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1 INTRODUCTION

One of the most studied problems in quantum mechanics is the generation of exactly solvable models. In this context, the
factorization or intertwining technique has played a very important role1-3. In this method, a family of second order dif-
ferential Hamiltonians, called Hamiltonian hierarchy, is expressed, up to an additive constant, as the product of a pair of
first order operators. The factorization leads to a set of intertwining relations, linking different Hamiltonians in the hier-
archy, from which the discrete spectrum, as well as the corresponding eigenfunctions can be algebraically determined
for the entire hierarchy. Furthermore, the factorizing operators constitute the basis to determine the so called potential
and/or spectrum generating algebras4 that may be used to construct the group theoretical approach of the corresponding
model. From the inverse techniques point of view, the factorization method has found many applications in the gener-
ation of exactly solvable potentials with specific spectral properties. Those include shape-invariant and supersymmetric
potentials.5-10 Of particular interest is the generation of exactly solvable Hamiltonians endowed with position dependent
mass (PDM) due to the fact that they have multiple applications in many areas of physics such as the description of optical
and electronic properties of semiconductors and quantum dots,11-14 the construction of mechanical models in spaces with
curvature,15,16 and the study of galactic mass loss17 among others. The use of the factorization method in considering PDM
Hamiltonians has deserved growing attention in the last decades.18-29 Group theoretical approaches and shape-invariance
techniques have been used in order to generate exactly solvable models.21,26,30,31 The problem of constructing PDM Hamil-
tonians with specific spectral properties is of special interest as it may have applications in modeling low dimensional
structures as quantum dots and quantum wells. In this case, the spectrum of the system is defined, and the corresponding
interaction potential must be determined for an arbitrary choice of the mass. Some contributions in this context include
the use of the intertwining technique for the reconstruction of the well potential from its spectrum,32 and the combina-
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tion of the shape-invariance technique with the point canonical transformation to fix the spectrum of the system and to
map the problem to a constant mass Schrödinger one in order to find the solution26.

As it is well known, the factorization method is closely related to the Riccati equation.33 Indeed, if a constant mass
Hamiltonian H = −𝜕xx + V is factorizable in the form H = a+a− + 𝜖 with a+ = −g−1𝜕xg, a− =

(
a+)† and g a

real-valued function, then g is given by g = exp
{∫ xw(𝑦)d𝑦

}
, where w is a solution of the Riccati equation wx + w2 +

𝜖 = V. The algebraic properties of the operators a± encode the spectral information of the Hamiltonian H. The Riccati
equation, thus, establishes a connection between the interaction potential and the corresponding spectrum generating
algebra underlying the system. In the PDM case, this connection can be as well established, meaning that it is possible the
construction of PDM Hamiltonians with a prescribed potential or spectrum generating algebra by means of the solutions
of the appropriate Riccati equation.

In this work, we make use of the Riccati equation to construct PDM Hamiltonian families of the trigonometric as well
as hyperbolic Scarf types (Scarf I and II types, respectively). Departing from a general PDM Hamiltonian hierarchy with a
positive definite, but otherwise arbitrary mass function, we directly apply the factorization method to fix the underlying
potential algebra as that of the Scarf type. The resulting Riccati equations are used to determine the corresponding family
of PDM Scarf potentials, and their corresponding eigenfunctions are constructed by means of the intertwining relations.
Our results are consistent with that of the point canonical transformation scheme. In the framework of PDM systems,
an important concern corresponds to the choice of a particular ordering in the kinetic term of the Hamiltonian due to
the noncommutativity of the mass m(x) and the linear momentum P.24,30,34-36 In our approach, the problem is addressed
without any choice of the ordering label, and it is shown that the final result is, indeed, independent of the value of this
parameter.

Our work is organized as follows. In Section 2, the PDM Schrödinger problem is considered in the framework of the
factorization method. Section 3 contains the construction of trigonometric and hyperbolic Scarf type PDM potentials,
and the underlying potential algebras are briefly discussed. In Section 4 these families of Scarf potentials are used as the
seeds to constructing new Darboux-deformed potentials with the Scarf spectrum. Finally, we summarize our results in
Section 5.

2 THE PDM SCHRÖDINGER PROBLEM

In this section, we consider the PDM Schrödinger problem with the Hamiltonian

H = maPm2bPma + V = Ta + V , a + b = −1
2
, (1)

where the mass m is a given, positive definite, real-valued function of the position, the labels a, b are 2 parameters indicat-
ing the ambiguity in the ordering of the mass m(x) and the linear momentum P in the kinetic term, and V is the potential
that must be determined in such a way that H fulfills some specific spectral properties. The domain of definition of H,
Dom(H), will be fixed by the domain of definition of the mass Dom(m) and the potential Dom(V).

To address this problem, let us assume that the Hamiltonian can be factorized in terms of 2 linear operators A, B as
follows:

H = AB + 𝜖, (2)

where

A = −imaPmb + W , B = (A)† = imbPma + W , (3)

with W a real-valued function of the position to be determined and 𝜖 a constant to be fixed.
The linear momentum fulfills the commutation relation [X,P] = i, with X the position operator. In the position

representation X = x, P = −i d
dx

and [𝑓 (x),P] = i d𝑓
dx

. Hence, if m(x) = J2(x), we have

H = − 1
J2

d2

dx2 + 2
J2

(
d

dx
ln J

)
d

dx
− 2a

J2

(
d2

dx2 ln J
)
+ 4a a + 1

J2

(
d

dx
ln J

)2

+ V , (4)

and

A = −1
J

d
dx

+ 2a + 1
J

(
d

dx
ln J

)
+ W (5)
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B = 1
J

d
dx

+ 2a
J

(
d

dx
ln J

)
+ W . (6)

In a similar way as in the constant mass case, it is not difficult to show that the expression (2) implies that the function
W must satisfy the Riccati equation28

−1
J

dW
dx

+ 4a + 1
J

(
d

dx
ln J

)
W + W 2 + 𝜖 = V . (7)

Additionally, one may check that the operators A, B fulfill the commutation rule

[A,B] = −2
J

dW
dx

− 4a + 1
J2

(
d2

dx2 ln J
)
+ 4a + 1

J2

(
d

dx
ln J

)2

. (8)

Observe that the explicit form of W can be determined from (8) if we impose a particular commutation rule for the
factorizing operators. This will define the spectrum of the Hamiltonian, and the corresponding potential can be deduced
from the Riccati equation (7). For instance, assuming that the operators A, B fulfill the oscillator algebra [B,A] = 2, we
are immediately led to28

W(x) = ∫
x

x0

J(𝑦)d𝑦 − 4a + 1
2J

(
d

dx
ln J

)
,

and, by setting 𝜖 = 1, we obtain a PDM oscillator potential

V(x) =
(
∫

x

x0

J(𝑦)d𝑦
)2

+ 4a + 1
2J2(x)

(
d2

dx2 ln J(x)
)
− (4a + 1) (4a + 3)

4J2(x)

(
d

dx
ln J(x)

)2

,

for which the corresponding Hamiltonian will be isospectral to the harmonic oscillator.
In the next sections, we will follow this approach in order to explore the possibility of constructing different families of

generalized PDM potentials of the Scarf type.

3 POSITION DEPENDENT MASS SCARF POTENTIALS

Let us consider a hierarchy of PDM Hamiltonians H𝓁 , labeled by a parameter 𝓁 = 𝓁min + s, s ∈ N, with 𝓁min > 0 a fixed
real number

H𝓁 = − 1
J2

d2

dx2 + 2
J2

(
d

dx
ln J

)
d

dx
− 2a

J2

(
d2

dx2 ln J
)
+ 4a

J2 (a + 1)
(

d
dx

ln J
)2

+ V𝓁 . (9)

Let us also assume that the Hamiltonian (9) can be factorized in terms of 2 first order differential operators A𝓁 , B𝓁

having the form

A𝓁 = −1
J

d
dx

+ 2a + 1
J

(
d

dx
ln J

)
+ W𝓁 (10)

B𝓁 = 1
J

d
dx

+ 2a
J

(
d

dx
ln J

)
+ W𝓁 (11)

and fulfilling
H𝓁 = A𝓁B𝓁 + 𝜖𝓁 = B𝓁−1A𝓁−1 + 𝜖𝓁−1. (12)

We will restrict ourselves to the description of bound states represented by normalized eigenfunctions 𝜓n
𝓁 of H𝓁 . The

corresponding eigenvalue equation reads

H𝓁𝜓
n
𝓁 = En

𝓁𝜓
n
𝓁 , n = 0, 1, 2, · · ·. (13)

The condition (12) translates into the following set to 2 Riccati equations that must be satisfied simultaneously

−1
J

dW𝓁

dx
+ 4a + 1

J

(
d

dx
ln J

)
W𝓁 + W 2

𝓁 + 𝜖𝓁 = V𝓁 (14)
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1
J

dW𝓁−1

dx
+ 4a + 1

J

(
d

dx
ln J

)
W𝓁−1 + W 2

𝓁−1

+ 4a + 1
J2

(
d2

dx2 ln J
)
− 4a + 1

J2

(
d

dx
ln J

)2

+ 𝜖𝓁−1 = V𝓁 .

(15)

To solve this system, we propose that
W𝓁(x) = 𝜙(x) + 𝓁𝛽(x), (16)

where 𝜙 and 𝛽 are 2 real-valued functions that do not dependent on the hierarchy label 𝓁. In this way, the set (14) and
(15) transforms into the set

1
J

d
dx

[
2𝜙 + 4a + 1

J

(
d

dx
ln J

)]
−
[

2𝜙 + 4a + 1
J

(
d

dx
ln J

)]
𝛽 = 0 (17)

1
J

d𝛽
dx

− 𝛽2 = 𝜖𝓁 − 𝜖𝓁−1

2𝓁 − 1
. (18)

Observe that the right-hand side of (18) do not depend on the parameter 𝓁. This means that the corresponding left-hand
side must be an 𝓁−independent constant 𝛼 (compare with Kuru and Negro4).

3.1 Position dependent mass Scarf I-type potentials
First, consider the case in which 𝛼 > 0, ie, 𝛼 = 𝜅2 with 𝜅 ∈ R. The expression

𝜖𝓁 − 𝜖𝓁−1

2𝓁 − 1
= 𝜅2

implies that
𝜖𝓁 = 𝜅2𝓁2, (19)

and (18) is transformed into the Riccati equation

1
J

d𝛽
dx

− 𝛽2 = 𝜅2. (20)

The general solution to this equation may be written as follows:

𝛽(x) = 𝜅 tan
(
𝜅 ∫

x

x0

J(𝑦)d𝑦
)
− 1

J(x)
d

dx
ln

[
Λ − 1

𝜅
tan

(
𝜅 ∫

x

x0

J(𝑦)d𝑦
)]

, (21)

whereΛ is an arbitrary constant and x0 is a constant with units of position that will be fixed in such a way that the function

u(x) = ∫
x

x0

J(𝑦)d𝑦, (22)

fulfills the initial condition u(0) = 0. As the function u(x) may eventually take arbitrarily large values, the domain of
validity of this solution will be defined by the value ofΛ in order to obtain nonsingular potentials. In this work, we consider
the simplest case Λ → ∞ leading to the particular solution

𝛽(x) = 𝜅 tan (𝜅u(x)) , (23)

which is valid in a domain given by − 𝜋

2
< 𝜅u(x) < 𝜋

2
.

Next, by inserting the expression for 𝛽 into (17), we get

𝜙(x) = 𝜅𝜆 sec (𝜅u(x)) − 4a + 1
2J(x)

(
d

dx
ln J(x)

)
, (24)

with 𝜆 an arbitrary constant, and then, the expression for W𝓁 can be readily written

W𝓁(x) = k𝓁 tan(𝜅u(x)) + 𝜅𝜆 sec(𝜅u(x)) − 4a + 1
2J(x)

(
d

dx
ln J(x)

)
, (25)

along with those for the operators A𝓁 , B𝓁

A𝓁 = −1
J

d
dx

+ 1
2J

(
d

dx
ln J

)
+ 𝜅𝜆 sec (𝜅u) + 𝜅𝓁 tan (𝜅u) , (26)
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B𝓁 = 1
J

d
dx

− 1
2J

(
d

dx
ln J

)
+ 𝜅𝜆 sec (𝜅u) + 𝜅𝓁 tan (𝜅u) . (27)

Finally, we may consider either the Riccati equation (14) or (15) in order to obtain the potential V𝓁 . After some
calculations, we obtain a family of PDM trigonometric Scarf potentials given by

V𝓁(x) = 𝜅2 [𝓁(𝓁 − 1) + 𝜆2] sec2 (𝜅u(x)) + (2𝓁 − 1)𝜅2𝜆 sec (𝜅u(x)) tan (𝜅u(x)) +

+ 4a + 1
2J2(x)

(
d2

dx2 ln J(x)
)
− (4a + 1) (4a + 3)

4J2(x)

(
d

dx
ln J(x)

)2

.
(28)

This will be a confining potential for values of 𝜆 in the interval (−𝓁 + 1,𝓁−1). It is important to stress that the ordering
parameter a in this expression labels different forms of the potential, each one corresponding to a particular choice of
the ordering of m(x) and P in the kinetic term. However, observe that the expressions (26) and (27) for the factorizing
operators do not depend on this parameter. Then, the Hamiltonian H𝓁 will have the same form regardless the choice of
the ordering in Ta.

The next step is the construction of the ground state 𝜓0
𝓁(x) of the 𝓁-hierarchy. This is determined as the state that is

annihilated by either B𝓁 or A𝓁−1 and that fulfills the square integrability condition. In this case, the solution with the
correct behavior is annihilated by B𝓁 . This means that this operator acts as an annihilator among the eigenfunctions of
consecutive Hamiltonians. Hence, we set

B𝓁𝜓
0
𝓁 =

[
1
J

d
dx

− 1
2J

(
d

dx
ln J

)
+ 𝜅𝜆 sec (𝜅u) + 𝜅𝓁 tan (𝜅u)

]
𝜓0
𝓁 = 0, (29)

to obtain

𝜓0
𝓁(x) = N0

𝓁

√
J(x)

⎡⎢⎢⎢⎣
cos

(
𝜅u(x)

2

)
− sin

(
𝜅u(x)

2

)
cos

(
𝜅u(x)

2

)
+ sin

(
𝜅u(x)

2

)⎤⎥⎥⎥⎦
𝜆

cos𝓁 (𝜅u(x)) , (30)

with

N0
𝓁 = 2−𝓁

√√√√ 𝜅Γ(2𝓁 + 1)

Γ
(
𝓁 + 1

2
+ 𝜆

)
Γ
(
𝓁 + 1

2
− 𝜆

) .
Also, one can see immediatelly from (12) and (13) that this state corresponds to an energy E0

𝓁 = 𝜖𝓁 = 𝜅2𝓁2.
On the other hand, the 2 factorizations (12) of H𝓁 lead to the following intertwining relations:

A𝓁−1H𝓁 = H𝓁−1A𝓁−1, B𝓁H𝓁 = H𝓁+1B𝓁 , (31)

so that it is possible to express the eigenfunctions of the Hamiltonians H𝓁±1 in terms of those of H𝓁 by the proper applica-
tion of A𝓁−1 and B𝓁 . Indeed, if we consider the eigenvalue Equation 13, it is not difficult to show that the vector A𝓁−1𝜓

n
𝓁

is an eigenfunction of the Hamiltonian H𝓁−1 with eigenvalue En
𝓁 . Correspondingly, the function B𝓁𝜓

n
𝓁 is an eigenfunction

of the Hamiltonian H𝓁 + 1 with the same eigenvalue. These facts can be summarized by

A𝓁−1𝜓
n
𝓁 ∝ 𝜓n+1

𝓁−1 , B𝓁𝜓
n
𝓁 ∝ 𝜓n−1

𝓁+1 , (32)

and En+1
𝓁−1 = En

𝓁 = En−1
𝓁+1. In this way, it is possible to write

En
𝓁 = En−1

𝓁+1 = · · · = E0
𝓁+n = 𝜅2(𝓁 + n)2. (33)

The proportionality constants for (32) can be determined by imposing the normalization condition on the wave
functions 𝜓n

𝓁 and using the fact that A𝓁 and B𝓁 are adjoint to each other. We have

A𝓁−1𝜓
n
𝓁 = 𝜅

√
(n + 1)(2𝓁 + n − 1)𝜓n+1

𝓁−1 , B𝓁𝜓
n
𝓁 = 𝜅

√
(n)(2𝓁 + n)𝜓n−1

𝓁+1 . (34)

Moreover, the eigenstate 𝜓n
𝓁 (x) can be constructed from the ground state of the Hamiltonian H𝓁 + n by the subsequent

application of the operators A𝓁 :

𝜓n
𝓁 (x) =

1
𝜅n

√
Γ(2𝓁 + n)

n!Γ(2(𝓁 + n))
A𝓁A𝓁+1· · ·A𝓁+n−1𝜓

0
𝓁+n. (35)
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FIGURE 1 Trigonometric Scarf potentials V𝓁 and corresponding eigenfunctions for a constant mass m = 1 and for the values of 𝓁 and 𝜆
indicated. In all cases, 𝜅 = 1. The red, dashed curve represents the corresponding symmetric Pöschl-Teller potential [Colour figure can be
viewed at wileyonlinelibrary.com]

In this way, we finally arrive to the explicit expression for the eigenfunctions of a generic member H𝓁 of the hierarchy

𝜓n
𝓁 (x) = Nn

𝓁

√
J(x)

⎡⎢⎢⎢⎣
cos

(
𝜅u(x)

2

)
− sin

(
𝜅u(x)

2

)
cos

(
𝜅u(x)

2

)
+ sin

(
𝜅u(x)

2

)⎤⎥⎥⎥⎦
𝜆

cos𝓁 (𝜅u(x))P
(
𝓁− 1

2
+𝜆,𝓁− 1

2
−𝜆

)
n (sin (𝜅u(x))) , (36)

where the functions P(𝛼,𝛽)
n (z) stand for the Jacobi polynomials of degree n,37 and the normalization constant is given by

Nn
𝓁 = 2−𝓁𝜅n

√
2𝜅n!(𝓁 + n)Γ(2𝓁 + n)

Γ(𝓁 + n + 1
2
+ 𝜆)Γ(𝓁 + n + 1

2
− 𝜆)

.

So far, we have constructed a family of PDM Scarf I potentials (28) labeled by the parameters 𝓁 and 𝜆. In the case that
𝜆 = 0, we recover the PDM Pöschl-Teller potentials already reported in Santiago-Cruz.29 In that case, the eigenfunctions
take the form

𝜓n
𝓁 (x) = 𝜅n

√
22𝓁−1(𝓁 + n)n!
𝜋Γ(2(𝓁 + 1))

Γ(𝓁)
√

J(x)cos𝓁 (𝜅u(x))C𝓁
n (sin (𝜅u(x))) . (37)

with C(𝛼)
n (z) the Gegenbauer polynomials of degree n and order 𝛼, where we have used identity37

P
(
𝓁− 1

2
,𝓁− 1

2

)
n (z) =

Γ(2𝓁)Γ
(
𝓁 + n + 1

2

)
Γ(2𝓁 + n)Γ

(
𝓁 + 1

2

) C(𝓁)
n (z). (38)

In the limit of constant mass, as m → 1 and u(x) → x, we obtain the family of Scarf I potentials (compare with De et al8

and Cooper et al9)
V𝓁(x) = 𝜅2 [𝓁(𝓁 − 1) + 𝜆2] sec2 (𝜅x) + (2𝓁 − 1)𝜅𝜆 sec (𝜅x) tan (𝜅x) ,

from which the well-known trigonometric Pöschl-Teller family V𝓁(x) = 𝜅2𝓁(𝓁−1)sec2(𝜅x) can be recovered as a particular
case when 𝜆 = 0.4,38

In Figure 1, we present some plots of the Scarf potentials (28) with few of their corresponding eigenfunctions, for the
constant mass case m = 1, and different values of 𝓁 and 𝜆. In all the cases, the red, dashed curve corresponds to the
symmetric Pöschl-Teller potential. In these plots, it is possible to observe how the potential deviates from the symmetric
one as 𝜆 take larger values while the energy levels remain unchanged.

Now, in order to present some examples, we consider different forms of m(x) that were chosen in such a way that the
function u(x) take values in the whole real line as x varies in Dom(m).24,39 Note that in all cases, the parameter q allows to
reach the limit of constant mass m = 1 as q → 0.

(i) Mass without singularities
First, consider the mass

mr(x) =
1

1 + (qx)2 . (39)

http://wileyonlinelibrary.com
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FIGURE 2 Position dependent mass Scarf I potentials V𝓁 for the mass mr(x) and some of its eigenfunctions for the values of 𝓁 and 𝜆
indicated. In all cases, 𝜅 = 1 and q = 1. The red, dashed curve corresponds to the symmetric Pöschl-Teller case [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 3 Position dependent mass trigonometric Scarf potentials V𝓁 for the mass ms(x) and their first eigenfunctions, for the values of 𝓁,
𝜆 and q indicated. In all cases, 𝜅 = 1. The red, dashed curve corresponds to the case 𝜆 = 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

This is a bound function with domain of definition Dom(mr) = R having its maximum at x = 0 and vanishing as|x| → ∞. In this case, we are led to
ur(x) =

1
q

arcsinh (qx), (40)

that ranges over all R for x ∈ R.
In Figure 2, some graphics are presented to illustrate the PDM Scarf I potentials (28) when m(x) = mr(x). In all cases,
the red, dashed curve represents the potential for the case 𝜆 = 0. Observe that, as this parameter approaches its limits
of validity, the potential barrier becomes sharper.
(ii) Mass with one singularity
Next, consider the mass

ms(x) =
1

(1 + qx)2 . (41)

For this mass, the domain Dom(ms) =
(
− 1

q
,∞

)
. It becomes unbounded as x → − 1

q
, and vanishes as x → ∞. The

corresponding u-function has now the form

us(x) =
1
q

ln (1 + qx) , (42)

ranging also over all R.
The presence of a singularity in the mass may translate into a barrier in the corresponding potential if the singularity

lies in the interval − 𝜋

2
< 𝜅u(x) < 𝜋

2
. This fact should be taken into account in defining the domain of the PDM potential

Dom(V𝓁). Figure 3 shows some plots for the potential (28) for the mass ms. The red, dashed curve represents the PDM
potential for 𝜆 = 0. Observe the potential barrier at the position of the singularity that becomes sharper as the value of
q grows. The black, continuous curves represent the potential V𝓁 for different values of 𝓁 and 𝜆. Note the deformation
of the potential and the corresponding eigenfunctions due to variation of the parameter 𝜆.
(iii) Mass with 2 singularities
Finally, consider the mass

mss(x) =
1(

1 − (qx)2
)2 , (43)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Position dependent mass trigonometric Scarf potentials V𝓁 for the mass mss(x) and their first eigenfunctions for the values of 𝓁,
𝜆, and q indicated. The plots (A) and (B) correspond to 𝜅 = 1 while (C) to 𝜅 = 1.5. The red curve corresponds to the symmetric case 𝜆 = 0
[Colour figure can be viewed at wileyonlinelibrary.com]

with a bound domain Dom(mss) =
(
− 1

q
,

1
q

)
. In this case,

uss(x) =
1
q

arctan(qx). (44)

The corresponding graphics of V𝓁 and their corresponding wave functions can be appreciated in Figure 4 for different
values of 𝓁, 𝜆, and q.

3.2 Trigonometric Scarf potential algebra and hierarchies
To close this section, we comment something about the underlying potential algebra for these systems. First, let us
introduce the free index operators A,B,C such that

A𝜓n
𝓁 = A𝓁−1𝜓

n
𝓁 = 𝜅

√
(n + 1)(2𝓁 + n − 1)𝜓n+1

𝓁−1 , (45)

B𝜓n
𝓁 = B𝓁𝜓

n
𝓁 = 𝜅

√
n(2𝓁 − n)𝜓n−1

𝓁+1 (46)

C𝜓n
𝓁 = 1

2
(A𝓁B𝓁 − B𝓁−1A𝓁−1)𝜓n

𝓁 = 𝜅2
(1

2
− 𝓁

)
𝜓n
𝓁 . (47)

It is not difficult to show that these operators fulfill the commutation relations

[B,A] = −2C, [C,A] = 𝜅2A, [C,B] = −𝜅2B. (48)

This means that we may construct a realization of the generators of the su(2) algebra with the following identification:

0 = 1
𝜅2 C, − = 1

𝜅
B, + = 1

𝜅
A, (49)

as these operators fulfill the su(2) algebra (compare with Kuru and Negro4)

[−,+] = −20,
[0,±] = ±±.

In the (𝓁,n)-plane of parameters defining the eigenstates of the 𝓁-hierarchies, the action of the operators ± induce the
mappings (𝓁,n) → (𝓁 ∓ 1,n ± 1)meaning that the states are transformed in such a way that the quantity𝓁+ n is preserved.
This unveil the fact that the full set of states may be also classify into hierarchies each one composed of all states having
the same value of this quantity. Introducing the parameter 𝑗 = 1

2
(𝓁−𝓁min+n−1), we say that the operators ± intertwine

eigenstates corresponding to the same j-hierarchy. For each fixed value of 𝓁min, the complete space of wave functions 𝜓n
𝓁

splits into the direct sum of the set of subspaces {𝑗 , 𝑗 = 0, 1
2
, 1, · · ·} spanned by the corresponding hierarchies. This fact

is relevant, eg, in the construction of different families of coherent states and in the generation of the dynamical algebra
underlying the corresponding system.4,40-42

3.3 Position dependent mass Scarf II-type potentials
Now, suppose that 𝛼 < 0, ie, 𝛼 = −𝜅2. Thus,

𝜖𝓁 = −𝜅2𝓁2, (50)

http://wileyonlinelibrary.com
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and the Riccati equation (18) turns into
1
J

d𝛽
dx

− 𝛽2 = −𝜅2. (51)

The general solution of this equation has the form

𝛽(x) = −𝜅 tanh (𝜅u(x)) − 1
J(x)

d
dx

ln
[
Λ − 1

𝜅
tanh (𝜅u(x))

]
, (52)

which is valid for values of Λ such that |Λ| ≥ 1
𝜅

. As in the trigonometric case, we will focus on the simplest particular
solution for which |Λ| → ∞, ie,

𝛽(x) = −𝜅 tanh (𝜅u(x)) . (53)

As this is a regular function for x ∈ R, the domain of definition in this case will be only determined by the corresponding
Dom(m). The 𝜙-function now take the form

𝜙(x) = 𝜅𝜆sech (𝜅u(x)) − 4a + 1
2J(x)

(
d

dx
ln J(x)

)
, (54)

and leads to the function W𝓁

W𝓁(x) = −𝜅𝓁 tanh (𝜅u(x)) + 𝜅𝜆sech (𝜅u(x)) − 4a + 1
2J(x)

(
d

dx
ln J(x)

)
, (55)

along with the operators A𝓁 , B𝓁

A𝓁 = −1
J

d
dx

+ 1
2J

(
d

dx
ln J

)
+ 𝜅𝜆sech (𝜅u) − 𝜅𝓁 tanh (𝜅u) , (56)

B𝓁 = 1
J

d
dx

− 1
2J

(
d

dx
ln J

)
+ 𝜅𝜆sech (𝜅u) − 𝜅𝓁 tanh (𝜅u) , (57)

which are, consistently, independent of the ordering parameter a. As in the trigonometric case, the Ricatti equation (14)
allows us to obtain the family of PDM Scarf II (hyperbolic) potentials. We get

V𝓁(x) = 𝜅2 [−𝓁(𝓁 − 1) + 𝜆2] sech2 (𝜅u(x)) − (2𝓁 − 1) 𝜅𝜆sech (𝜅u(x)) tanh (𝜅u(x)) +

+ 4a + 1
2J2(x)

(
d2

dx2 ln J(x)
)
− (4a + 1) (4a + 3)

4J2(x)

(
d

dx
ln J(x)

)2

.
(58)

In the constant mass case limit, we obtain the family of Scarf II potentials

V𝓁(x) = 𝜅2 [−𝓁(𝓁 − 1) + 𝜆2] sech2 (𝜅x) − (2𝓁 − 1) 𝜅𝜆sech (𝜅x) tanh (𝜅x) . (59)

These potentials have been considered, eg, in constructing exact solutions of the Schrödinger or Dirac equations by
using either power series,43 or shape-invariance8,9,44 techniques. In the context of non-Hermitian Hamiltonians, the com-
plexification of the Scarf II-type potential has been also considered from the group theoretical point of view.45-47 Figure 5
shows some plots of potential (59) together with their first eigenfunctions for different values of the parameters.

FIGURE 5 Hyperbolic Scarf potentials for a constant mass m = 1 given by (43) for the values of 𝓁 and 𝜆 indicated. In all cases, 𝜅 = 1. The
red, dashed curve corresponds to the symmetric constant mass hyperbolic Pöschl-Teller potential [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Unlike the trigonometric case, for the Scarf II potential, the ground state 𝜓0
𝓁 of the 𝓁−hierarchy is constructed as that

state that is annihilated by the operator A𝓁−1, rather than B𝓁 . This means that the operators A𝓁 will act as annihilators
among the elements of consecutive Hamiltonians. Hence,

A𝓁−1𝜓
0
𝓁 =

[
−1

J
d

dx
+ 1

2J

(
d

dx
ln J

)
+ 𝜅𝜆sech (𝜅u) − 𝜅(𝓁 − 1)tanh (𝜅u)

]
𝜓0
𝓁 = 0. (60)

After some calculations, we get

𝜓0
𝓁(x) = N0

𝓁

√
J(x)[cosh (𝜅u(x))]−𝓁+1exp {𝜆 arctan [sinh (𝜅u(x))]} , (61)

with the normalization constant

N0
𝓁 =

√√√√√√𝜅Γ
(
𝓁 − 1

2
+ i𝜆

)
Γ
(
𝓁 − 1

2
− i𝜆

)
√
𝜋Γ(𝓁 − 1)Γ

(
𝓁 − 1

2

) .

As this state is annihilated by A𝓁−1, it corresponds to the eigenvalue is En
𝓁 = 𝜖𝓁−1 = −𝜅2(𝓁 − 1)2.

The intertwining relations (31) determine the action of the A𝓁 and B𝓁 operators on the wave functions among different
Hamiltonians, indeed

A𝓁−1𝜓
n
𝓁 ∝ 𝜓n−1

𝓁−1 , B𝓁𝜓
n
𝓁 ∝ 𝜓n+1

𝓁+1 , (62)

with the condition that En−1
𝓁−1 = En

𝓁 = En+1
𝓁+1. In this way, we may state that

En
𝓁 = En−1

𝓁−1 = · · · = E0
𝓁−n = −𝜅2(𝓁 − n − 1)2. (63)

The value of E0
𝓁 allows now to determine the proportionality constants for the expressions (62), we have

A𝓁−1𝜓
n
𝓁 = 𝜅

√
n(2𝓁 − n − 2)𝜓n−1

𝓁−1 , B𝓁𝜓
n
𝓁 = 𝜅

√
(n + 1)(2𝓁 − n − 1)𝜓n+1

𝓁+1 . (64)

Additionally, the wave function𝜓n
𝓁 (x) can be determined from the ground state of the (𝓁−n)-Hamiltonian by the proper

subsequent applications of operators B𝓁 . Indeed,

𝜓n
𝓁 (x) =

1
𝜅n

√
Γ(2𝓁 − 2n − 1)
n!Γ(2𝓁 − n − 1)

B𝓁−1B𝓁−2· · ·B𝓁−n𝜓
0
𝓁−n(x). (65)

Finally, the expression for the eigenfunctions of a generic member of the hierarchy come along

𝜓n
𝓁 (x) = Nn

𝓁

√
J(x)[cosh (𝜅u(x))]−𝓁+1exp {𝜆 arctan [sinh (𝜅u(x))]} ×

× P
(
−𝓁+ 1

2
+i𝜆,−𝓁+ 1

2
−i𝜆

)
n (i sinh(𝜅u(x))) ,

(66)

with the normalization constant

Nn
𝓁 = (−i)n2𝓁−1

√√√√𝜅 n!(𝓁 − n − 1)Γ
(
𝓁 − n − 1

2
+ i𝜆

)
Γ
(
𝓁 − n − 1

2
− i𝜆

)
𝜋 Γ(2𝓁 − n − 1)

.

Figures 6 to 8 show some plots of the PDM Scarf II potentials (58) and its first wave functions for the masses mr, ms, and
mss, respectively, and for diverse values of the parameters. In all cases, the red, dashed curve represent the corresponding
symmetric Pöschl-Teller case for 𝜆 = 0. The description of the behavior of these potentials and the eigenfunctions is
similar to that presented in Section 3.1.

3.4 Hyperbolic Scarf potential algebra and hierarchies
Let us say a few words about the underlying algebra of the Scarf II potential. As in the trigonometric case, it is possible to
define the free index operators A,B given by

A𝜓n
𝓁 = A𝓁−1𝜓

n
𝓁 = 𝜅

√
n(2𝓁 − n − 2)𝜓n−1

𝓁−1 (67)
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FIGURE 6 Position dependent mass Scarf II potentials for the regular mass mr given by (39) with the values of 𝓁 and 𝜆 indicated. In all
cases, q = 1 and 𝜅 = 1. The red, dashed curve corresponds to the symmetric Pöschl-Teller case [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Position dependent mass Scarf II potentials for the singular mass ms given in (41) with the values of 𝓁, 𝜆, and 𝜅 indicated. The
plots (A) and (B) correspond to q = 1 while (C) to 𝜆 = 1

2
. In all cases, the red, dashed curve represents the case 𝜆 = 0 [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 8 Position dependent mass Scarf II potentials for a constant mass mss given in (43) with the values of 𝓁, 𝜆, and 𝜅 indicated. The
plot (A) correspond to q = 1, while (B) and (C) to q = 1

3
. The red, dashed curve corresponds to 𝜆 = 0 [Colour figure can be viewed at

wileyonlinelibrary.com]

B𝜓n
𝓁 = B𝓁𝜓

n
𝓁 = 𝜅

√
(n + 1)(2𝓁 − n − 1)𝜓n+1

𝓁+1 (68)

C𝜓n
𝓁 = 1

2
(B𝓁−1A𝓁−1 − A𝓁B𝓁)𝜓n

𝓁 = 𝜅2
(1

2
− 𝓁

)
𝜓n
𝓁 . (69)

One can easily show that these operators fulfill the commutation relations

[B,A] = 2C, [C,A] = 𝜅2A, [C,B] = −𝜅2B. (70)

Thus, the introduction of new operators 0 and ± of the form

0 = 1
𝜅2 C, − = 1

𝜅
B, + = 1

𝜅
A, (71)

leads us to a realization of the su(1, 1) algebra (compare with Kuru and Negro4)

[−,+] = 20,
[0,±

]
= ±±.

The action of the operators0,± in the (𝓁,n)-plane of parameters induce the mappings (𝓁,n) → (𝓁 ±1, n ± 1). Observe
that in these transformation the quantity 𝓁−n remains invariant. Let us introduce the parameter k = 1

2
(𝓁 − 𝓁min − n + 1).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The whole set of wave functions 𝜓n
𝓁 may be classified into hierarchies composed by those vectors having the same value

of k. The operators ± intertwine the wave functions corresponding to the same k-hierarchy. Thus, for each fixed value
of 𝓁min, the whole set of wave functions 𝜓n

𝓁 can be decomposed as the direct sum of the subspaces
{k, k = 1, 3

2
, 2· · ·

}
each one spanned by the corresponding k-hierarchy.41,42

4 POSITION DEPENDENT MASS POTENTIALS WITH THE SCARF
SPECTRUM GENERATED BY SUPERSYMMETRY

4.1 Potentials with the trigonometric Scarf spectrum
Now, a natural question arises, if there exist more general operators, say, Ã𝓁 , B̃𝓁 that allow to factorize the PDM
Hamiltonian H𝓁 in the form

H𝓁 = B̃𝓁−1Ã𝓁−1 + 𝜖. (72)

The answer is positive. Indeed, the solution to the Schrödinger equation

H𝓁𝜓 =
{

maPm2bPma + V𝓁
}
𝜓 = 𝜖𝜓, (73)

with V𝓁 a member of the PDM Scarf I family (28), can be written in the form (from now on, for the sake of simplicity, and
without loss of generality, we will set a = − 1

4
)

𝜓(x) =
√

J(x) exp
[
∫

x
W̃𝓁−1(𝑦)J(𝑦)d𝑦

]
, (74)

where the function W̃𝓁−1(x) fulfills the Riccati equation
1
J

d
dx

W̃𝓁−1(x) + W̃ 2
𝓁−1(x) + 𝜖 = V𝓁(x), (75)

that has the same form as (15) for a = − 1
4
. This means that the Hamiltonian H𝓁 can be factorized in the form (72) with

Ã𝓁−1 = −1
J

d
dx

+ 1
2J

(
d

dx
ln J

)
+ W̃𝓁−1 (76)

B̃𝓁−1 = 1
J

d
dx

− 1
2J

(
d

dx
ln J

)
+ W̃𝓁−1. (77)

In general, for an arbitrary choice of one solution W̃𝓁−1 of the Riccati equation (75), the corresponding operators
Ã𝓁−1, B̃𝓁−1 do not fulfill the Scarf potential algebra (12). In fact, if we reverse the ordering of the factors in (72), we obtain
a new Hamiltonian H̃𝓁−1 given by

H̃𝓁−1 = Ã𝓁−1B̃𝓁−1 + 𝜖

= − 1
J2

d2

dx2 + 2
J2

(
d

dx
ln J

)
d

dx
+ 1

2J2

(
d2

dx2 ln J
)
− 3

4J2

(
d

dx
ln J

)2

+ Ṽ𝓁−1,
(78)

where the new potential Ṽ𝓁−1 is defined by

Ṽ𝓁−1(x) = V𝓁(x) −
2
J

(
d

dx
W̃𝓁−1(x)

)
. (79)

Now, the factorizations (72) and (78) imply the intertwining relations

H̃𝓁−1Ã𝓁−1 = Ã𝓁−1H𝓁 , H𝓁B̃𝓁−1 = B̃𝓁−1H̃𝓁−1, (80)

that, in turn allow to construct the wave functions of H̃𝓁−1 in terms of those of H𝓁 . Note that the first one of the intertwining
relations (80) implies that the function Ã𝓁−1𝜓

n
𝓁 is an eigenfunction of H̃𝓁−1 corresponding to the eigenvalue En

𝓁 , while the
second one establishes that B𝓁−1 reverses the action of A𝓁−1.

It may happen, however, as it is well known for the constant mass case, that the functions Ã𝓁−1𝜓
n
𝓁 do not conform a

complete set of eigenfunctions of H̃𝓁−1. If this is the case, there is only one additional wave function 𝜓̃𝜖
𝓁−1 that is normal-

izable in Dom(Ṽ𝓁−1). This “missing” state is determined as the function that is annihilated by B̃𝓁−1 and, thus, corresponds
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to the eigenvalue 𝜖. In this way, if 𝜖 ≠ En
𝓁 , n = 0, 1, 2, … , the Hamiltonians H𝓁 and H̃𝓁−1 are almost isospectral and

S𝑝(H̃𝓁−1) = S𝑝(H𝓁) ∪ {𝜖}. To the contrary, if the equation B̃𝓁−1𝜓̃
𝜖
𝓁−1 = 0 do not define any square integrable function

𝜓̃𝜖
𝓁 in the corresponding domain, then the set

{
Ã𝓁−1𝜓

n
𝓁 ,n = 0, 1, 2, · · ·

}
is a complete set of eigenfunctions of H̃𝓁−1 and

S𝑝(H̃𝓁−1) = S𝑝(H𝓁).
As an example, take the particular case for which 𝜖 = 𝜖𝓁−1 = 𝜅2(𝓁 − 1)2. Following (16) and (24), we propose that

W̃𝓁−1(x) = 𝜅𝜆 sec (𝜅u(x)) + (𝓁 − 1)𝛽(x). (81)

Then, the function 𝛽 must satisfy the Riccati equation

1
J

d𝛽
dx

+ 2𝜅𝜆𝛽 + (𝓁 − 1)𝛽2 + (𝓁 − 1)𝜅2 = 𝜅2𝓁sec2(𝜅u) + 2𝜅𝜆 sec(𝜅u) tan(𝜅u). (82)

The general solution to this equation reads

𝛽(x) = 𝜅 tan(𝜅u(x)) + 1
(𝓁 − 1)J(x)

d
dx

ln
[
𝛾 + (𝓁 − 1)∫

x
𝜇(𝑦)J(𝑦)d𝑦

]
, (83)

with 𝛾 an integration constant and

𝜇(x) = (1 − sin(𝜅u(x)))𝓁+𝜆−1(1 + sin(𝜅u(x)))𝓁−𝜆−1.

This expression, together with (79) allows to construct a family of supersymmetric potentials labeled by the parameter 𝛾 :

Ṽ𝓁−1(x) = V𝓁−1(x) +
2

J2(x)

(
d

dx
ln J

)
d

dx
ln

[
𝛾 + (𝓁 − 1)∫

x
𝜇(𝑦)J(𝑦)d𝑦

]
+

− 2
J2(x)

d2

dx2 ln
[
𝛾 + (𝓁 − 1)∫

x
𝜇(𝑦)J(𝑦)d𝑦

]
.

(84)

To obtain regular potentials the parameter 𝛾 should be restricted by the condition |𝛾| > max
[
(𝓁 − 1)∫ x

𝜇(𝑦)J(𝑦)d𝑦
]
.

As the constant 𝜖 = 𝜖𝓁−1 = 𝜅2(𝓁 − 1)2 do not belong to Sp(H𝓁), we look for a missing state corresponding to this
eigenvalue by imposing the condition that B𝓁−1𝜓̃

𝜖
𝓁−1 = 0. We find the solution

𝜓̃𝜖
𝓁−1(x) ∝

√
J(x)

⎡⎢⎢⎢⎣
cos

(
𝜅u(x)

2

)
− sin

(
𝜅u(x)

2

)
cos

(
𝜅u(x)

2

)
+ sin

(
𝜅u(x)

2

)⎤⎥⎥⎥⎦
𝜆

[cos(𝜅u(x))]𝓁−1

𝛾 + (𝓁 − 1)∫ x
𝜇(𝑦)J(𝑦)d𝑦

, (85)

which is a normalizable function in Dom(Ṽ𝓁−1). This function must be then added to the set of eigenfunctions of H̃𝓁−1
and the corresponding eigenvalue to its spectrum. Thus, S𝑝(H̃𝓁−1) = S𝑝(H𝓁) ∪

{
𝜅2(𝓁 − 1)2}, or S𝑝(H̃𝓁−1) = S𝑝(H𝓁−1).

4.2 Potentials with the hyperbolic Scarf spectrum
Now, consider the PDM Schrödinger equation (73) with V𝓁 a member of the Scarf II family (58). It is possible to write the
solution in the form

𝜓(x) =
√

J(x) exp
[
−∫

x
W̃𝓁(𝑦)J(𝑦)d𝑦

]
, (86)

where the function W̃𝓁 must now satisfy the Riccati equation

−1
J

dW̃𝓁

dx
+ W̃ 2

𝓁 + 𝜖 = V𝓁 . (87)

Note that this equation is the same as Equation 14 for a = − 1
4
. This means that we may factorize the Hamiltonian H𝓁

in the form
H𝓁 = Ã𝓁B̃𝓁 + 𝜖, (88)

with

Ã𝓁 = −1
J

d
dx

+ 1
2J

(
d

dx
ln J

)
+ W̃𝓁 (89)
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B̃𝓁 = 1
J

d
dx

− 1
2J

(
d

dx
ln J

)
+ W̃𝓁 . (90)

In a similar way as in the previous case, in general, not any solution to (87) lead to the fulfillment of the Scarf potential
algebra (12). In fact, if we reverse the product in (88), we obtain the new Hamiltonian

H̃𝓁+1 = B̃𝓁Ã𝓁 + 𝜖

= − 1
J2

d2

dx2 + 2
J2

(
d

dx
ln J

)
d

dx
+ 1

2J2

(
d2

dx2 ln J
)
− 3

4J2

(
d

dx
ln J

)2

+ Ṽ𝓁+1,
(91)

where the new potential

Ṽ𝓁+1(x) = Ṽ𝓁(x) +
1

2J(x)
d

dx
W̃𝓁(x). (92)

Now, the intertwining relations
B̃𝓁H𝓁 = H̃𝓁+1B̃𝓁 , Ã𝓁H̃𝓁+1 = H𝓁Ã𝓁 , (93)

establish that one may construct the wave functions of H̃𝓁+1 in terms of those of H𝓁 . Actually, these relations imply that
the vector B̃𝓁𝜓

n
𝓁 is an eigenfunction of H̃𝓁+1 corresponding to the eigenvalue En

𝓁 and that Ã𝓁 reverses the effect of B̃𝓁 .
Also, in the case that 𝜖 ≠ En

𝓁 , n = 0, 1, 2, … , if
{

B̃𝓁𝜓
n
𝓁 , n = 0, 1, 2, · · ·

}
is not a complete set of eigenfunctions of

H̃𝓁+1, there is only one missing normalizable state 𝜓̃𝜖
𝓁+1, which is constructed by assuming that Ã𝓁𝜓̃

𝜖
𝓁+1 = 0. As this state

corresponds to the eigenvalue 𝜖, this value must be added to the spectrum of H̃𝓁+1, and the Hamiltonians H𝓁 and H𝓁 + 1
are almost isospectral: S𝑝(H̃𝓁+1) = S𝑝(H𝓁) ∪ {𝜖}. In any other case S𝑝(H̃𝓁+1) = S𝑝(H𝓁).

In particular, if we chose 𝜖 = −𝜅2𝓁2 and consider (16) and (54), we write

W̃𝓁(x) = 𝜅𝜆 sech2(𝜅u(x)) + 𝓁𝛽(x), (94)

where the function 𝛽 must satisfy the Riccati equation

−1
J

d𝛽
dx

+ 2𝜅𝜆 sech (𝜅u)𝛽 + 𝓁𝛽2 − 𝜅2𝓁 = −𝜅2(𝓁 − 1) sech2(𝜅u(x)) − 𝜅2𝜆 sech (𝜅u) tanh (𝜅u). (95)

The general solution to this equation reads

𝛽(x) = −𝜅 tanh(𝜅u(x)) − 1
𝓁J(x)

d
dx

ln
[
𝛾 − 𝓁∫

x
𝜌(𝑦)J(𝑦)d𝑦

]
, (96)

with 𝛾 an integration constant and

𝜌(x) = [cosh(𝜅u(x))]−2𝓁exp {2𝜆arctan [sinh(𝜅u(x))]} .

The new almost isospectral potential turn out to be

Ṽ𝓁+1(x) = V𝓁+1 +
2

J2(x)

(
d

dx
lnJ(x)

)
d

dx
ln

[
𝛾 − 𝓁∫

x
𝜌(𝑦)J(𝑦)d𝑦

]
+

− 2
J2(x)

d2

dx2 ln
[
𝛾 − 𝓁∫

x
𝜌(𝑦)J(𝑦)d𝑦

]
,

(97)

where regular potentials of this type are granted for choices of 𝛾 such that

|𝛾| > max
[
𝓁∫

x
𝜌(𝑦)J(𝑦)d𝑦

]
.

The value of 𝜖 = 𝜖𝓁 = −𝜅2𝓁2 is not contained in Sp(H𝓁), so that we look for a missing state. In this case, we obtain

𝜓̃𝜖
𝓁+1(x) = N𝜖

𝓁+1exp {𝜆 arctan [sinh(𝜅u(x))]} cosh−𝓁(𝜅u(x))
𝛾 − 𝓁∫ x

𝜌(𝑦)J(𝑦)d𝑦
. (98)

As this is a normalizable function in Dom (Ṽ𝓁+1), it must belong to the complete set of eigenvectors and S𝑝(H̃𝓁+1) =
S𝑝(H𝓁) ∪

{
−𝜅2𝓁2} = S𝑝(H𝓁+1).
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5 SUMMARY AND CONCLUSIONS

We have presented a method of constructing families of PDM Scarf Hamiltonian hierarchies of the trigonometric as well as
the hyperbolic type. In this method, it is assumed that the underlying potential or spectrum generating algebra is known
and the potential is determined by using a Riccati equation. We have constructed families of PDM Scarf potentials and
used the factorization method to find the corresponding eigenfunctions. Some types of the mass function with and without
singularities were considered in order to illustrate our results in different situations. Next, we used these Scarf potentials
in order to construct new PDM potential with the Scarf spectrum by means of supersymmetric transformations. The
convenience of using this approach lies in the fact that we may generate hierarchies of PDM Hamiltonians with a specific
discrete spectrum. As the potential algebra is already fixed, the construction of ladder operators, dynamical algebras and
coherent states can be directly generalized from the constant mass regime. Additionally, it is worthwhile to mention that
our results are consistent for any particular ordering one may chose in order to construct a proper PDM Hamiltonian,
as in our model neither the Hamiltonian nor the factorizing operators are dependent of the ordering parameter a. This
formalism can be extended to potentials of the Pöschl-Teller, Morse and Eckart types, among others.26 Results in this
direction are in progress and will be reported elsewhere.
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