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Abstract

This work introduces a new kind of semigroup of Np called proportion-
ally modular affine semigroup. These semigroups are defined by modular
Diophantine inequalities and they are a generalization of proportionally
modular numerical semigroups. We give an algorithm to compute their
minimal generating sets. We also specialize on the case p = 2. For this
case, we provide a faster algorithm to compute their minimal system of
generators, prove they are Cohen-Macaulay and Buchsbaum, and deter-
minate their (minimal) Frobenius vectors. Besides, Gorenstein propor-
tionally modular affine semigroups are characterized.
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Introduction

All monoids and semigroups appearing in this work are commutative. For this
reason, we omit this adjective in the sequel.

Given two non-negative integers a, b with b 6= 0, we denote by a mod b the
remainder of the Euclidean division of a by b. For a rational number p/q with
gcd(p, q) = 1, we say that p/q = 0 mod b if p = 0 mod b, and for two rational
numbers p/q and p′/q′ we say that p/q = p′/q′ mod b if p/q−p′/q′ = 0 mod b.
A proportionally modular Diophantine inequality in one variable is an expression
of the form ax mod b ≤ cx with a, b and c positive integers. The set S of non-
negative integer solutions of that modular inequality is a numerical semigroup,
that is, it is a subset of the set of non-negative integers N that is closed under
addition, 0 ∈ S and N \ S has finitely many elements. So, the submonoids of N
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of the form S = {x ∈ N | ax mod b ≤ cx} are called proportionally modular
numerical semigroups. They were introduced in [16], and many papers about
them have been written (see, for example [14], [15], [18], [19]).

In this work, we introduce proportionally modular affine semigroups as a
generalization of proportionally modular numerical semigroups. Instead of using
three integers a, b and c, we use two nonnull linear functions f, g : Qp → Q and
a natural number b. With these elements, we define the semigroup

S = {x ∈ Np | f(x) mod b ≤ g(x)}

which it is called proportionally modular affine semigroup. In Theorem 3, we
provide an algorithm to compute the minimal generating of S. Besides, we prove
that the intersection of every rational straight line with a proportionally modular
affine semigroup is isomorphic to a proportionally modular numerical semigroup.
This makes possible to view every proportionally modular affine semigroup as
a beam of proportionally modular numerical semigroups.

In the second part of this work, we focus on proportionally modular affine
semigroups of N2 and we explore some of their properties. Using that any
nontrivial proportionally modular affine semigroup S of N2 is simplicial, we
study some of the properties of its associated semigroup ring k[S] from the
semigroup S. These properties are the Cohen-Macaulayness, Gorensteiness and
Buchsbaumness, which have been widely studied in ring theory, but if we try
to search these kind of rings, few methods to obtain them are found (see [9],
[12], [17], [21] and references therein). In particular, we prove that these semi-
groups are Cohen-Macaulay and Buchsbaum, and we characterize when they are
Gorenstein. That allows us to affirm that an application of modular Diophan-
tine inequalities to Commutative Algebra is the construction of special kinds of
rings. For these semigroups, we also give a geometrical algorithm for a fast com-
putation of the minimal generating set of S, and we determinate the (minimal)
Frobenius vectors of these semigroups (some references to Frobenius vectors are
found in [1] and [2]). In this work, all the examples have been done using the
software available at [8].

The content of this work is organized as follows: in Section 1, we provide
some basic definitions and results on monoids and semigroup rings. In Section
2, we give the definition of proportionally modular semigroup, we represent it
as beams of proportionally numerical semigroups, and we show an algorithm to
compute its minimal generating set. In Section 3, we provide a faster algorithm
to obtain a system of generators of a given proportionally modular affine semi-
group of N2. For this semigroup, we also give its set of (minimal) Frobenius
vectors. Finally, in Section 4, we study methods to check the above mentioned
properties of the semigroup ring of a proportionally modular affine semigroup
of N2.

1 Preliminaries and notations

A semigroup is a pair (S,+), with S a nonempty set and + a binary operation
defined on S verifying the associative law. In addition, if there exists an element
0 ∈ S such that a + 0 = 0 + a for all a ∈ S, we say that (S,+) is a monoid.
Given a subset A of a monoid S, the monoid generated by A, denoted by 〈A〉,
is the least (with respect to inclusion) submonoid of S containing A. When
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S = 〈A〉, we say that S is generated by A or that A is a system of generators of
S. The monoid S is finitely generated if it has a finite generating set. Finitely
generated submonoids of Np are known as affine semigroups, and they are called
numerical semigroups when p = 1.

Given a system of linear equations or linear inequalities, a solution is called
N-solution if it is a non-negative integer solution (see [13] for details). For a
subset A ∈ Qp, denote by ConvexHull(A) the convex hull of the set A, that is,
the smallest convex subset of Qp containing A.

In this work, the product ordering in Np is denoted by � . So, given two
elements x, y ∈ Np, x � y if y − x ∈ Np. Besides, we denote by ||x|| the 1-norm
of x (i.e. ||x|| =

∑p
i=1 |xi|) and by [k] the set {1, . . . , k} for every k ∈ N. We

use L(A) to denote the set {
∑m

i=1 λiai | λi ∈ Q≥, ai ∈ A, m ∈ N}, this set is
known as the rational cone of A.

For a better understanding of the last section of this work, we need to re-
call some definitions. Let R be a Noetherian local ring, a finite R-module
M 6= 0 is a Cohen-Macaulay module if depth(M) = dim(M). If R itself is a
Cohen-Macaulay module, then it is called a Cohen-Macaulay ring (see [5]). A
Gorenstein ring is a special case of Cohen-Macaulay ring: a Gorenstein local
ring is a Noetherian commutative local ring R with finite injective dimension, as
an R-module (see [3]). The last concept, Buchsbaum ring, is defined as follows:
a noetherian R-module M is called a Buchsbaum module is every system of pa-
rameters of M is a weak M -sequence, and R is a Buchsbaum ring if it is Buchs-
baum module as a module over itself (see [10] and [21] for details). For every
(S,+) finitely generated commutative monoid and a field k, we denote by k[S]
the semigroup ring of S over k. Note that k[S] is equal to

⊕
m∈S kχ

m endowed
with a multiplication which is k-linear and such that χm · χn = χm+n for every
m,n ∈ S (see [4]). We say that S is a Cohen-Macaulay/Gorenstein/Buchsbaum
semigroup if k[S] is a Cohen-Macaulay/Gorenstein/Buchsbaum ring.

2 Proportionally modular affine semigroups

Let f, g : Qp → Q be two nonnull linear functions and let b ∈ N\{0}. If x, y ∈ Np

verify f(x) mod b ≤ g(x) and f(y) mod b ≤ g(y), by the linearity of f and
g, we have f(x + y) mod b = (f(x) + f(y)) mod b ≤ (f(x) mod b) + (f(y)
mod b) ≤ g(x) + g(y) = g(x + y). Clearly, f(0) mod b = 0 ≤ g(0). In this
way, the set of N−solutions of every inequality of the form f(x) mod b ≤ g(x)
is a submonoid of Np. Every submonoid S of Np obtained as above is called a
proportionally modular monoid.

Let us suppose that f(x1, . . . , xp) = f1x1 + · · · + fpxp and g(x1, . . . , xp) =
g1x1 + · · · + gpxp with fi, gi ∈ Q for all i = 1, . . . , p, and b ∈ Q≥. If d ∈
N, then an element x ∈ Np verifies f(x) mod b ≤ g(x) if and only if df(x)
mod db ≤ dg(x). Hence, by multiplying the inequality f(x) mod b ≤ g(x) by
d the least common multiple of the denominators of f1, . . . , fp, g1, . . . , gp, and
b, we obtain an inequality where db ∈ N and the coefficients of df and dg are
integers. So, in the sequel, we assume that f(x1, . . . , xp) = f1x1 + · · · + fpxp
and g(x1, . . . , xp) = g1x1 + · · ·+ gpxp with fi, gi ∈ Z and b ∈ N.

Remark 1. If we intersect S with any axis, the set obtained is formed by the
elements of Np fulfilling a proportionally modular Diophantine inequality or it is

3



equal to {0}. Thus, this intersection is isomorphic to a proportionally modular
numerical semigroup. Besides, every x ∈ Np satisfying g(x) ≥ b belongs to S.

Remark 2. Let w = (w1, . . . , wp) ∈ Np \{0} such that gcd(w1, . . . , wp) = 1. The
set {λw|λ ∈ Q} ∩ Np is equal to {xw | x ∈ N}. If g(w) > 0, then g(xw) > 0
for all x ∈ N \ {0}. Since g(x1, . . . , xp) = g1x1 + · · ·+ gpxp and f(x1, . . . , xp) =
f1x1 + · · ·+ fpxp with fi, gi ∈ Z for all i ∈ [p], then g(xw) = g(xw1, . . . , xwp) =
(g1w1 + · · ·+gpwp)x and f(xw) = f(xw1, . . . , xwp) = (f1w1 + · · ·+fpwp)x. The
element c′ = g1w1+· · ·+gpwp is in N and a′ = f1w1+· · ·+fpwp belongs to Z. So,
xw ∈ S if and only if a′x mod b ≤ c′x. Hence, the submonoid {xw | x ∈ N}∩S
is isomorphic to a proportionally modular numerical semigroup.

We suppose now that g(w) = 0. Let u be the nonnull element of {λw|λ ∈
Q}∩Np closest to the origin verifying that f(u) mod b ≤ g(u). By the linearity
of g we have g(u) = 0 and thus f(u) mod b = 0. Assume that w′ ∈ {λw|λ ∈
Q} ∩ Np and f(w′) mod b ≤ g(w′). If w′ 6∈ {ku | k ∈ N}, consider k′ ∈ N such
that ‖k′u‖ < ‖w′‖ and ‖(k′ + 1)u‖ > ‖w′‖. The element w′ − k′u ∈ Np verifies
g(w′ − k′u) = 0, f(w′ − k′u) mod b = 0 ≤ g(w′ − k′u) and ‖w′ − k′u‖ < ‖u‖,
which is a contradiction. Thus, {λw | λ ∈ Q, f(λw) mod b ≤ g(λw)} ∩ Np is
equal to {λu | λ ∈ N} and this submonoid is isomorphic to N.

The above two paragraphs allow us to view proportionally modular semi-
groups as beams of proportionally modular numerical semigroups.

In the following result we give an effective proof that a proportionally mod-
ular semigroup is finitely generated. This proof is tailored to these semigroups.

Theorem 3. Every proportionally modular monoid of Np is finitely generated.

Proof. We suppose again that g(x1, . . . , xp) = g1x1+· · ·+gpxp with g1, . . . , gp ∈
Z, and denote the p-tuple (x1, . . . , xp) by x. Let S be the proportionally modular
monoid defined by the inequality f(x) mod b ≤ g(x).

We have two straightforward cases: g1, . . . , gp < 0 and g1, . . . , gp > 0. If
g1, . . . , gp < 0, then S = {0}. If g1, . . . , gp > 0, every set {x ∈ Np | g(x) = i}
with i ∈ N is finite. Since Np \ S ⊂ ∪b−1i=0{x ∈ Np | g(x) = i}, the set Np \ S is
finite, and hence a minimal generating set of S can be computed by using [6,
Corollary 9].

Assume that there exist i, j ∈ [p] such that gigj ≤ 0. Let U = {u1, . . . , ut}
be the minimal generating set of the N-solutions of the system of Diophantine
equations (see [13]) {

f(x) mod b = 0,
g(x) = 0.

Every x ∈ Np verifying g(x) ≥ b is in S and therefore S ∩ {x ∈ Np | g(x) ≥ b}
is equal to {x ∈ Np | g(x) ≥ b} (see Remark 1). So, we obtain that

S \ ∪b−1i=1{x ∈ Np | g(x) = i} =

S ∩ ({x ∈ Np | g(x) = 0} ∪ {x ∈ Np | g(x) ≥ b}) =

(S ∩ {x ∈ Np | g(x) = 0}) ∪ {x ∈ Np | g(x) ≥ b}.

Take x ∈ S ∩ (∪b−1i=1{x ∈ Np | g(x) = i}) and assume that g(x) = d with
d ∈ {1, . . . , b − 1}. This element is a N-solution of a Diophantine system of
equations of the form {

f(x) mod b = k,
g(x) = d.

(1)
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with k = 0, . . . , d. Let Mdk be the set of minimal N-solutions of (1). By [13],
the element x can be expressed as m +

∑t
i=1 λiui with m ∈ Mdk and λi ∈ N.

Figure 1 illustrates graphically the sets Mdk of an example.

Figure 1: Semigroup given by the inequality 5x+ 2y+ z mod 4 ≤ 3x+ y− 4z.

We now construct a generating set of the monoid

{x ∈ Np | g(x) ≥ b} ∪ (S ∩ {x ∈ Np | g(x) = 0}).

An graphical example of this monoid is showed in Figure 1. Let V = {v1, . . . , vl}
be the minimal generating set of {x ∈ Np | g(x) = 0}. Note that bvi ∈ 〈U〉 for all
i = 1, . . . , l. Since the set L(S) ∩ Np is the cone determined by the hyperplanes
g(x) ≥ 0, x1 ≥ 0, . . . , xp ≥ 0, it is a finitely generated monoid (see [20, Section
§7.2 and Theorem 16.4]). Define

C0 = V ∪ {w1
1, . . . , w

1
n1
, w2

1, . . . , w
2
n2
, . . . , wb−1

1 , . . . , wb−1
nb−1

, w̃1, . . . , w̃q}

the minimal generating set of L(S) ∩ Np satisfying:

• g(wi
j) = i for all i = 1, . . . , b− 1, and j = 1, . . . , ni.

• g(w̃j) ≥ b for all j = 1, . . . , q.

Let C1 be the finite set

(C0 \ {w1
1, . . . , w

1
n1
}) ∪ ∪i∈[n1]{2w

1
i , 3w

1
i } ∪ ∪j∈[n1]{w

1
j + s|s ∈ C0 \ V }.

Note that for every element s ∈ C1, g(s) = 0 or g(s) ≥ 2. Besides, if s ∈
(L(S) ∩ Np) \ {x ∈ Np | g(x) = 1} we also have that g(s) = 0 or g(s) ≥ 2. If
g(s) = 0, then s belongs to the semigroup generated by V ⊂ C1. If g(s) ≥ 2, we
consider λj , νij , µj ∈ N such that

s =

l∑
j=1

λjvj +

n1∑
j=1

ν1jw
1
j +

b−1∑
i=2

ni∑
j=1

νijw
i
j +

q∑
j=1

µjw̃j .

For each ν1j > 1, the addend ν1jw
1
j can be replace by a non-negative integer

linear combination of the elements of {2w1
j , 3w

1
j} ⊂ C1. Since g(s) ≥ 2, if there
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exists ν1j = 1, then there exists a nonnull coefficient νi′j′ with j′ 6= j and/or

there exists a nonnull coefficient µj′′ . Hence, w1
j + νi′j′w

i′

j′ or w1
j + µj′′w̃j′′

appears in the expression of s. Note that both elements are obtained as a non-
negative integer linear combination of elements of C1. In any case, the element s
is in the semigroup generated by C1, and therefore C1 is a system of generators
of (L(S) ∩ Np) \ {x ∈ Np | g(x) = 1}.

Once we have the sets C0 and C1, the sets Ck with k ∈ [b − 1] are obtained
recursively as follows:

Ck = (Ck−1 \{wk
1 , . . . , w

k
nk
})∪∪i∈[nk]{2w

k
i , 3w

k
i }∪∪j∈[nk]{w

k
j + s|s ∈ Ck−1 \V }.

Reasoning as above, it is straightforward to prove that the set Ck is a system of
generators of the semigroup (L(S) ∩Np) \ ∪kj=1{x ∈ Np | g(x) = j}. Thus, Cb−1
is a system of generators of {x ∈ Np | g(x) ≥ b} ∪ {x ∈ Np | g(x) = 0}.

Let C be the finite set C = (Cb−1 \ V ) ∪ U. Then, S ∩ {x ∈ Np | g(x) = 0} =

〈C〉 ∩ {x ∈ Np | g(x) = 0}. Let C̃ be the finite set

C ∪
⋃

w∈C∩{x∈Np | g(x)≥b}

{z ∈ Np|w ≺ z � w +
l∑

i=1

bvi},

and let s ∈ {x ∈ Np | g(x) ≥ b} ∪ (S ∩ {x ∈ Np | g(x) = 0}). If g(s) = 0, s can

be obtained from the set U ⊂ C̃. Otherwise,

s =
∑

ŵ∈C,g(ŵ)≥b

λŵŵ +

l∑
i=1

µivi,

with λŵ, µi ∈ N. For every µi, let µ′i, ri ∈ N be the quotient and the remainder
of the integer division µi/b (µi = µ′ib+ ri with ri ∈ [b− 1]). With these values
we have

s =
∑

ŵ∈C,g(ŵ)≥b

λŵŵ +

l∑
i=1

µ′ibvi +

l∑
i=1

rivi,

where
∑l

i=1 µ
′
ibvi ∈ 〈U〉 ⊂ 〈C̃〉 and

∑
ŵ∈C,g(ŵ)≥b λŵŵi+

∑l
i=1 rivi belong to 〈C̃〉.

Hence, C̃ is a system of generators of {x ∈ Np | g(x) ≥ b}∪(S∩{x ∈ Np | g(x) =

0}), and thus a system of generators of S is the finite set C̃∪(∪b−1d=1∪dk=0Mdk).

From the above proof we obtain an algorithm to compute systems of gener-
ators of proportionally modular affine semigroups. Although, with this method
it is necessary to solve several system of Diophantine equations (this is a NP-
complete problem) and consider several big sets of elements. A particular case
where we avoid these issues is when p = 2. This case is studied in next sec-
tions. We describe a geometrical approach, easier to solve, that allows us to
determinate the Cohen-Macaulayness, Gorensteiness and Buchsbaumness.

3 Proportionally modular affine semigroups of
N2

This section is about proportional modular semigroups associated to modu-
lar Diophantine inequalities into two variables: f(x, y) mod b ≤ g(x, y) where
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f(x, y) = f1x+ f2y, g(x, y) = g1x+ g2y with b ∈ N and f1, f2, g1, g2 ∈ Z. As in
previous sections, we denote by S the proportionally modular affine semigroup
associated to the above modular inequality. In this section, we provide a ge-
ometrical algorithm to compute their minimal generating sets. Besides, their
associated (minimal) Frobenius vectors are studied.

Given a subset A ⊂ Q2, we denote by Tint(L(A)) the topological interior
of the cone L(A). This set is equal to Tint(A) = {

∑m
i=1 λiai | λi ∈ Q>, ai ∈

A, m ∈ N}. Note that given a subsemigroup S of N2 minimally generated
by {s1, . . . , sp} there exists a minimal set of elements {si1 , . . . , sit} such that

its associated cone L(S) is equal to {
∑t

j=1 λjsij | λj ∈ Q≥}. The semigroup
S is called simplicial whenever L(S) = L({s1, s2}). Note that every nontrivial
proportionally modular semigroup of N2 is simplicial.

Definition 4. Assume g(x, y) = g1x + g2y with g1g2 ≤ 0. Denote by u the
generator of the semigroup given by the N-solutions of{

g1x+ g2y = 0,
f1x+ f2y mod b = 0.

If g1 6= 0, this element is the minimal solution of (−g2f1+f2g1
g1

y mod b = 0).
Analogously, if g2 6= 0 we also obtain only an element. In particular, note that
u is a minimal generator of S.

The vector u has a nice property which allows to obtain all the elements
belonging to S from a strip of S.

Lemma 5. Assume g(x, y) = g1x + g2y with g1g2 ≤ 0, let u ∈ N2 be as in
Definition 4 and v, w ∈ N2 such that v + u = w. Then, v ∈ S if and only if
w ∈ S.

Proof. Assume v ∈ S. We have f(v) mod b ≤ g(v) and f(u) mod b = g(u) =
0. Thus, f(w) mod b = f(v + u) mod b = (f(v) + f(u)) mod b ≤ f(v)
mod b+ f(u) mod b ≤ g(v) = g(v) + g(u) = g(v + u) = g(w).

If w ∈ S, we can proceed similarly to obtain that v ∈ S.

The following result provides us with an alternative geometrical and effective
proof of Theorem 3 for a subsemigroup on N2.

Proposition 6. Every nontrivial proportionally modular semigroup S of N2 is
finitely generated.

Proof. We have f, g : Q2 → Q. Assume that g(x, y) = g1x+g2y with g1, g2 ∈ Z.
If g1, g2 < 0, then S = {(0, 0)}. For the other cases we distinguish two main
cases: g1, g2 > 0 and g1g2 ≤ 0.

Assume that g1, g2 > 0. The elements of N2 not belonging to S are in the
straight lines g(x, y) = 1, . . . , g(x, y) = b − 1. Furthermore, the intersection of
every straight line g(x, y) = d with Q2

≥ is the segment with endpoints (0, d
g2

),

( d
g1
, 0). Thus, in the straight lines g(x, y) = 1, . . . , g(x, y) = b − 1 there are

only a finite number of elements in N2. Hence, N2 \ S is finite and the minimal
generating set S can be obtained from N2 \ S using [6, Corollary 9].

Assume now that g1g2 ≤ 0. Let u = (u1, u2) be as in Definition 4. The
intersection of g(x) = b with one of the two axes is not empty. Assume that
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this axis is the x-axis and then g1 > 0 and g2 ≤ 0. Let w = ( b
g1
, 0) be the

point of intersection of the straight line g(x, y) = b with the line y = 0, and
ũ = (ũ1, 0) ∈ N2 be the minimal generator of the affine semigroup S ∩ OX
closest to the origin. By Remark 1, the element ũ exists and it is a minimal
generator of S. Fixed s = (s1, s2) ∈ S, by Lemma 5, if s2 ≥ u2, s satisfies
s − u ∈ S, and it can be obtained from an element s′ = (s′1, s

′
2) ∈ S with

s′2 < u2 adding λu for some λ ∈ N. In case s belongs to the half-space {(x, y) ∈
R2

+|g(x, y) ≥ b} + ũ, the element s − ũ belongs to S. Let G be the finite set
given by S ∩ (R2 \ (({(x, y) ∈ R2|g(x, y) ≥ b} + ũ) ∪ {(x, y) ∈ R2|y > u2})).
This set is equal to S ∩ConvexHull({O, u, u +w+ ũ, w+ ũ}) and S \ G is equal
to {h + λ1u + λ2ũ|h ∈ G and λ1, λ2 ∈ N}. Then, S is finitely generated by the
elements belonging to G. Analogously, the case g1 ≤ 0 and g2 > 0 can be solved
considering w = (0, b

g2
), and ũ = (0, ũ2) ∈ S the minimal generator of the affine

semigroup S ∩OY closets to the origin.

From now on, we denote by w the element {x ∈ R2
+|g(x) = b} ∩ (OX ∪OY )

when g1g2 ≤ 0, by G the set S ∩ ConvexHull({O, u, u + w + ũ, w + ũ}), and by
ũ the vector (ũ1, 0) or (0, ũ2) as in above Proposition.

In Algorithm 1 we formulate a faster algorithm to compute the minimal
generating set of a proportionally modular semigroup in N2. In this algorithm,

Algorithm 1 Computation of the minimal generating set of a proportionally
modular affine semigroup S.

Input: The proportionally modular Diophantine inequality f(x) mod b ≤
g(x) = g1x+ g2y.
Output: The minimal generating set of S.

1: if g1, g2 < 0 then return {(0, 0)}.
2: if g1, g2 > 0 then compute the finite set N2 \ S. The minimal generating

set H of S can be obtained from N2 \ S using [6, Corollary 9].
3: return H.
4: if g1g2 ≤ 0 then
5: Compute the vector u defined in Definition 4.
6: if g1 ≥ 0 then S̃ := {(x, 0) | f(x, 0) mod b ≤ g(x, 0)}.
7: if g1 < 0 then S̃ := {(0, y) | f(0, y) mod b ≤ g(0, y)}.
8: Compute the minimum minimal generator ũ of the subsemigroup S̃.
9: w := {x ∈ R2

+|g(x) = b} ∩ (OX ∪OY ).
10: G := S ∩ ConvexHull({O, u, u + w + ũ, w + ũ}).
11: Obtain H a minimal system of generators from G.
12: return H.

for the case g1, g2 > 0 there exists an alternative way to compute the step
2. Let w1 and w2 be the intersections of {x ∈ Q2|g(x) = b} with OX and
OY respectively, and let ũ1 and ũ2 be the minimum minimal generators of the
semigroups S∩OX and S∩OY respectively (note ũ1 and ũ2 are in the minimal
generating set of S). Consider J the set ConvexHull({O,w1 + ũ1, w2 + ũ2}).
It is straightforward to prove that N2 \ J ⊂ S and every x ∈ N2 \ J satisfies
that x− ũ1 and/or x− ũ2 are/is in S. Thus, the elements belonging to N2 \ J
can be obtained from elements in J ∩ S and then a system of generators of
S is included in J ∩ S. So, an alternative way to do the step 2 is to compute
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w1, w2, ũ1, ũ2, consider the set J ∩ S and take H the minimal generating set of
S from J ∩ S.
Example 7. Let f(x, y) = 3x − 2y, g(x, y) = x − 3y, b = 11 and S the pro-
portionally modular affine semigroup defined by the modular inequality f(x, y)
mod b ≤ g(x, y). In order to obtain a generating set of S, we follow the steps
of Algorithm 1. First, we compute the minimal non null vector u ∈ N2 solv-
ing the system of modular equations {f(x, y) mod b ≤ g(x, y), g(x, y) = 0}.
In this case we have 7y mod 11 = 0. So, u = (33, 11). For computing ũ
it is needed to solve the modular equation f(x, 0) mod b ≤ g(x, 0) ≡ 3x
mod 11 ≤ x. The proportionally numerical semigroup obtained is the gen-
erated by {4, 5, 11}, and therefore ũ = (4, 0). The point w = {(x, y) ∈
R2|g(x, y) = 11} ∩ OX is equal to w = (11, 0). Another set we need is
G = S∩ConvexHull({(0, 0), (33, 11), (48, 11), (17, 0)}). The last step is performed
taking the minimal elements of G.

The software [8] allows us to compute the minimal generating set of S just
as follows:

In[1]:= ProporcionallyModularAffineSemigroupN2[3, -2, 11, 1, -3]

Out[1]= {{4., 0.}, {5., 0.}, {5., 1.}, {8., 1.}, {9., 2.},

{11., 0.}, {13., 3.}, {14., 4.}, {18., 5.},

{19., 6.}, {23., 7.}, {28., 9.}, {33., 11.}}

To conclude this section we make a geometric approach to the computation
of the Frobenius vectors of a proportionally modular affine semigroup of N2. By
using this approximation, we present an algorithm to determine the minimal
Frobenius vectors in these semigroups.

Definition 8. We say that an affine semigroup T has a Frobenius vector if
there exists an element q /∈ T belonging to the group G(T ) (the subgroup of Np

generated by T ) such that (q+Tint(L(T )))∩G(T ) ⊂ S \{0}. A Frobenius vector
is called minimal Frobenius vector if it is minimal with respect to the product
ordering on Np.

Proposition 9. Let S ⊂ N2 be a nontrivial proportionally modular semigroup.
Then the following hold:

• If g1g2 ≤ 0, the unique minimal Frobenius vector of S is the minimal
integer element of ConvexHull({O, u, w, w+u})\S closest to the line {x ∈
R2|g(x) = b}.

• If g1g2 > 0, the (minimal) Frobenius vectors are in the finite set
(ConvexHull({O,w1, w2}) ∩ N2) \ S.

Proof. We consider two cases: g1g2 > 0, and g1g2 ≤ 0.
Assume that g1g2 > 0, and let w1 and w2 be the unique two elements of

{x ∈ R2|g(x) = b}∩ (OX ∪OY ). In this case, note that L(S) is equal to Q2
+ and

(L(S)∩N2)\S is the nonempty finite set ∆ = (N2∩ConvexHull({0, w1, w2}))\S.
Any maximal element ω in ∆ satisfies that (ω+Tint(L(S)))∩G(S) ⊂ S. So, these
maximal elements are Frobenius vectors. Besides, for any non maximal element
ω1 belonging to ∆, there exists ω ∈ ∆ maximal such that ω ∈ ω1 + L(S) but it
is possible that there is not a maximal element belonging to ω1 +Tint(L(S)). In
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that case, ω1 is also a Frobenius vector. Thus, every minimal Frobenius vector
is a maximal elements in ∆ or an element ω1 in ∆ such that there is no maximal
element belonging to ∆ in ω1 + Tint(L(S)).

Assume now g1g2 ≤ 0. The cone L(S) is generated by u and w, where w is
the point {x ∈ R2

+|g(x) = b}∩ (OX ∪OY ). Since u is a non-negative vector, any
integer element q ∈ L(S)\ (w+L(S)) can be expressed as q = p+λu with λ ∈ N
and p ∈ N2∩ConvexHull({O, u, w, w+u}). Thus, the minimal Frobenius vectors
of S belong to the finite and nonempty set ∆ = (N2 ∩ConvexHull({O, u, w, w+
u})) \S. Let w be the minimal closest point to the line {g(x) = b} belonging to
∆. We have (w + Tint(L(S))) ∩ N2 ⊂ S. Besides, for any other integer element
q ∈ (L(S) \ S) \ (w + L(S)) there exists λ ∈ N such that w + λu /∈ S and
w + λu ∈ q + L(S). Thus q is not a minimal Frobenius vector and we conclude
that S has a unique minimal Frobenius vector which is the minimal of the closest
elements to {g(x) = b} belonging to ∆.

An algorithm to compute the minimal Frobenius vectors can be formulated
from the above Proposition.

Example 10. In this example we illustrate the concept of minimal Frobenius
vector. Let f(x, y) = 3x + 2y, g(x, y) = x − y and b = 10 be the elements
of the modular inequality f(x, y) mod b ≤ g(x, y) and S be its proportionally
modular semigroup associated. The point u is (2, 2) and w = (10, 0). Figure 2
illustrates the situation. The black points are the points in S, the dashed lines

XX

0 5 10 15
0

1

2

3

4

5

6

Figure 2: Example of minimal Frobenius vector.

are {g(x, y) = 0} and {g(x, y) = b} respectively, the shady region is the set
ConvexHull({O, u, w, w + u}), and the point w = (9, 1) is the unique minimal
Frobenius vector. Note that w + λu, with λ ∈ N, is again a Frobenius vector.

4 Some properties of proportionally modular
semigroups of N2.

In this section we study the Cohen-Macaulayness, Gorensteinness and Buchs-
baumness of proportionally modular affine semigroups of N2. For this objective
we consider only simplicial proportionally modular semigroups, and this occurs
if the coefficients g1 and g2 of g(x, y) = g1x + g2y are not both lesser than or
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equal to zero. Denote by S the proportionally modular semigroup of the N-
solutions of f(x, y) mod b ≤ g(x, y), and by G the set defined after Proposition
6. Again, u is the vector defined in Definition 4 and ũ is the vector that appears
after Proposition 6.

The following result characterizes Cohen-Macaulay simplicial affine semi-
groups of N2.

Proposition 11. ([7, Corollary 2]) Let T ⊆ N2 be an affine simplicial semi-
group, the following conditions are equivalent:

1. T is Cohen-Macaulay.

2. For all v ∈ (L(T ) ∩ N2) \ T , v + s1 or v + s2 does not belong to T where
s1 and s2 are minimal generators of T such that L(T ) = 〈s1, s2〉.

As in the proof Proposition 6, if g1 and g2 satisfies g1g2 > 0, N2 \S is finite.
So, S is simplicial but does not satisfy the second condition of Proposition
11, and thus S is not Cohen-Macaulay. For this reason, in what follows we
assume that g1g2 ≤ 0. Besides, we assume that the trivial case S = N2 does not
happen. Fixed these conditions, next result characterizes the Cohen-Macaulay
proportionally modular semigroup.

Corollary 12. Any proportionally modular semigroup S is Cohen-Macaulay.

Proof. With the fixed conditions, the semigroup S is an affine simplicial semi-
group (Proposition 6) and the vector u can be considered as one of the min-
imal generator s1 or s2 appearing in Proposition 11. By Lemma 5, for any
v ∈ (L(S) ∩ N2) \ S it is verified that v + u /∈ S. So, S is Cohen-Macaulay.

We focus now our attention on the Gorenstein property. We characterize
this property in terms of the intersection of the Apéry sets of some minimal
generators belonging to the extremal rays of its associated cone. Recall that
the Apéry set associated to an element s in any semigroup T is the set Ap(s) =
{a ∈ T |a− s /∈ T}. The following result appears in [17, Theorem 4.6].

Theorem 13. For a given affine simplicial semigroup T, the following condi-
tions are equivalent:

1. T is Gorenstein.

2. T is Cohen-Macaulay and ∩2i=1Ap(si) has a unique maximal element (with
respect to the order defined by T ) where where s1 and s2 are minimal
generators of T such that L(T ) = 〈s1, s2〉.

Since u and ũ are minimal generators of S and L(S) = 〈u, ũ〉, the study of the
set Ap(u)∩Ap(ũ) allows us to check whether a proportional modular semigroup
is Gorenstein or not.

Lemma 14. Let S be a proportional modular semigroup verifying the fixed
conditions. The set Ap(u)∩Ap(ũ) is equal to the finite set {h ∈ G|h−u, h− ũ /∈
S}.

Proof. Let s be an element belonging to S \ G. Using a similar argument of
the proof of Proposition 6, we obtain that S \ G is the set {h + λ1u + λ2ũ|h ∈
G and λ1, λ2 ∈ N}. Note that the vectors u and ũ can be considered as the
minimal generators s1 and s2 of Theorem 13, and then (∩2i=1Ap(si))∩(S\G) = ∅.
Therefore, Ap(s1) ∩Ap(s2) = {h ∈ G|h− s1, h− s2 /∈ S}.
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Corollary 15. Let S be a proportional modular semigroup verifying the fixed
conditions. The semigroup S is Gorenstein iff there exists a unique maximal
element belonging to {h ∈ G|h− u, h− ũ /∈ S}.

For the last result of this work we have to define a semigroup associated to
S. In general, given an affine semigroup T minimally generated by {s1, . . . , st},
denote by T the affine semigroup {s ∈ Np|s + si ∈ T, ∀i = 1, . . . , t}. In [9], it
is given a characterization of Buchsbaum simplicial semigroups T in terms of
their semigroups T .

Theorem 16. [9, Theorem 5] The following conditions are equivalent:

1. T is an affine Buchsbaum simplicial semigroup.

2. T is Cohen-Macaulay.

Corollary 17. Let S be a proportional modular semigroup verifying the fixed
conditions. Then, S is Buchsbaum.

Proof. Note that the element u ∈ S is a minimal generator of S, and that for
every a ∈ L(S) \ S, a + u /∈ S. Thus, S = S. Since S is Cohen-Macaulay (see
Corollary 12), by Theorem 16, S is Cohen-Macaulay.

Example 18. Consider the modular inequality 7x − y mod 5 ≤ x − 14y. Its
minimal generating set is:

In[1]:= ProporcionallyModularAffineSemigroupN2[7, -1, 5, 1, -14]

Out[1]= {{3., 0.}, {4., 0.}, {5., 0.}, {16., 1.}, {17., 1.},

{18., 1.}, {29., 2.}, {31., 2.}, {44., 3.},

{57., 4.}, {70., 5.}}

By the previous results, this semigroup is Cohen-Macaulay, Gorenstein and
Buchsbaum. These properties can be checked externally by using Macaulay2

with the following commands (see [11] for computing with Macaulay2):

installPackage("MonomialAlgebras")

V={{3, 0}, {4, 0}, {5, 0}, {16, 1}, {17, 1}, {18, 1}, {29, 2},

{31, 2}, {44, 3}, {57, 4}, {70, 5}}

isCohenMacaulayMA V

isGorensteinMA V

isBuchsbaumMA V

All the outputs obtained are true.
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[18] J. C. Rosales, P. A. Garćıa-Sánchez, and J. M. Urbano-Blanco. The set of
solutions of a proportionally modular Diophantine inequality. J. Number
Theory, 128(3):453–467, 2008.

13

http://departamentos.uca.es/C101/pags-personales/alberto.vigneron/p_m_a_s_n2.zip
http://departamentos.uca.es/C101/pags-personales/alberto.vigneron/p_m_a_s_n2.zip
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/


[19] J. C. Rosales and J. M. Urbano-Blanco. Irreducible proportionally modular
numerical semigroups. Publ. Math. Debrecen, 78(2):359–375, 2011.

[20] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience
Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester, 1986.
A Wiley-Interscience Publication.

[21] J. Stückrad and W. Vogel. Buchsbaum rings and applications. An interac-
tion between algebra, geometry and topology. Springer-Verlag, Berlin, 1986.

14


	1 Preliminaries and notations
	2 Proportionally modular affine semigroups
	3 Proportionally modular affine semigroups of N2
	4 Some properties of proportionally modular semigroups of N2.

