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Avda. Valle de Esgueva 6, 47011 Valladolid, Spain.

Abstract

Simple and absolute special majorities are decision procedures used very often in
real life. However, these rules do not allow individuals to express the intensity with
which they prefer some alternatives to others. In order to consider this situation, in-
dividual preferences can be represented by fuzzy preferences through values located
between 0 and 1. Then the collective preference is obtained by means of aggrega-
tion functions. In this paper we use OWA operators in order to aggregate individual
preferences and we generalize simple and absolute special majorities by means of
OWA operators.

Key words: Fuzzy sets, Simple majority, Absolute special majorities, Aggregation
functions, OWA operators.

1 Introduction

Numerous procedures determine a collective preference over a set of alter-
natives, taking into account the individual preferences of m agents over the
alternatives. The simplest situation consists of choosing an alternative between
x and y when individuals do not grade their preferences. In this case, some
inconsistency issue such as Arrow impossibility theorems or voting paradoxes
are avoided. Moreover, in this framework, one of the most common systems is
simple majority (May (1952) characterizes simple majority by means of three
properties: anonymity, neutrality and positive responsiveness).

On the other hand, Fishburn (1973) presents an exhaustive study of several
classes of majorities, including absolute special majorities. In these procedures,
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the alternative x is chosen when the number of individuals who prefer x to
y, the status quo, is greater than a fixed percentage of the total number of
voters; otherwise, y is chosen. Consequently, indifference between x and y
is not possible. Moreover, Fishburn (1973, p. 67) characterizes these rules by
means of several properties.

In this paper only two alternatives are considered under duality assumption
(neutrality in May (1952)). This property guarantees an egalitarian treatment
between the alternatives, which is very usual in the framework of decision
making. Thus, the collective decision does not depends on the label of the
options. In this case, for absolute special majorities an alternative is chosen if
it has greater support than the fixed percentage of the total number of voters;
otherwise, the two alternatives are collectively indifferent. Under duality as-
sumption, these majorities have also been studied when there are more than
two alternatives. Craven (1971) and Ferejohn and Grether (1974) determine
the values of the percentage mentioned earlier for ensuring acyclicity in the
collective preference.

However, individuals generally prefer one alternative to another with dif-
ferent levels of intensity. For instance, Fishburn (1973, p. 10) describes the
following example:

the husband would rather stay home than go to a movie, but he really doesn’t
feel strongly about this; on the other hand, his wife is “dying to get out of the
house” and has a very “strong” preference for “movie” over “stay home”.

Intensities of preference have been studied, under different points of view,
by Harsanyi (1955), Sen (1970), Jech (1989) and Harvey (1999), among oth-
ers. In the paper we have considered intensity of preferences by means of
fuzzy preferences, evaluating the levels of preference intensity between 0 and
1. In this respect, see Nurmi (1981), Tanino (1984) and Garćıa-Lapresta and
Llamazares (2000), among others.

However, it is important to emphasize that the use of an absolute scale,
the same for all individuals, has been the target of several criticisms (see, for
instance, French (1984)). On the other hand, the choice of and available scale
in the ordinal case has been studied by Yager (2002).

In order to aggregate individual preferences, we consider aggregation op-
erators which assign a collective intensity of preference to each profile of in-
dividual intensities of preference. There exist numerous aggregation functions
utilized in multicriteria decision making (see, for instance, Grabisch et al.
(1998), Marichal (1998) and Calvo et al. (2002), among others). In this work
we use OWA operators, a class of aggregation functions introduced by Yager
(1988). According to the collective intensity of preference obtained by means
of an aggregation function, we can decide if an alternative is chosen or if the
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two alternatives are collectively indifferent. For this, we use a kind of strong
α-cuts, where α ∈ [1

2
, 1). The α-cuts allow to obtain asymmetric ordinary

binary relations from reciprocal fuzzy binary relations. On this, see Garćıa-
Lapresta and Llamazares (2000). Moreover, α-cuts have been utilized by some
authors for defining fuzzy majorities. A survey of these developments can be
found in Kacprzyk and Nurmi (1998).

When individuals do not grade their preferences, which is represented
through the values 0, 1/2 and 1, the above procedure allows us to gener-
alize some well-known decision rules. So, Garćıa-Lapresta and Llamazares
(2001) generalize two classes of majorities based on difference of votes, using
quasiarithmetic means and window OWA (“Ordered Weighted Averaging”)
operators as aggregation functions. Here, we obtain generalizations of simple
and absolute special majorities by means of OWA operators. Therefore, the
previous procedure allows us to extend simple and absolute special majorities
to fuzzy framework through OWA operators.

OWA operators have been used in the aggregation of intensity preferences
by Kacprzyk et al. (1997), Montero and Cutello (1997) and Chiclana et al.
(2003), among others. On the other hand, arithmetic and weighted means have
been characterized and used by Intriligator (1973, 1982) in order to determine
social probabilities (from individual probabilities) and individual choices (from
conflicting criteria), respectively.

The organization of the paper is as follows. In Section 2 we introduce aggre-
gation functions and discrete aggregation functions. Moreover, some properties
of aggregation functions (such as anonymity, duality, monotonicity and strict
monotonicity) are introduced. We also characterize simple and absolute spe-
cial majorities. In Section 3 we introduce OWA operators and we determine
those ones that satisfy duality and strict monotonicity properties. Finally, in
Section 4 we give the main results of the paper, the characterization of the
OWA operators which generalize simple and absolute special majorities.

2 Aggregation functions

We consider m voters, with m ≥ 3, and two alternatives x and y. Voters
represent their preferences between x and y through variables ri. If the
individuals grade their preferences, then ri ∈ [0, 1] and it denotes the intensity
with which voter i prefers x to y. We also suppose that 1−ri is the intensity
with which voter i prefers y to x. If the individuals do not grade their
preferences, then ri ∈ {0, 12 , 1} and it represents that voter i prefers x to y,
prefers y to x or is indifferent between the two alternatives, if ri is 1, 0 or
1
2
, respectively.
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A profile of preferences is a vector (r1, . . . , rm) which describes the voters’
preferences between the alternative x and the alternative y. Obviously, (1−
r1, . . . , 1− rm) shows the voters’ preferences between y and x. The collective
preference will be obtained by means of an aggregation function, for each
profile of preferences.

Definition 1. An aggregation function is a mapping F : [0, 1]m −→ [0, 1]. A
discrete aggregation function (DAF) is a mapping F : {0, 1

2
, 1}m −→ {0, 1

2
, 1}.

The interpretation of collective preference is consistent with the foregoing
interpretation for individual preferences. So, if F is an aggregation function,
then F (r1, . . . , rm) is the intensity with which x is collectively preferred to y.
When F is a DAF, then F (r1, . . . , rm) show us if an alternative is collectively
preferred to another or the alternatives are collectively indifferent, according
to whether F (r1, . . . , rm) is 1, 0 or 1

2
, respectively.

Next we present some properties of aggregation functions very used in the
literature: anonymity, duality, monotonicity and strict monotonicity. Anony-
mity, also referred to as equality and symmetry, means that collective intensity
of preference depends on only the set of individual intensity of preferences, but
not on which individuals have these preferences. Duality, also referred to as
neutrality (May (1952)), means that if everyone reverses his or her preferences
between x and y, then the collective preference is also reversed. Monotonicity
means that collective intensity of preference does not decrease if no individual
intensity decreases. And strict monotonicity means that collective intensity of
preference increases if some individual intensity increases. A characterization
of the DAF’s which simultaneously satisfy the three first properties can be
found in Fishburn (1973, p. 56).

Definition 2. Let F be an aggregation function or a DAF.

(1) F is anonymous if and only if for all profile (r1, . . . , rm) and all permu-
tation σ of {1, . . . ,m} the following condition is satisfied

F (r1, . . . , rm) = F (rσ(1), . . . , rσ(m)).

(2) F is dual if and only if for all profile (r1, . . . , rm) the following condition
is satisfied

F (1− r1, . . . , 1− rm) = 1− F (r1, . . . , rm).

(3) F is monotonic if and only if for all pair of profiles (r1, . . . , rm) and
(s1, . . . , sm) the following condition is satisfied

∀i ∈ {1, . . . ,m} ri ≥ si ⇒ F (r1, . . . , rm) ≥ F (s1, . . . , sm).

(4) F is strictly monotonic if and only if for all pair of profiles (r1, . . . , rm)
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and (s1, . . . , sm) such that (r1, . . . , rm) 6= (s1, . . . , sm) the following con-
dition is satisfied

∀i ∈ {1, . . . ,m} ri ≥ si ⇒ F (r1, . . . , rm) > F (s1, . . . , sm).

Now some consequences of the previous properties are obtained. The car-
dinal of a set will be denoted by #.

Remark 3. If F is an anonymous DAF, then F (r1, . . . , rm) depends on only
the number of 1, 1

2
and 0. Given a profile (r1, . . . , rm), if we consider:

(1) m1 = #{i | ri = 1}, the number of voters who prefer x to y,
(2) m2 = #{i | ri = 1

2
}, the number of voters who are indifferent between x

and y,
(3) m3 = #{i | ri = 0}, the number of voters who prefer y to x,

then m1 +m2 +m3 = m.

By Remark 3, every anonymous DAF can be represented by a mapping
over the triples (m1,m2,m3).

Definition 4. Let F be an anonymous DAF and

M = {(m1,m2,m3) ∈ {0, 1, . . . ,m}3 | m1 +m2 +m3 = m}.

We say that F is represented by the mapping f :M−→ {0, 1
2
, 1}, defined by

f(m1,m2,m3) = F (1, (m1). . . , 1 , 1
2
, (m2). . . , 1

2
, 0, (m3). . . , 0).

Remark 5. If F is an anonymous DAF represented by f , then it is dual if
and only if

f(m3,m2,m1) = 1− f(m1,m2,m3)

for all (m1,m2,m3) ∈M. In this case, F is characterized by the set f−1({1}),
since

f−1({0}) = {(m1,m2,m3) ∈M | (m3,m2,m1) ∈ f−1({1})},

f−1({1
2
}) =M− (f−1({1}) ∪ f−1({0})).

When a DAF is dual, the two alternatives have an egalitarian treatment.
Therefore, if the DAF is also anonymous and the number of voters who prefer
x to y coincides with the number of voters who prefer y to x, then x and
y are collectively indifferent.
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Remark 6. If F is an anonymous and dual DAF represented by f , then
f(m1,m2,m3) = 1

2
for all (m1,m2,m3) ∈M such that m1 = m3.

Definition 7. The binary relation � on M is defined by

(m1,m2,m3) � (n1, n2, n3) ⇔ m1 ≥ n1 and m1 +m2 ≥ n1 + n2.

We note that � is a partial order on M (reflexive, antisymmetric and tran-
sitive binary relation).

Monotonicity of an anonymous DAF only depends on the number of 1, 1
2

and 0, such as we show in the following remark.

Remark 8. If F is an anonymous DAF represented by f , then it is mono-
tonic if and only if

(m1,m2,m3) � (n1, n2, n3) ⇒ f(m1,m2,m3) ≥ f(n1, n2, n3),

for all (m1,m2,m3), (n1, n2, n3) ∈M.

By Remark 5 it is possible to define an anonymous and dual DAF, F , by
means of the elements (m1,m2,m3) ∈M where the mapping which represents
F takes the value 1. Based on this, we now show some DAF’s widely used in
real decisions.

Definition 9.

(1) The simple majority, FS, is the anonymous and dual DAF defined by

f(m1,m2,m3) = 1 ⇔ m1 > m3, for all (m1,m2,m3) ∈M.

(2) The absolute majority, FA, is the anonymous and dual DAF defined by

f(m1,m2,m3) = 1 ⇔ m1 >
m

2
, for all (m1,m2,m3) ∈M.

(3) The unanimous majority, FU , is the anonymous and dual DAF defined
by

f(m1,m2,m3) = 1 ⇔ m1 = m, for all (m1,m2,m3) ∈M.

Next we present absolute special majorities under the assumption of dual-
ity. These majorities have been characterized by Fishburn (1973, p. 67) with-
out the hypothesis of duality.

Definition 10. Given β ∈ [1
2
, 1), the absolute special majority Qβ is the

anonymous and dual DAF represented by the mapping f : M −→ {0, 1
2
, 1},
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which is defined by

f(m1,m2,m3) = 1 ⇔ m1 > βm, for all (m1,m2,m3) ∈M.

Obviously, absolute special majorities are monotonic. Moreover, it is possi-
ble to obtain absolute and unanimous majorities as particular cases of absolute
special majorities. We denote by [a] the integer part of a, i.e., the largest in-
teger smaller than or equal to a.

Remark 11. Given β ∈ [1
2
, 1), then

(1) Qβ = FA ⇔


1
2
− 1

2m
≤ β < 1

2
+ 1

2m
, if m is odd,

1
2
≤ β < 1

2
+ 1

m
, if m is even.

(2) Qβ = FU ⇔ 1− 1
m
≤ β < 1.

In order to generalize simple and absolute special majorities by means of
OWA operators, we are going to characterize these majorities through some
elements (m1,m2,m3) ∈M. The monotonicity of simple and absolute special
majorities play an essential role in the following characterizations. Next, we
characterize simple majority through the elements (m1,m2,m3) ∈ M such
that m1 = m3 + 1.

Proposition 12. Let F be an anonymous, dual and monotonic DAF repre-
sented by f . Then the following statements are equivalent:

(1) F = FS.
(2) f(m3 + 1,m− (2m3 + 1),m3) = 1 for all m3 ∈ {0, . . . , [m−12

]}.

PROOF.

1⇒ 2: Obvious.

2⇒ 1: Given (m1,m2,m3) ∈M, we distinguish three cases:

(a) If m1 > m3 then (m1,m2,m3) � (m3 + 1,m − (2m3 + 1),m3) and, by
monotonicity of F , we have

f(m1,m2,m3) ≥ f(m3 + 1,m− (2m3 + 1),m3) = 1.

(b) If m1 = m3 then by Remark 6, we have f(m1,m2,m3) = 1
2
.

(c) If m1 < m3 then f(m1,m2,m3) = 1− f(m3,m2,m1) = 1− 1 = 0.

Therefore, f(m1,m2,m3) = 1 ⇔ m1 > m3. 2
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In the following proposition absolute special majorities are characterized
by means of two elements of M. The first one corresponds to the minimum
support that the alternative x needs to be selected. The second one corre-
sponds to the maximum support that the alternative x can have without
being selected.

Proposition 13. Let F be an anonymous, dual and monotonic DAF repre-
sented by f and β ∈ [1

2
, 1). Then the following statements are equivalent:

(1) F = Qβ.
(2) f ([βm] + 1, 0,m− [βm]− 1) = 1 and f ([βm],m− [βm], 0) < 1.

PROOF.

1⇒ 2: Obvious.

2⇒ 1: Given (m1,m2,m3) ∈M, we distinguish two cases:

(a) If m1 ≥ [βm] + 1 then (m1,m2,m3) � ([βm] + 1, 0,m− [βm]− 1) and,
by monotonicity of F , we have

f(m1,m2,m3) ≥ f ([βm] + 1, 0,m− [βm]− 1) = 1.

(b) If m1 ≤ [βm] then ([βm],m− [βm], 0) � (m1,m2,m3) and, by monoto-
nicity of F , we have

f(m1,m2,m3) ≤ f ([βm],m− [βm], 0) < 1.

Therefore, f(m1,m2,m3) = 1 ⇔ m1 ≥ [βm] + 1 ⇔ m1 > βm. 2

Given an aggregation function, we can generate different DAF’s by means
of a parameter α ∈ [1

2
, 1). Moreover, it is easy to check that these DAF’s

are anonymous, dual and monotonic when the original aggregation function
satisfies these properties.

Definition 14. Let F be an aggregation function and α ∈ [1
2
, 1). Then the

α–DAF associated with F is the DAF Fα defined by

Fα(r1, . . . , rm) =



1, if F (r1, . . . , rm) > α,

1
2
, if 1− α ≤ F (r1, . . . , rm) ≤ α,

0, if F (r1, . . . , rm) < 1− α.

Remark 15. Given an aggregation function F , for all α ∈ [1
2
, 1) the following

statements hold:
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(1) If F is anonymous, then Fα is also anonymous.
(2) If F is dual, then Fα is also dual.
(3) If F is monotonic, then Fα is also monotonic.

In a similar way to anonymous DAF’s, when F is an anonymous aggre-
gation function, the restriction F |{0, 1

2
,1}m can be represented by a mapping

f :M−→ [0, 1]. Now we show the relationship between f and the family of
mappings fα which represent the α–DAF’s associated with F .

Remark 16. Let F be an anonymous aggregation function and α ∈ [1
2
, 1).

Then Fα and F |{0, 1
2
,1}m can be represented by the mappings fα and f re-

spectively. There exists the following relationship between these mappings:

fα(m1,m2,m3) =



1, if and only if f(m1,m2,m3) > α,

1
2
, if and only if 1− α ≤ f(m1,m2,m3) ≤ α,

0, if and only if f(m1,m2,m3) < 1− α.

3 OWA operators

Yager (1988) introduced the ordered weighted averaging (OWA) operators
as a tool for aggregation procedures in multicriteria decision making. An OWA
operator is similar to a weighted mean, but with the values of the variables
previously ordered from more to less. Thus, contrary to the weighted means,
the weights are not associated with concrete variables. Consequently, OWA
operators satisfy anonymity. Moreover, OWA operators generalize arithmetic
mean and they verify other interesting properties, such as monotonicity and
that the value of an OWA operator is located between the minimum and the
maximum values of the variables. Because of these properties, OWA operators
have been widely used in the literature (for instance, see Yager and Kacprzyk
(1997)).

Usually, OWA operators are defined as functions whose domain is IRm.
Since in this paper individual intensities of preference vary between 0 and 1,
we have restricted their domain to [0, 1]m.

Definition 17. Let w = (w1, . . . , wm) ∈ [0, 1]m satisfying
m∑
i=1

wi = 1. The

OWA operator associated with w is the aggregation function Fw defined by

Fw(r1, . . . , rm) =
m∑
i=1

wi rσ(i),
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where σ is a permutation of {1, . . . ,m} such that rσ(1) ≥ · · · ≥ rσ(m).

Remark 18. By definition, OWA operators are anonymous and monotonic
aggregation functions. Moreover, the restriction Fw|{0, 1

2
,1}m is represented by

the mapping fw defined by

fw(m1,m2,m3) =
m1∑
i=1

wi +
1

2

m2∑
i=1

wm1+i.

In the following proposition we characterize strictly monotonic OWA op-
erators by means of weighting vectors where no weight is null.

Proposition 19. Given w = (w1, . . . , wm) ∈ [0, 1]m satisfying
∑m
i=1wi = 1,

the following statements are equivalent:

(1) Fw is strictly monotonic.
(2) wi > 0 for all i ∈ {1, . . . ,m}.

PROOF.

1 ⇒ 2: Suppose that there exists j ∈ {1, . . . ,m} such that wj = 0. Let
(r1, . . . , rm), (s1, . . . , sm) ∈ [0, 1]m such that ri = 1 for all i ∈ {1, . . . ,m}
and

si =


1, if i 6= j,

0, if i = j.

Then we have (r1, . . . , rm) 6= (s1, . . . , sm), ri ≥ si for all i ∈ {1, . . . ,m} and

Fw (r1, . . . , rm) = Fw (s1, . . . , sm) = 1,

which contradicts the hypothesis.

2 ⇒ 1: Suppose that Fw is not strictly monotonic. Then, by definition 2,
there exist (r1, . . . , rm), (s1, . . . , sm) ∈ [0, 1]m such that ri ≥ si for all i ∈
{1, . . . ,m}, (r1, . . . , rm) 6= (s1, . . . , sm) and

Fw (r1, . . . , rm) = Fw (s1, . . . , sm).

Let σ1 and σ2 be permutations of {1, . . . ,m} such that rσ1(1) ≥ · · · ≥ rσ1(m)

and sσ2(1) ≥ · · · ≥ sσ2(m). Then we have rσ1(i) ≥ sσ2(i) for all i ∈ {1, . . . ,m},
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(rσ1(1), . . . , rσ1(m)) 6= (sσ2(1), . . . , sσ2(m)) and

m∑
i=1

wi rσ1(i) =
m∑
i=1

wi sσ2(i)

or, equivalently

m∑
i=1

wi(rσ1(i) − sσ2(i)) = 0.

Since rσ1(i) ≥ sσ2(i) for all i ∈ {1, . . . ,m}, then wi(rσ1(i) − sσ2(i)) = 0 for all
i ∈ {1, . . . ,m}. Moreover, since (rσ1(1), . . . , rσ1(m)) 6= (sσ2(1), . . . , sσ2(m)), there
exists j ∈ {1, . . . ,m} such that rσ1(j) > sσ2(j). Therefore, we have wj = 0,
which contradicts the hypothesis. 2

Dual OWA operators have been characterized by Garćıa-Lapresta and Lla-
mazares (2001). An OWA operator is dual if and only if the weights that are
equidistant from the extremes are equal.

Proposition 20. Given w = (w1, . . . , wm) ∈ [0, 1]m satisfying
m∑
i=1

wi = 1,

the following statements are equivalent:

(1) Fw is dual.
(2) wm+1−i = wi for all i ∈ {1, . . . , [m

2
]}.

If Fw is dual, then we have the following relationship among their weights.

Remark 21. Given the weighting vector w ∈ [0, 1]m of a dual OWA operator,
we have

(1) If m is odd then: 2

m−1
2∑
i=1

wi + wm+1
2

= 1.

(2) If m is even then: 2

m
2∑
i=1

wi = 1.

In order to determine the α–DAF associated with a dual OWA operator,
Fw , which coincides with simple majority or an absolute special majority, we
need to know the values that fw takes on the elements which characterize
those majorities. In the following remarks, we give these values.

Remark 22. Let Fw be a dual OWA operator represented by fw. By Propo-
sition 20 and Remark 21, in the elements (m1,m2,m3) ∈ M which charac-
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terize simple majority (Proposition 12), the mapping fw takes the following
values:

(1) m odd:

(a) If m3 <
m− 1

2
:

fw (m3 + 1,m− (2m3 + 1),m3) =

=
m3∑
i=1

wi +
3

2
wm3+1 +

m−1
2∑

i=m3+2

wi +
1

2
wm+1

2

=
1

2
+

1

2
wm3+1.

(b) If m3 =
m− 1

2
:

fw(m+1
2
, 0, m−1

2
) =

m+1
2∑
i=1

wi =
1

2
+

1

2
wm+1

2
.

(2) m even:

(a) If m3 <
m

2
− 1:

fw(m3 + 1,m− (2m3 + 1),m3) =
m3∑
i=1

wi +
3

2
wm3+1 +

m
2∑

i=m3+2

wi

=
1

2
+

1

2
wm3+1.

(b) If m3 =
m

2
− 1:

fw(m
2
, 1, m

2
− 1) =

m
2
−1∑

i=1

wi +
3

2
wm

2
=

1

2
+

1

2
wm

2
.

Remark 23. Let Fw be a dual OWA operator represented by fw. By Propo-
sition 20 and Remark 21, in the elements (m1,m2,m3) ∈ M which charac-
terize absolute special majorities (Proposition 13), the mapping fw takes the
following values:

(1) m odd:

(a) If [βm] =
m− 1

2
:

fw(m+1
2
, 0, m−1

2
) =

m+1
2∑
i=1

wi =
1

2
+

1

2
wm+1

2
.
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fw(m−1
2
, m+1

2
, 0) =

3

2

m−1
2∑
i=1

wi +
1

2
wm+1

2
=

1

2
+

1

2

m−1
2∑
i=1

wi.

(b) If [βm] >
m− 1

2
:

fw([βm] + 1, 0,m− [βm]− 1) =

=
m−[βm]−1∑

i=1

wi + 2

m−1
2∑

i=m−[βm]

wi + wm+1
2

= 1−
m−[βm]−1∑

i=1

wi.

fw([βm],m− [βm], 0) =
3

2

m−[βm]∑
i=1

wi + 2

m−1
2∑

i=m−[βm]+1

wi + wm+1
2

= 1− 1

2

m−[βm]∑
i=1

wi.

(2) m even:

(a) If [βm] =
m

2
:

fw(m
2

+ 1, 0, m
2
− 1) =

m
2
−1∑

i=1

wi + 2wm
2

=
1

2
+ wm

2
.

fw(m
2
, m

2
, 0) =

3

2

m
2∑
i=1

wi =
3

4
.

(b) If [βm] >
m

2
:

fw([βm] + 1, 0,m− [βm]− 1) =
m−[βm]−1∑

i=1

wi + 2

m
2∑

i=m−[βm]

wi

= 1−
m−[βm]−1∑

i=1

wi.

fw([βm],m− [βm], 0) =
3

2

m−[βm]∑
i=1

wi + 2

m
2∑

i=m−[βm]+1

wi

13



= 1− 1

2

m−[βm]∑
i=1

wi.

4 Generalization of majorities through OWA operators

In this section we establish the main results of the paper. Simple and
absolute special majorities are generated by means of α–DAF’s associated
with dual OWA operators. Thus, the outcomes of this section allow to extend
these majorities to fuzzy framework by means of OWA operators.

The results obtained for simple and absolute special majorities are similar.
Firstly, we characterize the OWA operators for which we can generate simple
and absolute special majorities. Next, we give the values of α ∈ [1

2
, 1) for

which these majorities can be obtained by means of a dual OWA operator.

We begin justifying that simple majority coincides with a class of α–DAF’s
associated with dual and strictly monotonic OWA operators.

Theorem 24. Let Fw be a dual OWA operator and α ∈ [1
2
, 1). Then the

following statements are equivalent:

(1) Fw
α = FS.

(2) Fw is strictly monotonic and α <
1

2

(
1 + min

i
wi
)
.

PROOF. Let fw be the mapping which represents Fw . By Proposition
12 and Remark 16, we have that the condition Fw

α = FS is equivalent to
fw (m3 + 1,m− (2m3 + 1),m3) > α for all m3 ∈ {0, . . . , [m−12

]}. By Remark
22 we distinguish the following cases:

(1) m odd:

(a) If m3 <
m− 1

2
:

fw (m3 + 1,m− (2m3 + 1),m3) > α ⇔ 1 + wm3+1 > 2α.

(b) If m3 =
m− 1

2
:

fw (m+1
2
, 0, m−1

2
) > α ⇔ 1 + wm+1

2
> 2α.

14



Therefore, since α ∈ [1
2
, 1), we have

Fw
α = FS ⇔ wi > 0 for all i ∈ {1, . . . , m+1

2
} and

α < 1
2

(
1 + min

i
wi
)
.

(2) m even:

(a) If m3 <
m

2
− 1:

fw (m3 + 1,m− (2m3 + 1),m3) > α ⇔ 1 + wm3+1 > 2α.

(b) If m3 =
m

2
− 1:

fw (m
2
, 1, m

2
− 1) > α ⇔ 1 + wm

2
> 2α.

Therefore, since α ∈ [1
2
, 1), we have

Fw
α = FS ⇔ wi > 0 for all i ∈ {1, . . . , m+1

2
} and

α < 1
2

(
1 + min

i
wi
)
. 2

Next we show the values of α for which simple majority can be generated
by means of the α–DAF associated with a dual OWA operator.

Corollary 25. Given α ∈ [1
2
, 1), the following statements are equivalent:

(1) There exists a dual OWA operator Fw such that Fw
α = FS.

(2) α <
m+ 1

2m
.

PROOF.

1 ⇒ 2: By Theorem 24, we have α < 1
2
(1 + min

i
wi). Suppose that α ≥ m+1

2m
.

Then it is satisfied

1

2

(
1 +

1

m

)
=
m+ 1

2m
≤ α <

1

2

(
1 + min

i
wi
)
.

Therefore, min
i
wi >

1

m
and, consequently, it is verified

m∑
i=1

wi ≥ mmin
i
wi > m

1

m
= 1,

which contradicts
m∑
i=1

wi = 1.
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2 ⇒ 1: By Theorem 24, it is sufficient to take the dual OWA operator Fw

associated with w = ( 1
m
, . . . , 1

m
). 2

In the following Theorem we give a necessary and sufficient condition in
order to obtain absolute special majorities by means of α–DAF’s associated
with dual OWA operators.

Theorem 26. Let Fw be a dual OWA operator and β ∈ [1
2
, 1). Then the

following statements are equivalent:

(1) There exists α ∈ [1
2
, 1) such that Fw

α = Qβ.

(2) wm−[βm] >
m−[βm]−1∑

i=1

wi.

PROOF. Let fw be the mapping which represents Fw . By Proposition
13 and Remark 16, we have that the condition Fw

α = Qβ is equivalent to
fw ([βm] + 1, 0,m− [βm]− 1) > α and fw ([βm],m− [βm], 0) ≤ α. By Re-
mark 23, we distinguish the following cases:

(1) m odd:

(a) If [βm] =
m− 1

2
:

Fw
α = Qβ ⇔

1

2
+

1

2
wm+1

2
> α and

1

2
+

1

2

m−1
2∑
i=1

wi ≤ α.

Hence, there exists α ∈ [1
2
, 1) such that Fw

α = Qβ if and only if

1

2
+

1

2
wm+1

2
>

1

2
+

1

2

m−1
2∑
i=1

wi ⇔ wm+1
2

>

m−1
2∑
i=1

wi.

(b) If [βm] >
m− 1

2
:

Fw
α = Qβ ⇔ 1−

m−[βm]−1∑
i=1

wi > α and 1− 1

2

m−[βm]∑
i=1

wi ≤ α.

Therefore, there exists α ∈ [1
2
, 1) such that Fw

α = Qβ if and only if

1−
m−[βm]−1∑

i=1

wi > 1− 1

2

m−[βm]∑
i=1

wi ⇔ wm−[βm] >
m−[βm]−1∑

i=1

wi.

(2) m even:

16



(a) If [βm] =
m

2
:

Fw
α = Qβ ⇔

1

2
+ wm

2
> α and

3

4
≤ α.

Hence, there exists α ∈ [1
2
, 1) such that Fw

α = Qβ if and only if

1

2
+ wm

2
>

3

4
⇔ wm

2
>

1

2

m
2∑
i=1

wi ⇔ wm
2
>

m
2
−1∑

i=1

wi.

(b) If [βm] >
m

2
:

Fw
α = Qβ ⇔ 1−

m−[βm]−1∑
i=1

wi > α and 1− 1

2

m−[βm]∑
i=1

wi ≤ α.

Therefore, there exists α ∈ [1
2
, 1) such that Fw

α = Qβ if and only if

1−
m−[βm]−1∑

i=1

wi > 1− 1

2

m−[βm]∑
i=1

wi ⇔ wm−[βm] >
m−[βm]−1∑

i=1

wi.

2

Now, we show the values of α for which absolute special majorities can be
generated by means of the α–DAF associated with a dual OWA operator.

Proposition 27.

(1) If [βm] = m−1
2

, then for all α ∈ [1
2
, 1) there exists a dual OWA operator

Fw such that Fw
α = Qβ.

(2) If [βm] 6= m−1
2

, then there exists a dual OWA operator Fw such that
Fw
α = Qβ if and only if α ∈ [3

4
, 1).

PROOF.

(1) It is sufficient to consider the dual OWA operator defined by

wi =


1, if i = m+1

2
,

0, otherwise.

(2) ⇒) By Proposition 13 and Remarks 16 and 23 we have:

17



(a) If m is odd and [βm] > m−1
2

, then

Fw
α = Qβ ⇒ α ≥ 1− 1

2

m−[βm]∑
i=1

wi ≥ 1− 1

4
=

3

4
.

(b) If m is even and [βm] = m
2

, then

Fw
α = Qβ ⇒ α ≥ 3

4
.

(c) If m is even and [βm] > m
2

, then

Fw
α = Qβ ⇒ α ≥ 1− 1

2

m−[βm]∑
i=1

wi ≥ 1− 1

4
=

3

4
.

⇐) We only need to consider the dual OWA operator defined by

wi =


1
2
, if i = m− [βm], [βm] + 1,

0, otherwise. 2

Lastly, we give the necessary and sufficient conditions in order to obtain
absolute and unanimous majorities by means of α–DAF’s associated with dual
OWA operators.

Corollary 28. If Fw is a dual OWA operator then the following statements
hold:

(1) (a) If m is odd:

Fw
α = FA ⇔ 1

2
+

1

2

m−1
2∑
i=1

wi ≤ α <
1

2
+

1

2
wm+1

2
.

(b) If m is even:

Fw
α = FA ⇔ 3

4
≤ α <

1

2
+ wm

2
.

(2) Fw
α = FU ⇔ w1 > 0 and α ≥ 1− 1

2
w1.

PROOF.

(1) (a) If m is odd, by Remark 11, we have Qβ = FA ⇔ [βm] = m−1
2

. The
result is obtained by 1 (a) in the proof of Theorem 26.
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(b) If m is even, by Remark 11, we have Qβ = FA ⇔ [βm] = m
2

. The
result is obtained by 2 (a) in the proof of Theorem 26.

(2) By Remark 11, Qβ = FU ⇔ [βm] = m − 1. The result is obtained, for
m odd and for m even, by proof of Theorem 26. 2

We can conclude that simple majority can be extended for considering in-
tensity of preferences by means of α-cuts of dual strictly monotonic OWA op-
erators. Analogously, absolute special majorities can be also extended through
α-cuts of dual OWA operators whose weights satisfy an additional condition.
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