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Abstract

Earlier (2000) the authors introduced the notion of the integral with
respect to the Euler characteristic over the space of germs of functions on
a variety and over its projectivization. This notion permitted to rewrite
in new terms known definitions and statements and also appeared to be
an effective tool to compute Poincaré series of multi-index filtrations in
some situations. However the “classical” (initial) notion can be applied
only to multi-index filtrations defined by so-called finitely determined
valuations (or order functions). Here we introduce a modified version of
the notion of the integral with respect to the Euler characteristic over
the projectivization of the space of function germs. This version can be
applied in a number of settings where the “classical approach” does not
work. We give examples of application of this concept for definitions
and computations of the Poincaré series of collections of plane valuations
which include valuations not centred at the origin, including equivariant
ones.

1 Introduction

The notion of the integral with respect to the Euler characteristic over the
space of germs of functions on the complex affine space Cn at the origin and
over its projectivization was introduced in [2]. This notion was inspired by the
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notion of motivic integration over the space of arcs on a variety: [13]. In [2] it
was used to rewrite in the corresponding terms the definition of the Poincaré
series of a collection of r irreducible plane curve singularities (appearing to
coincide with the Alexander polynomial of the corresponding r-component
link for r > 1 and with the Alexander polynomial divided by (1− t) for r = 1).
Its natural generalizations for the integral over the space of germs of functions
on a variety and over its projectivization was given in [6]. It was found that
this notion not only permits to rewrite in new terms known definitions and
statements, but also is an effective tool to compute Poincaré series in some
situations: see. e.g., [4], [12], [5].

The notion of the integral with respect to the Euler characteristic over
the space OV,0 of germs of functions on an analytic variety (V, 0) (or over
its projectivization POV,0) was based on the idea (came from the theory of
motivic integration) to define the notion of the Euler characteristic for so-
called cylindric subsets of the space OV,0 or of the space POV,0. This means
that the condition for a function to belong to the subset is determined by its jet
of finite order (depending only on the subset) and is a constructible condition
on the space of jets (see Section 2 for details).

Poincaré series in several variables are defined, in particular, for collections
of valuations (or of so-called order functions) on the ring of germs of functions
on a variety (V, 0). The initial applications ([3, 12]) were for the so-called curve
and divisorial valuations on the ring of germs of functions on the complex
plane (C2, 0) or on a surface singularity ([5]). These valuations are finitely
determined, i. e., the fact that the value of a valuation ν of this sort on a
function germ f is equal to a particular number k is determined by the jet jNf
of certain orderN (depending only on k) of the function f . This means that the
set {f ∈ POV,0 : ν(f) = k} (or the set {f ∈ POV,0 : ν1(f) = k1, . . . , νr(f) = kr}
for a collection ν1, . . . , νr of r valuations of this sort) is cylindric in the sense
of [2]. In this situation the mentioned concept of the integral with respect to
the Euler characteristic over the space POV,0 gives sense to expressions of the
form ∫

POV,0
t ν(f)dχ, (1)

where t = (t1, . . . , tr), ν(f) = (ν1(f), . . . , νr(f)), t ν = tν1
1 · . . . · tνrr , and one can

show that this integral is equal to the Poincaré series P{νi}(t) of the collection
{νi} of valuations. Some properties of the integral with respect to the Euler
characteristic (say, the Fubini formula) permits to compute the integral (1)
(and thus the Poincaré series) in some cases. This can be also applied to
filtrations defined by so-called order functions: a notion less restrictive than
the one of a valuation.
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Later the study of the Poincaré series of a collection of valuations was
extended to general valuations centred at the origin on the ring of germs of
functions in two variables: [9]. These valuations are not, in general, finitely
determined. Therefore the sets of functions with the fixed values of the valua-
tions are not, in general, cylindric and the concept of the integral with respect
to the Euler characteristic from [2] cannot be applied.

Another example when a Poincaré series (or rather its generalization) can-
not be written as an integral with respect to the Euler characteristic in the
mentioned sense is met when one wants to define an equivariant (say, with
respect to an action of a finite group G) version of the Poincaré series: see
Section 3. The problem is that the condition that the isotropy subgroup
Gf = {a ∈ G : a∗f = f} of a germ f is a fixed subgroup H ⊂ G is not
determined by a finite jet of f . Therefore the set of function germs with the
fixed isotropy subgroup is not cylindric.

Here we introduce a modified version of the notion of the integral with re-
spect to the Euler characteristic over the projectivization POV,0 of the space of
function germs. This version can be applied in some settings where the “clas-
sical approach” does not work (in particular, in the described above settings).
We show examples of application of this concept for definitions and computa-
tions of the Poincaré series of collections of plane order functions which include
order functions not centred at the origin, including equivariant ones.

2 Poincaré series of filtrations and the “classi-

cal” integral with respect to the Euler char-

acteristic

Let (V, 0) be a germ of a complex analytic variety and let OV,0 be the ring of
germs of functions on it. A function ν : OV,0 → Z≥0∪{+∞} is called an order
function if

1) ν(λg) = ν(g) for λ ∈ C, λ 6= 0;

2) ν(g1 + g2) ≥ min(ν(g1), ν(g2)).

If, besides the conditions 1) and 2), one has ν(g1g2) = ν(g1) + ν(g2), the
function ν is a valuation on the ring OV,0.

A collection {νi : i = 1, . . . , r} of order functions on OV,0 defines a multi-
index filtration on OV,0 by

J(v) = {g ∈ OV,0 : ν(g) ≥ v} , (2)
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where v = (v1, . . . , vr) ∈ Zr≥0, ν(g) = (ν1(g), . . . , νr(g)) and v′ = (v′1, . . . , v
′
r) ≥

v = (v1, . . . , vr) if and only if v′i ≥ vi for all i = 1, . . . , r. Equation (2) defines
the subspaces J(v) for all v ∈ Zr.

The Poincaré series of the filtration {J(v)} (or of the collection {νi} of
order functions) is defined by ([10]):

P{νi}(t1, . . . , tr) =
L(t1, . . . , tr) ·

∏r
i=1(ti − 1)

t1 · . . . · tr − 1
, (3)

where
L(t1, . . . , tr) :=

∑
v∈Zr

dim(J(v)/J(v + 1)) · t v ,

1 = (1, 1, . . . , 1) ∈ Zr. This definition makes sense if and only if all the
quotients J(v)/J(v + 1) are finite-dimensional.

In some cases Equation (3) can be written in terms of the integral with
respect to the Euler characteristic over the projectivization POV,0 of the space
OV,0.

Let m be the maximal ideal in OV,0 and let JNV,0 = OV,0/mN+1 be the space
of N -jets of functions on (V, 0). (JNV,0 is a finite dimensional vector space.)
Let POV,0 and PJNV,0 be the projectivizations of OV,0 and of JNV,0 respectively.
(We consider POV,0 as a set, say, without any topology.) Let P∗JNV,0 be the
union of PJNV,0 with an additional point ∗. One has the natural maps πN :
POV,0 → P∗JNV,0 and πN,M : P∗JNV,0 → P∗JMV,0 for N ≥ M . (Elements which go
to zero under the maps OV,0 → JNV,0 or JNV,0 → JMV,0 are sent to the point ∗.)
Over PJMV,0 ⊂ P∗JMV,0 the map πN,M is a locally trivial fibration whose fibre is a
complex affine space.

Definition: A subset X ⊂ POV,0 is called cylindric if X = π−1
N (Y ) for a

constructible subset Y ⊂ PJNV,0 for a certain N .

Definition: For a cylindric subset X ⊂ POV,0 (X = π−1
N (Y ), Y ⊂ PJNV,0), its

Euler characteristic χ(X) is defined as the Euler characteristic χ(Y ) of the
(constructible) set Y .

One can see that the Euler characteristic of a cylindric subset is well defined.
The Euler characteristic on the algebra of cylindric subsets of POV,0 permits

to define in the standard way ([16]) the notion of the integral with respect to
the Euler characteristic of a function with values in an abelian group over the
projectivization POV,0.

An order function ν : ON,0 → Z≥0∪{+∞} is called finitely determined if the
condition ν(f) = v is determined by the N -jet of f for certain N (dependent
on v).
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It was shown that if νi, i = 1, . . . , r, are finitely determined order functions,
one has

P{νi}(t) =

∫
POV,0

t ν(f)dχ (4)

(see, e.g., [6]). Equation (4) permits to compute the Poincaré series P{νi}(t)
for some valuations (see, e. g., [4, 5]).

3 Integration with respect to the equivariant

Euler characteristic

As it was explained in Section 2, Poincaré series of multi-index filtrations are
related with the notion of the integral with respect to the Euler characteristic.
In a similar way equivariant (with respect to a finite group actions) analogues
of the Poincaré series (see, e. g., [7, 8]) are related with integrals with respect
to equivariant analogues of the Euler characteristic.

A natural equivariant (with respect to a finite group G action) analogue
of the Euler characteristic is the equivariant Euler characteristic with values
in the Burnside ring A(G) of the group G. The Burnside ring A(G) of G is
the Grothendieck ring of finite G-sets. As an abelian group A(G) is freely
generated by the classes [G/H] of the G-sets G/H for representatives H of the
conjugacy classes [H] ∈ ConjsubG of subgroups of G. Let V be a sufficiently
nice space (say, a quasi-projective variety) with an action of the group G. The
equivariant Euler characteristic χG(V ) is defined as∑

[H]∈ConjsubG

χ ({x ∈ V : Gx ∈ [H]} /G) [G/H] ,

where ConjsubG is the set of conjugacy classes of subgroups of G, Gx = {a ∈
G : ax = x} is the isotropy subgroup of the point x: [15]. The equivariant
Euler characteristic χG(V ) is an additive invariant on the algebra generated
by the G-subvarieties of a G-variety (that is on the algebra of G-invariant
constructible subsets) and thus can be used as an analogue of a measure for
the corresponding notion of integration with respect to the Euler characteristic.

Let W be a G-variety and let ϕ : W → A be a G-invariant function with
values in an abelian group A. The integral of the function ϕ with respect to
the equivariant Euler characteristic is defined by∫

W

ϕdχG =
∑
a∈A

[H]∈ConjsubG

a⊗ χG ({x ∈ W : ϕ(x) = a}) ∈ A⊗Z A(G) .
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Assume that, besides a G-action, the space V is endowed with a (con-
structible) function α with values in the group Hom (Gx,C∗) of one-dimensional
representations of the isotropy subgroup Gx (x ∈ V 7→ αx ∈ Hom (Gx,C∗))
such that, for a ∈ G, one has αax(b) = αx(a

−1ba), where b ∈ Gax = aGxa
−1.

Example. This takes place, for example, in the following situation. Let a
germ (V, 0) of a complex analytic variety be endowed with an action of the
group G. The group G acts on the space (a ring) OV,0 of germs of functions on
(V, 0), on the space JNV,0 = OV,0/mN+1 of N -jets of functions on (V, 0) and on
their projectivizations POV,0 and PJNV,0 (the latter being a (finite dimensional)
projective space). The class of a function f (in POV,0 or in PJNV,0; we will
denote it by f as well) is invariant with respect to the action of its isotropy
subgroup Gf . This means that, for a ∈ Gf , one has a∗f = αf with α ∈ C∗.
The factor α = αf (a) considered as a function of f with values in Hom (Gx,C∗)
possesses the described property.

In such a situation one can define a (refined) versions of the equivariant

Euler characteristic with values in a modification Ã(G) of the Burnside ring
and of the integral of a G-invariant A-valued function which is an element of
A⊗Z Ã(G).

The ring Ã(G) is the Grothendieck group of so-called finite equipped G-

sets ([8]). A finite equipped G-set is a pair X̃ = (X,α), where X is a finite
G-set, α associates to each point x ∈ X a one-dimensional representation αx
of the isotropy subgroup Gx = {a ∈ G : ax = x} of the point x so that,
for a ∈ G, b ∈ Gax = aGxa

−1, one has αax(b) = αx(a
−1ba). (The product

of (the classes of) two equipped G-sets X̃ = (X,α) and Ỹ = (Y, β) is the
pair (X × Y, γ), where γ(x,y)(b) = αx(b)βy(b) for b ∈ G(x,y) = Gx ∩ Gy.) As

an abelian group Ã(G) is freely generated by the classes of the irreducible
equipped G-sets [G/H]α for all the conjugacy classes [H] of subgroups of G
and for all conjugacy classes [α] of one-dimensional representations of H: a
representative of the conjugacy class [H] ∈ ConjsubG. (Two representations
α and α′ of the subgroup H are conjugate if there exists an element a from the
normalizer NG(H) of the subgroup H such that α′(b) = α(a−1ba) for b ∈ H.)
The corresponding function on G/H is defined by α[e] = α, where [e] is the
class in G/H of the unit element e. (There was a certain inaccuracy at this
place in [8] which did not influence the results of the paper.)

The enhanced equivariant Euler characteristic of a G-space W with a func-
tion α of the described type on it is

χ̃G(W ) =
∑

[H]∈ConjsubG

χ ({x ∈ X : Gx ∈ [H], αx ∈ [α]} /G) [G/H]α ∈ Ã(G) .

If W is a G-variety endowed with a function α with values in Hom (Gx,C∗)
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and ϕ : W → A is a G-invariant function with values in an abelian group A,
then there is defined the integral of ϕ with respect to the enhanced equivariant
Euler characteristic χ̃G(·):∫

W

ϕdχ̃G =
∑
a∈A

[H]∈ConjsubG

χ̃ ({x ∈ W : ϕ(x) = a, }) a[G/H]α .

It is an element of A⊗Z Ã(G).
In [8], there was defined an equivariant analogue of the Poincaré series

of several (curve and/or divisorial) valuations on the ring OV,0 of germs of
functions on a germ (V, 0) of a G-variety. Let ν1, . . . , νr be curve and/or
divisorial valuations on OV,0 and let us consider functions ν̂1, . . . , ν̂r on OV,0
(with values in Z∪ {+∞}) defined by ν̂i(f) =

∑
a∈G

νi(a
∗f) for f ∈ OV,0. These

are G-invariant functions on OV,0 and on POV,0 (neither valuations, no order
functions in general). As it was explained above, for each f ∈ POV,0 one has a
one-dimensional representation of the isotropy subgroup Gf . The equivariant
Poincaré series of the collection {νi} of valuations was defined as a sort of
integral with respect to χ̃G(·) over POV,0 of the function t ν̂(f) with values in
Z[[t1, . . . , tr]]. The usual notion of the integral with respect to the equivariant
Euler characteristic (Section 2) cannot be applied in this situation (see the
explanation in Section 5). The definition of the corresponding analogue of
the notion of the integral with respect to χ̃G(·) given in [8] was adapted for
that particular case. Here we will give a general definition which works in the
described situation as well.

There is a natural power structure (see [14]) over the ring Ã(G). It gives
sense to expressions of the form (1 + a1t + a2t

2 + . . .)m, where ai and m are

elements of Ã(G). In particular, for an equipped finite G-set X̃ = (X,α), the

coefficient at tk in the series (1− t)−[X̃] is represented by by the kth symmetric
power SkX = Xk/Sk of the set X with the natural action of the group G and
with the corresponding representations of the isotropy subgroups of points
described in [8].

4 A revised notion of the integral

Let Si, i = 1, . . . , r, be a well-ordered semigroup ([1]) with zero and with the
cancellation property. We assume that Si is combinatorially finite, i. e., each
element a ∈ Si has a finite number of representations as the sum a1 + a2 of

two elements of Si (see, e. g., [11]). Let S :=
r⊕
i=1

Si and let Z[[S]] be the ring
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of power series on the semigroup S, i. e., the set of formal expressions of the
form

∑
v∈S

avt
v (av ∈ Z, v := (v1, . . . , vr), t

v := tv1
i · · · tvrr ) with the usual ring

operations.

Remark. In the definition below of the integral with respect to the Euler
characteristic of a function with values in Z[[S]] the ring structure on Z[[S]] is
formally not necessary. It is sufficient to consider it as an abelian group. The
ring structure is used only in applications (e. g., to write an equation like (6)
below). The property of Z[[S]] to be a ring is guaranteed by the fact that
each semigroup Si is well-ordered. Thus for the definition of the integral with
respect to the Euler characteristic below it is sufficient to assume that Si are
ordered semigroups.

The ring Z[[S]] is filtred by the ideals As0 , s0 ∈ S, defined by

As0 =

∑
s∈S

ast
s : as = 0 for s 6≥ s0

 .

This filtration defines an obvious topology on Z[[S]]. (For S = Zr≥0, Z[[S]] =
Z[[t1, . . . , tr]] and the topology under consideration is the I-adic topology,
where I = 〈t1, . . . , tr〉.)

Let (V, 0) be a germ of a complex analytic variety and let OV,0 be the ring
of germs of functions on (V, 0). Let νi : OV,0 → Si ∪{+∞}, i = 1, . . . , r, be an
order function on OV,0. This means that

• νi(f1 + f2) ≥ min (νi(f1), νi(f2));

• νi(λf) = νi(f) for λ ∈ C∗ = C \ {0}.

Let us consider the function t ν(f) on the projectivization POV,0 with values in
Z[[S]]; where we assume that t+∞i = 0. We want to define the integral of this
function with respect to the Euler characteristic (in a way different from that
in [2] or [4]).

Let m be the maximal ideal of OV,0 and let JNV,0 := OV,0/mN+1 be the space
of N -jets of functions on (V, 0). Let νNi : JNV,0 → Si ∪ {+∞} be the map (in
fact an order function) defined by

νNi (j) = sup
f :jN (f)=j

νi(f) ,

where j ∈ JNV,0, jN(f) is the N -jet of the function f and sup νi(f) is assumed
to be equal to max νi(f) if this maximum exists and to +∞ otherwise. The
function t ν

N (f) is a constructible function on the finite-dimensional projective
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space PJNV,0. Therefore the (usual) integral of it with respect to the Euler
characteristic ∫

PJNV,0

t ν
N (f)dχ ∈ Z[[S]]

is defined.

Definition: The integral with respect to the Euler characteristic of the func-
tion t ν(f) over the projectivization POV,0 of the space OV,0 is defined by∫

POV,0
t ν(f)dχ = lim

N→∞

∫
PJNV,0

t ν
N (f)dχ ∈ Z[[S]] (5)

if the limit in the right hand side (with respect to the topology described
above) exists.

If this limit does not exist, we regard the function t ν(f) as a non-integrable
one.

If all the order functions νi are finitely determined, the definition (5) of the
integral with respect to the Euler characteristic coincides with the classical
one and thus its value is the Poincaré series of the collection {νi} of order
functions. This permits to give the following definition.

Definition: The Poincaré series P{νi}(t) of a collection {νi} of order functions
(not necessary finitely determined ones) is the element of Z[[S]] defined as
the left hand side of (5) if the integral exists (i. e., if the function t ν(f) is
integrable).

5 Examples

1. For f ∈ OC2,0, let ωx(f) := max{s : xs|f}. The function ωx is a valuation
on OC2,0 with values in Z≥0. (It is not centred at the origin and is not a finitely
determined one.) One can see that∫

PJN
C2,0

tω
N
x (f)dχ = (N + 1) +Nt+ . . .+ 2tN−1 + tN ∈ Z[[t]] .

Therefore the function tωx(f) on POC2,0 is not integrable (and the corresponding
Poincaré series in the sense of Section 4 is not defined).
2. For f ∈ OC2,0, let ωx(f) := max{s : xs|f}, ωy(f) := max{s : ys|f}. The
functions ωx and ωy are valuations on OC2,0 with values in Z≥0. One can show
that ∫

PJN
C2,0

t
ωNx (f)
1 t

ωNy (f)

2 dχ =
∑
i+j≤N

ti1t
j
2 .
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Therefore ∫
POC2,0

t
ωx(f)
1 t

ωy(f)
2 dχ =

1

(1− t1)(1− t2)
. (6)

Thus one has that the Poincaré series P{ωx,ωy}(t1, t2) of the valuations ωx and
ωy (in the sense of Section 4) is equal to 1

(1−t1)(1−t2)
.

The valuations ωx and ωy define the natural graduated ring

A =
⊕

(i,j)∈Z2
≥0

Aij, where Aij :=
J(i, j)/J(i+ 1, j)

J(i, j + 1)/J(i+ 1, j + 1)
.

The Poincaré series

PA(t1, t2) =
⊕

(i,j)∈Z2
≥0

dimAij · ti1t
j
2

of the graded algebra A is equal to 1
(1−t1)(1−t2)

and thus coincides with the
Poincaré series of the valuations ωx and ωy defined above.
3. Let (V, 0) be a germ of a complex analytic space and let νi, i = 1, . . . , r,
be a curve or a divisorial valuations on the ring OV,0. The valuations νi are
finitely determined and therefore the integral (5) is equal to the Poincaré series
of the collection {νi} of valuations in the sense of [10].
4. Let νi, i = 1, . . . , r, be arbitrary valuations on the ring OC2,0 of germ of
functions in two variables centred at the origin (see, e. g., [9]; some of them
may be not finitely determined). The arguments in the proof of Theorem 3.1
in [9] show that the integral (5) exists and the Poincaré series of the collection
{νi} of valuations in the sense of Section 4 is equal to the one defined (and
computed) in [9].
5. Assume that the complex analytic germ (V, 0) is endowed with an action
of a finite group G. One has the induced action of G on the ring OV,0 and on
the jet-space JNV,0 and the corresponding one-dimensional representation αf of
the isotropy subgroup Gf for f ∈ POV,0 or for f ∈ JNV,0 described in Section 3.
If the order functions νi, i = 1, . . . , r, (with values in Z) are G-invariant, one
has the integrals ∫

PJNX,0

t ν
N (f)dχ̃G ∈ Ã(G)[[t1, . . . , tr]] (7)

with the ring Ã defined in Section 3. (In fact the value of the integrals belong

to Ã(G)[t1, . . . , tr] ⊂ Ã(G)[[t1, . . . , tr]].) A natural version of the definition (5)
is the following one.
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Definition: The integral with respect to the enhanced equivariant Euler char-
acteristic of the function tν(f) over the projectivization POV,0 is the element

of the ring Ã(G)[[t1, . . . , tr]] defined by∫
POV,0

t ν(f)dχG = lim
N→∞

∫
PJNX,0

t ν
N (f)dχ̃G (8)

if the limit in the right hand side (defined by the powers of the ideal 〈t1, . . . , tr〉 ⊂
Ã(G)[[t1, . . . , tr]]) exists.

If this integral exists it is regarded as an equivariant version of the Poincaré
series of the collection {νi} of order functions.

The construction described in [8] show that if the order functions ν1, . . . ,
νr are defined by

νi(f) :=
∑
a∈G

υi(a
∗f) ,

where υi, i = 1, . . . , r, are curve or/and divisorial valuations on OV,0, the
integral defined by (8) exists and is equal to the equivariant Poincaré series

PG
{υi}(t) (as an element of the ring Ã(G)[[t1, . . . , tr]]) defined in [8].

6 Poincaré series of some collections of plane

order functions not centred at the origin

Let hi, i = 1, . . . , s, be (non-trivial) germs of functions on (C2, 0) such that:

1) each hi has an isolated critical point at the origin, i. e., the curve Li =
{hi = 0} is reduced;

2) for i 6= j, gcd(hi, hj) = 1, i. e., Li ∩ Lj = {0}.

Each hi defines an order function ωi on OC2,0 by ωi(f) = max{s : hsi |f}.
Remark. The order function ωi is a valuation if and only if hi is irreducible.
The order function ωi is not centred at the origin and is not finitely determined.

Let νj, j = 1, . . . , r, be curve or/and divisorial valuations on OC2,0 such
that, if νj is a curve valuation and is defined by an (irreducible) curve germ
(Cj, 0) ⊂ (C2, 0), then no hi, i = 1, . . . , s, vanishes on (Cj, 0), i. e., Cj 6⊂ Li.

Let us consider the collection {ωi, νj} of order functions and let P{ωi,νj}(T , t)
be the Poincaré series of this collection in the sense of Section 4. Here T =
(T1, . . . , Ts) are variables corresponding to the order functions ω1, . . . , ωs,
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t = (t1, . . . , tr) are variables corresponding to the valuations ν1, . . . , νr. We
assume that r ≥ 1, i. e., that at least one order function from the collection is
centred at the origin.

Let π : (X ,D) → (C2, 0) be a resolution of the collection {ωi, νj}. This
means the following:

1) X is a smooth complex surface and π is a proper map, D = π−1(0);

2) π is an isomorphism outside of the origin in C2;

3) the total transform π−1
(⋃s

i=1 Li ∪
⋃
j Cj

)
of the union of the curves

Li = {hi = 0} and of the curves Cj for j ∈ {1, . . . , r} defining curve
valuations νj is a normal crossing divisor on X ;

4) the exceptional divisorD (who is a normal crossing divisor on X ) contains
all the (irreducible) components defining the divisorial valuations from
the collection {νj}.

Let D =
⋃
σ∈ΓEσ be the representation of the exceptional divisor D as

the union of the irreducible components. (Each Eσ is isomorphic to the pro-
jective line CP1.) For a component Eσ of the exceptional divisor D, σ ∈ Γ,
let γσ be a smooth (irreducible) germ of a curve on X intersecting D at a
point of Eσ and transversal to D at a smooth point of the total transform

π−1
(⋃s

i=1 Li ∪
⋃
j Cj

)
. Let `σ = π(γσ) ⊂ (C2, 0) be given by an equation

gσ = 0, gσ ∈ OC2,0. The curve germ `σ is called a curvette at the component
Eσ. Let mσ

j := νj(gσ), mσ := (mσ
1 , . . . ,m

σ
r ).

The numbers mσ
j can be also described in the following way. Let (Eσ ◦Eδ)

be the intersection matrix of the components of D. (The diagonal elements
Eσ ◦ Eσ are negative; for σ 6= δ, the intersection number Eσ ◦ Eδ is equal
to 1 if the components Eσ and Eδ intersect and is equal to 0 otherwise.)
Let (mσδ) := −(Eσ ◦ Eδ)−1. The entries of the matrix (mσδ) are positive
integers. For j = 1, . . . , r, let Eσ(j) be either the divisor defining the valuation
νj (if it is divisorial), or the component of D intersecting the strict transform

C̃j = π−1(Cj \ {0}) of the curve Cj (if νj is a curve valuation). Then one has
mσ
j = mσσ(j).

Let the curve Li = {hi = 0} be the union of the irreducible components
Lik = {hi,k = 0}, k = 1, . . . , si, and let Eσ(i,k) be the component of the

exceptional divisor D intersecting the strict transform L̃ik = π−1(Lik \ {0}) of
the curve Lik.

12



For σ ∈ Γ, let
◦
Eσ (respectively

•
Eσ) be the “smooth part” of the component

Eσ in the total transform π−1

(
s⋃
i=1

Li ∪
⋃
j

Cj

)
(in π−1

(⋃
j

Cj

)
respectively),

i. e., the component Eσ itself minus the intersection points of Eσ with the
strict transforms L̃i and C̃j (with the strict transforms C̃j respectively) and

with all the other components of the exceptional divisor D. Let
◦
D=

⋃
σ∈Γ

◦
Eσ,

•
D=

⋃
σ∈Γ

•
Eσ.

Theorem 1 One has

P{ωi,νj}(T , t) =
s∏
i=1

1− t ν(hi)

1− Tit ν(hi)

∏
σ∈Γ

(
1− tmσ

)−χ(
•
Eσ)

. (9)

Proof . We shall prove Equation (9) up to a fixed (arbitrary large) degree V
of t. Let us assume that the resolution π is such that, for any (non-trivial)
function g ∈ OC2,0 with ν(g) ≤ V , the strict transform of the curve {g = 0}
intersects the exceptional divisor D only at points of

•
D. Such a resolution can

be obtained from any one (say, from the minimal one) by a finite number of
additional blow-ups at intersection points of the components of the exceptional
divisor and/or at intersection points of the exceptional divisor with the strict
transforms of the curves Cj (corresponding to the curve valuations in the
collection {νj}). The smooth parts of the components of the exceptional divisor

born under these additional blow-ups (
◦
Eσ=

•
Eσ in these cases) have zero Euler

characteristics and thus these components do not participate in the right hand
side of Equation (9). Therefore it is sufficient to prove the equation (up to
terms of degree V ) for this resolution.

Let

Y =
∏
σ∈Γ

(
∞⊔
q=0

Sq
◦
Eσ

)
=

⊔
{qσ}∈ZΓ

≥0

(∏
σ∈Γ

Sqσ
◦
Eσ

)

(SqX = Xq/Sq is the qth symmetric power of the space X) be the configuration

space of effective divisors on
◦
D and let

Ŷ = Z
s∑
i=1

si

≥0 × Z
s∑
i=1

si

≥0 × Y .

We shall denote the coordinates in the first factor Z
s∑
i=1

si

≥0 by kij and the coor-
dinates in the second (identical) factor by nij (i = 1, . . . , s, j = 1, . . . , si).

For a function f ∈ POC2,0 with v(f) ≤ V , let I(f) ∈ Ŷ be defined by:

13



1) kij is the maximal power of hij which divides f ;

2) nij is the intersection number of the strict transform of the zero level

set of the function f/
∏
i,j

h
kij
ij with the exceptional divisor D at the point

Pij = L̃ij ∩ D;

3) the component of I(f) in Y is the divisor equal to the intersection of the

strict transform of the curve {f = 0} with
◦
D.

Let Ψ be the map from the configuration space Ŷ to Zs≥0×Zr≥0 defined in the

following way. For an element ŷ = ((kij), (nij), y) ∈ Ŷ with y ∈
∏
σ∈Γ

Sqσ
◦
Eσ,

Ψ(ŷ) = (M(ŷ),m(ŷ)), where M(ŷ) = ( min
1≤j≤s1

k1,j, . . . , min
1≤j≤ss

ks,j),

m(ŷ) =
∑
σ∈Γ

qσm
σ +

∑
i,j

(ki,j + ni,j)m
σ(i,j) .

One can see that for f ∈ OC2,0 (with ν(f) ≤ V ), one has (ω(f), ν(f)) =
Ψ ◦ I(f).

Let πN be the natural map POC2,0 → P∗JNC2,0 = PJNC2,0 ∪ {∗}, where the
functions f ∈ POC2,0 with the zero N -jet are mapped to the additional point

∗. A function f such that I(f) = ((kij), (nij), y) has the form
∏
i,j

h
kij
ij · g, where

hij 6 | g. For functions f with ν(f) ≤ V the order of the product
∏
i,j

h
kij
ij is

bounded from above; say, it is ≤ R = R(V ). One can see that the N -jet of
f determines the (N −R)-jet of g. Together with the fact that for a function
f with v(f) ≤ V the intersection of the strict transform of the curve {f = 0}
with the exceptional divisor D is determined by the N -jet of f with N large
enough (this means that the set of functions with the fixed intersection is
cylindric) this implies that (for N large enough) on the set PJN,VC2,0 of N -jets

with νN(f) ≤ V one has a well-defined map IN : PJN,VC2,0 → Ŷ .

Let us show that for n = (nij) 6= 0 (i. e., if at least one of nij is different

from zero) the preimage under IN of a point ŷ = ((kij), (nij), y) ∈ Ŷ (with
m(ŷ) ≤ V ) has the Euler characteristic equal to zero. For an effective divisor

D on
•
D, let O(D) be the set of functions f with ˜{f = 0}∩

•
D= D, where

˜{f = 0} is the strict transform of the curve {f = 0}. The image of O(D)

in the projectivization PJNC2,0 of the jet-space is an affine subspace in it: [4,

14



Proposition 2]. One has

(IN)−1(ŷ) =
∏
i,j

h
kij
ij ·

πN (O(y+
∑
i,j
nijPij)

)
\

⋃
i′,j′:ni′j′ 6=0

πN

(
hi′j′O

(y+
∑
i,j
nijPij−Pi′j′ )

) .

(Pay attention that the corresponding subspace of POC2,0 is not cylindric.) The

fact that the images under πN of all the spacesO
(y+

∑
i,j
nijPij)

, hi′j′O
(y+

∑
i,j
nijPij−Pi′j′ )

and of all the intersections of the latter ones are affine spaces (non-empty for
N large enough) and therefore have the Euler characteristics equal to 1 implies
the statement (through the inclusion-exclusion formula).

Therefore the part of the integral (5) over

(IN)−1
(
Z

∑
si

≥0 ×
(
Z

∑
si

≥0 \ {0}
)
× Y

)
is equal to zero and one has to consider only the integral over the space

(IN)−1
(
Z

∑
si

≥0 × {0} × Y
)

. Just as above the preimage under IN of a point

ŷ =
(
(kij), 0, y

)
∈ Ŷ (with m(ŷ) ≤ V ) has the Euler characteristic equal to 1.

Therefore (up to terms of degree V in t) one has

P{ωi,νj}(T , t) =

∫
Z
∑
si

≥0 ×{0}×Y
TM(ŷ)tm(ŷ)dχ =

=

 ∑
(kij)∈Z

∑
si

≥0

s∏
i=1

T
min

1≤j≤si
kij

i t

∑
j
kijm

σ(i,j)

×
 ∑
{qσ}∈ZΓ

≥0

∏
σ∈Γ

χ
(
Sqσ

◦
E
)
t

∑
σ
qσmσ

 .

According to the Macdonald equation the second factor is equal to
∏
σ∈Γ

(
1− tmσ

)−χ(
◦
Eσ)

(see, e.g., [4]). Therefore one has

P{ωi,νj}(T , t) =
s∏
i=1

 ∑
(kij)∈Z

si
≥0

T
min

1≤j≤si
kij

i t

∑
j
kijm

σ(i,j)

×∏
σ∈Γ

(
1− tmσ

)−χ(
◦
Eσ)

.

(10)
To compute the first factor we will use the following statement.

Lemma 1∑
k=(k1,...,kp)∈Zp≥0

T
min

1≤i≤p
ki

p∏
j=1

U
kj
j = (1−T

p∏
j=1

Uj)
−1(1−

p∏
j=1

Uj)

p∏
j=1

(1−Uj)−1. (11)
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A proof is obtained by routine computations.
Applying (11) to (10) one gets

P{ωi,νj}(T , t) =
s∏
i=1

((
1− Tit

∑
j
mσ(i,j)

)−1

×
(

1− t
∑
j
mσ(i,j)

)
×

×
si∏
j=1

(
1− tmσ(i,j)

)−1
)
×
∏
σ∈Γ

(
1− tmσ

)−χ(
◦
Eσ)

.

One has
∑
j

mσ(i,j) = ν(hi). Since
•
Eσ=

◦
Eσ ∪

⋃
(i,j):σ(i,j)=σ

{pij}, one has

s∏
i=1

si∏
j=1

(
1− tmσ(i,j)

)−1

×
∏
σ∈Γ

(
1− tmσ

)−χ(
◦
Eσ)

=
∏
σ∈Γ

(
1− tmσ

)−χ(
•
Eσ)

.

This gives Equation (9). �

Remark. It is not difficult to see that Equation (9) can be written as

P{ωi,νj}(T , t) =
s∏
i=1

1− t ν(hi)

1− Tit ν(hi)
× P{νj}(t),

where P{νj}(t) is the Poincaré series of the collection {νj} of (finitely deter-
mined) valuations defined in the usual way: Equation (3).

7 Equivariant Poincaré series of some collec-

tions of plane order functions not centred at

the origin

Assume that (the germ of) the complex plane (C2, 0) is endowed with a complex
analytic action of a finite group G. (Without loss of generality we may assume
that the action is linear, that is, it is induced by a representation of the group.)
The group G acts on the ring OC2,0 as well.

Let (Li, 0) = {hi = 0}, i = 1, . . . , s, be irreducible germs of curves on
(C2, 0) such that for i 6= j and for any a ∈ G the curve germs Li and aLj do
not coincide. The curves (Li, 0) (or the function germs hi) define valuations
ωi on OC2,0 by ωi(f) = max{s : hsi |f}. These valuations are not centred at the
origin and are not finitely determined.

Let νj, j = 1, . . . , r, be curve or/and divisorial valuations on OC2,0 such
that, if νj is a curve valuation and is defined by an (irreducible) curve germ
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(Cj, 0) ⊂ (C2, 0), then, for any i = 1, . . . , s and for any a ∈ G, the function hi
does not vanish on (aCj, 0), i. e., aCj 6= Li.

Let ω̂i and ν̂j be the functions OV,0 → Z≥0 ∪ {+∞} defined by ω̂i =∑
a∈G a

∗ωi and ν̂j =
∑

a∈G a
∗νj respectively. The functions ŵi and ν̂j are

G-invariant order functions on OV,0.

Remark. In the setting of Section 6 the corresponding functions ω̂i would not
be, in general, order functions since the curves (Li, 0) were not assumed to be
irreducible.

As usual, for an element f ∈ POC2,0 (of the projectivization of the ring
of germs of functions), there is defined a representation αf of the isotropy
subgroup Gf of the element f .

Definition: The equivariant Poincaré series of the collection {ωi, νj} is defined
by

PG
{ωi,νj}(T , t) =

∫
POC2,0

T ω̂(f)tν̂(f)dχ̃G, (12)

where T = (T1, . . . , Ts), t = (t1, . . . , tr), the integral in (12) is defined as

lim
N→∞

∫
PJN

C2,0

T ω̂
N (f)tν̂

N (f)dχ̃G ∈ Ã(G)[[T , t]] .

Let π : (X ,D) → (C2, 0) be an equivariant resolution of the collection
{ωi, νj}. This means that:

1) X is a smooth complex surface with a G-action and π is a proper G-
equivariant map, D = π−1(0);

2) π is an isomorphism outside of the origin in C2;

3) the total transform

π−1

(
s⋃
i=1

⋃
a∈G

aLi ∪
⋃
j

⋃
a∈G

aCj

)
(13)

(where Li = {hi = 0}, the union “
⋃
j” is over those j ∈ {1, . . . , r} for

which νj is a curve valuation defined by the (irreducible) curve Cj) is a
normal crossing divisor on X ;

4) the exceptional divisorD (who is a normal crossing divisor on X ) contains
all the (irreducible) components defining the divisorial valuations from
the collection νj.
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Let
◦
D be the “smooth part” of the exceptional divisor D in the total trans-

form (13), i. e., D itself without all the intersection points of its components
and all the intersection points with the strict transforms of the curves GLi and
GCj. Let Pi be the point L̃i ∩D, where L̃i = π−1(Li \ {0}) is the strict trans-

form of the curve Li, i = 1, . . . , s, and let
•
D=

◦
D ∪

⋃
i{Pi} be the smooth part

of the exceptional divisor D in the total transform π−1
(⋃

j

⋃
a∈G aCj

)
of the

curve
⋃
j GCj. For a point x ∈

•
D, let `x be a curvette at the point x invariant

with respect to the isotropy subgroup Gx of the point x. Here `x = π(γx),
where γx is a smooth Gx-invariant germ of a curve transversal to D at the
point x. We can assume that `x is given by an equation gx = 0, where gx is a
Gx-equivariant function germ, i. e., a∗gx = αx(a) for a ∈ Gx. (In other words
the class of gx in POC2,0 is Gx-invariant.) It is possible to assume that initially
the germs hi are such that for x = Pi one can take gx = hi.

Let {Ξ̂} be a stratification of the smooth curve D̂ =
◦
D/G such that:

1) each stratum Ξ̂ is connected;

2) for each point x from the pre-image Ξ = p−1(Ξ̂) (p is the quotient map
◦
D → D̂), the conjugacy class of the isotropy subgroup Gx of the point x

is the same, i. e., depends only on the stratum Ξ̂.

The latter is equivalent to say that the quotient map p :
◦
D → D̂ is a (non-

ramified) covering over each stratum Ξ̂.

For a point x ∈
•
D, let X̃x = X̃hx be the finite equipped G-set defined as

the orbit of hx in POC2,0, where hx is the Gx-equivariant function defining the
chosen curvette at the point x with the corresponding representation αhx (see

above). For a fixed stratum Ξ̂, the class [X̃x] ∈ Ã(G) is one and the same for

all x ∈ Ξ and therefore it defines an element [X̃Ξ̂] ∈ Ã(G).
Let

m̂x := ν

(∏
a∈G

hax

)
, M̂

x
:= ω

(∏
a∈G

hax

)
(x ∈

•
D) .

For a fixed Ξ̂, the elements m̂x ∈ Zr≥0 and M̂
x
∈ Zs≥0 are the same for all x ∈ Ξ

(in fact they depend only on the component Eσ containing x) and therefore

they define elements m̂Ξ̂ and M̂
Ξ̂
. Let m̂(i) := m̂Pi .

Theorem 2 One has

P{ωi,νj}(T , t) =
s∏
i=1

(
1− Titm̂(i)

)−[X̃Pi ] ×
∏

Ξ

(
1− tm̂

Ξ
)−χ(Ξ̂)[X̃Ξ]

, (14)
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where the exponents of the binomials are understood in the sense of the power
structure over the ring Ã(G).

Proof . As for Theorem 1, we shall prove Equation (14) up to a fixed (arbitrary
large) degree V of t. Let us assume that the (equivariant) resolution π is such
that, for any function g ∈ OC2,0 with ν(g) ≤ V , the strict transform of the

curve {g = 0} intersects the exceptional divisor D only at points of
•
D. It is

sufficient to prove Equation (14) (up to terms of degree V ) for this resolution.
Let

Y =
∏

Ξ

(
∞⊔
q=0

SqΞ

)
=

⊔
{qΞ}∈Z

{Ξ}
≥0

(∏
Ξ

SqΞΞ

)

be the configuration space of effective divisors on
◦
D. Each component

∏
Ξ S

qΞΞ
of the space Y is an equipped G-variety. Let

Ŷ =

(
s∏
i=1

(
∞⊔
q=0

SqXPi

))
×

(
s∏
i=1

(
∞⊔
q=0

SqXPi

))
× Y .

Each component(
s∏
i=1

SqiXPi

)
×

(
s∏
i=1

Sq
′
iXPi

)
×

(∏
Ξ

SqΞΞ

)

of Ŷ is a finite equipped G-set. Let p1, p2, and p3 be the projections of Ŷ to
the first factor

∏s
i=1 S

qiXPi , to the second factor
∏s

i=1 S
q′iXPi , and to the third

factor Y respectively.
For a function f ∈ POC2,0 (with ν(f) ≤ V ), let I(f) ∈ Ŷ be defined in the

following way:

1) p1(I(f)) =
s∑
i=1

∑
a∈G

kiaa
∗hpi , where kia is the maximal power of a∗hi which

divides f ;

2) p2(I(f)) =
s∑
i=1

∑
a∈G

niaa
∗hpi , where nia is the the intersection number of

the strict transform of the zero level set of the function f/(a∗hi)
kia with

the exceptional divisor D at the point aPi;

3) p3(I(f)) is the divisor on
◦
D equal to the intersection of the strict trans-

form of the curve {f = 0} with
◦
D.
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Let Ψ be the map from Ŷ to Zs≥0 × Zr≥0 defined in the following way: for ŷ =(
s∑
i=1

∑
a∈G

kiaa
∗hpi ,

s∑
i=1

∑
a∈G

niaa
∗hpi , y

)
, y ∈

∏
Ξ

SqΞΞ, one has Ψ(ŷ) = (M(ŷ),m(ŷ)),

where M(ŷ) =

(∑
a∈G

k1a, . . . ,
∑
a∈G

ksa

)
, m(ŷ) =

∑
Ξ qΞ ·m̂Ξ+

∑s
i=1(kia+nia)m̂

Pi .

For f ∈ OC2,0 (with v(f) ≤ V ), one has (ω̂(f), ν̂(f)) = Ψ ◦ I(f).
The arguments of the proof of Theorem 1 give

PG
{ωi,νj}(T , t) =

∫
(
∏s
i=1(

⊔∞
q=0 S

qXPi))×{0}×Y
TM(ŷ)tm(ŷ)dχ̃G. (15)

It is not difficult to compute the latter integral. One has

PG
{ωi,νj}(T , t) =

∫
(
∏s
i=1(

⊔∞
q=0 S

qXPi))×{0}×Y
TM(ŷ)tm(ŷ)dχ̃G

=

 ∑
{ki}∈Zs≥0

s∏
i=1

[SkiX̃Pi ]T
ki
i t

∑
kim̂(i)

×
 ∑
qΞ∈Z

{Ξ}
ge0

∏
Ξ

[SqΞΞ]t
∑

Ξ qΞm̂
Ξ


=

(
s∏
i=1

∞∑
k=0

[SkX̃Pi ]T
k
i t
km̂(i)

)
×

(∏
Ξ

∞∑
q=0

[SqΞ]tqm̂
Ξ

)
.

Using the Macdonald formula one gets

PG
{ωi,νj}(T , t) =

s∏
i=1

(
1− Titm̂(i)

)[X̃Pi ] ×
∏

Ξ

(
1− tm̂

Ξ
)[Ξ]

=
s∏
i=1

(
1− Titm̂(i)

)[X̃Pi ] ×
∏

Ξ

(
1− tm̂

Ξ
)χ(Ξ̂)[X̃Ξ]

.

�

Remark. The end of the proof of Theorem 2 is somewhat shorter than that
of Theorem 1 since here the curves Li are assumed to be irreducible. If, in the
equivariant setting, these curves are not irreducible, to compute the Poincaré
series one needs an equivariant analogue of Lemma 1. However this analogue
is not clear. (Moreover, in some sense it does not exist: the corresponding
infinite sum cannot be expressed as a finite product of polynomials (say, bi-

nomials) with exponents from the ring Ã(G) understood in the sense of the

power structure over Ã(G).)

20



References
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