- . . ESCUELA DE INGENIERIAS
Universidad deValladolid INDUSTRIALES

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingenieria en Electrénica Industrial y Automatica

System to detect and localise Garbage on the

floor

AUTOR:

Lazaro Sanchez, Radl

Responsable de Intercambio en la UVa:

De la Fuente Lopez, Eusebio

Universidad de destino:

University College Leuven-Limburg

Valladolid, Junio 2019.

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO

TITULO: System to detect and localise garbage on the floor
ALUMNO: Lazaro Sanchez, Radl
FECHA: 20/06/2019
CENTRO: University College Leuven-Limburg (UCLL) - ACRO
TUTOR: Wim Claes - UCLL

Eric Demeester - ACRO

David De Schepper - ACRO

RESUMEN

Colruyt Group, la cadena de supermercados mas grande de Bélgica, desea
automatizar los procesos de limpieza de sus tiendas. Hoy en dia, la limpieza del
suelo de los supermercados es un proceso tedioso y se realiza manualmente. El
proposito de este trabajo es construir una prueba de concepto de un sistema que
detecte y ubique la basura del suelo en el supermercado para poder recogerla. El
sistema debe poder montarse en cualquier plataforma movil autbnoma que use
ROS. En este trabajo, se ha utilizado el TurtleBot3 como plataforma moévil en la que
se ha instalado una camara RGBD. Para la deteccion de basura, se han integrado y
comparado varios métodos de vision, como operaciones morfologicas,
segmentacion basada en diferentes espacios de color, comparacion de imagenes y
la camara de profundidad. Este proyecto permite demostrar que es posible la
automatizacion de este proceso, asi como servir de base para futuros trabajos.

PALABRAS CLAVE

Localizar, vision, robot, camara, ROS

Acknowledgements

Thanks to all the UCLL in general for hosting me during these months.

I would also like to thank to the people of Colruyt Group with I have collabo-
rated and the ACRO team, especially David De Schepper and Eric Demeester

for their support and trust.

To my university (UVA) and my school (EII), for allowing me to enjoy this
experience, and to Eusebio de la Fuente for being my tutor and his great

help in this whole process.

Gracias a mis companeros de residencia y a todas las personas que me han

acompanado en esta experiencia.

Y finalmente a mi familia, mis padres y mi hermano, hacia quienes sélo
puedo expresar mi sincero agradecimiento por apoyarme durante toda esta

etapa académica que hoy culmina.

iMuchas gracias a todos!

Dedicado a mi Angel de la guarda por cuidarme siempre.

Rail Lazaro Sanchez

Abstract

ACRO is a research group that is part of the Department of Mechanical Engi-
neering of KU Leuven and is located in the Technology Center on the Diepen-
beek campus. ACRO mainly focuses on the fields of vision and robotics and
offers support to companies to integrate these technologies into their appli-
cations. One of these companies, Colruyt Group, is the largest supermarket
chain in Belgium, desires to automate the cleaning processes of its stores.
Nowadays, the cleaning of the floors of supermarkets is a tedious process
and is currently done by human labour. First, employees have to clean the
floor and remove dust and objects. Then, a scrubbing machines is employed
to scrub the floor. Colruyt Group is already looking for a way to automate
the scrubbing machines, but the floor is required to be free of any objects
before scrubbing. The purpose of this work is to build a proof of concept of
a system that detects and locates garbage on the floor of the supermarket to
pick it up in a later stadium. The system should be mountable on any au-
tonomous mobile platform that uses ROS. In this work, the TurtleBot3 has
been used as a mobile platform on which a RGBD camera has been installed.
For the detection of garbage, several vision methods have been integrated
and compared, such as morphological operations, segmentation based on
different color spaces, comparison of images and depth camera information.
This project allows to demonstrate that is possible the automation of this

process as well as serving as a basis for future works.

Table of Contents

List of figures
List of tables
Abbreviations

1 Introduction
1.1 Background
1.1.1 Imtroducing ACRO
1.1.2 Introducing Colruyt Group
1.2 Problem description
1.3 Contributions oL

1.4 Summary of chapters

2 Literature survey
2.1 Introduction
2.2 Visionmethods
2.3 Traversability analysis methods
2.3.1 Occupancy map:
2.3.2 Elevationmap:
233 3Dmap:

2.4 Conclusionso

3 Implementation of dirt detection
3.1 Introduction
3.2 Learning ROS
3.3 Knowing Turtlebot3d
3.3.1 Modificationso
3.4 Results of the mapping

3.4.2 Image of the depth camera:
343 Map:

3.5 Implementation of the computer vision algorithm

ii

iii

W W N N ke

0O 0 ~J O O Ot =

10
11
12
14
15
16
17
18

3.6

4.1
4.2
4.3
4.4
4.5

3.5.1 Color threshold:

3.5.2 Morphological operations:
Positioning objectso
3.6.1 Angle and distance: L.
3.6.2 Point Cloud:

Camera calibration

Introduction
RADLOCC Toolbox
Point cloud to laser scan and 2D calibration
Third point method

Conclusions

5 Results and conclusions

5.1
2.2

5.3
5.4

Introduction
Tests o
5.2.1 Recognizing
5.2.2 Positioningo
Future worko o000

Conclusion

Appendix 1: Code

Mg Processing.CPP - -+ « v « v v v v v e e e

map_marker.cpp

laser measure.py

collect _data_nodepy

Bibliography

27
27
29
32
33
36

37
37
37
38
40
43
44

45
45
52
o6
o7

61

List of figures

Figure 2.1 Operation diagram of a related project.

Figure 2.2 Example of an occupancy grid map.

Figure 2.3 Example of elevation map.

Figure 2.4 Example of 3D map.

Figure 3.1 Turtlebot3 Burger: version used in this project.
Figure 3.2 Intel Realsense d435 camera.

Figure 3.3 Camera position.

Figure 3.4 Source image of the color camera.

Figure 3.5 Source image of the depth camera.

Figure 3.6 Occupancy map created.

Figure 3.7 Occupancy map processed.

Figure 3.8 Color threshold Matlab app.

Figure 3.9 Color threshold around 200.

Figure 3.10 Color threshold lower.

Figure 3.11 Image segmenter Matlab app.

Figure 3.12 Top Hat example.

Figure 3.13 Opening example.

Figure 3.14 Top Hat masked image.

Figure 3.15 Positioning garbage explanation.

Figure 3.16 How to get angle and distance of the garbage.

Figure 4.1 Calibration coordinates camera intrinsic and extrinsic.

Figure 4.2 An example of a laser beam projected on the XZ-plane.

Figure 4.3 Match Lidar Scans Example

Figure 4.4 Checkerboard example. Origin and axes.
Figure 4.5 Origin_ plane-laser transformation.
Figure 4.6 Camera position relative to laser scan.

Figure 5.1 Result of positioning garbage while moving the robot.

o J O O

11
12
13
15
16
17
17
18
19
19
20
21
21
22
24
25
28
31
32
33
34
36
41

List of tables

Table 3.1 Alias routines created for easy use of the robot.

Table 3.2 Erosion and dilation examples.

Table 4.1 Axes transformations used.

Table 5.1 Results of the image processing algorithm.
Table 5.2 Test circuit and map created.

Table 5.3 Result of positioning with the robot stoped...

ii

14
21
28
39
40
42

Abbreviations

HSV Hue Saturation Value

PCL Point CLoud

OpenCV Open source Computer Vision
RGB Red Green Blue

ROS Robot Operating System

iii

Chapter 1

Introduction

1.1 Background

1.1.1 Introducing ACRO

The ACRO research group (Automation, Computer Vision and Robotics) is
part of the Mechanical Engineering Department at KU Leuven and is located

in the Technology Center on the Diepenbeek campus.

The main research topics of ACRO lies in the fields of vision and robotics,
combining them in an innovative and effective way to offer solutions where

previously they were not possible.

They offer support to other companies to integrate these technologies in their

applications.

The ACRO team provides official courses in PCL programming, as well as
supervises master theses, from the educational program Electromechanic-
s/Automation within the faculty of Engineering Technology, hosted jointly
by Ku Leuven and UHasselt.

ACRO focuses on applications oriented to industrial research in the fields of

automation and robotics. Current research topics include:

» Vision-based and model-based automation

o Human-robot interaction and collaboration

o Flexible product handling and robotic grippers
 Collision-free trajectory generation and navigation
« Semi-autonomous and autonomous (dis)assembly

o Functional programming for robotics and the cloud

1.1.2 Introducing Colruyt Group

Colruyt Group is a Belgian multinational family distribution company that
rules the Colruyt supermarkets that started in Lembeek, near Halle, Bel-

gium.

Founded in 1925, the group today is known for its discount supermarket
chain. Colruyt’s headquarters are based in Halle and they operate in the

Benelux and France.

The group’s main business is its Colruyt discount supermarket stores. They

have more than 200 locations in Belgium, it is the largest supermarket chain.

Colruyt Group can actually be divided into the logistics area (stores and
warehousing) and the research and development department where they per-

form research mainly in the field of map building and mobile robotics.

1.2 Problem description

Colruyt Group desires to automate the cleaning processes of its stores, specif-

ically the cleaning of floors.

Nowadays, the process of cleaning the stores is performed manually: employ-
ees first clean the floor of dust and objects, and then pass the machines that

scrub the floor.

The technology to clean the dust is surpassed with current autonomous vac-

uum cleaner robots.

Colruyt Group is already looking for a way to automate the scrubbing ma-

chines, but the floor is required to be free of any objects before scrubbing.

The purpose of this work is to build a proof of concept of a system that
can be mounted on an autonomous mobile platform, to detect and localise

garbage on the floor (inside a supermarket), and then to pick up the garbage.

The work done in this project is a first approach and serves as a basis for

future work and also demonstrate that is possible the automation of this

process.

1.3 Contributions

The contributions of this thesis lie in studying the state of the technologies
necessary for the development of the project, testing different techniques and

making decisions based on the results, always with the support of ACRO.

The topics in which this project contributes the most are:

o Automated camera laser scanner calibration
o A technique based on vision to detect dirt on a floor

o Made a test facility and tested the approach in a test environment

1.4 Summary of chapters

This is a brief outline of what went into each chapter. Chapter 2 explains
the literature that have been read and discuss the interesting topics. Chap-
ter 3 discusses the implementation of the techniques to detect the dirt.
Chapter 4 talks about the camera calibration. Finally Chapter 5 shows

the results and conclusions.

Chapter 2

Literature survey

2.1 Introduction

For the development of this project, I searched and read some documenta-
tion and research papers. In this chapter, I will discuss and comment the

interesting topics as well as the implementation them in the project.

I have searched for related projects, but it is a very specific problem, so
there are not many projects that deal with it, that is why I have extended
the research to any project related to autonomous platforms that recognize

objects in dynamic environments.

The projects found use different technologies, either individually or combin-

ing them, such as cameras, distance sensors, machine learning...

I was also read traversability analysis papers, in which could read about

different type of maps, how to create them and their uses.

2.2 Vision methods

One of the related projects that inspires me was (Robotis-Japan 2019)" that

is a:

“Sample repository for creating a three dimensional map of the
environment in real-time and navigating through it. Object de-
tection using YOLO is also performed, showing how neural net-
works can be used to take advantage of the image database stored

by RTAB-Map and use it to e.g. localize objects in the map.”

It uses the Turtlebot3 platform to which a RGBD camera has been installed,
using the images of the cameras to recognize objects with the YOLO neural
network (Redmon et al. 2016) and the depth image to position the objects
on the map. In this project we can see the implementation of different

techniques in a combination way:.

VOV OOVOVOLV

* Environment
Detection

* Semantic Map

« Point Cloud
Learning

And more ...

| el
Turtlebot 3

Figure 2.1: Operation diagram of a related project.

So at first my attention was focused on using the information from the
cameras to detect garbage based on computer vision, a field already known
by my. The first idea was to try to recognize the garbage making tests in

Matlab and later using the Opencv library.

thttps://github.com /ROBOTIS-JAPAN-GIT /turtlebot3_slam_ 3d

2.3 Traversability analysis methods

One of the most interesting papers about traversability analysis was (Guer-
rero et al. 2015). It talks about the different type of maps, how to create

them and their uses.

Coming up next the types of maps found will be detailed, we will also talk

about being able to integrate them into this project and its pros and cons.

2.3.1 Occupancy map:

It is one of the most used methods for terrain mapping. Every cell in an oc-
cupancy map contains an occupancy probability which is used to determine
if the cell is free, occupied or not explored. Figure 2.2 depicts an example of

an occupancy grid map.

Figure 2.2: Example of an occupancy grid map.

This is the kind of maps you can create with the Turtlebot3 right out of

the box, just using odometry and laser information. Is very useful using

them for the autonomous navigation of robots in plane floors and controlled

environments.

2.3.2 Elevation map:

Alternatively to the occupancy map, an elevation map is a 2D grid in which
every cell contains height values of the terrain mapped. Figure 2.3 is an

example of an elevation map.

— Upper confidence bound
| — Estimated terrain

,/ i Lower confidence bound
/

|
L Stereo camera
field of fiew

Confidence interval

3
Ocm 25cm

Figure 2.3: Example of elevation map.

Elevation maps are also known as 2.5D maps. Similarly to the occupancy
map, the computational requirements are not so important as for 3D map-
ping. An important disadvantage of 2.5D mapping is the fact that overhang-

ing structures will be considered as obstacles.

They are very useful for moving robots in on uneven floors or to determine
obstacles on the way. They are the most usable for the purpose of this

project.

I found a ROS package® to create elevation maps with robots which are
equipped with a pose estimation (e.g. IMU & odometry) and a distance
sensor (e.g. structured light (Kinect, RealSense), laser range sensor, stereo

camera,).

This package is based on the works of the papers (Fankhauser et al. 2018)
and (Fankhauser et al. 2014) that I have also read.

Zhttps://github.com/ANYbotics/elevation_ mapping

7

2.3.3 3D map:

Figure 2.4 depicts an example of 3D map.

Figure 2.4: Example of 3D map.

They are a type of maps more complete and easy to observe but at the same
time they are difficult to obtain and manage given their high computational

requirement.

For 3D mapping I found several package in ROS to create them with different
approach, such as (Hornung et al. 2013)* or (Labbé & Michaud 2019).*

2.4 Conclusions

Finally we noticed two clear ideas to apply in our project to recognize objects

on the floor:

 Image processing (OpenCV, neural networks...).

o Using depth camera info to create different elevation maps of the ter-

rain.

In our case, a combination can be used by placing the 3D camera pointing to
the ground, being able to detect the objects by distance and using OpenCV

based on colors and shapes.

3http://octomap.github.io/
4http:/ /introlab.github.io/rtabmap/

Chapter 3

Implementation of dirt detec-

tion

3.1 Introduction

In the following sections I will detail the work carried out during these

months, detailing all the decisions taken.

This time could be divide in three different stages:

e Learning

— Learning ROS
— Knowing Turtlebot3

e Get and analysis data

— Preparing robot with 3D camera for scanning the store

— Analysis
o Test different techniques

— Processing of images (detecting objects)

— Positioning objects (get angle and distance)

Put markers on the map

Build elevation map

— Try to remove parts of the image that are fixed objects

3.2 Learning ROS

ROS is a flexible framework for software development for robots that provides

the functionality of an operating system.

It is a collection of tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across a wide variety of

robotic platforms.

ROS provides the standard services of an operating system such as hardware
abstraction, control of low-level devices, implementation of commonly used
functionality, passing of messages between processes and maintenance of

packages.

It is based on a graph architecture where the processing takes place in the
nodes that can receive, send and multiplex messages from sensors, control,
states, schedules and actuators, among others. The library is oriented for a
UNIX system (Linux).

I passed the first two weeks of the project learning it. Firstly, I installed
Ubuntu 16 and ROS Kinetic following the instructions of the documenta-

tion.t

I have installed it in a virtual machine using the free VirtualBox software,
that was because it is easier, faster, and more flexible for me, I only have to

problems:

e Loss of performance.
e Need to change the network configuration of the virtual machine in

order to properly connect with Robots.

— Use “Bridge Mode™.

Finally, with everything installed and working, I have followed all the begin-

ner tutorials® of the documentation and code small programs to test.

thttp://wiki.ros.org/kinetic/Installation/Ubuntu
Zhttp://wiki.ros.org/ROS/Tutorials

10

3.3 Knowing Turtlebot3

Figure 3.1: Turtlebot3 Burger: version used in this project.

TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot

for the use in education, research, hobby, and product prototyping.

The TurtleBot can run SLAM(simultaneous localization and mapping) al-
gorithms to build a map and can drive around in a room. Also, it can be

controlled remotely from a laptop.

I received a ROS and Turtlebot3 workshop in which I started controlling the

robot and testing all of its functionalities.

Then I followed all the tutorials of the Turtlebot3 e-Manual® emphasizing
on the part of the creation and the usage of the maps. As well as testing

autonomous navigation programs.

3http://emanual.robotis.com/docs/en/platform /turtlebot3/overview/

11

Continuing with my learning of ROS and Turtlebot3 I code some programs:

o I modified the simple navigation goals.cpp program* to use coordi-
nates relatives to the map.
o I followed the markers tutorial® to create a subscriber node that can

be used to notify the garbage in the map.

3.3.1 Modifications

For the goals of this project we need to add some sensors to the Turtelbot. We
decided to use one RGBD camera. The chosen one was the Intel Realsense
d435.

Figure 3.2: Intel Realsense d435 camera.

In order to use the camera with the TurtleBot3 I need to compile the drivers
in the own Raspberry Pi of the robot. The realsense drivers are downloaded
without compiling and then they were compiled following the steps of the

guide® but problems emerged.

“http://wiki.ros.org/navigation/Tutorials/SendingSimpleGoals
Shttp://wiki.ros.org/rviz/Tutorials/Markers%3A%20Basic%20Shapes
Chttps://github.com/IntelRealSense/librealsense/blob/development /doc/installation.md

12

Firstly, a power supply must be used given the time it takes to perform the

compilation.

The compilation will fail due to the lack of ram memory of the Raspberry
Pi, I had to create a 2Gb swap partition following this steps.” With this I

was able to compile it perfectly.

The next step was to download the necessary ROS package® into the
workspace of the Raspberry Pi, compiled and finally tested the camera. I

initialized the camera with the launch file rs_camera.launch.

There is a problem, the camera requires a usb 3.0 connection for the large
amount of data handled, and the raspberry pi uses usb 2.0 so the resolu-
tion and frame rate must be lowered. I modified the launch file and use a
resolution of 424x240 and 15 fps.

I place the camera on the front, in the third level of the TurtleBot3, fixed

by a 3D printing custom camera screw.’

Figure 3.3: Camera position.

"https://linuxize.com/post /how-to-add-swap-space-on-ubuntu-18-04/
8https://github.com/IntelRealSense/realsense-ros
https://www.thingiverse.com/thing:2749041

13

I also created routines to easily start everything when scanning the store

using aliases:

Table 3.1: Alias routines created for easy use of the robot.

Alias Where execute Description

bringup [TurtleBot] ~ Robot and camera initialization.

uclock [Remote PC] Synchronize internal CPU clocks of the robot and PC.
slam [Remote PC| Start creating the map.

bag [Remote PC|] Start record bag file.

teleop [Remote PC] Start teleoperation node to control remotely the robot.
savemap [Remote PC] Save the map created.

3.4 Results of the mapping

With the robot prepared and the map creation tested we were invited to one

of the Colruyt Group stores to collect data.

We went through two corridors with the robot twice, a first without garbage

to create the map mainly, and a second one with garbage on the ground.

Next, I will analyze the information obtained and discuss the methods used

to recognize garbage.

14

3.4.1 TImage of the color camera:

Figure 3.4: Source image of the color camera.

In this image we see that the interesting part, where the floor is located, is

the lower half of the image.

The most interesting is the dark and uniform color of the floor, except for

the reflected shine of the lamps.

If it is possible to eliminate the brightness, it should be relatively easy to

distinguish brightly colored objects from the dark ground.

15

3.4.2 Image of the depth camera:

Figure 3.5: Source image of the depth camera.

This image is created with the depth information, in it the blue areas are
closer and the red ones are farther away. I can see a problem, most of the
lower half of the image, the one belonging to the ground and interesting to

us, appears as a large blue spot in which I can not distinguish any object.

I have investigated the reason for this and has been concluded that the
position of the camera is not ideal for being very close to the ground. In
the specifications of the camera has been observed that there is a minimum
range and maximum distance for usage of the camera. If the object is closer

than the minimum will not be differentiable.

The camera should be placed in a higher position and away from the ground

to solve this problem and be able to use the depth information.

16

3.4.3 Map:

Figure 3.6: Occupancy map created.

This is the map created in the first pass without garbage. It is quite well
built and only a simple processing will be necessary to eliminate the noise

and complete it.

‘L
— [

Figure 3.7: Occupancy map processed.

17

3.5 Implementation of the computer vision algorithm
I start working in two objectives:

« Remove brightness.

o Recognize objects of different color to the ground.

I take frames of the recorded video and use Matlab for processing it. I use

two apps of Matlab:

3.5.1 Color threshold:

®0e Color Thresholder - RGB
& e, Bl 9 swonconm M sz || s 4

(= Zoom out
LoadImage NewColor Space InvertMask _ Reset Background Opacity: Show Binary d s Hide Point Cloud| Export
- Thresholds b < pan t

LOAD IMAGE | COLOR SPACES MODIFY MASK VIEW MASK. Z00M AND PAN_| LIVE UPDATE POINT CLOUD EXPORT z

| [RGB 3|
%

Figure 3.8: Color threshold Matlab app.

With this app I can apply threshold to the images in different space of colors
(RGB, HSV...) and based on the histogram.

I started working to recognise the garbage. The idea is to end with a binary

image where white points are garbage and the rest will be black.

18

I tested different ways of binarizing the image based on the color. The most
effective way is to change points with the highest RGB values to white and
the rest to black, I tried different thresholds.

I apply color threshold to all the RGB channels of the image in different

frames and test:

Figure 3.9: Color threshold around 200.

In this image the threshold is fixed in the point that almost only the garbage

appears in white, but some objects like plastics are a problem.

In the next image I lowered the threshold, now the plastics are more visible

but the reflected shine of the lamps on the floor also appears.

Figure 3.10: Color threshold lower.

19

3.5.2 Morphological operations:

00 Image Segmenter - Segmentation

MORPHOLOGY [T
Operation Radius| 3 _| ([0 | & Zoomin Opacity z Y 8
o Length| 3 2 .| X Zoomout Show ——
Select Operation ~ Shape - T|width| 3 ,‘ —e— Appl se
Disk > Dearees| * Jpan Binary Morphology

STRUCTURING ELEMENT ZOOM AND PAN VIEW CONTROLS cLose | =

v History

e

Figure 3.11: Image segmenter Matlab app.

With this app I can test different morphological operations in the images.
I have read about the different operations in the (OpenCV 2019)."

Morphological transformations are some simple operations based on the im-
age shape. It is normally performed on binary images. It needs two inputs,
one is our original image, second one is called structuring element or kernel

which decides the nature of operation.

Working towards eliminating the brightness of the image floor, several mor-

phological transformations are tested.

Ohttps://docs.opencv.org/trunk /d9/d61 /tutorial _py_morphological _ops.html

20

One of them is Top Hat, it is the difference between input image and opening

of the image. Below example is done for a 9x9 kernel.

Figure 3.12: Top Hat example.

Opening is just another name of erosion followed by dilation. It is useful in

removing noise.

Figure 3.13: Opening example.

o Top Hat = source image - opening of source image

— Opening = erosion of source image -> dilation of source image

* Erosion = erodes away the boundaries of foreground object

* Dilation = It is just opposite of erosion

Table 3.2: Erosion and dilation examples.

Original Erosion Dilation

21

I discovered that using Top Hat, the floor has a more uniform tone without
losing much information of the rest so it can be used to create a mask and
eliminate the problem of the floor, leaving an image in which the usage of

segmentation based on colour can be performed more easy.

Figure 3.14: Top Hat masked image.

I applied a blur filter to reduce noise, with a kernel 3x3 aperture.

Top Hat is applied to the gray scale image and then it is binarised using the
Otsu algorithm (Otsu 1979) to define the threshold.

I have tested with different structural elements to apply Top Hat. A disc of
15px diameter is the finally choosen for the algorithm.

Then, the morphological transformations, open and dilate, have been used

to remove additional noise and increase the mask.

With all this tested I passed the program to ROS and OpenCV. I create a
node that subscribes to the topic of the camera, converts it to be used in
OpenCV and publishes the position of the detected garbage to mark it on
the map.

22

Example code of a ROS node that subscribes to an image and convert it

with cv_bridge to be able to use it in OpenCV:

int main (int argc, char **xargv)
{
ros::init(argc, argv, "img processing");

ros: :NodeHandle n;

image_ transport::ImageTransport it(n);
image transport::Subscriber sub = it.subscribe(

"/camera/color/image raw", 1, imageCallback);

ros::spin();

void imageCallback (const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge: :CvimagePtr cv_ptr;
try
{
cv_ptr = cv_bridge: :toCvCopy(msg,
sensor_msgs::image_encodings: :BGR3) ;
+
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());

return;

// Image Processing

cv::Mat dImg = cv_ptr->image;

23

This will be the main program to process the image, it should process the
image, first create the Top Hat masked image and then apply color threshold
based on the RGB color space.

3.6 Positioning objects

The next step was to isolate each object and calculate the relative position

respect to the robot and later transform to map coordinates.

I have created a service that receives the X, Y coordinates of the center pixel

that belongs to the object in the image and return the position.

I came up with two methods.

3.6.1 Angle and distance:

map — r

Figure 3.15: Positioning garbage explanation.

24

For calculating the angle, I used a simple formula based on the field of view
of the RGBD Camera Intel Realsense d435: 85.2° x 58° (+/- 3°)

cmgle = TmageWidih ;%}VQit - X —85.2

Figure 3.16: How to get angle and distance of the garbage.

For the distance I use the depth camera info, activating the feature to align

the depth image with the color image.

roslaunch realsense2_camera rs_camera.launch align_depth:=true

3.6.2 Point Cloud:

If T start the camera with the command roslaunch realsense2 camera
rs_camera.launch filters:=pointcloud a point cloud will be published.
This point cloud is of type unorganised, which is a one row array of points.
Because of the unorganised representation, the calculation of a point that

corresponds to a certain pixel in the colour image, becomes difficult.

For getting a organized point cloud data that uses 2D array of points with
the same size of the color image I should start the camera with the com-
mand roslaunch realsense2 camera rs_rgbd.launch. That one uses the
color and depth image to create the point cloud using the ROS package
rgbd_ launch.

With this point cloud I could get the coordinates respect to the camera of
each pixel of the image easily. This was the method that I finally use to

position the objects.

25

Example code of a ROS node that subscribes to an PCL calc the point that

corresponds to a certain pixel:

int main (int argc, char **xargv)
{
ros::init(argc, argv, "map marker");
ros: :NodeHandle n;
ros::Subscriber sub = n.subscribe<sensor_msgs::PointCloud2>
("/camera/depth_registered/points", 1, callback);

ros::spin(Q);

void callback(const sensor_msgs::PointCloud2ConstPtr& msg)

{
my_pcl = *msg,

int arrayPosition = v*my_pcl.row_step + u*my_pcl.point_step;
int arrayPosX = arrayPosition
+ my_pcl.fields[0].offset; // X has an offset of O
int arrayPosY = arrayPosition
+ my_pcl.fields[1].offset; // V has an offset of 4
int arrayPosZ = arrayPosition
+ my_pcl.fields[2].offset; // Z has an offset of &

float X = 0;
float Y = O;
float Z = O;

memcpy (&X, &my_pcl.datalarrayPosX], sizeof(float));
memcpy (&Y, &my_pcl.datalarrayPosY], sizeof(float));
memcpy (&Z, &my_pcl.datalarrayPosZ], sizeof(float));

ROS_INFO("%f %f %f", X,Y,Z);

26

Chapter 4

Camera calibration

4.1 Introduction

I need to calibrate the camera position in the robot to transforms the coor-

dinates correctly.

In this chapter I will resume the methods that I have found to calibrate the

camera as well the results that were obtained.

An important point is to know the concepts of intrinsic and extrinsic param-

eters of a camera.

e Intrinsic:

— Focal length

— Principal point
— Skew

Radial distortion

Tangential distortion

o Extrinsic:

— Translation vectors

— Rotation vectors

27

Camera

Pixel
coordinates

coordinates IR0
[xC Yec z‘;] 3-Dto2-D

[xy]

I
Extrinsic Intrinsic

parameters parameters

Figure 4.1: Calibration coordinates camera intrinsic and extrinsic.

The extrinsic parameters denote the coordinate system transformations from
3D world coordinates to 3D camera coordinates. Equivalently, the extrinsic
parameters define the position of the camera, these are the important ones

for our purpose.

Another important point to keep in mind is to know the system of axes that

each method uses to be able to interpret them correctly.

Table 4.1: Axes transformations used. X red, Y green and Z blue.

ROS RADLOCC OPTICAL

28

4.2 RADLOCC Toolbox

I have found a Matlab toolbox called RADLOCC! based on the works of the
papers (Kassir & Peynot 2010) and (Peynot & Kassir 2010).

“This paper proposes algorithms that augment two existing trust-
ful calibration methods with an automatic extraction of the cal-
ibration object from the sensor data. The result is a complete

procedure that allows for automatic camera-laser calibration.”

For using this toolbox I need a special dataset that should contain a set of
files:

o laser.txt containing the laser data, in the format timestamp
angle min angle_increment angle max unit_type number_of points
ranges;

o image_stamps.txt containing the timestamps of the captured images;

o image_ XX.bmp, which are the image files, which need to start by the
number 01 (and not 00). For example image 01.bmp, image 002.bmp,

This dataset was exported from ROS using a python script, taking photos

with the color camera of a checkerboard in different positions.

Thttp://www-personal.acfr.usyd.edu.au/akas9185/ AutoCalib/index.html

29

The RADLOCC method for getting a calibration was:

—_

In a directory, extract both RADOCC and RADLOCC Toolkits.
In MATLAB, add both toolkits to the path.

¢ addpath RADOCCToolbox

e addpath RADOCCToolbox\CornerFinder
¢ addpath RADLOCCToolbox

e addpath RADLOCCToolbox\Functions.

Open the dataset as the root.

. The first step is to obtain the intrinsic calibration of the camera and

extract the checkerboard planes. To do this, run the calib command.

Then follow the steps:

o Image Names to set the image names (select image_ and b for
bmp)

o Extract Grid Corners (press enter for all images)

e Calibration to get the intrinsic parameters

e Save, which saves the calibration to a file in the dataset’s direc-
tory (Calib_Results.mat)

Run the RADLOCC Toolbox. Load both the laser and the image data
with Read Data.

Manual Select to segment the laser. Choose only the more straight
and clear parts.

Calibrate to run the calibration algorithm. The values appear on the
console of MATLAB.

Laser into Image to check the validity of the calibration. If a range

of images is what is wanted, then input something like 1:10.

The best results obtained have been with a dataset of many images (22) in
the highest possible resolution (1280 x 720) and placing the checkerboard

plane as close as possible to the camera to capture more points of the laser.

30

RADLOCC axis

0.0308 0.011
A=1-0.0652| £ | 0.0136 | m
—0.0796 0.00737

—0.105 1.38
®=|-353|=+]0615]deg
~179 0.631

Total rms error = 0.00616

A very large error can be observed for the dimensions that are being mea-
sured, this is because the laser is not very precise and does not recognize the

plane as a completely straight line of points.

Laser Points on Board Planes

Tr . Laser Points
O Laser Origin
09
08
N 07
06
05
04
1 1 1 1 1 1
0.4 0.3 0.2 0.1 0 01 02 03 04

Figure 4.2: An example of a laser beam projected on the XZ-plane.

Perhaps this method would be more accurate with a better laser or with

post processed laser data that calculates the average of the position of the

31

points during the time that the checkerboard plane is in the same position,

avoiding outliers.

The advantage of this method is that it can be used with any type of camera,

a RGBD camera is not necessary.

4.3 Point cloud to laser scan and 2D calibration

Other approach for the calibration of the camera is to use the point cloud
and the laser sensor. There are several ROS packages to convert a PCL in

laser scan data given certain parameters.?

With the two laser scan files, one for the laser and other of the conversion, and
tools like in Matlab matchScans® I could get the X, Y and theta parameters.
In this case I need to suppose that the other two rotations are equal to 0
and measure the Z distance to perform the PCL to laser scan conversion at

the same height of the real laser.

Original Scans

<

2

0

6 4 2 0 2 4 6
Y
Aligned Scans
5 -
4 -
3 -
<

(4]
o}
(4]

Figure 4.3: Match Lidar Scans Example

Zhttp:/ /wiki.ros.org/pointcloud to_ laserscan
3https://es.mathworks.com/help /robotics /ref /matchscans.html

32

For this reasons, the lack of precision of the laser seen in the previous method,
and the lack of time to implement the algorithms in Maltlab and export the

data in a correctly, this method has not been proven.

4.4 Third point method

The problem with the calibrations of the camera is that I can not measure
the distance of the hardware by hand because this is not the actual position
from which the photo was taken, either by the internal lenses or by the

position of the camera in the interior of the frame.

But with a checkerboard and using the Matlab toolbox to calibrate cameras
it is easy to get the position with respect to the checkerboard plane, being

the origin the first corner.

x direction (long side) —»

<— y direction (short side)

Figure 4.4: Checkerboard example. Origin and axes.

33

If T make that point to match with the height of the laser, known by the
URDF model of the robot, and the plane is placed parallel to the robot, the
transformation between that point and the laser would be equal to 0 in all
the axes and angles except in the X axes that would be the measurement

given by the laser.

Origin plane point

Figure 4.5: Origin_plane-laser transformation.

Finally I will have the two transformations, one camera-origin_ plane and an-
other origin_ plane-laser, that gives us the searched transformation camera-

laser.

For the first, I used the Matlab toolbox to calibrate cameras with the same
dataset that was used for the RADLOCC method, adding an image with the

origin of the plane matching with the laser.

34

From this method I get this transformation camera-checkerboard:

Optical axes

0.0230 0.0004
A =1-0.0694 | = [0.0006 | m
0.6606 0.0010
—0.0186 0.0026
® = [—-0.0234 | £10.0022 | rad
0.0206 0.0003

For the second, the distance to the point has been measured with the laser

several times and the average has been made.

ROS axes
0, 6044 0.001
A = 0 + 10.001 | m
0 0.001

The final laser-camera transformation would be:

ROS axes

0.0562 0.0020
A= 0.0230 | = [0.0014 | m
—0.0694 0.0016

0.0206 0.0178
® =1-0.0186 | £ | 0.0201 | rad
—0.0234 0.0197

35

4.5 Conclusions

External calibration of a camera to a laser is a common prerequisite on
today’s multi-sensor mobile robot platforms. However, the process of doing

so is relatively poorly documented and almost always time-consuming.

For our project I do not currently need this calibration with high precision,
so after observing the results of the last method and comparing several mea-
sures of laser and PCL, I have chosen to give the calibration as sufficient,

documenting all methods in case in the future will be needed.

The final result in the URDF model of the robot is:

Figure 4.6: Camera position relative to laser scan.

36

Chapter 5

Results and conclusions

5.1 Introduction

In this part I will comment the results of different test and talk about the

conclusions that I have reached in this project.

I will summarize some ideas or techniques that could not be proved due to
lack of time and knowledge, the problems encountered will also be detailed

and we will discuss how they could be solved.

5.2 Tests

To see the results of the works and programs carried out, I have done different

tests.

In this project there are two main parts that have been developed and should
be tested, the image processing to detect garbage and the positioning on the

map of this garbage.

These two parts have been tested separately under different conditions, this
is because the processing of the image to detect garbage is prepared for the
conditions of the store (color of the floor, surrounding furniture color, lights)

and these are not easy to replicate.

37

5.2.1 Recognizing

To test how the garbage recognition algorithm works, the recorded data
during the visit to one of the stores was used, specifically the recorded by

the color camera installed in the robot.
In this recording you can see examples with different types of materials.

The algorithm recognizes most of the garbage with ease and because being
in movement, different points of view of the same object are had, reason why
if it is not recognized in a frame it is very probable be recognized in another

one (especially when it is more centered and near)

Errors are also observed as parts that are recognized as garbage and are not,

such as:

e Lines or indications painted on the floor.
o Parts of the furniture of the store that differ greatly from the color of
the floor. (racks, legs, ..

o Parts of the image that correspond to very distant things.

Below there are some images collected from the recording as an example of

the different situations and materials tested.

38

Table 5.1: Results of the image processing algorithm.

Original Result

In them you can see the original image and the result, a binary image in which

the white pixels correspond to the objects detected.

39

5.2.2 Positioning

To test the positioning of the garbage on a 2D map, a small test facility is
built using four wooden boards. With the circuit finished I go through it
with the robot and built the map.

As the conditions are different from those of the store (color of the floor,
surrounding furniture color, lights) the algorithm to recognize garbage did
not work and I had to adjust it (change color thresholds and kernels sizes)

to recognize objects only white and thus be able to test the positioning part.

Table 5.2: Test circuit and map created.

Test circuit Map created

The objective is to recognize and correctly position the different white objects

placed by the circuit in the created map.

The algorithms have been thought to run in real time while the robot moves
and so it was initially tested. With this first test the results of the following

image were obtained.

40

Figure 5.1: Result of positioning garbage while moving the robot.

At first glance one could say that the program failed, marking multiple points
that do not correspond to garbage along the entire map, but analyzing why
this happened and seeing that some points were correct, some conclusions

were reached:

o The noise of the point cloud causes errors in the measurements when
positioning.

o The processing of so many algorithms at the same time by the robot
added to the large amount of data from the camera and the manage-
ment of the wifi for the connection exceeds the CPU power of the
Raspberry Pi of the Turtlebot3.

o Given this slow processing, the necessary transformations to position
the objects on the map are not performed immediately, this causes

them to be wrong.

For all these reasons I tried again but this time only executing the code to
position garbage with the robot completely stopped and interrupting it when

I want to move the robot.

Below are the different stops of the robot and the points that are marked on

the map cumulatively at each stop.

41

Table 5.3: Result of positioning with the robot stoped in different positions.

Pose 1. Pose 2. Pose 3.

Pose 4. Pose 5.

f

This time it can be said that the positioning of the garbage has been effective,
errors are still observed as the same object is positioned a little different

depending on where the object is seen by the robot.

42

5.3 Future work

Here I will comment, from my point of view, how this project should continue
to develop, what should be the topics to investigate and the changes to be

made.

Starting with the things that I have lacked time to try, I have two ideas:

o The creation of elevation maps with the RGBD camera. 1 can create
a map without garbage and another map containing garbage, perform
the subtraction leaving only the different points that should correspond
with the garbage, the result can be superimposed with the occupation

map to see its position.

o In the processing of the image one of the biggest challenges is to isolate
the part of the image belonging to the ground, so as not to identify
the furniture as garbage. The idea would be to analyze pixel by pixel
comparing the information of the position given by the PCL and the
situation on the map to determine if it corresponds with parts that

should not be analyzed and eliminate that pixel.

One of the first changes that I would make would be the Raspberry Pi of
the Turtlebot3, this presents several problems such as the lack of usb 3.0
or higher for a correct communication with the camera, the lack of RAM
to compile certain packages and finally the lack of power for run many very

demanding nodes in real time.

Another step in this project would be to adapt the algorithm of image pro-
cessing to recognize garbage to be used in any environment and combine
it with more techniques to achieve better results (Other vision techniques,

neural networks...)

43

5.4 Conclusion

The implementation of this project has been based on the application of
computer vision techniques almost exclusively. This is due to the lack of
time and knowledge to try other techniques, such as those mentioned in the

literature analysis about the construction of different kind of maps.

Even so, the work done serves as a first approach and serves as a basis for

future work related to this and others that use:

» Recognition of objects in dynamic environments either through image
processing or depth cameras.

» Positioning and marking objects on the map.

o Calibration of the camera position in multi-sensor mobile robot plat-

forms.

It also demonstrate that is possible the automation of this process, reducing

cost and time for the company.

During the time that I have been developing this project I have learned to
handle ROS with some ease and how to handle a robot and integrate new

sensors, | have applied and reinforced my knowledge of programming in C++
and OpenCV.

44

Appendix 1: Code

Img processing.cpp

#include <ros/ros.h>

#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>

#include <sensor_msgs/image encodings.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

#include "detect_garbage/pixel_coordinates.h"

// Global wariables

cv::Mat src, src_gray, dst, mask;

int size_top = 15;

int size_dilate = 5;

int size_dilatel = 5;
int max_size = 100;

int threshold_RGB = 153;
int threshold Y min = 0;

int threshold Y max = 215;
int threshold Cb min = 115;
int threshold_Cb_max = 255;

int const max_threshold = 255;

static const std::string ORIGINAL = "Original";

static const std::string FINAL = "Final";

static const std::string window_1 = "Top Hat';

static const std::string window_2 = "Color RGB Threshold";
"Color YCrCb Threshold";

static const std::string window_3

45

void imageCallback (const sensor_msgs::ImageConstPtr& msg);

void tophat(int, voidx);

void colorThreshold(int, void*);

ro

s::ServiceClient *clientPtr; // Pointer for a client

int main (int argc, char **xargv)

{

ros::init(argc, argv, "img processing");

ros: :NodeHandle n;

cv: :namedWindow (ORIGINAL) ;

cv: :startWindowThread () ;
image_transport::ImageTransport it(n);
image_transport::Subscriber sub = it.subscribe(

"/camera/color/image raw", 1, imageCallback);

ros::ServiceClient client = n.serviceClient<

detect_garbage: :pixel_coordinates>("pixel coordinates");

//give the address of the client to the clientPtr

clientPtr = &client;

ros::spin();

return O;

void imageCallback (const sensor_msgs::ImageConstPtr& msg)

{

cv_bridge: :CvImagePtr cv_ptr;
try
{
cv_ptr = cv_bridge: :toCvCopy(msg,

sensor_msgs::image_encodings: :BGR8) ;

46

}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());

return;

// Image Processing

cv::Mat dImg = cv_ptr->image;

// Divide in half
src = dImg(cv::Rect(0, dImg.rows/2, dImg.cols, dImg.rows/2));

cv::imshow(ORIGINAL, src);

// Create a matriz of the same type and size as src (for dst)

dst.create(src.size(), src.type());

// Convert the image to grayscale
cv::cvtColor(src, src_gray, CV_BGR2GRAY);

cv: :namedWindow(window 1, CV_WINDOW AUTOSIZE);
cv::namedWindow(window_2, CV_WINDOW_AUTOSIZE);
cv::namedWindow(window_3, CV_WINDOW_AUTOSIZE);

cv::createTrackbar("Size Top Hat:",
window_1, &size_top, max_size, tophat);
cv::createTrackbar("Size Dilate:",
window_1, &size dilate, max_size, tophat);
tophat (0, 0);

cv::createTrackbar("Threshold RGB:",
window 2, &threshold RGB, max threshold, colorThreshold);
cv::createTrackbar("Threshold Y min:",

window_3, &threshold Y min, max_threshold, colorThreshold);

47

cv::createTrackbar("Threshold Y max:",

window_3, &threshold Y max, max_threshold, colorThreshold);
cv::createTrackbar("Threshold Cb min:",

window_3, &threshold Cb_min, max_threshold, colorThreshold);
cv::createTrackbar("Threshold Cb max:",

window 3, &threshold Cb _max, max_threshold, colorThreshold);
cv::createTrackbar("Size Dilate:",

FINAL, &size _dilatel, max_size, colorThreshold);
colorThreshold(0, 0);

cv::Mat canny_output;
std: :vector<std::vector<cv::Point> > contours;

std::vector<cv::Vec4i> hierarchy;

// Detect edges using canny
cv::Canny(dst, canny_output, 50, 150, 3);

// Find contours
cv::findContours(canny_output, contours, hierarchy,
cv::RETR_TREE, cv::CHAIN APPROX SIMPLE, cv::Point(0, 0));

// Get the moments

std: :vector<cv: :Moments> mu(contours.size());
for(int i = 0; i<contours.size(); i++)

{

muli] = cv::moments(contours[i], false);

// Get the centroid of figures.
std: :vector<cv::Point2f> mc(contours.size());

for(int i = 0; i<contours.size(); i++)

{
mc[i] = cv::Point2f(muli] .m10/muli] .m00 , mul[i] .mO1/muli] .m00);

48

// Draw contours

cv::Mat drawing(canny_output.size(),

CV_8UC3, cv::Scalar(255,255,255));

for(int i = 0; i<contours.size(); i++)

{

cv::Scalar color = cv::Scalar(167,151,0); // B G R walues
cv::drawContours(drawing, contours, i, color, 2, 8,
hierarchy, 0, cv::Point());

cv::circle(drawing, mc[i], 4, color, -1, 8, 0);

// Mark on map

detect_garbage::pixel_coordinates srv;

srv.request.u = mc[i] .x;

srv.request.v = mc[i] .y+dImg.rows/2;

//dereference the clientPtr

ros::ServiceClient client = (ros::ServiceClient)*clientPtr;

if (client.call(srv))
{
ROS_INFO("x: %f", (float)srv.response.x);
ROS_INFO("y: %f", (float)srv.response.y);
ROS_INFO("z: %f", (float)srv.response.z);
}
else
{
ROS_ERROR("Failed to call service from pixel coordinates");

// Show the resultant image
cv: :namedWindow("Contours", CV_WINDOW AUTOSIZE);

cv

: :imshow("Contours", drawing);

cv::waitKey(3);

49

void tophat(int, voidx)
{

cv::Mat im;

// Reduce mnoise with a kernel 3z3

blur(src_gray, im, cv::Size(3,3));

cv::Mat element = getStructuringElement (

cv::MORPH_ELLIPSE, cv::Size(size_top, size_top));

// Apply the tophat morphology operation
cv: :morphologyEx(im, im, cv::MORPH_TOPHAT, element);

cv::threshold(im, im, O, 255, CV_THRESH_BINARY | CV_THRESH_QOTSU);
cv::Mat element2 = getStructuringElement (

cv::MORPH ELLIPSE, cv::Size(3, 3));
cv::Mat element3 = getStructuringElement(

cv::MORPH _ELLIPSE, cv::Size(size_dilate, size _dilate));

cv::morphologyEx(im, im, cv::MORPH_OPEN, element2);
cv: :morphologyEx(im, im, cv::MORPH DILATE, element3);

mask = cv::Scalar::all(0);

src.copyTo(mask, im);

cv::imshow(window_ 1, mask);

void colorThreshold(int, voidx*)

{

cv::Mat iml, im2;

20

cv::inRange(mask, threshold_RGB,
cv::Scalar(max_threshold, max threshold, max threshold), iml);

cv::imshow(window_ 2, iml);

cv::cvtColor(mask, im2, CV_BGR2YCrCb);
cv::inRange(im2,
cv::Scalar(threshold Y min, O, threshold Cb_min),
cv::Scalar(threshold Y max, max threshold, threshold Cb max), im2);
im2=255-im2;

cv::imshow(window_3, im2);

dst=iml+im2;

cv::Mat element2 = getStructuringElement (
cv::MORPH ELLIPSE, cv::Size(3, 3));

cv::Mat element3 = getStructuringElement (

cv::MORPH _ELLIPSE, cv::Size(size _dilatel, size_dilate));

cv: :morphologyEx(dst, dst, cv::MORPH_OPEN, element2);
cv: :morphologyEx(dst, dst, cv::MORPH _DILATE, element3);

cv::imshow(FINAL, dst);

51

map marker.cpp

#include <ros/ros.h>

#include <pcl_ros/point_cloud.h>

#include <pcl/point_types.h>

#include <pcl_ros/transforms.h>

#include <pcl/conversions.h>

#include <pcl/PCLPointCloud2.h>

#include <pcl_conversions/pcl_conversions.h>
#include <visualization msgs/Marker.h>

#include "detect_garbage/pixel_coordinates.h"

sensor_msgs: :PointCloud2 my_pcl;

int count = O;

bool calc(
detect_garbage: :pixel_coordinates::Request &req,
detect_garbage: :pixel_coordinates: :Response &res);

void callback(const sensor_msgs::PointCloud2ConstPtr& msg)

{
my_pcl = *msg;

int main (int argc, char **xargv)
{
ros::init(argc, argv, "map_marker");

ros: :NodeHandle n;

ros::Subscriber sub = n.subscribe<sensor_msgs::PointCloud2>

("/camera/depth_registered/points", 1, callback);

52

ros: :ServiceServer service = n.advertiseService(

"pixel coordinates", calc);

ros::spin(Q);

return O;

bool calc(
detect_garbage: :pixel_coordinates::Request &req,

detect_garbage: :pixel _coordinates: :Response &res)

ros: :NodeHandle nh;

ros: :Publisher marker_pub;

int arrayPosition = req.v*my_pcl.row_step + req.u*my_pcl.point_step;
int arrayPosX = arrayPosition
+ my_pcl.fields[0].offset; // X has an offset of 0O
int arrayPosY = arrayPosition
+ my_pcl.fields[1].offset; // V has an offset of 4
int arrayPosZ = arrayPosition
+ my_pcl.fields[2].offset; // Z has an offset of &

float X = 0;
float Y = 0;
float Z = 0;

memcpy (&X, &my_pcl.datalarrayPosX], sizeof(float));
memcpy (&Y, &my_pcl.datalarrayPosY], sizeof(float));
memcpy (&Z, &my_pcl.datalarrayPosZ], sizeof (float));

ROS_INFO("%f %f %", X,Y,Z);

res.x

I
<

res.y Y;

23

res.z = 7Z;

/*
// TF
tf::Vector3 point(res.z,res.y,res.z);
tf::TransformListener listener;
tf::StampedTransform transform;
try{

listener. lookupTransform("/map",

"/camera_color_frame", ros::Time::now(), transform);

}
catch (tf::TransformException ex){

ROS_WARN("Map to camera transform unavailable /s", ex.what());
}

tf::Vector3 point_bl = transform * point;

ROS_INFO("Yf %f %f", point_bl[0],point_bl[1],point_bl[2]);
*/

// Set our shape type to be a sphere

uint32_t shape = visualization_msgs::Marker: :SPHERE;

visualization_msgs::Marker marker;
// Set the frame ID and timestamp.
marker.header.frame_id = "/camera color optical frame';

marker.header.stamp = ros::Time: :now();

// Set the namespace and td for this marker.

marker.ns = "basic_shapes";

marker.id count;

// Set the marker type.

marker.type = shape;

o4

// Set the marker action.
// Options are ADD, DELETE, and new in ROS Indigo: 3 (DELETEALL)

marker.action = visualization_msgs::Marker: :ADD;

// Set the pose of the marker.
// This ts a full 6DOF pose
// relative to the frame/time specified in the header

marker.pose.position.x = res.x;

marker.pose.position.y = res.y;

marker.pose.position.z = res.z;

marker.pose.orientation.x = 0.0;

marker.pose.orientation.y = 0.0;

marker.pose.orientation.z = 0.0;

marker.pose.orientation.w = 1.0;

// Set the scale of the marker -- 1zlxl here means Im on a stide
marker.scale.x = 0.1;

marker.scale.y = 0.1;

marker.scale.z = 0.1;

// Set the color -- be sure to set alpha to something nmon-zero!

marker.color.r = 1.0f;

marker.color.g = 0.0f;
marker.color.b = 0.0f;
marker.color.a = 1.0;

marker.lifetime = ros::Duration();

marker_pub = nh.advertise<visualization_msgs: :Marker>

("/visualization marker", 20, 1);

ROS_ERROR("Waiting for subscibers");

while (marker_pub.getNumSubscribers()==0)
{

95

}
ROS_ERROR("Got subscriber");

marker_pub.publish(marker) ;
count++;

return true;

laser measure.py

#!/usr/bin/env python

import rospy

from sensor_msgs.msg import LaserScan

def callback(msg):
print msg.ranges[270]

rospy.init_node('sub node')

sub = rospy.Subscriber("/scan", LaserScan, callback)

rospy.spin()

56

collect data node.py

#!/usr/bin/env python

import argparse #Read command line arguments
import numpy as np #Arrays and opencv images
import rospy #ros python module

import cv2

from cv_bridge import CvBridge, CvBridgeError

from sensor_msgs.msg import Image, LaserScan

bridge = CvBridge()
cv_image = []
laser_scan = []

image stamp = []

def ImageReceivedCallback(data):
global cv_image
global bridge
global image_stamp

#print ("Received image")
try:

cv_image = bridge.imgmsg to_cv2(data, "bgr8")

image header = data.header

o7

image stamp = data.header.stamp

except CvBridgeError as e:

print(e)

def LaserReceivedCallback(data):

global laser_scan

print ("Received laser")

laser_scan = data

H o
#-—— MAIN

e
if __name__ == "_main_ "

global cv_image

global image_stamp

ap = argparse.ArgumentParser ()
ap.add_argument("-p", "--capture path",
help = "path to the capture folder", default = ".")

args = vars(ap.parse_args())

rospy.init _node('collect data node') #ros node init
cv2.namedWindow ("Camera", cv2.WINDOW_NORMAL)

h = open('laser.txt','w')

hi = open('image stamps.txt','w')

o8

image_sub = rospy.Subscriber("/camera/color/image raw",
Image, ImageReceivedCallback)
laser_sub = rospy.Subscriber("/scan",

LaserScan, LaserReceivedCallback)

#time for the tf listener to receive some transforms

rospy.sleep(rospy.Duration(0.1))

rate = rospy.Rate(100) # 10hz

count = 1

while not rospy.is_shutdown():

#print ("One iteration complete™)

#cv2. imshow("Camera", cv_image)

key = (cv2.waitKey(20) & 255)
#print ("key = " + str(key))

#<timestamp> StartAngleRads AngleIncrementRads
#EndAngleRads RangeUnitType NoAngles [Ranges]
range _unit_type = 3 #for meters

ss_ranges = " ".join(["},.8f" 7 i for i in laser_scan.ranges])

ss_time = str(laser_scan.header.stamp.secs) + "."
+ str(laser_scan.header.stamp.nsecs)

ss = ss_time + " " + str(laser_scan.angle min)
+ " " + str(laser_scan.angle_increment) + " "

+ str(laser_scan.angle max) + " "

+ str(range_unit_type) + " " + str(len(laser_scan.ranges))

+ " " + ss_ranges + "\n"

h.write(ss)

39

if key == 113: #q for quit
print ("Quit")
break
elif key == 115: #s for save
print("Saving image and laser scan number " + str(count))

cv2.imwrite("image " + str(count) + ".bmp", cv_image)

ss = str(image_stamp.secs) + "." + str(image_stamp.nsecs)
+ " " + str(image_stamp.secs) + "."
+ str(image_stamp.nsecs) + "\n"

hi.write(ss)

count += 1

rate.sleep()

h.close()
hi.close()

60

Bibliography

Fankhauser, P. et al., 2014. Robot-centric elevation mapping with uncertainty estimates.

In International conference on climbing and walking robots (clawar).

Fankhauser, P., Bloesch, M. & Hutter, M., 2018. Probabilistic terrain mapping for mobile
robots with uncertain localization. IEEE Robotics and Automation Letters (RA-L), 3(4),
pp.3019-3026.

Guerrero, J. et al., 2015. Towards LIDAR-RADAR based Terrain Mapping for Traversabil-
ity Analysis. In 2015 IEEE International Workshop on Advanced Robotics and its Social
Impacts (ARSO 2015). Lyon, France. Available at: https://hal.archives-ouvertes.fr/
hal-01518756.

Hornung, A. et al., 2013. OctoMap: An efficient probabilistic 3D mapping framework

based on octrees. Autonomous Robots. Available at: http://octomap.github.com.

Kassir, A. & Peynot, T., 2010. Reliable automatic camera-laser calibration. In Proceed-

ings of the australasian conference on robotics and automation.

Labbé, M. & Michaud, F., 2019. RTAB-map as an open-source lidar and visual slam
library for large-scale and long-term online operation. In Journal of Field Robotics. pp.
416-446.

Morgan Quigley, K.C., Brian Gerkey, 2009. ROS: An open-source robot operating system.

In Willow garage, menlo park, ca.

OpenCV, 2019. OpenCV documentation. Available at: https://docs.opencv.org/master/

index.html.

Otsu, N., 1979. A Threshold Selection Method from Gray-level Histograms. I[EEE
Transactions on Systems, Man and Cybernetics, 9(1), pp.62-66. Available at: http:
//dx.doi.org/10.1109/TSMC.1979.4310076.

Peynot, T. & Kassir, A., 2010. Laser-camera data discrepancies and reliable perception
in outdoor robotics. In Proceesdings of the ieee/rsj international conference on intelligent

robots and systems.

Redmon, J. et al., 2016. You only look once: Unified, real-time object detection. 2016
IEEFE Conference on Computer Vision and Pattern Recognition (CVPR), pp.779-788.

Robotis, 2019. Turtlebot3 e-manual. Available at: http://emanual.robotis.com/docs/en/
platform/turtlebot3/overview/.

61

https://hal.archives-ouvertes.fr/hal-01518756
https://hal.archives-ouvertes.fr/hal-01518756
http://octomap.github.com
https://docs.opencv.org/master/index.html
https://docs.opencv.org/master/index.html
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

Robotis-Japan, 2019. Turtlebot3 3D-slam using rtab-map with jetson tx2. GitHub repos-
itory. Available at: https://github.com/ROBOTIS-JAPAN-GIT /turtlebot3_slam_3d.

YoonSeok Pyo, R.J., HanCheol Cho, 2017. ROS robot programming (en), ROBOTIS
Co.,Ltd.

62

https://github.com/ROBOTIS-JAPAN-GIT/turtlebot3_slam_3d

	List of figures
	List of tables
	Abbreviations
	Introduction
	Background
	Introducing ACRO
	Introducing Colruyt Group

	Problem description
	Contributions
	Summary of chapters

	Literature survey
	Introduction
	Vision methods
	Traversability analysis methods
	Occupancy map:
	Elevation map:
	3D map:

	Conclusions

	Implementation of dirt detection
	Introduction
	Learning ROS
	Knowing Turtlebot3
	Modifications

	Results of the mapping
	Image of the color camera:
	Image of the depth camera:
	Map:

	Implementation of the computer vision algorithm
	Color threshold:
	Morphological operations:

	Positioning objects
	Angle and distance:
	Point Cloud:

	Camera calibration
	Introduction
	RADLOCC Toolbox
	Point cloud to laser scan and 2D calibration
	Third point method
	Conclusions

	Results and conclusions
	Introduction
	Tests
	Recognizing
	Positioning

	Future work
	Conclusion

	Appendix 1: Code
	img_processing.cpp
	map_marker.cpp
	laser_measure.py
	collect_data_node.py

	Bibliography

