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Abstract

A Lie–Hamilton system is a nonautonomous system of first-order ordinary differential
equations describing the integral curves of a t-dependent vector field taking values in a
finite-dimensional Lie algebra, a Vessiot–Guldberg Lie algebra, of Hamiltonian vector fields
relative to a Poisson structure. Its general solution can be written as an autonomous func-
tion, the superposition rule, of a generic finite family of particular solutions and a set of
constants. We pioneer the study of Lie–Hamilton systems on Riemannian spaces (sphere,
Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and
Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their
corresponding constants of motion and superposition rules are obtained explicitly in a ge-
ometric way. This work extends the (graded) contraction of Lie algebras to a contraction
procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic
structures, invariants, and superposition rules.
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1 Introduction

A Lie system is a nonautonomous system of first-order ordinary differential equations describing the
integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra of vector
fields, a so-called Vessiot–Guldberg Lie algebra [1, 2]. The Lie–Scheffers theorem [3] establishes that a Lie
system amounts to a nonautonomous system of first-order ordinary differential equations whose general
solution can be written as an autonomous function, a superposition rule, of a generic family of particular
solutions and some constants related to initial conditions [1, 2, 3, 4, 5, 6].
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Some relevant examples of Lie systems are nonautonomous systems of first-order linear ordinary
differential equations [2] and matrix Riccati equations [4]. Although most differential equations cannot
be described through Lie systems [2, 7], Lie systems occur in relevant physical and mathematical problems,
such as Winternitz–Smorodinsky oscillators and Ermakov systems [2], which motivates their study (see [2,
8, 9] for more applications).

Lie systems admitting a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields relative to a
Poisson structure [10, 11] are called Lie–Hamilton (LH) systems [12]. Although Lie systems and LH
systems have been widely studied and applied, most of them are defined on a flat Euclidean space Rn

[8, 9, 13, 14, 15]. In particular, their local classification on R2 has been recently established in [8], starting
from the classification of finite-dimensional Lie algebras of vector fields on R2 up to a local diffeomorphism
developed by González, Kamran, and Olver, the so-called GKO classification [16]. Constants of motion
and superposition rules for LH systems on R

2 were studied in [9].

There exists an almost complete classification and derivation of superposition rules for complex Lie
systems with primitive transitive Vessiot–Guldberg Lie algebras of vector fields on homogeneous spaces
due to Winternitz and collaborators [17, 18]. In spite of that, there are not many results for Lie sys-
tems possessing general real Vessiot–Guldberg Lie algebras on homogeneous spaces, which represents a
much more complicated problem (cf. [17, 18]). Some results can be found on one- and two-dimensional
spheres [1, 19, 20, 21]. Relevantly, the so-called t-dependent projective Schrödinger equations are Lie
systems on a complex projective space admitting a real Vessiot–Guldberg Lie algebra of Lie symmetries
of a Riemannian metric with positive constant curvature. This Vessiot–Guldberg Lie algebra also con-
sists of Hamiltonian vector fields relative to a symplectic structure coming from the quantum mechanical
structure of the problem [22]. Due to the lack of research on Lie systems in real manifolds, this paper
aims to fill this gap in the literature by classifying LH systems on two-dimensional (2D) spaces with a
Vessiot–Guldberg Lie algebra of Lie symmetries of a (possibly degenerate) metric of constant curvature
by following a geometrical approach which also enables one to calculate their constants of motion and
superposition rules explicitly.

Section 2 surveys Lie systems on R2 possessing a Vessiot–Guldberg Lie algebra V belonging to the
class P1 of the GKO classification [8, 9]. Such a Vessiot–Guldberg Lie algebra is isomorphic to the 2D
Euclidean algebra iso(2). The vector fields of V become Hamiltonian relative to a symplectic structure on
R2. Moreover, V consists of Lie symmetries of the metric of the Euclidean plane E

2 := R2. This allows
us to obtain the corresponding superposition rules by using Euclidean and symplectic geometry [9].

To generalize the latter results to other (curved) spaces, we give in section 3 a brief account on the
nine 2D Cayley–Klein (CK) spaces [23, 24, 25, 26, 27], which are collectively denoted by S

2
[κ1],κ2

where κ1

and κ2 are two real parameters. The former is just the constant Gaussian curvature of the space, while
the latter determines the metric of the space through diag(+1, κ2). Therefore, the CK spaces cover the
three classical Riemannian spaces of constant curvature for κ2 > 0 (sphere, Euclidean, and hyperbolic
spaces), three pseudo-Riemannian or Lorentzian spaces for κ2 < 0 (anti-de Sitter, Minkowski, and de
Sitter spaces), as well as three semi-Riemannian or Newtonian spaces, so with a degenerate metric, for
κ2 = 0. The Euclidean plane E

2 corresponds to the CK space S
2
[0],+.

In section 4, new Lie systems on S
2
[κ1],κ2

are obtained by considering the Lie algebras of Lie symmetries

of the metric on S
2
[κ1],κ2

in the so-called geodesic parallel coordinates [28]; these are a natural generalization
of the Cartesian coordinates to curved spaces. Next a symplectic form is found to turn previous Lie
symmetries into Hamiltonian vector fields, so providing LH systems on S

2
[κ1],κ2

.

Previous new Lie systems admit Vessiot–Guldberg Lie algebras of conformal vector fields on two-
dimensional manifolds. Although superposition rules for Lie systems on linear spaces admitting Vessiot–
Guldberg Lie algebras of conformal vector fields can be found in [9, 14, 15], such results cannot effectively
be applied to the Lie systems here proposed for a number of reasons. First, there exists no global
diffeomorphism mapping Lie systems on manifolds to particular cases of the Lie systems treated in
[9, 14, 15] because, for instance, there is no diffeomorphism from a sphere to a linear space. As a
consequence, there is no way to apply the superposition rules derived in [9, 14, 15] to our Lie systems.
Second, the Lie systems studied in [14, 15] are related to Vessiot–Guldberg Lie algebras of larger dimension
than those given in the present work. This causes the related superposition rules to depend on a larger
number of particular solutions and to have different properties than ours [2]. Finally, our approach is
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specially adapted to the geometry of the manifold where the Lie systems are defined. This involves the
use of special spherical trigonometric functions and other techniques. This cannot be achieved through
methods in [9, 14, 15], as they do not consider the geometry of S2

[κ1],κ2
.

Previous results are completed in section 5, where, firstly, t-independent constants of motion are
obtained by applying the Poisson coalgebra approach introduced in [13] and, secondly, superposition
rules are deduced by making use of trigonometry on such (curved) spaces [29].

Lie algebras of vector fields, Hamiltonian functions, and related structures appearing in sections 3, 4,
and 5 are parametrized in terms of the parameters κa (a = 1, 2). Such expressions are illustrated for each
specific space in tables 1 and 2, which summarize the main results of the paper. The cases with κ1 = 0
and κ2 > 0 recover known results on Euclidean LH systems on the plane [8]. Moreover, this allows us
to generalize graded contractions of abstract Lie algebras [30, 31, 32], which comprise the Inönü–Wigner
Lie algebra contractions corresponding to the limits κa → 0, to Lie algebras of vector fields, Hamiltonian
functions, etc. This highlights transitions among all of these known and new LH systems and their
associated structures. In fact, contractions of Lie systems have only been considered very recently in [33],
but a systematic use covering contractions of vector fields, symplectic structures, constants of motion,
and superposition rules was still lacking. Finally, some open problems close the paper.

2 A class of Lie–Hamilton systems on the Euclidean plane

Let us consider the Euclidean plane E
2 := R2 with global coordinates {x, y} along with a real parameter

t and a nonautonomous system of first-order differential equations

dx

dt
= f(t, x, y),

dy

dt
= g(t, x, y), (2.1)

where f, g : R3 → R are arbitrary functions. System (2.1) is geometrically described by the t-dependent
vector field

X : (t, x, y) ∈ R× R
2 7→ f(t, x, y)

∂

∂x
+ g(t, x, y)

∂

∂y
∈ TR2. (2.2)

Conversely, the above t-dependent vector field induces a unique nonautonomous system of differential
equations determining its integral curves given by (2.1) (see [2]). This justifies the use of X to refer to
both (2.1) and (2.2). A Lie system on R2 is a system of the form

Xt(x, y) := X(t, x, y) =

l∑

i=1

bi(t)Xi(x, y),

where b1(t), . . . , bl(t) are some t-dependent real functions and X1, . . . , Xl are vector fields on R2 spanning
an l-dimensional real Lie algebra V , a Vessiot–Guldberg Lie algebra of X . The Lie–Scheffers Theorem
[3, 4, 5] states that a nonautonomous system of first-order ordinary differential equations is a Lie system
if and only if its general solution can be described through a superposition rule [1, 2, 3, 4].

For our purposes and to illustrate the above concepts, we consider the t-dependent vector field on R2

of the form
X := b1(t)X1 + b2(t)X2 + b3(t)X3, (2.3)

where b1(t), b2(t), b3(t) are arbitrary t-dependent functions and

X1 :=
∂

∂x
, X2 :=

∂

∂y
, X3 := y

∂

∂x
− x

∂

∂y
. (2.4)

Hence, X is related to a system of nonautonomous first-order ordinary differential equations

dx

dt
= b1(t) + b3(t)y,

dy

dt
= b2(t)− b3(t)x. (2.5)

The previous system can be rewritten as a linear inhomogeneous complex differential equation

dz

dt
=

(
b1(t) + ib2(t)

)
− ib3(t)z
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admitting a complex Vessiot–Guldberg Lie algebra VC = 〈∂z, z∂z〉C isomorphic to the complex affine Lie
algebra Aff(C). Meanwhile, complex Bernoulli equations [34] of order α ∈ R\{1}, namely

dw

dt
= a(t)w + b(t)wα

for arbitrary complex functions a(t) and b(t), possess a complex Vessiot–Guldberg Lie algebra VCB =
〈w∂w, wα∂w〉 ≃ Aff(C). On the one hand, since affine Lie algebras of complex vector fields on the
complex line are diffeomorphic, there exists a complex change of variables mapping one onto the other,
namely w1−α = z. This maps (2.5), written as a complex inhomogeneous differential equation, onto
a complex Bernoulli equation. Moreover, complex Bernoulli equations, as real Lie systems, admit a
Vessiot–Guldberg Lie algebra given by the realification of VCB, denoted by V R

CB , which retrieves a result
in [9]. In consequence, (2.5) must admit a Vessiot–Guldberg Lie algebra isomorphic to a Lie subalgebra
of V R

CB.

The vector fields (2.4) span a 3D real Vessiot–Guldberg Lie algebra V with commutation relations

[X3, X1] = X2, [X3, X2] = −X1, [X1, X2] = 0. (2.6)

That is, V can be written as a semidirect sum V ≃ so(2)⋉ R2 ≃ 〈X3〉 ⋉ 〈X1, X2〉, so being isomorphic
to the 2D Euclidean Lie algebra iso(2). Consequently, X is called an iso(2)-Lie system.

The Lie algebra V belongs to the class P1 of the GKO classification [8, 16]. The system X is therefore
called a P1-Lie system. Additionally, P1 is also one of the 12 classes of finite-dimensional real Lie algebras
of Hamiltonian vector fields on R2 according to the classification performed in [8, 9]. Hence, X admits
a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with respect to a Poisson structure [10, 11],
and it becomes an iso(2)-LH system. In particular, the vector fields of V are Hamiltonian relative to the
(canonical) symplectic form

ω = dx ∧ dy.

Their corresponding Hamiltonian functions, hi, can be obtained by using the relation ιXi
ω = dhi (i =

1, 2, 3); these can be chosen to be [8, 9]

h1 := y, h2 := −x, h3 :=
1

2
(x2 + y2). (2.7)

Thus,
ht := b1(t)h1 + b2(t)h2 + b3(t)h3

is a Hamiltonian function associated with the vector field Xt given by (2.3) for every t ∈ R. The linear
space 〈h1, h2, h3〉 can be expanded to a finite-dimensional Lie algebra of functions, relative to the Poisson
bracket {·, ·}ω related to ω, by adding a new Hamiltonian function h0 := 1. In this way,

{h3, h1}ω = −h2, {h3, h2}ω = h1, {h1, h2}ω = h0, {h0, · }ω = 0, (2.8)

and 〈h1, h2, h3, h0〉 becomes a Lie algebra (with respect to {·, ·}ω) isomorphic to the centrally extended
Euclidean Lie algebra iso(2). This term is coined due to the fact that there exists an exact Lie algebra
sequence

〈h0〉 →֒ 〈h1, h2, h3, h0〉
φ→ V ≃ iso(2)

where φ(hi) = Xi and φ(h0) = 0. Remarkably, every Lie algebra containing the Hamiltonian functions
for the vector fields of V will generate a Lie algebra isomorphic to iso(2) (cf. [8, Corollary 5.4 and
Proposition 5.5]). We call this Lie algebra a LH algebra, Hω, for the LH system X .

2.1 Constants of motion and superposition rules

When a nonautonomous system of first-order ordinary differential equations X is shown to be a Lie
system, the Lie–Scheffers Theorem ensures that it possesses a superposition rule which can be deduced
by standard (but generally cumbersome) methods [2, 4, 5]. If X is a LH system, there also exists
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an alternative Poisson coalgebra approach, which enables one to obtain the corresponding constants of
motion (invariants) and superposition rules in an easier geometric manner. This procedure has recently
been formulated in [13] and extensively applied in [9] to the 12 classes of LH systems on the Euclidean
plane. In what follows, we review the essentials of such a Poisson coalgebra procedure by applying it to
the P1-Lie system X given by (2.4) (see [9, 13] for details).

Let S
(
iso(2)

)
be the symmetric algebra of iso(2) [35, 36], i.e. the algebra of polynomial functions on

the elements of iso(2). Let {v0, v1, v2, v3} be a basis of iso(2) fulfilling the commutation relations (2.8).
The Lie bracket on iso(2) ⊂ S

(
iso(2)

)
can be extended in a unique way to a Poisson bracket {·, ·}S

on S
(
iso(2)

)
, which becomes a Poisson algebra [10, 13]. Then, S

(
iso(2)

)
has a second-order Casimir

invariant [37]
C := v3v0 − 1

2 (v
2
1 + v22),

i.e. C is a quadratic function in the variables v0, v1, v2, v3, and {C,w}S = 0 for every w ∈ S(iso(2)).
The tensor product of Poisson algebras becomes a Poisson algebra in a canonic way [10], and S

(
iso(2)

)

can be endowed with a Poisson coalgebra [13] structure by means of the non-deformed coproduct map
∆ : S

(
iso(2)

)
→ S

(
iso(2)

)
⊗ S

(
iso(2)

)
defined by requiring ∆ to be a linear morphism such that

∆(wv) = ∆(w)∆(v) for every w, v ∈ S
(
iso(2)

)
and

∆(va) := va ⊗ 1 + 1⊗ va, a = 0, 1, 2, 3, (2.9)

namely S
(
iso(2)

)
is a Poisson algebra and ∆ is a Poisson algebra homomorphism. The Poisson algebra

morphisms D : S
(
iso(2)

)
→ C∞(R2) and D(2) : S

(
iso(2)

)
⊗ S

(
iso(2)

)
→ C∞(R2)⊗C∞(R2) defined by

D(va) := ha(x1, y1), D(2)(va ⊗ 1) := ha(x1, y1), D(2)(1⊗ va) := ha(x2, y2), (2.10)

where ha are the Hamiltonian functions (2.7), lead to the following t-independent constants of motion
F (1) := F and F (2) for the system X through the Casimir C as follows (see [13, Theorem 26] for details)

F := D(C), F (2) := D(2) (∆(C)) ,

namely [9]

F = 0, F (2) =
1

2

[
(x1 − x2)

2 + (y1 − y2)
2
]
. (2.11)

The previous functions become constant when evaluated on pairs (xi(t), yi(t)), with i = 1, 2, of particular
solutions to X . Hence, they are first-integrals of the so-called diagonal prolongation of the t-dependent
vector field X to (R2)2 [2, 5], namely the t-dependent vector field on (R2)2 given by

X̃(t, x1, y1, x2, y2) :=

2∑

i=1

3∑

α=1

bα(t)Xα(xi, yi).

By permuting x1 ↔ x3, y1 ↔ y3 and x2 ↔ x3, y2 ↔ y3 in F (2), we find two functions F
(2)
13 , F

(2)
23 : (R2)3 →

R of the form {
F

(2)
13 := 1

2

[
(x3 − x2)

2 + (y3 − y2)
2
]
,

F
(2)
23 := 1

2

[
(x1 − x3)

2 + (y1 − y3)
2
]
.

(2.12)

Since the diagonal prolongation of X to (R2)3 is invariant under the permutation of variables, F
(2)
13 and

F
(2)
23 are its first-integrals.

Since ∂(F (2), F
(2)
23 )/∂(x1, y1) 6= 0, both constants of motion are functionally independent (the pair

F (2), F
(2)
13 is so as well). This condition allows us to solve the system of equations

F (2) = 1
2k

2
1 ≥ 0, F

(2)
23 = 1

2k
2
2 ≥ 0, F

(2)
13 = 1

2k
2
3 > 0, (2.13)

in the variables x1, y1. In turn, we can write a function Φ : (x2, y2;x3, y3; k1, k2) ∈ R2 × R2 × R
2

0 7→
(x1, y1) ∈ R2, where R0 := {x ∈ R, x ≥ 0}. The theory of Lie systems [2] ensures that Φ enables us to
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write the general solution, (x1(t), y1(t)) to X as a function of two particular solutions (xi(t), yi(t)) to X
and two constants, k1, k2, to be related to initial conditions as follows

(x1(t), y1(t)) = Φ(x2(t), y2(t), x3(t), y3(t), k1, k2).

In particular, the system of equations (2.13) admits two solutions in the variables x1, y1 according to
the signs ‘±’ [9]






x±
1 (x2, y2, x3, y3, k1, k2) = x2 +

k21 + k23 − k22
2k23

(x3 − x2)∓ 2A
(y3 − y2)

k23
,

y±1 (x2, y2, x3, y3, k1, k2) = y2 +
k21 + k23 − k22

2k23
(y3 − y2)± 2A

(x3 − x2)

k23
,

A =
1

4

√
2(k21k

2
2 + k21k

2
3 + k22k

2
3)− (k41 + k42 + k43),

(2.14)

where k23 = (x3 − x2)
2 + (y3 − y2)

2. Then, it is guaranteed [5] that the above expressions give rise to

superposition rules Φ± : (x2, y2;x3, y3; k1, k2) ∈ R2 × R2 × R
2

0 7→ (x±
1 , y

±
1 ) ∈ R2.

Remarkably, above results admit a geometrical interpretation. The vector fields (2.4) are the infinites-
imal generators of the isometries on the Euclidean plane E2 relative to the standard metric dx2+dy2. In
particular, X3 := J12 is the generator of rotations around the origin on E

2 (or the angular momentum),
meanwhile X1 := P1 and X2 := P2 behave as infinitesimal generators of translations along the two basic
axes x and y, respectively.

Likewise, the invariants (2.11), (2.12), and the superposition rules (2.14) can also be geometrically
described [9]. Let k1, k2 and k3 be the Euclidean lengths of the segments Q1Q2, Q1Q3, and Q2Q3

between the three points Q1 := (x1, y1), Q2 := (x2, y2), and Q3 := (x3, y3) on E
2, respectively, which

form a triangle △Q1Q2Q3. Then, the invariants F (2), F
(2)
23 and F

(2)
13 are just, in this order, one half of

the Euclidean distances Q1Q2, Q1Q3, and Q2Q3. Meanwhile the area of the triangle △Q1Q2Q3 is just
the constant A in (2.14), which is, in fact, the Heron–Archimedes formula for the Euclidean area [29].

3 Two-dimensional spaces of constant curvature

This section provides the basic geometrical background to construct a (κ1, κ2)-parametric family of LH
systems on curved spaces along with their invariants and superposition rules.

Let us consider a two-parametric family of 3D real Lie algebras, denoted by soκ1,κ2
(3), which depends

on two real parameters, κ1 and κ2, which comprises the so-called CK Lie algebras [23, 24, 25, 26, 27, 28, 29]
or quasisimple orthogonal algebras [38]. The structure constants of soκ1,κ2

(3) in the basis {P1, P2, J12}
are given by

[J12, P1] = P2, [J12, P2] = −κ2P1, [P1, P2] = κ1J12. (3.1)

The involutive automorphisms Θ0,Θ01 : soκ1,κ2
(3) → soκ1,κ2

(3), defined by imposing

Θ0(J12) = J12, Θ0(P1) = −P1, Θ0(P2) = −P2,

Θ01(J12) = −J12, Θ01(P1) = P1, Θ01(P2) = −P2,

diagonalize and commute among themselves. Hence, they induce a decomposition of soκ1,κ2
(3) into

common eigenspaces of Θ0 and Θ01 of the form soκ1,κ2
(3) = E(1,0) ⊕E(0,1) ⊕E(1,1), with E(0,1) := 〈J12〉,

E(1,0) := 〈P1〉, E(1,1) := 〈P2〉, and E(0,0) = {0}. This gives rise to a Z2 × Z2-grading of the Lie algebra
soκ1,κ2

(3), i.e. [E(α1,α2), E(β1,β2)] ⊂ E(α1+β1,α2+β2) for every α1, α2, β1, β2 ∈ Z2. Hence, κ1 and κ2 are
two graded contraction parameters determined by Θ0 and Θ01, respectively [32]. By rescaling the basis
of soκ1,κ2

(3) each parameter κa (a = 1, 2) can be reduced to either +1, 0 or −1. The vanishment of any
κa is equivalent to applying an Inönü–Wigner contraction [32].

The automorphism Θ0 gives rise to the Cartan decomposition:

soκ1,κ2
(3) = h0 ⊕ p0, h0 := 〈J12〉 ≃ soκ2

(2), p0 := 〈P1, P2〉,
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where soκ2
(2) is the space of real 2× 2 matrices A satisfying that AT

Iκ2
+ Iκ2

A = 0, Iκ2
:= diag(1, κ2).

The Lie algebra soκ1,κ2
(3) is isomorphic to the matrix Lie algebra of 3× 3 real matrices M satisfying [27]

MT
Iκ + IκM = 0, Iκ := diag(1, κ1, κ1κ2), κ := (κ1, κ2). (3.2)

If Iκ is not degenerate, then this space is indeed the so-called indefinite orthogonal Lie algebra so(p, q),
where p and q are the number of positive and negative eigenvalues of the matrix Iκ.

In particular, the elements of the basis {P1, P2, J12} can be identified with the matrices

P1 = −κ1e01 + e10, P2 = −κ1κ2e02 + e20, J12 = −κ2e12 + e21, (3.3)

where eij is the 3× 3 matrix with a single non-zero entry 1 at row i and column j (i, j = 0, 1, 2).

The elements of soκ1,κ2
(3) generate by matrix exponentiation the referred to as CK Lie group

SOκ1,κ2
(3). The matrix exponentials of {P1, P2, J12} lead to the following one-parametric subgroups

of the CK Lie group SOκ1,κ2
(3):

eαP1 =




Cκ1

(α) −κ1 Sκ1
(α) 0

Sκ1
(α) Cκ1

(α) 0
0 0 1



 , eγJ12 =




1 0 0
0 Cκ2

(γ) −κ2 Sκ2
(γ)

0 Sκ2
(γ) Cκ2

(γ)



 ,

eβP2 =




Cκ1κ2
(β) 0 −κ1κ2 Sκ1κ2

(β)
0 1 0

Sκ1κ2
(β) 0 Cκ1κ2

(β)


 ,

(3.4)

where the so-called κ-dependent cosine and sine functions read [27, 28, 29]:

Cκ(u) :=

∞∑

l=0

(−κ)l
u2l

(2l)!
=






cos
√
κu κ > 0
1 κ = 0

ch
√
−κu κ < 0

,

Sκ(u) :=

∞∑

l=0

(−κ)l
u2l+1

(2l + 1)!
=






1√
κ
sin

√
κu κ > 0

u κ = 0
1√
−κ

sh
√
−κu κ < 0

.

From them, the κ-tangent and the κ-versed sine (or versine) take the form

Tκ(u) :=
Sκ(u)

Cκ(u)
, Vκ(u) :=

1

κ
(1− Cκ(u)) . (3.5)

These κ-functions cover both the usual circular (κ > 0) and hyperbolic (κ < 0) trigonometric functions.
In the case κ = 0, the previous functions reduce to the parabolic ones C0(u) = 1, S0(u) = T0(u) = u,
and V0(u) = u2/2.

Some relations for the above κ-functions read

C2
κ(u) + κ S2κ(u) = 1, Cκ(2u) = C2

κ(u)− κS2κ(u), Sκ(2u) = 2Sκ(u)Cκ(u),

and their derivatives are given by

d

du
Cκ(u) = −κSκ(u),

d

du
Sκ(u) = Cκ(u),

d

du
Tκ(u) =

1

C2
κ(u)

,
d

du
Vκ(u) = Sκ(u). (3.6)

Many other relations can be found in [29].

Let H0 := SOκ2
(2) be the Lie subgroup of SOκ1,κ2

(3) obtained by matrix exponentiation of the Lie
algebra h0. The CK family of 2D homogeneous spaces is defined by the quotient

S
2
[κ1],κ2

:= SOκ1,κ2
(3)/SOκ2

(2). (3.7)

The (possibly degenerate) metric defined by Iκ (3.2) on TeSOκ1,κ2
(3) ≃ soκ1,κ2

(3) can be extended by
right translation to a metric on the whole SOκ1,κ2

(3) and then projected onto S
2
[κ1],κ2

. Then, the CK
family becomes a symmetric space relative to the obtained metric. The contraction parameter κ1 becomes
the constant (Gaussian) curvature of the space. The second parameter κ2 determines the signature of
the metric through diag(+, κ2).
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3.1 Ambient, geodesic parallel and geodesic polar coordinates

The matrix realization (3.4) enables us to identify the elements of SOκ1,κ2
(3) with isometries of the

bilinear form Iκ (3.2). More specifically, given a 3× 3 matrix g, it follows that

g ∈ SOκ1,κ2
(3) ⇒ gT Iκ g = Iκ.

This allows us to consider the Lie group action of SOκ1,κ2
(3) on R3 as isometries of Iκ.

The subgroup SOκ2
(2) = 〈eγJ12〉 is the isotropy subgroup of the point O := (1, 0, 0), which is taken

as the origin in the space S
2
[κ1],κ2

. Hence, SOκ1,κ2
(3) becomes an isometry group of the space S2

[κ1],κ2
, in

such a manner that J12 is a rotation generator, while P1 and P2 move O along two basic geodesics l1 and
l2, which are orthogonal at O, so behaving as translation generators (see figure 1).

The orbit of O is contained in the submanifold given by Iκ of the form

Σκ := {v := (x0, x1, x2) ∈ R
3 : Iκ(v, v) = x2

0 + κ1x
2
1 + κ1κ2x

2
2 = 1}. (3.8)

This orbit, namely the connected component of Σκ containing the point O, can be identified with the
space S2

[κ1],κ2
. The coordinates {x0, x1, x2} on R3, satisfying the constraint (3.8) on Σκ, are called ambient

or Weierstrass coordinates. In these variables, the metric on S
2
[κ1],κ2

comes from the flat ambient metric

in R3 divided by the curvature κ1 and restricted to Σκ, namely

ds2
κ
:=

1

κ1

(
dx2

0 + κ1dx
2
1 + κ1κ2dx

2
2

)∣∣∣∣
Σκ

=
κ1 (x1dx1 + κ2x2dx2)

2

1− κ1x2
1 − κ1κ2x2

2

+ dx2
1 + κ2dx

2
2. (3.9)

It is worth noting that if κ1 = 0, then Σκ is given by two connected components with x0 ∈ {−1, 1} and
ds2

κ
is well-defined.

The ambient coordinates can be parametrized on Σκ in terms of two intrinsic variables in different
ways (see e.g. [28, 39]). In particular, let us introduce the so-called geodesic parallel {x, y} and geodesic
polar {r, φ} coordinates of a point Q := (x0, x1, x2) in S

2
[κ1],κ2

which are obtained through the following

action of the one-parametric subgroups (3.4) on O [28]:

(x0, x1, x2)
T = exp(xP1) exp(yP2)O

T = exp(φJ12) exp(rP1)O
T ,

yielding

x0 = Cκ1
(x) Cκ1κ2

(y) = Cκ1
(r),

x1 = Sκ1
(x) Cκ1κ2

(y) = Sκ1
(r) Cκ2

(φ),

x2 = Sκ1κ2
(y) = Sκ1

(r) Sκ2
(φ). (3.10)

By introducing these relations in the metric (3.9) and applying (3.6), we recover the usual (curved)
metrics given by

ds2
κ
= C2

κ1κ2
(y)dx2 + κ2dy

2 = dr2 + κ2 S
2
κ1
(r)dφ2. (3.11)

As shown in figure 1, the variable r is the distance between the origin O and the point Q measured
along the geodesic l that joins both points, while φ is the angle of l relative to basic geodesic l1. If
Q1 denotes the intersection point of l1 with its orthogonal geodesic l′2 through Q, then x is the geodesic
distance between O and Q1 measured along l1 and y is the geodesic distance between Q1 and Q measured
along l′2. Note that a second set of geodesic parallel coordinates {x′, y′}, similar to {x, y}, can also be
defined by considering the intersection point Q2 of l2 with its orthogonal geodesic l′1 through Q, and that
{x, y} 6= {x′, y′} if the curvature κ1 6= 0 [28]. On the flat Euclidean plane E2 with κ1 = 0, {x, y} = {x′, y′}
reduce to Cartesian coordinates and {r, φ} to the usual polar ones.

Since we are interested in extending the Euclidean P1-LH systems of section 2 to all the CK spaces,
we shall make use of the geodesic parallel coordinates (x, y), although the relations (3.10) would enable
one to express our final results in terms of the geodesic polar ones.

Summing up, according to the values of the two κa parameters, the CK space S2
[κ1],κ2

comprises nine
specific 2D symmetrical homogeneous spaces, which depending on the parameter κ2 are classified into
three types:
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•
φ

x′

y′ y

x

r

❃
•

Q1

Q

l′1

l

•
O

•Q2

l2 ✻

✲
l1

l′2

✲

✻
P2

■
P1

J12

Figure 1: Schematic representation of the isometry infinitesimal generators {J12, P1, P2} and geodesic coordi-
nates {x, y}, {x′, y′} and {r, φ} of a point Q = (x0, x1, x2) on a 2D CK space.

• Riemannian spaces for κ2 > 0. The standard sphere S2 arises when κ1 > 0. The case κ1 < 0 leads
to a two-sheeted hyperboloid. We call H2 the upper sheet of the hyperboloid, namely the part
with x0 ≥ 1: the so-called Lobachevsky space. The contraction κ1 = 0 gives rise to two Euclidean
planes x0 = ±1. We will call Euclidean space, E2, the one with x0 = +1.

• Pseudo-Riemannian spaces or Lorentzian spacetimes for κ2 < 0. For Gaussian curvature κ1 > 0,
we obtain the 2D co-hyperbolic space or (1 + 1)D anti-de Sitter spacetime AdS

1+1; if κ1 < 0, we
find the 2D doubly-hyperbolic space or (1 + 1)D de Sitter spacetime dS

1+1; and the flat case with
κ1 = 0 provides the (1+1)D Minkowskian spacetimeM1+1. In all cases for κ2 < 0, the J12, P1, and
P2 correspond to the infinitesimal generators of boosts, time translations, and spatial translations,
respectively. From a physic viewpoint, the κa parameters are related to the cosmological constant
Λ and the speed of light c through

κ1 = −Λ, κ2 = −1/c2.

And the geodesic parallel coordinates (x, y) are just the time t and space y ones.

• Semi-Riemannian spaces or Newtonian spacetimes for κ2 = 0 (c = ∞). In this case, the metric
(3.9) is degenerate and the kernel of the metric gives rise to an integrable foliation of S2

[κ1],0
, which

is invariant under the action of the CK group SOκ1,0(3) on S
2
[κ1],0

. There appears a well-defined

subsidiary metric ds′
2
:= ds2

κ
/κ2 restricted to each leaf, which in the coordinates (x, y) read [28]

ds2 = dx2, ds′
2
= dy2 on x = constant.

For κ1 > 0 we find the 2D co-Euclidean space or (1+1)D oscillating Newton–Hook (NH) spacetime
NH

1+1

+ , and for κ1 < 0 we obtain the 2D co-Minkowskian space or (1+1)D expanding NH spacetime

NH
1+1

− . The flat space with κ1 = 0 is just the Galilean one G1+1. Hence, in these three cases, the
metric ds2

κ
provides ‘absolute-time’ t, the leaves of the invariant foliation are the ‘absolute-space’

at t = t0 and ds′
κ

2 is the subsidiary spatial metric defined on each leaf.

Each specific CK space, Lie algebra of infinitesimal symmetries, and metric are displayed in table 1
in the next section.

4 A class of LH systems on curved spaces

We shall hereafter make extensive use of the shorthand notation κ := (κ1, κ2). Our procedure consists
in defining a Lie system Xκ possessing a Vessiot–Guldberg Lie algebra Vκ consisting of infinitesimal
symmetries of the metric of the CK space S

2
[κ1],κ2

. Next, we obtain a compatible symplectic form ωκ

turning the elements of Vκ into Hamiltonian vector fields.
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The fundamental vector fields of the Lie group action of SOκ(3) on R3 by isometries of Iκ are Lie sym-
metries of ds2

κ
. Since the action is linear, the fundamental vector fields can be obtained straightforwardly

from the 3D matrix representation (3.3). In ambient coordinates (x0, x1, x2), they read [28],

P1 := κ1x1
∂

∂x0
− x0

∂

∂x1
, P2 := κ1κ2x2

∂

∂x0
− x0

∂

∂x2
, J12 := κ2x2

∂

∂x1
− x1

∂

∂x2
.

Since the function Iκ(v, v) = x2
0 + κ1x

2
1 + κ1κ2x

2
2 is an invariant of the action of the Lie group action

SOκ(3), the above vector fields can be restricted to Σκ. Such restrictions are Lie symmetries of the
restriction of ds2

κ
. These vector fields are the ‘curved’ counterpart of the initial Euclidean ones Xi (2.4)

in any coordinate system. In terms of geodesic parallel coordinates (3.10) and using (3.6), they become

Xκ,1 := −P1 =
∂

∂x
, Xκ,2 := −P2 = κ1κ2 Sκ1

(x)Tκ1κ2
(y)

∂

∂x
+ Cκ1

(x)
∂

∂y
,

Xκ,3 := J12 = κ2 Cκ1
(x) Tκ1κ2

(y)
∂

∂x
− Sκ1

(x)
∂

∂y
.

(4.1)

Then the t-dependent vector field

Xκ := b1(t)Xκ,1 + b2(t)Xκ,2 + b3(t)Xκ,3, (4.2)

provides the following system of nonautonomous differential equations

dx

dt
= b1(t) + κ1κ2 b2(t) Sκ1

(x) Tκ1κ2
(y) + κ2 b3(t)Cκ1

(x) Tκ1κ2
(y),

dy

dt
= b2(t)Cκ1

(x)− b3(t) Sκ1
(x). (4.3)

Obviously, Xκ is a Lie system and the vector fields (4.1) satisfy the commutation relations (3.1), that is,

[Xκ,3,, Xκ,1] = Xκ,2, [Xκ,3Xκ,2] = −κ2Xκ,1, [Xκ,1, Xκ,2] = κ1Xκ,3, (4.4)

so spanning a Vessiot–Guldberg Lie algebra Vκ isomorphic to the CK Lie algebra soκ(3). If we now
consider the Euclidean space E

2 with parameters κ = (κ1, κ2) = (0,+1), we find that vector fields (4.1),
differential equations (4.3), and commutation rules (4.4) reduce to (2.4), (2.5) and (2.6), respectively.

Furthermore, the restriction of the vector fieldsXκ,i to Σκ can be turned into Hamiltonian vector fields
with Hamiltonian functions hκ,i with respect to a symplectic form ωκ. Recall that they are infinitesimal
symmetries of ds2

κ
. If ds2

κ
is not degenerate, then Vκ becomes a Lie algebra of Killing vector fields relative

to ds2
κ
. Hence, they are Lie symmetries of the volume form ωκ on Σκ induced by ds2

κ
. Up to a non-zero

proportional constant,
ωκ = Cκ1κ2

(y) dx ∧ dy. (4.5)

The case when ds2
κ
is degenerate can be obtained by making an appropriate limit in κ. Obviously, ωκ is

the area element dA for all the CK spaces [28].

Next, the relation ιXκ,i
ωκ = dhκ,i allows us to determine some Hamiltonian functions hκ,i for the

vector fields Xκ,i with respect to the symplectic form ωκ:

hκ,1 = Sκ1κ2
(y), hκ,2 = −Sκ1

(x) Cκ1κ2
(y),

hκ,3 =
1

κ1

(
1− Cκ1

(x)Cκ1κ2
(y)

)
= Vκ1

(x) + κ2 Vκ1κ2
(y)− κ1κ2 Vκ1

(x) Vκ1κ2
(y).

(4.6)

The above functions span, along with a function hκ,0 = 1, a Lie algebra of functions relative to the
Poisson bracket {·, ·}ωκ

induced by ωκ. In fact, the base of such a Lie algebra satisfies the following
commutation relations

{hκ,3, hκ,1}ωκ
= −hκ,2, {hκ,3, hκ,2}ωκ

= κ2hκ,1,

{hκ,1, hκ,2}ωκ
= hκ,0 − κ1hκ,3, {hκ,0, ·}ωκ

= 0.
(4.7)
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Indeed, hκ,0 is a central generator in such a manner that (〈hκ,1, hκ,2, hκ,3, hκ,0〉, {·, ·}ωκ
) span a LH

algebra Hωκ
which is isomorphic to a central extension of the CK Lie algebra soκ(3), denoted by soκ(3).

In this way, we obtain the t-dependent Hamiltonian associated with the Lie system (4.2):

hκ(t) = b1(t)hκ,1 + b2(t)hκ,2 + b3(t)hκ,3.

We remark that the addition of a central generator hκ,0 is necessary to ensure that the Hamiltonian
functions hκ,i span a Lie algebra, similarly to the Euclidean case described in section 2. However, it is
well-known that the central extension is trivial when κ1 6= 0 [40]. This, in turn, means that if we apply
the change of basis

h′
κ,1 = hκ,1, h′

κ,2 = hκ,2, h′
κ,3 = hκ,3 − hκ,0/κ1, κ1 6= 0,

the trivial extension is ‘removed’ and the commutation relations (4.7) become

{h′
κ,3, h

′
κ,1}ωκ

= −h′
κ,2, {h′

κ,3, h
′
κ,2}ωκ

= κ2h
′
κ,1 {h′

κ,1, h
′
κ,2}ωκ

= −κ1h
′
κ,3,

which are just the commutation relations (4.4) of the CK Lie algebra soκ(3) for κ1 6= 0. In this case,
the LH algebra Hωκ

≃ soκ(3) ≃ soκ(3) ⊕ R. On the contrary, if κ1 = 0 the central extension hκ,0 is a
non-trivial one [40] (this cannot be ‘removed’ through a change of basis) and the commutation rules (4.7)
read

{hκ,3, hκ,1}ωκ
= −hκ,2, {hκ,3, hκ,2}ωκ

= κ2hκ,1, {hκ,1, hκ,2}ωκ
= hκ,0, {hκ,0, ·}ωκ

= 0,

which correspond to central extensions of non-simple Lie algebras: Euclidean iso(2) ≃ so(2)⋉R2 (κ2 > 0)
(so recovering (2.8)), Poincaré iso(1, 1) ≃ so(1, 1)⋉R2 (κ2 < 0), and Galilei iiso(1) ≃ R⋉ R2 (κ2 = 0).

Notice also that the Hamiltonian function hκ,3 (4.6) is written in two forms. The former requires to
take the limit κ1 → 0 for the flat cases taking power series of Cκ(u), but the latter (in terms of κ-versed
sines (3.5)) directly provides the same result by setting κ1 = 0.

We display in table 1 the specific vector fields (4.1), Hamiltonian functions (4.6), and symplectic form
(4.5) for each of the nine spaces comprised within the CK family (3.7).

5 Constants of motion and superposition rules

This section deals with the computations of the constants of motion for the LH system Xκ (4.2), which
will further allow us to deduce the corresponding superposition rules by applying the Poisson coalgebra
approach [9, 13].

5.1 Constants of motion

Likewise in section 2.1, the space S (soκ(3)) stands for the symmetric algebra of the extended CK Lie
algebra soκ(3). The symmetric algebra is naturally a Poisson algebra. Consider a basis {v1, v2, v3, v0} of
soκ(3) satisfying the commutation relations (4.7). Then, the element

Cκ := v3v0 −
1

2

(
κ2v

2
1 + v22 + κ1v

2
3

)
(5.1)

Poisson commutes with all va, i.e. it is a second-order Casimir (invariant) of S (soκ(3)). Next, we
consider the non-deformed coproduct map ∆ : S (soκ(3)) → S (soκ(3))⊗ S (soκ(3)) given by (2.9) along
with the Poisson algebra morphisms D : S (soκ(3)) → C∞(S2

[κ1],κ2
) and D(2) : S (soκ(3))⊗ S (soκ(3)) →

C∞(S2
[κ1],κ2

)⊗ C∞(S2
[κ1],κ2

) defined, similarly to (2.10), by

D(va) := hκ,a(x1, y1), D(2) (va ⊗ 1) := hκ,a(x1, y1), D(2) (1⊗ va) := hκ,a(x2, y2),
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Table 1: LH algebras on the nine CK spaces according to the ‘normalized’ values of the contraction

parameters κa ∈ {1, 0,−1}. For each space S
2
[κ1],κ2

(3.7) it is shown, in geodesic parallel coordinates

(x, y) (3.10), the metric ds2
κ
(3.11), domain of the variables, Vessiot–Guldberg Lie algebra Vκ (4.4) with

Lie vector fields Xκ,i (4.1), LH algebra Hωκ
(4.7) with Hamiltonian functions hκ,i (4.6) (so hκ,0 = 1),

and the symplectic form ωκ (4.5). For the sake of clarity, we drop the index κ = (κ1, κ2).

• Sphere S
2 • Euclidean plane E

2 • Hyperbolic space H
2

S
2
[+],+ = SO(3)/SO(2) S

2
[0],+ = ISO(2)/SO(2) S

2
[−],+ = SO(2, 1)/SO(2)

ds2 = cos2 y dx2 + dy2 ds2 = dx2 + dy2 ds2 = cosh2 y dx2 + dy2

x ∈ (−π, π], y ∈ (−π
2
, π
2
] x ∈ R, y ∈ R x ∈ R, y ∈ R

V ≃ so(3) V ≃ iso(2) ≃ so(2)⋉ R
2 V ≃ so(2, 1)

X1 = ∂x X1 = ∂x X1 = ∂x

X2 = sin x tan y ∂x + cos x∂y X2 = ∂y X2 = − sinh x tanh y ∂x + cosh x∂y

X3 = cos x tan y ∂x − sin x∂y X3 = y ∂x − x∂y X3 = cosh x tanh y ∂x − sinh x∂y

Hω ≃ so(3) ≃ so(3)⊕ R Hω ≃ iso(2) = so(2)⋉ R2 Hω ≃ so(2, 1) ≃ so(2, 1) ⊕ R

h1 = sin y h1 = y h1 = sinh y

h2 = − sin x cos y h2 = −x h2 = − sinh x cosh y

h3 = 1− cos x cos y h3 = 1
2
(x2 + y2) h3 = cosh x cosh y − 1

ω = cos y dx ∧ dy ω = dx ∧ dy ω = cosh y dx ∧ dy

• Oscillating NH space NH
1+1
+ • Galilean plane G

1+1 • Expanding NH space NH
1+1
−

(Co-Euclidean space) (Co-Minkowskian space)

S
2
[+],0 = ISO(2)/R S

2
[0],0 = IISO(1)/R S

2
[−],0 = ISO(1, 1)/R

ds2 = dx2, ds′
2
= dy2 on x = cte ds2 = dx2, ds′

2
= dy2 on x = cte ds2 = dx2, ds′

2
= dy2 on x = cte

x ∈ (−π, π], y ∈ R x ∈ R, y ∈ R x ∈ R, y ∈ R

V ≃ iso(2) ≃ so(2)⋉ R
2 V ≃ iiso(1) ≃ R ⋉ R

2 V ≃ iso(1, 1) ≃ so(1, 1)⋉ R
2

X1 = ∂x X1 = ∂x X1 = ∂x

X2 = cos x∂y X2 = ∂y X2 = cosh x∂y

X3 = − sin x∂y X3 = −x ∂y X3 = − sinh x∂y

Hω ≃ iso(2) = so(2)⋉ R2 Hω ≃ iiso(1) = R ⋉ R2 Hω ≃ iso(1, 1) = so(1, 1)⋉ R2

h1 = y h1 = y h1 = y

h2 = − sin x h2 = −x h2 = − sinh x

h3 = 1− cos x h3 = 1
2
x2 h3 = cosh x− 1

ω = dx ∧ dy ω = dx ∧ dy ω = dx ∧ dy

• Anti-de Sitter space AdS
1+1 • Minkowskian plane M

1+1 • De Sitter space dS
1+1

(Co-hyperbolic space) (Doubly hyperbolic space)

S
2
[+],− = SO(2, 1)/SO(1, 1) S

2
[0],− = ISO(1, 1)/SO(1, 1) S

2
[−],− = SO(2, 1)/SO(1, 1)

ds2 = cosh2 y dx2 − dy2 ds2 = dx2 − dy2 ds2 = cos2 y dx2 − dy2

x ∈ (−π, π], y ∈ R x ∈ R, y ∈ R x ∈ R, y ∈ (−π, π],

V ≃ so(2, 1) V ≃ iso(1, 1) ≃ so(1, 1)⋉ R
2 V ≃ so(2, 1)

X1 = ∂x X1 = ∂x X1 = ∂x

X2 = − sin x tanh y ∂x + cos x∂y X2 = ∂y X2 = sinhx tan y ∂x + cosh x ∂y

X3 = − cosx tanh y ∂x − sin x∂y X3 = −y ∂x − x∂y X3 = − cosh x tan y ∂x − sinh x∂y

Hω ≃ so(2, 1) ≃ so(2, 1)⊕ R Hω ≃ iso(1, 1) = so(1, 1)⋉ R2 Hω ≃ so(2, 1) ≃ so(2, 1) ⊕ R

h1 = sinh y h1 = y h1 = sin y

h2 = − sin x cosh y h2 = −x h2 = − sinh x cos y

h3 = 1− cos x cosh y h3 = 1
2
(x2 − y2) h3 = cosh x cos y − 1

ω = cosh y dx ∧ dy ω = dx ∧ dy ω = cos y dx ∧ dy
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(a = 0, 1, 2, 3) where hκ,a are now the Hamiltonians functions (4.6). This gives rise to two t-independent
constants of motion for the system Xκ (4.2) of the form

Fκ := D(Cκ), F (2)
κ

:= D(2) (∆(Cκ)) .

The former turns out to be trivial, Fκ = 0, meanwhile the latter can be written as

F (2)
κ

=
1

κ1

(
1− Cκ1

(x1 − x2)Cκ1κ2
(y1)Cκ1κ2

(y2)− κ1κ2 Sκ1κ2
(y1) Sκ1κ2

(y2)
)

= Vκ1
(x1 − x2)Cκ1κ2

(y1)Cκ1κ2
(y2) + κ2 Vκ1κ2

(y1 − y2), (5.2)

where we have used the relations

Cκ(u ± v) = Cκ(u)Cκ(v)∓ κSκ(u) Sκ(v), Sκ(u ± v) = Sκ(u)Cκ(v)± Cκ(u) Sκ(v). (5.3)

Note that the second expression for F
(2)
κ admits the direct flat contraction κ1 = 0; explicitly, since

V0(u) = u2/2, then

F
(2)
κ1=0,κ2

=
1

2

[
(x1 − x2)

2 + κ2(y1 − y2)
2
]
,

so that for κ2 = +1 we recover the Euclidean constant of motion (2.11).

We stress that, in fact, this constant of motion corresponds to the geodesic distance s1 between two
points (x1, y1) and (x2, y2) on the space S

2
[κ1],κ2

, which is given by [28]

Cκ1
(s1) = Cκ1

(x1 − x2)Cκ1κ2
(y1)Cκ1κ2

(y2) + κ1κ2 Sκ1κ2
(y1) Sκ1κ2

(y2). (5.4)

Recall that F
(2)
κ is a t-independent constant of motion for the diagonal prolongation X̃κ of Xκ to the

manifold S
2
[κ1],κ2

× S
2
[κ1],κ2

(cf. [2]); namely, if Xκ = X(x, y)∂x + Y (x, y)∂y , then

X̃κ = X(x1, y1)
∂

∂x1
+ Y (x1, y1)

∂

∂y1
+X(x2, y2)

∂

∂x2
+ Y (x2, y2)

∂

∂y2
,

where ((x1, y1), (x2, y2)) ∈ S
2
[κ1],κ2

× S
2
[κ1],κ2

. Moreover, the function F
(2)
κ gives rise to two other constants

of motion through the permutation Sij of the variables (xi, yi) ↔ (xj , yj); these are

F
(2)
κ,13 = S13(F

(2)
κ

), F
(2)
κ,23 = S23(F

(2)
κ

). (5.5)

Since prolongations are invariant under permutations, the functions F
(2)
κ,ij are also t-independent constants

of motion for the diagonal prolongations X̃κ to S
2
[κ1],κ2

× S
2
[κ1],κ2

.

By taking into account the expressions (5.2), (5.4), and (5.5), we can write the above three constants
of motion in the form

F (2)
κ

=
1

κ1

(
1− Cκ1

(x1 − x2)Cκ1κ2
(y1)Cκ1κ2

(y2)− κ1κ2 Sκ1κ2
(y1) Sκ1κ2

(y2)
)

=
1

κ1

(
1− Cκ1

(s1)
)
= Vκ1

(s1),

F
(2)
κ,23 =

1

κ1

(
1− Cκ1

(x1 − x3)Cκ1κ2
(y1)Cκ1κ2

(y3)− κ1κ2 Sκ1κ2
(y1) Sκ1κ2

(y3)
)

=
1

κ1

(
1− Cκ1

(s2)
)
= Vκ1

(s2),

F
(2)
κ,13 =

1

κ1

(
1− Cκ1

(x3 − x2)Cκ1κ2
(y3)Cκ1κ2

(y2)− κ1κ2 Sκ1κ2
(y3) Sκ1κ2

(y2)
)

=
1

κ1

(
1− Cκ1

(s3)
)
= Vκ1

(s3), (5.6)

where s1, s2, s3 are three positive real constants.
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Q2(x2, y2)
•

Q1(x1, y1)

Q3(x3, y3)

y3 − y2

y1 − y2

•

x1 − x2

s1

s3

s2
•

•
β

α

•
Q32(x3, y2)Q12(x1, y2)

Figure 2: Triangles and geodesic distances involved in the derivation of the superposition rules for the LH
system Xκ (4.2) on the CK space S

2
[κ1],κ2

(3.7).

5.2 Superposition rules

Since ∂(F
(2)
κ , F

(2)
κ,23)/∂(x1, y1) 6= 0, both constants of motion (5.6) are functionally independent functions.

This, in turn, means that one can express the general solution (x1(t), y1(t)) of the LH system Xκ (4.2)
in terms of two different particular solutions (x2(t), y2(t)), (x3(t), y3(t)), and the two constants s1, s2.
Therefore, one may start with such explicit expressions (5.6) and try to compute the superposition rules.
Nevertheless, such a ‘direct’ procedure is frequently cumbersome and non-trivial. By contrast, we shall
be able to obtain a closed analytical form for the superposition rules by applying a geometric approach
based on the trigonometry of the CK spaces S

2
[κ1],κ2

(3.7). All the trigonometric relations as well as

generalized theorems used in our procedure can be found in [29].

With this aim, we set the points Q1 := (x1, y1), Q2 := (x2, y2), and Q3 := (x3, y3) in S
2
[κ1],κ2

forming
a triangle △Q1Q2Q3. Its sides are geodesics such that the positive constants s1, s2 and s3 appearing in
(5.6) are, in this order, the geodesic distances Q1Q2, Q1Q3 and Q3Q2, so fulfilling (5.4), and α is the
angle between the geodesics Q1Q2 and Q3Q2; this is depicted in figure 2.

Consider the orthogonal triangle △Q1Q2Q12 where Q12 = (x1, y2), such that the geodesics Q12Q2

and Q1Q12 are orthogonal at Q12 and with inner angle α+β at Q2, as shown in figure 2. The cosine and
sine theorems for this triangle, with geodesic distances Q1Q12 = y1 − y2 > 0 and Q12Q2 = x1 − x2 > 0,
read

Cκ1
(s1) = Cκ1

(x1 − x2)Cκ1κ2
(y1 − y2), Sκ1κ2

(y1 − y2) = Sκ1
(s1) Sκ2

(α+ β).

From these, we find that
Tκ1

(x1 − x2) = Tκ1
(s1)Cκ2

(α+ β).

After using the formulas (5.3), we arrive at

Tκ1
(x1 − x2) = Tκ1

(s1) [ Cκ2
(α) Cκ2

(β)− κ2 Sκ2
(α) Sκ2

(β)] ,

Sκ1κ2
(y1 − y2) = Sκ1

(s1) [ Sκ2
(α) Cκ2

(β) + Sκ2
(β) Cκ2

(α)] .
(5.7)

Therefore, we need to express Cκ2
(α), Sκ2

(α), Cκ2
(β) and Sκ2

(β) in terms of (x2(t), y2(t)), (x3(t), y3(t))
and the positive constants s1, s2, s3.

Firstly, as above, if we now take the orthogonal triangle △Q2Q3Q32 where Q32 = (x3, y2) with the
geodesics Q32Q2 and Q3Q32 being orthogonal at Q32 and with inner angle β at Q2, we can write

Cκ2
(β) =

Tκ1
(x3 − x2)

Tκ1
(s3)

, Sκ2
(β) =

Sκ1κ2
(y3 − y2)

Sκ1
(s3)

, (5.8)

where we have made use of the geodesic distances Q32Q2 = x3 − x2 > 0 and Q3Q32 = y3 − y2 > 0.

Secondly, in order to get Cκ2
(α) and Sκ2

(α), we consider the ‘initial’ triangle △Q1Q2Q3. By one
hand, the cosine theorem gives

Cκ2
(α) =

Cκ1
(s2)− Cκ1

(s1)Cκ1
(s3)

κ1 Sκ1
(s1) Sκ1

(s3)
. (5.9)
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On the other hand, Sκ2
(α) can be written in terms of the area A of this triangle through the generalized

Cagnoli’s theorem

Sκ2
(α) =

4Cκ1
( s12 )Cκ1

( s22 )Cκ1
( s32 ) Sκ2

1
κ2
(A2 )

Sκ1
(s1) Sκ1

(s3)
. (5.10)

Consequently, by substituting (5.8), (5.9) and (5.10) in (5.7), we obtain that

Tκ1
(x1 − x2) = Tκ1

(x3 − x2)
Cκ1

(s2)− Cκ1
(s1)Cκ1

(s3)

κ1 Cκ1
(s1) Sκ1

(s3)Tκ1
(s3)

−4κ2 Sκ1κ2
(y3 − y2)

Cκ1
( s12 )Cκ1

( s22 )Cκ1
( s32 ) Sκ2

1
κ2
(A2 )

Cκ1
(s1) S

2
κ1
(s3)

,

Sκ1κ2
(y1 − y2) = Sκ1κ2

(y3 − y2)
Cκ1

(s2)− Cκ1
(s1)Cκ1

(s3)

κ1 S
2
κ1
(s3)

+4Tκ1
(x3 − x2)

Cκ1
( s12 )Cκ1

( s22 )Cκ1
( s32 ) Sκ2

1
κ2
(A2 )

Sκ1
(s3)Tκ1

(s3)
. (5.11)

These relations can further be written in different ways by considering the expressions for the area A
presented in [29]. For instance, for the six spaces with κ2 6= 0 (so precluding the three Newtonian spaces),
there exists a generalized L’Huillier formula A = A(s1, s2, s3), which is the curved counterpart of the
Heron–Archimedes area formula (2.14) for the Euclidean plane with (κ1, κ2) = (0,+1), given by

T2
κ2

1
κ2

(
A

4

)
=

1

κ2
Tκ1

(p
2

)
Tκ1

(
p− s1

2

)
Tκ1

(
p− s2

2

)
Tκ1

(
p− s3

2

)
, κ2 6= 0,

p =
1

2
(s1 + s2 + s3),

such that p is one-half the sum of the three geodesic sides of the triangle △Q1Q2Q3. In particular, for
the flat Euclidean (κ2 > 0) and Minkowskian (κ2 < 0) spaces, this expression reduces to

A2 =
1

κ2
p(p− s1)(p− s2)(p− s3) =

1

16κ2

[
2(s21s

2
2 + s21s

2
3 + s22s

2
3)− (s41 + s42 + s43)

]
,

which is just (2.14) for κ2 = +1 and si := ki.

We stress that there exists a second solution for the superposition rules (see the Euclidean case (2.14)),
say (x−

1 , y
−
1 ), which corresponds to change the sign of the last term in both relations (5.11). This can be

proven in a similar way by considering another configuration for the triangles.

We summarize the results of this section in the following statement.

Theorem 1. Let Xκ be the LH system (4.2) defined on the CK space S
2
[κ1],κ2

, with vector fields (4.1),

Hamiltonian functions (4.6) and symplectic form (4.5). Then:

(i) The functions (5.6) are three t-independent constants of motion for the diagonal prolongation X̃κ to
the manifold S

2
[κ1],κ2

× S
2
[κ1],κ2

× S
2
[κ1],κ2

, such that any pair among them is formed by two functionally
independent functions.
(ii) The general solution (x1(t), y1(t)) of Xκ in terms of two different particular solutions (x2(t), y2(t))
and (x3(t), y3(t)) can be written as

Tκ1
(x±

1 − x2) = Tκ1
(x3 − x2)

Cκ1
(s2)− Cκ1

(s1) Cκ1
(s3)

κ1 Cκ1
(s1) Sκ1

(s3) Tκ1
(s3)

∓4κ2 Sκ1κ2
(y3 − y2)

Cκ1
( s12 ) Cκ1

( s22 ) Cκ1
( s32 ) Sκ2

1
κ2
(A2 )

Cκ1
(s1) S

2
κ1
(s3)

,

Sκ1κ2
(y±1 − y2) = Sκ1κ2

(y3 − y2)
Cκ1

(s2)− Cκ1
(s1) Cκ1

(s3)

κ1 S
2
κ1
(s3)

±4 Tκ1
(x3 − x2)

Cκ1
( s12 ) Cκ1

( s22 ) Cκ1
( s32 ) Sκ2

1
κ2
(A2 )

Sκ1
(s3) Tκ1

(s3)
, (5.12)
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where s1, s2, s3, and A are positive constants, such that the latter is just the area of triangle formed by
the three solutions considered as points in S

2
[κ1],κ2

, meanwhile the former ones are its geodesic sides.

5.3 Discussion

We illustrate the above results by writing the Casimir (5.1), the constant of motion F
(2)
κ (5.6), and the

superposition rules (5.12) in table 2 for each of the nine CK spaces S2
[κ1],κ2

(3.7) with the same structure
of table 1. We remark that tables 1 and 2 comprise the main results of the paper. When both tables
are read by rows, one finds, in this order, the three classical Riemannian spaces of constant curvature κ1

with κ2 > 0, the semi-Riemannian spaces or Newtonian spacetimes of constant curvature κ1 with κ2 = 0
(c → ∞), and the pseudo-Riemannian spaces or Lorentzian spacetimes of constant curvature κ1 = −Λ
with κ2 = −1/c2 < 0. When these are read by columns, one finds three spaces of positive, zero (flat) and
negative constant curvature, correspondingly, but with different metric signature diag(+1, κ2).

Clearly, all the Euclidean results previously obtained in [9], and here summarized in section 2, are
recovered for S2

[0],+ such that the three constants ki (i = 1, 2, 3) coincide with the geodesic distances si.

We recall that for the three flat spaces with κ1 = 0 (middle column of the tables), S2
[0],κ2

, the contraction

of the constant of motion F
(2)
κ comes out directly from the expression written in terms of κ-versed sines in

(5.2). Similarly, the contraction of the superposition rules (5.12) can be obtained by taking into account
that the factor

Cκ1
(s2)− Cκ1

(s1)Cκ1
(s3)

κ1
= Vκ1

(s1)+ Vκ1
(s3)−Vκ1

(s2)−κ1Vκ1
(s1) Vκ1

(s3) 7→ 1

2
(s21 + s23 − s22),

when κ1 = 0, so avoiding to take power series in the curvature.

An important fact concerns the three semi-Riemannian or Newtonian spaces with κ2 = 0 (middle row
of the tables), S2

[κ1],0
. The constants of motion (5.6) only includes the variables xi (i = 1, 2, 3), that is,

F
(2)
κ1,κ2=0 =

1

κ1

(
1− Cκ1

(x1 − x2)
)
=

1

κ1

(
1− Cκ1

(s1)
)
.

Therefore, strictly speaking, only a part of their superposition rules can be derived from them, which
corresponds to the first relation of (5.12):

Tκ1
(x±

1 − x2) = Tκ1
(x3 − x2)

Cκ1
(s2)− Cκ1

(s1)Cκ1
(s3)

κ1 Cκ1
(s1) Sκ1

(s3)Tκ1
(s3)

.

Nevertheless, we stress that the complete superposition rules (5.12) also apply for these spaces in such a
manner that the ‘missing’ part, containing the variables yi, is consistently obtained through the contrac-
tion procedure. This corresponds to the second expression in (5.12), namely

y±1 − y2 = (y3 − y2)
Cκ1

(s2)− Cκ1
(s1)Cκ1

(s3)

κ1 S
2
κ1
(s3)

± 2Tκ1
(x3 − x2)

Cκ1
( s12 )Cκ1

( s22 )Cκ1
( s32 )A

Sκ1
(s3)Tκ1

(s3)
. (5.13)

Let us explain this point from a trigonometry procedure. Consider the triangles of figure 2 that represent
the solution (x+

1 , y
+
1 ) of the superposition rules. Trigonometry on S

2
[κ1],0

gives the relations

s1 = x1 − x2, s2 = x3 − x1, s3 = x3 − x2, s3 = s1 + s2,

so that

Sκ1
(s1) =

Cκ1
(s2)− Cκ1

(s1)Cκ1
(s3)

κ1 Sκ1
(s3)

, Tκ1
(s3) = Tκ1

(x3 − x2). (5.14)

The sine theorem on the orthogonal triangles △Q1Q2Q12 and △Q2Q3Q32 reads

y1 − y2 = Sκ1
(s1)(α + β), y3 − y2 = Sκ1

(s3)β. (5.15)
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Table 2: For each LH system Xκ (4.2) on the CK space S2
[κ1],κ2

(3.7) it is displayed, according to the ‘normalized’ values of the contraction parameters

κa ∈ {1, 0,−1}, the Casimir Cκ (5.1), the constant of motion F
(2)
κ (5.6) and the superposition rules (5.12) in geodesic parallel coordinates (x, y) (3.10).

• Sphere S
2
[+],+ = S

2 • Euclidean plane S
2
[0],+ = E

2 • Hyperbolic space S
2
[−],+ = H

2

C = v3v0 −
1
2

(

v21 + v22 + v23
)

C = v3v0 −
1
2

(

v21 + v22
)

C = v3v0 −
1
2

(

v21 + v22 − v23
)

F (2) = 1− cos(x1 − x2) cos y1 cos y2 − sin y1 sin y2 F (2) = 1
2

[

(x1 − x2)
2 + (y1 − y2)

2
]

F (2) = cosh(x1 − x2) cosh y1 cosh y2 − sinh y1 sinh y2 − 1

= 1− cos s1 = 1
2
s21 = cosh s1 − 1

tan(x1 − x2) = tan(x3 − x2)
cos s2 − cos s1 cos s3
cos s1 sin s3 tan s3

x1 − x2 = (x3 − x2)
s21 + s23 − s22

2s23
tanh(x1 − x2) = tanh(x3 − x2)

cosh s1 cosh s3 − cosh s2
cosh s1 sinh s3 tanh s3

∓4 sin(y3 − y2)
cos( s1

2
) cos( s2

2
) cos( s3

2
) sin(A

2
)

cos s1 sin2 s3
∓2(y3 − y2)

A

s23
∓4 sinh(y3 − y2)

cosh( s1
2
) cosh( s2

2
) cosh( s3

2
) sin(A

2
)

cosh s1 sinh
2 s3

sin(y1 − y2) = sin(y3 − y2)
cos s2 − cos s1 cos s3

sin2 s3
y1 − y2 = (y3 − y2)

s21 + s23 − s22
2s23

sinh(y1 − y2) = sinh(y3 − y2)
cosh s1 cosh s3 − cosh s2

sinh2 s3

±4 tan(x3 − x2)
cos( s1

2
) cos( s2

2
) cos( s3

2
) sin(A

2
)

sin s3 tan s3
±2(x3 − x2)

A

s23
±4 tanh(x3 − x2)

cosh( s1
2
) cosh( s2

2
) cosh( s3

2
) sin(A

2
)

sinh s3 tanh s3

• Oscillating NH space S
2
[+],0 = NH

1+1
+ • Galilean plane S

2
[0],0 = G

1+1 • Expanding NH space S
2
[−],0 = NH

1+1
−

C = v3v0 −
1
2

(

v22 + v23
)

C = v3v0 −
1
2
v22 C = v3v0 −

1
2

(

v22 − v23
)

F (2) = 1− cos(x1 − x2) = 1− cos s1 F (2) = 1
2
(x1 − x2)

2 = 1
2
s21 F (2) = cosh(x1 − x2)− 1 = cosh s1 − 1

tan(x1 − x2) = tan(x3 − x2)
cos s2 − cos s1 cos s3
cos s1 sin s3 tan s3

x1 − x2 = (x3 − x2)
s21 + s23 − s22

2s23
tanh(x1 − x2) = tanh(x3 − x2)

cosh s1 cosh s3 − cosh s2
cosh s1 sinh s3 tanh s3

y1 − y2 = (y3 − y2)
cos s2 − cos s1 cos s3

sin2 s3
y1 − y2 = (y3 − y2)

s21 + s23 − s22
2s23

y1 − y2 = (y3 − y2)
cosh s1 cosh s3 − cosh s2

sinh2 s3

±2 tan(x3 − x2)
cos( s1

2
) cos( s2

2
) cos( s3

2
)A

sin s3 tan s3
±2(x3 − x2)

A

s23
±2 tanh(x3 − x2)

cosh( s1
2
) cosh( s2

2
) cosh( s3

2
)A

sinh s3 tanh s3

• Anti-de Sitter space S
2
[+],− = AdS

1+1 • Minkowskian plane S
2
[0],− = M

1+1 • De Sitter space S
2
[−],− = dS

1+1

C = v3v0 +
1
2

(

v21 − v22 − v23
)

C = v3v0 +
1
2

(

v21 − v22
)

C = v3v0 +
1
2

(

v21 − v22 + v23
)

F (2) = 1− cos(x1 − x2) cosh y1 cosh y2 + sinh y1 sinh y2 F (2) = 1
2

[

(x1 − x2)
2 − (y1 − y2)

2
]

F (2) = cosh(x1 − x2) cos y1 cos y2 + sin y1 sin y2 − 1

= 1− cos s1 = 1
2
s21 = cosh s1 − 1

tan(x1 − x2) = tan(x3 − x2)
cos s2 − cos s1 cos s3
cos s1 sin s3 tan s3

x1 − x2 = (x3 − x2)
s21 + s23 − s22

2s23
tanh(x1 − x2) = tanh(x3 − x2)

cosh s1 cosh s3 − cosh s2
cosh s1 sinh s3 tanh s3

±4 sinh(y3 − y2)
cos( s1

2
) cos( s2

2
) cos( s3

2
) sinh(A

2
)

cos s1 sin
2 s3

±2(y3 − y2)
A

s23
±4 sin(y3 − y2)

cosh( s1
2
) cosh( s2

2
) cosh( s3

2
) sinh(A

2
)

cosh s1 sinh
2 s3

sinh(y1 − y2) = sinh(y3 − y2)
cos s2 − cos s1 cos s3

sin2 s3
y1 − y2 = (y3 − y2)

s21 + s23 − s22
2s23

sin(y1 − y2) = sin(y3 − y2)
cosh s1 cosh s3 − cosh s2

sinh2 s3

±4 tan(x3 − x2)
cos( s1

2
) cos( s2

2
) cos( s3

2
) sinh(A

2
)

sin s3 tan s3
±2(x3 − x2)

A

s23
±4 tanh(x3 − x2)

cosh( s1
2
) cosh( s2

2
) cosh( s3

2
) sinh(A

2
)

sinh s3 tanh s3
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The area of the triangle △Q1Q2Q3 is given by

A =
Sκ1

(s1) Sκ1
(s3)

2Cκ1
( s12 )Cκ1

( s22 )Cκ1
( s32 )

α. (5.16)

Then, from (5.15) we find that

y1 − y2 = (y3 − y2)
Sκ1

(s1)

Sκ1
(s3)

+ Sκ1
(s1)α.

By substituting Sκ1
(s1) (5.14) in the first term and α from (5.16) in the second one, we get

y1 − y2 = (y3 − y2)
Cκ1

(s2)− Cκ1
(s1)Cκ1

(s3)

κ1 S
2
κ1
(s3)

+
2Cκ1

( s12 )Cκ1
( s22 ) Cκ1

( s32 )

Sκ1
(s3)

A,

which, by introducing Tκ1
(x3 − x2) (5.14), leads to the solution y+1 (5.13).

Finally, we would like to recall that for the Lorentzian spaces with κ2 = −1/c2 (third row of the
tables), S2

[κ1],−, the triangle △Q1Q2Q3 is a time-like one, that is, with elliptic distances si for AdS
1+1

(κ1 > 0) and hyperbolic ones for dS1+1 (κ1 < 0). Any orthogonal geodesic to a time-like one is space-like,
so the distances y1− y2 and y3− y2 are hyperbolic in AdS

1+1 and elliptic in dS
1+1. In fact, both spaces

are related through the interchange of time- and space-like geodesics. By contrast, in the Riemannian
spaces with κ2 > 0 (first row of the tables), S2

[κ1],+
, there is only one type of distance, elliptic for S2 and

hyperbolic for H2.

6 Concluding remarks

We have achieved the first LH systems on 2D Riemannian, Lorentzian, and Newtonian spaces along with
their constants of motion and superposition rules by following a geometrical CK approach. The graded
contraction procedure based upon the two parameters (κ1, κ2) (curvature and signature) provides a clear
description of the relationships among all the structures involved, which have been explicitly shown in
tables 1 and 2 for each specific space.

In this framework, some natural open problems arise, which could be expected to be solved by applying
similar geometrical techniques, namely:

• All of these 2D LH systems could be extended to higher dimensions by starting from the known
isometries on these spaces. The main point to be analyzed in this construction is the role that
higher-order Casimirs play in relation with constants of motion. Recall that quasi-othogonal al-
gebras, in any dimension, are always endowed with a second-order Casimir related to the Killing–
Cartan form; in the 2D case this is the only one. Nevertheless, in three dimensions there is another
third-order Casimir, in the 4D case there is a fourth-order one, etc. (see [38]).

• The class P2 ≃ sl(2) ≃ so(2, 1) of the classification of 2D Euclidean LH systems is spanned by the
following vector fields in Cartesian coordinates (x, y) [8, 9]:

X1 :=
∂

∂x
, X2 := x

∂

∂x
+ y

∂

∂y
, X3 := (x2 − y2)

∂

∂x
+ 2xy

∂

∂y
.

Remarkably, these vector fields are conformal symmetries of the Euclidean plane R2. In particular,
X1 is the translation along the axis x, the vector field X2 is a dilatation, and X3 is a specific
conformal transformation related to the x-axis. They also close on a Lie subalgebra of the conformal
Euclidean algebra so(3, 1). Moreover, such vector fields are also Hamiltonian vector fields relative
to a symplectic form [8]. This suggests us to make use of the known conformal symmetries on the
CK spaces [28] to develop the ‘curved’ counterparts of the LH systems of class P2. The physical
relevance of this problem is due to the fact that P2-LH systems underly the complex Riccati
equation and some Milne–Pinney and Kummer–Schwarz equations [9].
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• The class I4 ≃ sl(2) ≃ so(2, 1) is spanned by the vector fields given by [8, 9]:

X1 :=
∂

∂x
+

∂

∂y
, X2 := x

∂

∂x
+ y

∂

∂y
, X3 := x2 ∂

∂x
+ y2

∂

∂y
.

Each Xi has also a clear interpretation as conformal symmetries on the Euclidean line R: ∂x+∂y is
a translation, x∂x+y∂y is a dilation and x2∂x+y2∂y is a conformal transformation [14]. Therefore,
the consideration of the conformal algebra on the 1D sphere S

1 or hyperbolic line H
1 may lead to

the ‘curved’ analog of the I4-LH systems. We recall that I4 covers the so-called split-complex Riccati
and coupled Riccati equations as well as some Milne–Pinney and Kummer–Schwarz equations (non-
diffeomorphic to those of class P2) [9].

• Finally, we also stress that the obtention of curved LH systems for the classes P2 and I4 could
further provide a curved oscillator system with a time-dependent frequency and with a centrifugal
or Winternitz term.

These problems are currently under investigation.
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