O

3
episodes at urban Jinan

[150]. High biogenic volatile organic carbon emissions from

the vegetation of the Qinling Mountains caused the three
longest O

3
pollution episodes in Xi’an [151].

Another source of O
3
in the low atmosphere is its

transport from the stratosphere, where three phases have
been identified, tropopause crossing, free descent, and quasi-
horizontal dispersion in the lower troposphere [152]. Tra-
jectory analysis revealed an important direct stratospheric
impact in greater Athens, Greece, causing a noticeable
increase in surface concentrations with no photochemical
origin [153]. Moreover, vertical transport from aloft has
emerged as the main mechanism to replenish the atmo-
spheric boundary layer at Alert, Nunavut, Canada [154]. Con-
trastingly, bubbles of low O

3
concentration were observed in

the tropical tropopause layer in the equatorial region around
Central and SouthAmerica originating fromdeep convection
in the equatorial eastern Pacific and/or Panama Bight regions
[155].

The rest of the section is devoted to other pollutants
involved in atmospheric photochemistry. Plumes analysed
revealed that peroxyacetyl nitrate, PAN, another less studied
secondary pollutant, recorded at Mt. Bachelor, OR, was of
both Asian and North American origin [156].

Air trajectories have also been used to study precursors
of photochemical pollutants such as volatile organic com-
pounds, VOC. Air masses from Eurasia contained the lowest
VOC levels compared to others from China and India at the
Mt. Waliguan station in the northeast part of the Qinghai-
Tibetan Plateau [157]. Moreover, high CH

4
concentrations

at this site were associated with advection from heavily
populated regions and rice-growing areas [158]. Another
site where the relative contribution of anthropogenic VOC
sources to O

3
formation has been investigated is the region of

Kaohsiung, Taiwan, where precursors from land sources were
transported offshore determining high VOC concentrations
overseas [159, 160].

3.3. Trace Gases. CO
2
in the atmosphere is considered a

trace gas in most of the measurements. Transport influence
was revealed, since possible maxima or minima observed
in the CO

2
trend at two European remote sites could be

due to contamination of the air mass during the whole
of its trip [161]. The impact on this gas concentration of
emissions from the city of Valladolid, Spain, and recirculation
processes were assessed at a rural site [162].The effect of long-
range transport from industrial and natural sources on CO

2

has been observed at the remote site of Lampedusa Island,
Italy. The back trajectory study associated with in situ data
demonstrated that industrial activities and forests located in
Eastern Europe and Russia may strongly affect the recorded
CO
2
[163].

Other trace gases such as SO
2
and NOx have also been

considered which were transported to the Hyytiälä Forestry
Field Station, Finland, mainly from Eastern Europe [164].
Emissions in the UK and Europe have a noticeable effect on
NO
2
concentrations recorded at sites not directly influenced

by major local sources in Ireland [165].
A low CO episode in northern Japan was attributed to

rapid transport of pristine air masses from the Pacific Ocean
under anomalously stronger easterly flows [166].
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Air trajectories have been considered with less inves-
tigated substances, such as halogenated very short lived
substances, whose research has revealed that air masses
from the open North Atlantic prevailed in the Mauritanian
upwelling area [167] or concentrations of dimethyl sulfide
emitted by oceans, which were followed by an aircraft over
the Pacific Ocean [168].

4. Applications in Transport of
Hazardous Substances

4.1. Radionuclide Transport. The plume from the Fukushima
reactor released on 11 March 2011 remained over the ocean
due to westerly winds [169]. However, the arrival of artificial
radionuclides was confirmed during the first days after the
accident at nearby stations in Vietnam [170] and at such
distant locations as the Iberian Peninsula and Lithuania
[171, 172]. For about one month, the radioactive plume
reached South Korea by surface westerlies followed by a
period characterised by a direct impact of air masses from
Japan [173]. Precise determination of the area affected by this
radioactive plume has been obtained at various places in the
Northern Hemisphere [174].

Direct tropospheric transport of fallout from atmo-
spheric nuclear detonations at the Semipalatinsk test site,
Kazakhstan, to Norway through large areas of Europe was
observed [175].Moreover, at least one unannounced low yield
nuclear test in North Korea was investigated from radionu-
clides measured in South Korea, Japan, and Russia [176].
Several models were compared with 85Kr air concentrations
in the area surrounding a nuclear processing plant in North
West France where mean concentrations were estimated
during steady wind conditions, although peaks were not
accurately predicted under changing wind conditions [177].
Possible sources of Xe and Kr radionuclides were determined
by back trajectory analysis in St. Petersburg, Russia, from
Sweden and Finland [178]. Integrated effects of transport and
meteorology have been observed in radionuclide activities in
southern Spain and the transitional location of the Iberian
Peninsula was revealed [179].

Additionally, radiological risk was assessed in the
metropolitan area of Seoul, SouthKorea [180], and dispersion
and deposition of radioactive fallout could be simulated with
trajectory models to estimate the magnitude of the deposited
activity at different test sites [181].

4.2. Insecticides/Pesticides/Persistent Organic Pollutants
(POPs). The seasonal evolution of trajectories may illustrate
the behaviour of concentrations. Northwesterly air mass
pathways reaching Lake Small Baiyangdian, northern China,
were linked with high concentrations in winter, southern
pathways being relatively clean in summer and trajectories
in autumn and spring being associated with high pollution
from the Shanxi and Henan provinces [182].

Transport described by air trajectories may be extremely
useful to reveal the origin of these pollutants. The Himalayas
might be influenced by themajor source regions in both India
and China [183]. Air masses from China, India, Southeast
Asia, and West Asia influenced concentrations recorded in

Lhasa on the Tibetan Plateau [184]. Pesticides over the Pearl
River Delta Region were transported from potential source
regions, northern China, and local usage was also noticeable
[185]. Some of the air masses reaching Singapore came from
the west of Papua New Guinea where DDT was still in use
[186]. However, in seven major cities in India, source areas of
polychlorinated biphenyls were confined to local or regional
proximity [187].

Pesticides have been recorded at the Antarctic continent
due to air masses from the Indian and Atlantic Oceans [188],
and insecticides used extensively in southern East Europe and
around rivers flowing to the Aral Sea were transported to
Arctic areas [189].

In America, transport of these substances has also been
observed. Four main pathways with high pollutant concen-
trations were identified at Arcadia National Park, ME, and
not exclusively linked with the major urban centres along
the eastern Atlantic seaboard [190] and different models were
used to quantify atmospheric transport of POP concentra-
tions to the Great Lakes [191].

4.3. Toxic Metals. Transport of various toxic metals such
as mercury, lead, and arsenic has also been studied using
air trajectories. In northeastern North America, shipping
ports along the Atlantic coast emerged as the main Hg
sources and the contrast between oceanic and land/coastal
trajectories was also observed [192]. In northern Mississippi,
events of atmospheric Hg were linked with air masses from
the northern continental US region [193]. In Canada, major
sources affectingWindsor extended fromOhio toTexas [194],
and unseasonable high total gaseous Hg concentrations at
Fort McMurray were associated with air from the SE and W,
whereas low concentrations were from Arctic air [195]. The
Hghighest concentrations at a tropical site inNieuwNickerie,
Suriname, were obtained with marine trajectories from the
North Hemisphere [196]. Hg concentrations recorded in
the Fujian province, China, are diluted by air masses from
the ocean [197]. Northern India may also be a noticeable
Hg source for the Northeastern Tibetan Plateau [198]. Hg
concentrations at Oxford, UK, are highest with wind from
the E/SE, probably due to emissions from London/mainland
Europe [199].

Sixmeteorological regimeswere determined at Bondville,
IL, where differences in Pb isotopes in precipitation were
observed [200].

Air trajectories were used to analyse As transport and
dispersion from a Cu smelter in southwestern Spain with
satisfactory results under sea breeze circulations or flow
dominated by synoptic scale prevailing winds [201].

5. Applications on Sources and
Transport of Aerosols

5.1. Particulate Matter. Seasonal variation of the particulate
matter composition in agreement with the air trajectories was
observed in eastern India [202] and high concentrations are
sometimes due to transport from sources, as was detected in
North America [203], South America [204], Asia [205–212],
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especially in China [213–217], the Middle East [218], Africa
[219], Australia [220], and Europe [221].

Stagnant conditions caused the highest mass concentra-
tions in Ulaanbaatar, Mongolia [222]. Internal sources of
particles were less relevant in South Korea than external,
which were the industrial areas in inland China and the
Gobi desert. However, anomalous meteorological factors
favoured both long-range transport from external sources
and local accumulation [223, 224]. Strong land-sea breeze led
to accumulation and ageing of particles in Hong Kong, China
[225]. Dust aerosols from the Gobi Desert and the Loess
Plateau are likely to propagate eastward but aerosols from
the Taklamakan Desert propagate slowly westward [226] and
both deserts were responsible for dust events over northern
China [227]. Transport patterns were obtained in Beijing
[228]. Potential sources of particulates recorded near the
terminal of the Laohugou No. 12 Glacier in northwestern
Qilian Shan were identified in the NW from the station
due to industrial activities, urbanization, and residents’ emis-
sions [229]. Different air mass types were considered in
Guangzhou, where transboundary transport played a critical
role in the formation of PM

10
pollution events [230]. Air

mass pathways at New Delhi, India, revealed the difference
in the levels of particulate matter during monsoon and
winter air mass circulations [231]. Long-range transport from
the Thar Desert, Iran, and Pakistan prevailed in Agra in
summer, whereas short trajectories from local areas revealed
anthropogenic emissions in winter [232]. Northern and
central part of India contributed to high black carbon levels
in Mumbai [233]. Dust storms from the Middle East reached
Rawalpindi, Pakistan [234]. Similar kind of storm has been
simulated over Iran [235]. Some extreme soil dust events
originated in major agricultural regions in Australia and
not in deserts [236]. In Europe, seven fingerprints of urban
aerosols were identified in Helsinki, Finland, during 2006,
where local or regional origin was considered [237]. Several
methods were combined to distinguish long-range transport,
regional transport, and local pollution in Central Eastern
European urban areas [238]. Coarsematerial was transported
over distances of 1400 to 2000 km fromUkraine to the Czech
Republic [239]. Local and regional scale aerosols transported
were studied over Belgrade, Serbia [240], and long-range
transport from Europe and the Sahara has a major influence
in Italy [241, 242]. Trajectory calculations confirmed the
origin of different size dust in Rome and Bari [243, 244]. Over
the Mississippi Gulf Coast region, backward and forward
trajectory analysis revealed particulate matter origin near the
region and the relative contribution of some power plants
to concentrations measured [245]. Local regions were the
main contributors to sulphate concentrations estimated at
BrigantineNationalWildlife Refuge,NJ, and theGreat Smoky
Mountains National Park, TN [246]. A contrast between
local and distant sources was observed in the composition of
particulate matter recorded in northern Chile [247].

Long-range transport has also been revealed by vertical
analyses in Greece and Antarctica [248, 249].

The contrast between air masses from continent and
ocean has been observed on recorded concentrations. Two

classes of aerosols were identified during the World Expo-
sition 2010 in Shanghai, China, class I linked with ocean-
oriented air masses and class II associated with regional
pollution transport from the surrounding areas [250]. Air
masses reaching Iksan, a suburban area in South Korea,
came from arid Chinese regions and caused high particulate
concentration during the yellow dust period. However, air
masses during a rainfall period were mostly from the Pacific
Ocean or the East China Sea, and their concentrations were
relatively low [251]. Four classes of air trajectories were
observed over the Bay of Bengal and Arabian Sea showing
differences in the composition of the aerosolsmeasured [252].
Marine aerosols from the North Sea and English Channel
were identified by trajectory analysis at northern Bohemia
[253]. Maritime transport had a noticeable influence on air
quality in Lisbon since anthropogenic aerosol concentration
decreased significantly [254]. Along a cruise track in the
eastern North Atlantic Ocean, air masses were characterised
as European-influenced, primarily marine, or North-African
influenced and aerosol composition was analysed [255]. Sea
salt origin was noticed in aerosols over the Niger Delta region
[256]. Particulate measurements taken at Santiago, Chile,
revealed three main sources, marine air masses combined
with anthropogenic sources, copper smelters surrounding the
city, and wood burning [257].

Continental air masses are normally more polluted.
Aerosols from Asian dust source regions and eastern China
increased element concentrations at Gosan, South Korea.
However, these concentrations decreased in air masses that
passed over marine regions [258, 259]. Air masses from
Eastern Europe led to significantly higher airborne concen-
trations of non-sea salt Ca and K in rural areas of Norway
[260].

Specific features ofmaritime airmasses have been consid-
ered in certain analyses. Prevailing pathways were observed
over the “Maritime Continent,” the tropical Southeast Asia
area extending across the Indonesian archipelago, the Malay
Peninsula, and New Guinea [261]. Moreover, these masses
allow aerosol formation to be investigated, as over a midlati-
tude forest in Japan, where new particle formation occurred
in clean maritime air masses from the North Pacific, which
had low mass concentrations of aerosol components [262].

Dust intrusions from deserts are frequent sources of
particles in Eastern China, Europe, West Africa, and the
Subtropical Eastern North Atlantic region [263–269].

One specific source is volcanic ash whose dispersion may
be analysed using air trajectories. An intense relationship
between surface particle distribution and rain intensity was
observed from volcanic ash at Mount Merapi, Indonesia
[270].

5.2. Forest Fire and Biomass Burning. Transport of pollution
from active fires is sometimes observed long distances away,
as at the southeastern Tibetan Plateau from fires in the SE
Asia subcontinent and from northern South Asia [271]. The
influence of sea and land breezes has also been evidenced
in Borneo [272]. This transport was determined by a lidar,
model trajectory calculations and satellite observations in
Canada [273]. Moreover, influence of biomass burning was
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observed in precipitation events in the southern Appalachian
Mountains from November to April [274]. Soil aerosols,
industrial areas, and biomass burning were responsible for
particulate matter recorded in the Mexico urban area [275,
276]. Black carbon at the background station in Preila,
Lithuania, was explained by air mass trajectory analysis
from biomass burning at the Kaliningrad region, Ukraine,
and southwestern Russia [277]. Biomass burning particles
originating inCanadian forest fireswere observed at the EAR-
LINET Granada station, Spain [278], and different influences
were observed in South Korea [279].

A strong link between CO episodes from biomass burn-
ing in Borneo, Sumatra, NewGuinea, andNorthernAustralia
and El Niño-southern oscillation activity has been observed
[280]. PM

10
load increased in the Brahmaputra Valley, India,

during festive biomass burning called meji burning and its
carbon content was more pronounced due to the long-range
transport of carbonaceous aerosols to the region [281].

5.3. Atmospheric Optics. Some papers focus on the optical
properties of the atmosphere. Local and remote sources of
dust storms were identified in Saudi Arabia [282]. Maximum
aerosol optical depth at Khyber Pakhtunkhwa, Pakistan, was
due to local sources, long-range transport of air masses from
India and Afghanistan, and explosions detonated by the
Pakistan army [283]. Differences between pre- and postmon-
soon air masses as well as trajectories with high loading of
atmospheric aerosols were observed in the Gangetic plain,
Hyderabad, India, and the Bay of Bengal [284–287]. The
optical properties of biomass burning aerosols in Sinhagad,
India, have also been studied [288]. A persistent “aerosol low”
was recorded over the Arabian Sea and the Bay of Bengal
prior to the formation of cyclones [289]. A bimodal distri-
bution pattern of aerosol optical depth was observed over
both the western and the southeastern tropical Indian Ocean
[290]. Optical properties of aerosols were analysed over
Anhui, China, and related with the origin of air masses [291].
Transport from the Asian continent to the free troposphere
over Japan has been studied [292]. Saharan dust events were
recorded by lidar observations over Thessaloniki, Greece
[293], and three desert dust sources were considered for
African air masses reaching Granada, Spain, (1) N Morocco
and NW Algeria, (2) Western Sahara, NW Mauritania, and
SW Algeria, and (3) eastern Algeria and Tunisia [294]. Some
episodes with high aerosol optical depth over Finland were
linked to the transport of polluted air masses from industrial
areas in Central Europe [295]. Additional information about
the origin of the aerosol layers detected at Sofia, Bulgaria, was
obtained by air trajectories [296, 297]. The vertical structure
of aerosol optical properties in coastal areas depends on air
mass advection direction and altitude, as observed in Crete,
Greece, and Rozewie, Poland [298]. Volcanic ash transported
from Iceland to the Polish Polar Station, Svalbard, Norway,
has been confirmed by trajectory analysis [299] and was also
detected in Minsk, Belarus, Tomsk, and Vladivostok, Russia
[300].Different airmass source regions reaching the southern
Arizona region have been considered [301]. Specific episodes
of large values of aerosol optical depth at Córdoba, Argentina,
were explained by fires and/or long-range transport [302].

Air masses in Skukuza, South Africa, had longer advection
pathways where their properties could be affected during
autumn and winter [303]. A detailed classification of air
trajectories at Niamey, Niger, revealed the origin of the air
sampled [304].

However, some studies have highlighted the suitability of
sites from the noticeable optical quality of the atmosphere.
One site in Namibia is favoured to install the Cherenkov
Telescope Array due to its satisfactory conditions [305], and
air mass trajectories have also been studied above the Pierre
Auger Observatory, in the Pampa Amarilla, Argentina [306].

6. Applications on Living Beings

Some substances harmful to human health such as polycyclic
aromatic hydrocarbons, which are carcinogenic and muta-
genic, originated from local pollution sources in Zaragoza,
Spain, with long-range transport from European countries
being infrequent [307]. However, long-range transport of
these substances caused by particulates from coal or biomass
burning in China might have strongly influenced their levels
and patterns at Gosan, South Korea [308]. Intrusions of
Saharan dust were identified in summertime in Delhi, India,
where cancer risk due to inhalation exposure to different
chemicals has been observed [309]. Remote regions may
be affected, since polychlorinated naphthalenes, which have
been associatedwith liver damage in humans, were studied by
air trajectory analysis at two background stations in Sweden
[310]. Semivolatile organic compounds hazardous to health
released during the “Allied Force” operation in the spring of
1999 in the Former Republic of Yugoslavia were transported
across borders over large distances [311]. An analysis of
human exposure to air pollution, based on the risk of being
hospitalised for respiratory illness, enabled meteorological
patterns associated with “polluted” air parcels and “clean” air
parcels in the state of New York to be identified [312].

Bioaerosol sources have also been investigated using
trajectory analysis. Pollen produced by certain species causes
intensive allergies in sensitive individuals. Two kinds of
sources of one of the most feared pollens were identified
in the atmosphere of Istanbul. The first sources were local
and the second were formed by regional and remote sources
[313]. Atmospheric pathways affecting pollen inThessaloniki,
Greece, Szeged, Hungary, and Hamburg, Germany, have
been studied [314]. Pollen grains of ragweed from the
Pannonian Plain, Central Europe, were transported to the
Nordic countries [315]. Potential sources of Olea Pollen were
identified, and transport caused high concentrations at night
in the Southwest Iberian Peninsula [316]. Moreover, complex
terrain affects trajectories, and transport of this pollen under
this specific flow has been analysed [317], as well as pollen
transport from the west to the east slope of the Andes [318].
Cedar pollen prevailed in Fukuoka Prefecture, Japan [319],
and Asian soybean rust urediniospores in the Midwestern
US were transported from southern Texas and the Yucatan
Peninsula in Mexico [320].

Air trajectories may also prove helpful in investigating
the transport of organisms such as microbial populations
probably originating near China or Japan, recorded at theMt.



Advances in Meteorology 9

Bachelor Observatory, Oregon [321]. Since the Himalayas are
a barrier to atmospheric transport, analysis of soils revealed
that dust and microbes deposited came from continental,
lacustrine, and marine sources [322]. Air trajectories also
enabled early detection of diamondbackmoth infestations on
the Canadian Prairies [323]. Different microorganisms have
been detected in dust storms affecting Iran [324]. Dispersion
patterns of the adultwheatmidge, Sitodiplosismosellana, were
studied at the Hebei province, China, and showed that male
midges mated before dispersal [325]. Cattle and insects in
northern Australia were infested by viruses introduced via
windborne dispersal of Culicoides whose spatial extent of
the source across Indonesia, Timor-Leste, and Papua New
Guinea and arrival regions were suggested [326]. Transport
of infected Culicoides imicola from southern to northern
Spainwas investigated due to the expansion of the bluetongue
disease of ruminants [327].

7. Conclusions

Most of the papers reviewed in this study have used air
trajectories as an ancillary technique, but not as the central
part of the research.

Backward trajectories are the most commonly calculated
type, the HYSPLIT being the most widely used model and
particulatematter being the kind of pollutantmost frequently
investigated.

Geographical distribution of applications has focused
on Asia, especially on rapidly developing countries such as
Chinawhose pollution impactmay be observed on surround-
ing countries.

Air trajectories show that emissions from distant sources
may cross boundaries and impact remote unpolluted areas
or places where emission control strategies have been imple-
mented or where the use of certain substances has been
restricted or even banned.

Urban and industrial areas are not the only sources of
pollution since many widespread crops in Asia may release
noticeable concentrations of different pollutants into the
atmosphere.

Injections during transport may considerably change
features of air mass, which may impact remote places where
potentially dangerous substances have been observed.

Dry and perhaps polluted air masses from the continents
are loaded with moisture and cleaned when they travel over
the ocean. However, marine aerosols may be dragged to the
continent where they are mixed with polluted air modifying
the properties of local parcels.

The influence of air masses from or over central Africa
and the long-range transport of microorganisms require
further investigation.

Finally, although trajectory calculation is a powerful tool,
it should be used in conjunction with other procedures.
Therefore, research focusing on air trajectories remains an
open field, and extending it is recommended in order to
gain further insights into the atmospheric pathways affecting
the regions under analysis and their influence on living
beings. The underlying factors for the air mass trajectories
are basically linked to the synoptic wind regime, wind

flow, and inversions. This review has shown the multiple
applications of air trajectories on various issues depending on
the Lagrangian or Eulerian perspectives of the flow field.
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T. Soulé, and P. J. Sheridan, “Relationships between aerosols
and precipitation in the southern Appalachian Mountains,”
International Journal of Climatology, vol. 33, no. 14, pp. 3016–
3028, 2013.
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