
Group Decision and Negotiation manuscript No.
(will be inserted by the editor)

An analysis of Winsorized weighted means

Abstract The Winsorized mean is a well-known robust estimator of the pop-
ulation mean. It can also be seen as a symmetric aggregation function (in fact,
it is an ordered weighted averaging (OWA) operator), which means that the
information sources (for instance, criteria or experts’ opinions) have the same
importance. However, in many practical applications (for instance, in many
multiattribute decision making (MADM) problems) it is necessary to consider
that the information sources have different importance. For this reason, in
this paper we propose a natural generalization of the Winsorized means so
that the sources of information can be weighted differently. The new func-
tions, which we will call Winsorized weighted means, are a specific case of
the Choquet integral and they are analyzed through several indices for which
we give closed-form expressions: the orness degree, k-conjunctiveness and k-
disjunctiveness indices, veto and favor indices, Shapley values and interaction
indices. We also provide a closed-form expression for the Möbius transform
and we show how we can aggregate data so that each information source has
the desired weighting and outliers have no influence in the aggregated value.

Keywords Winsorized weighted means · Winsorized means · Choquet
integral · Shapley values · SUOWA operators.

1 Introduction

The aggregation of information is a fundamental process in many fields of sci-
ence. Many times, this process is carried out through functions that, from a
given data set, return a single value. Obviously, the choice of the function is
of crucial importance in this process (see, for instance, Zhang and Xu 2014).
For instance, in the field of statistics, it is well known that the mean is quite
sensitive to extreme values and, consequently, the sample mean is not a robust
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estimator of the population mean. So, the mean value may not be very repre-
sentative in data where outliers may occur. For overcoming this shortcoming,
other estimators have been proposed in the literature (see, for instance, Huber
and Ronchetti 2009). Two of the most popular are the trimmed means and the
Winsorized means. In the trimmed means, the lowest and the highest values
are removed before calculating the mean whereas in the Winsorized means
they are replaced with the less extreme adjacent values.

Trimmed and Winsorized means can also be seen as symmetric aggrega-
tion functions. In fact, they are specific cases of OWA operators (Yager 1988):
Trimmed means are OWA operators associated with weighting vectors of the
form (0, . . . , 0, 1/m, . . . , 1/m, 0, . . . , 0) (where we are supposing that n − m
values have been removed) while Winsorized means are OWA operators asso-
ciated with weighting vectors of the form (0, . . . , 0, (r+1)/n, 1/n, . . . , 1/n, (s+
1)/n, 0, . . . , 0) (where we are supposing that the r lowest values and the s high-
est values have been replaced). The use of symmetric functions means that all
information sources (for instance, criteria or experts’ opinions) are treated
equally. However, in many practical applications (for instance, in many mul-
tiattribute decision making (MADM) problems) it is necessary to consider
that the information sources have different importance. But, as what we have
previously reported for the mean value, the use of the weighted mean, which
is known in the MADM literature as the simple additive weighting (SAW)
method, may not be adequate in presence of outliers. For this reason, several
proposals have been suggested in the literature with the purpose of introduc-
ing different weights for the information sources in an OWA-type aggregation
(see, among others, Torra 1997, Llamazares 2013, 2015a, and Beliakov and
Dujmović 2016).

It is interesting to note that the three families of functions introduced by
the above-mentioned authors are specific cases of the Choquet integral (Cho-
quet 1953). Since its appearance, the Choquet integral has received increased
attention from the scientific community, due mainly to its simplicity, versa-
tility and good properties (for instance, it is well known that the Choquet
integral is continuous, monotonic, idempotent, compensative, and ratio scale
invariant; see Grabisch et al 2009). For these reasons, the Choquet integral has
been a widely used tool in economics to deal with problems related to decision
making under risk and uncertainty, finance, insurance, social welfare and qual-
ity of life (see, for instance, Heilpern 2002). Likewise, the integral of Choquet
has also received much attention in the MADM literature because it allows to
take into account the interaction that usually exists between the information
sources, which is very useful in this field (among the vast literature that exists
on this topic, see, for instance, Grabisch 1995; Grabisch and Labreuche 2010,
2016).

The aim of this paper is to present a natural generalization of the Win-
sorized means that allows us to consider weighting vectors for the information
sources. The new functions, which we will call Winsorized weighted means, are
also a specific case of the Choquet integral whose capacities are known. The
analysis of these functions is carried out through the study of several indices
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that provide us with a more precise knowledge about their behavior in the
aggregation processes. In this sense, we give closed-form expressions for the
following indices: the orness degree (Marichal 2004), k-conjunctiveness and
k-disjunctiveness indices (Marichal 2007), veto and favor indices (Marichal
2004, 2007), Shapley values (Shapley 1953), and interaction indices (Owen
1972; Murofushi and Sugeno 1993); and also for their Möbius transform (Rota
1964). Of particular interest are the closed-form expressions obtained for the
Shapley values because they reflects the global importance of each information
source (as it is well known, in the case of a Choquet integral with respect to a
capacity µ, the importance of the ith information source is no given by µ({i})
but by importance indices, and, among them, Shapley values are usually the
most used). From them, we can determine the weights that allow us to get
Shapley values previously fixed, and, in this way, we can aggregate data so
that each information source has the desired weighting and outliers have no
influence in the aggregated value (the procedure used will be illustrated with
an example in Section 5).

The remainder of the paper is organized as follows. In Section 2 we recall
some basic concepts on Choquet integrals. Section 3 is devoted to introduce
the Winsorized weighted means. In Section 4 we show the main results of the
paper: the Möbius transform and several indices of the Winsorized weighted
means are given in closed-form expressions. In Section 5 we show by an exam-
ple how Winsorized weighted means can be applied. Finally, some concluding
remarks are provided in Section 6. All proofs are given in the Appendix.

2 Choquet integral

The following notation will be used throughout the paper: N = {1, . . . , n};
given T ⊆ N , |T | will denote the cardinality of T ; and vectors will be denoted
in bold. Given a vector x ∈ Rn, (·) and [·] will denote permutations such that
x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n].

Choquet integral was introduced by Choquet (1953) by using the concept
of capacity (Choquet 1953), which was also introduced in an independent way
by Sugeno (1974) under the name of fuzzy measure.

Definition 1 A capacity (or fuzzy measure) µ on N is a set function, µ :
2N −→ [0,∞) satisfying µ(∅) = 0 and µ(A) ≤ µ(B) whenever A ⊆ B. A
capacity µ is said to be normalized if µ(N) = 1.

The Choquet integral is a functional that generalizes the Lebesgue integral
(see, for instance, Choquet 1953, Murofushi and Sugeno 1991, and Denneberg
1994). Nevertheless, in the discrete case, it can be seen as an aggregation
function over Rn (Grabisch et al 2009, p. 181). Notice that we define the
Choquet integral for all vectors of Rn instead of nonnegative vectors given
that we are actually considering the asymmetric Choquet integral with respect
to µ (on this, see again Grabisch et al 2009, p. 182).
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Definition 2 Given a capacity µ on N , the Choquet integral with respect to
µ is the function Cµ : Rn −→ R defined by

Cµ(x) =

n∑
i=1

µ(A(i))
(
x(i) − x(i−1)

)
,

where A(i) = {(i), . . . , (n)}, and we adopt the convention that x(0) = 0.

Weighted means and OWA operators (Yager 1988) are two of best well-
known specific cases of Choquet integrals. Both are defined through weighting
vectors; that is, non-negative vectors whose components sum to one.1

Definition 3

1. Given a weighting vector p, the weighted mean associated with p is the
function Mp : Rn −→ R defined by

Mp(x) =

n∑
i=1

pixi.

2. Given a weighting vector w, the OWA operator associated with w is the
function Ow : Rn −→ R defined by

Ow(x) =

n∑
i=1

wix[i],

where, as we have said, [·] is a permutation on N such that x[1] ≥ · · · ≥ x[n].

3 Winsorized weighted means

Winsorized means received this name in honor of Winsor, who suggested re-
placing the magnitude of extreme observations by the magnitude of the next
largest (or smallest) observation (see Dixon 1960 and Wainer 1976). Although
it is common to define the Winsorized means through the proportion of the
replaced values, we will use, for convenience, the number of replaced values
(see, for instance, Barnett and Lewis 1994).

Definition 4 Given an integer r, with 0 ≤ r < n/2, the r-fold Winsorized
mean is defined by

Mr(x) =
1

n

(
rx(r+1) +

n−r∑
i=r+1

x(i) + rx(n−r)

)
1 It is worth noting that the choice of the weight distribution has generated a large

literature (in the case of OWA operators, see, for instance, Llamazares 2007, Liu 2011, Bai
et al 2017 and Lenormand 2018).
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Notice that the arithmetic mean (when r = 0) and the median (when
r is the largest integer less than n/2) are specific cases of the Winsorized
means. The above definition can be easily extended to consider asymmetrical
Winsorized means. For this, we will use the following notation:

R = {(r, s) ∈ {0, 1, . . . , n− 1}2 | r + s < n}.

Definition 5 Let (r, s) ∈ R. The (r, s)-fold Winsorized mean is defined by

M (r,s)(x) =
1

n

(
rx(r+1) +

n−s∑
i=r+1

x(i) + sx(n−s)

)
.

Note that the kth order statistic
(
OSk(x) = x(k)

)
is obtained with the pair

(k − 1, n − k) ∈ R; and the extreme cases of these pairs allow us to get the
minimum and the maximum. Obviously, asymmetrical Winsorized means are
specific cases of OWA operators.

Winsorized means can also be easily extended to include a weighting vector
p: Given x, it is sufficient to replace the r lowest values and the s highest
values by x(r+1) and x(n−s), respectively, and to consider the weighted mean
associated with p.

Definition 6 Let p be a weighting vector and (r, s) ∈ R. The (r, s)-fold
Winsorized weighted mean is defined by

M (r,s)
p (x) =

(
r∑
i=1

p(i)

)
x(r+1) +

n−s∑
i=r+1

p(i)x(i) +

(
n∑

i=n−s+1

p(i)

)
x(n−s).

Notice that M
(0,0)
p = Mp for any weighting vector p, and M

(k−1,n−k)
p =

OSk for any k ∈ N and any weighting vector p. Moreover, it is worth empha-
sizing that Winsorized weighted means have been obtained as specific cases of
SUOWA operators (Llamazares 2018b); which are in turn particular cases of
the Choquet integral (on SUOWA operators see Llamazares 2015a,b, 2016a,b,
2018a,b, 2019b,a). It is easy to see (Llamazares 2018b) that the capacity as-
sociated with the (r, s)-fold Winsorized weighted mean is

µ(r,s)
p (T ) =


0, if |T | ≤ s,∑
i∈T pi, if s < |T | < n− r,

1, if |T | ≥ n− r,
(1)

where T ⊆ N . In the specific case of order statistics, where r+ s = n− 1, the
capacity is

µ(r,s)
p (T ) =

{
0, if |T | ≤ s,
1, if |T | ≥ n− r = s+ 1.

(2)
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4 The results

There exist in the literature several indices such as the orness and andness
degrees, the tolerance indices, the importance and interaction indices, etc.,
that allow us to know the behavior of the functions used in the aggregation
processes. The aim of this section is to analyze the Winsorized weighted means
by showing closed-form expressions of the following indices: the orness degree,
k-conjunctiveness and k-disjunctiveness indices, veto and favor indices, the
Shapley values, and interaction indices. Moreover, we also provide the expres-
sion of the Möbius transforms of the capacities associated with the Winsorized
weighted means.

4.1 The orness degree

The notion of orness was introduced by Yager (1988) in the field of OWA
operators to measure the degree to which the aggregation is disjunctive (i.e.,
it is like an or operation). Subsequently, and by using the notion of average
value, Marichal (1998, 2004) generalized it to the case of Choquet integrals
and gave an expression in terms of the capacity.

Remark 1 Let µ be a normalized capacity on N . Then

orness(Cµ) =
1

n− 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ).

The orness degree of the functions M
(r,s)
p is shown in the next proposition.

Proposition 1 Let p be a weighting vector and (r, s) ∈ R. Then,

orness
(
M (r,s)

p

)
=

1

2
+
r(r + 1)− s(s+ 1)

2n(n− 1)
.

It is worth noting that the orness degree of M
(r,s)
p does not depend on the

weighting vector p; that is, orness
(
M

(r,s)
p

)
= orness

(
M (r,s)

)
for any weight-

ing vector p. Other immediate consequences of the previous proposition are
gathered in the following corollary.

Corollary 1 Let (r, s) ∈ R. Then:

1. If r > s then orness
(
M (r,s)

)
> 0.5; if r = s then orness

(
M (r,s)

)
= 0.5;

and if r < s then orness
(
M (r,s)

)
< 0.5.

2. orness
(
M (r,s)

)
= 1− orness

(
M (s,r)

)
.

3. If r + s ≤ n− 2, then

orness
(
M (r+1,s)

)
= orness

(
M (r,s)

)
+

r + 1

n(n− 1)
,

orness
(
M (r,s+1)

)
= orness

(
M (r,s)

)
− s+ 1

n(n− 1)
.
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4. If r + s ≤ n− 3, then

orness
(
M (r+1,s+1)

)
= orness

(
M (r,s)

)
+

r − s
n(n− 1)

.

The properties given in the previous corollary can be easily observed in
Table 1, where we show the orness degree of the functions M (r,s) when n = 5.

Table 1 Orness degree of the functions M(r,s) when n = 5.

r
s 4 3 2 1 0

0 0 0.2 0.35 0.45 0.5

1 0.25 0.4 0.5 0.55

2 0.5 0.6 0.65

3 0.75 0.8

4 1

Notice that Table 1 has a triangular structure (there are no values below
the main diagonal of the table) so that the values increase as we move down
or to the right. Moreover, in the main diagonal appear the orness degree of
the order statistics (from the minimum to the maximum), and in the upper
right corner appears the orness degree of the weighted mean.

It is also interesting to note that the properties given in Corollary 1 are
reflected in the structure of Table 1:

1. The values below the secondary diagonal are greater than 0.5; the values
in the secondary diagonal are 0.5; and the values above the secondary
diagonal are less than 0.5.

2. The symmetric values with respect to the secondary diagonal sum to one.
3. The value of a cell in the row labeled r increases the amount r+1

n(n−1) when we

move a position down; the value of a cell in the column labeled s decreases
the amount s+1

n(n−1) when we move a position to the left (alternatively, the

value of a cell in the column labeled s increases the amount s
n(n−1) when

we move a position to the right).
4. The value of a cell labeled (r, s) varies the amount r−s

n(n−1) when we move

down to the left (alternatively, the value of a cell labeled (r, s) increases
the amount r+s+1

n(n−1) when we move down to the right).

4.2 k-conjunctiveness and k-disjunctiveness indices

The notions of k-conjunctive and k-disjunctive Choquet integrals (which were
originally called at most k-intolerant and at most k-tolerant Choquet integrals)
were introduced by Marichal (2007) to determine the conjunctive/disjunctive
character of aggregation (see also Komorńıková and Mesiar 2011).
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Definition 7 Let k ∈ N and let µ be a normalized capacity on N .

1. Cµ is k-conjunctive if Cµ ≤ OSk; i.e., Cµ(x) ≤ x(k) for any x ∈ Rn.
2. Cµ is k-disjunctive if Cµ ≥ OSn−k+1; i.e., Cµ(x) ≥ x(n−k+1) for any x ∈ Rn.

Since k-conjunctive and k-disjunctive Choquet integrals are infrequent in
practice, Marichal (2007) suggested two indices for measuring the degree to
which a Choquet integral is k-conjunctive or k-disjunctive.

Definition 8 Let k ∈ N \ {n} and let µ be a normalized capacity on N . The
k-conjunctiveness and k-disjunctiveness indices for Cµ are defined by

conjk(Cµ) = 1− 1

n− k

n−k∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ),

disjk(Cµ) =
1

n− k

n∑
t=k

1(
n
t

) ∑
T⊆N
|T |=t

µ(T )− 1

n− k
=

1

n− k

n−1∑
t=k

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ).

In the following propositions we show the k-conjunctiveness and k-disjunc-

tiveness indices for the functions M
(r,s)
p .

Proposition 2 Let p be a weighting vector, (r, s) ∈ R, and k ∈ N \ {n}.
Then,

conjk
(
M (r,s)

p

)
=


1 if k ≥ n− s,
n(n−1)+s(s+1)−k(k−1)

2n(n−k) if r < k < n− s,
n(n−1)+s(s+1)−r(r+1)

2n(n−k) if k ≤ r.

Proposition 3 Let p be a weighting vector, (r, s) ∈ R, and k ∈ N \ {n}.
Then,

disjk
(
M (r,s)

p

)
=


1 if k ≥ n− r,
n(n−1)+r(r+1)−k(k−1)

2n(n−k) if s < k < n− r,
n(n−1)+r(r+1)−s(s+1)

2n(n−k) if k ≤ s.

As in the case of the orness degree, k-conjunctiveness and k-disjunctiveness

indices do not depend on the weighting vector p; that is, conjk
(
M

(r,s)
p

)
=

conjk
(
M (r,s)

)
and disjk

(
M

(r,s)
p

)
= disjk

(
M (r,s)

)
for any weighting vector p.

Notice also that conjk
(
M (r,s)

)
= disjk

(
M (s,r)

)
.
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4.3 Veto and favor indices

The notions of veto and favor (originally called dictator) were suggested by
Dubois and Koning (1991) in the framework of the social choice functions.

Definition 9 Let j ∈ N and let µ be a normalized capacity on N .

1. j is a veto for Cµ if Cµ(x) ≤ xj for any x ∈ Rn.
2. j is a favor for Cµ if Cµ(x) ≥ xj for any x ∈ Rn.

Since veto and favor criteria are rather unusual, Marichal (2004, 2007)
proposed two indices to measure the degree with which the behavior of a
criterion is like a veto or a favor.

Definition 10 Let j ∈ N and let µ be a normalized capacity on N . The veto
and favor indices of criterion j with respect to µ are defined by

veto(Cµ, j) = 1− 1

n− 1

n−1∑
t=1

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(T ),

favor(Cµ, j) =
1

n− 1

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(T ∪ {j})− 1

n− 1
.

In the following propositions we show the veto and favor indices of criteria

with respect to the capacities µ
(r,s)
p .

Proposition 4 Let p be a weighting vector, (r, s) ∈ R and j ∈ N . Then,

veto
(
M (r,s)

p , j
)

= 1− r

n− 1
−

(1− pj)
(
(n− r)(n− r − 1)− s(s+ 1)

)
2(n− 1)2

.

Proposition 5 Let p be a weighting vector, (r, s) ∈ R and j ∈ N . Then,

favor
(
M (r,s)

p , j
)

= (1− pj)
(n− 1)(n− 2) + r(r + 1)− s(s− 1)

2(n− 1)2

+ pj

(
1− s

n− 1

)
.

4.4 The Shapley values

The Shapley values were introduced in the cooperative game theory as a so-
lution to the problem of distributing the value µ(N) among the players. They
can be interpreted as a type of average of the contribution of player j alone
in all coalitions (see Shapley 1953; Marichal 2007).
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Definition 11 Let j ∈ N and let µ be a normalized capacity on N . The
Shapley value of criterion j with respect to µ is defined by

φj(µ) =
1

n

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

(
µ(T ∪ {j})− µ(T )

)
.

The Shapley values of the capacities µ
(r,s)
p are shown in the following propo-

sition.

Proposition 6 Let p be a weighting vector, (r, s) ∈ R and j ∈ N . Then,

φj
(
µ(r,s)
p

)
=
r + s

n− 1

1

n
+

(
1− r + s

n− 1

)
pj . (3)

It is worth mentioning that the Shapley value φj
(
µ
(r,s)
p

)
is a convex com-

bination between 1/n and pj , which are the Shapley values of the capacities

of any OWA operator (for instance, µ
(r,n−1−r)
p or µ

(n−1−s,s)
p ) and µ

(0,0)
p , re-

spectively. Moreover, given j ∈ N , the values φj
(
µ
(r,s)
p

)
are the same for all

capacities µ
(r,s)
p having the same value of r+s. Other immediate consequences

of the previous proposition are gathered in the following corollary.

Corollary 2 Let p be a weighting vector and j ∈ N .

1. If r + s = n− 1 then φj
(
µ
(r,s)
p

)
= 1/n.

2. If r + s < n− 1 then

pj >
1

n
⇒ φj

(
µ(r,s)
p

)
>

1

n
,

pj =
1

n
⇒ φj

(
µ(r,s)
p

)
=

1

n
,

pj <
1

n
⇒ φj

(
µ(r,s)
p

)
<

1

n
.

Since the Shapley value reflects the global importance of each criterion, it
seems very interesting to be able to determine the weights that allow us to
obtain Shapley values previously fixed. Notice that when r+ s < n− 1 we can

express the weight pj in terms of φj(µ
(r,s)
p ):

pj =
n− 1

n− 1− (r + s)

(
φj
(
µ(r,s)
p

)
− r + s

n− 1

1

n

)
=

n− 1

n− 1− (r + s)

(
φj
(
µ(r,s)
p

)
− 1

n
+

1

n

(
1− r + s

n− 1

))
=

1

n
+

n− 1

n− 1− (r + s)

(
φj
(
µ(r,s)
p

)
− 1

n

)
.

From the previous expressions it is easy to check that pj ≥ 0 if and only

if φj(µ
(r,s)
p ) ≥ r+s

n(n−1) , and
∑n
j=1 pj = 1. Therefore we have the following

corollary.
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Corollary 3 Let (φ1, . . . , φn) be a weighting vector. Given (r, s) ∈ R such
that r + s < n− 1, the following conditions are equivalent:

1. min
j∈N

φj ≥
r + s

n(n− 1)
.

2. The vector p defined by

pj =
1

n
+

n− 1

n− 1− (r + s)

(
φj −

1

n

)
, j = 1, . . . , n,

is a weighting vector such that φj(µ
(r,s)
p ) = φj for any j ∈ N .

4.5 Interaction indices

Interaction indices allow us to measure the interaction degree between two
elements of N . This concept was initially proposed by Owen (1972) under
the name of covalue, and, in an independent way, by Murofushi and Soneda
(1993). Afterwards, it has been generalized by Grabisch (1997) to subsets of
N with any number of elements.

Definition 12 Let µ be a normalized capacity on N . The interaction index
of elements j, k ∈ N is defined by

Ijk
(
µ
)

=
1

n− 1

n−2∑
t=0

1(
n−2
t

)
·

∑
T⊆N\{j,k}
|T |=t

(
µ(T ∪ {j, k})− µ(T ∪ {j})− µ(T ∪ {k}) + µ(T )

)
.

We next give the interaction indices of the capacities µ
(r,s)
p .

Proposition 7 Let p be a weighting vector, (r, s) ∈ R and j, k ∈ N . Then,

Ijk
(
µ(r,s)
p

)
=



1
n−1 if r = 0 and s = n− 1,
1

n−2

(
pj + pk − 1

n−1

)
if r = 0 and 0 < s < n− 1

− 1
n−2

(
pj + pk − 1

n−1

)
if s = 0 and 0 < r < n− 1

− 1
n−1 if s = 0 and r = n− 1,

0 otherwise.

4.6 The Möbius transform

The Möbius transform (Rota 1964) is a relevant concept in several fields such
as combinatorics and cooperative game theory. In this last field it is known as
Harsanyi dividends (Harsanyi 1959) and it can be interpreted as the contri-
bution of each coalition by itself, without considering its parts.
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Definition 13 Let µ be a normalized capacity on N . The Möbius transform
of µ is the set function mµ on N defined by

mµ(A) =
∑
B⊆A

(−1)|A\B|µ(B) (A ⊆ N).

It is worth mentioning that given mµ, it is possible to recover µ by the
expression

µ(A) =
∑
B⊆A

mµ(B) (A ⊆ N),

which it is known as the Zeta transform. Moreover, the Shapley values are
related to the Möbius transform through the following expression:

φj(µ) =
∑

j∈A⊆N

mµ(A)

|A|
.

In the following proposition we give the Möbius transforms of the capacities

µ
(r,s)
p .

Proposition 8 Let p be a weighting vector and (r, s) ∈ R. Then,

mµ(r,s)
p (A) =



0 if |A| ≤ s,

(−1)|A|−s−1
(
|A| − 2

s− 1

)(∑
i∈A

pi

)
if s < |A| < n− r,(∑

i∈A
pi

)(
(−1)|A|−s−1

(
|A| − 2

s− 1

)
−(−1)|A|−n+r

(
|A| − 2

n− r − 2

))
+ (−1)|A|−n+r

(
|A| − 1

n− r − 1

)
if |A| ≥ n− r.

5 Example

In this section we show the use of Winsorized weighted means from a prac-
tical point of view. For this, we will use an example taken from Llamazares
(2019b). Suppose that the Department of Mathematics in a Faculty of Eco-
nomics offers a research assistantship for the students accepted into the M.
Sc. in Economics. Applicants are evaluated with respect to seven subjects:
Mathematics I (MatI), Mathematics II (MatII), Mathematics III (MatIII),
Statistics I (StaI), Statistics II (StaII), Econometrics I (EcoI), and Economet-
rics II (EcoII), and the members of the committee would like to take into
account the following aspects:
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1. Each one of the first three subjects is considered twice as important as
each one of the remaining four.

2. Outliers should be discarded.2

It is worth to notice that the above requirements fit perfectly into a Win-
sorized weighted mean-type aggregation where, in principle, the weighting vec-
tor p is (0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1). Table 2 collects the marks obtained by
three students (marks are given on a scale from 0 to 10). Note that, in Statis-
tics I, student A gets its highest mark whereas students B and C get their
lowest grades. Furthermore, these marks are also very different from those ob-
tained in the other subjects and, as we will see later, they could be considered
outliers.

Table 2 Marks of three students in the different subjects.

Student MatI MatII MatIII StaI StaII EcoI EcoII

A 7.9 7.8 7.7 9.8 7.5 7.6 7.4
B 7.7 7.8 7.9 5.2 8.3 8.4 8.5
C 8.2 8.4 8.5 5.2 7.7 7.8 7.9

Table 3 gathers the ranking of the three students when the Winsorized
weighted means are used. As one can observe, student A wins when the
weighted mean, the minimum or the maximum are used. Moreover, he/she
also wins with the pairs (0, 5), (0, 4), and (0, 3). In the case of student B,
he/she is the winner with the pairs (4, 2), (4, 1), and (4, 0); and he/she ties
with C in the first position with the order statistics OS2, OS3, OS4 and OS6.
In the remaining cases, the winner is student C.

Table 3 Ranking of the students when the functions M
(r,s)
p are used.

r
s 6 5 4 3 2 1 0

0 A�B∼C A�B∼C A�C�B A�C�B C�A∼B C�A�B A�C�B

1 B∼C�A C�B�A C�B�A C�B�A C�B�A C�B�A

2 B∼C�A C�B�A C�B�A C�B�A C�B�A

3 B∼C�A C�B�A C�B�A C�B�A

4 B�C�A B�C�A B�C�A

5 B∼C�A C�B�A

6 A�B∼C

2 In this framework, outliers may be due to the fact that the same subject may have been
taught by different teachers, students may have been ill, or they may have copied answers,
etc.
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In Table 4 we collect the Shapley values of the Winsorized weighted means
obtained by using expression (3). Notice that when r + s = 0 (that is, in the
case of the weighted mean) we get the desired values. However, as the value
of r + s increases, the Shapley values are approaching each other until they
finally coincide, what happens when r + s = 6 (in this case, the Winsorized
weighted means are order statistics and their Shapley values are 1/7).

Table 4 Shapley values of the Winsorized weighted means.

r + s φ1, φ2, φ3 φ4, φ5, φ6, φ7

0 0.2 0.1
1 0.190476 0.10714285
2 0.1809523 0.1142857
3 0.1714285 0.12142857
4 0.1619047 0.1285714
5 0.1523809 0.13571428
6 0.142857 0.142857

Given that the Shapley values reflect the global importance of each crite-
rion, the weighting vector p should be chosen so that the Shapley values are
0.2 (for the subjects MatI, MatII and MatIII) and 0.1 (for the remaining sub-
jects). This can be done by using Corollary 3. Notice that, since min

j∈N
φj = 0.1,

the weights, which are shown in Table 5, can only be obtained when r+s ≤ 4.

Table 5 Weights for which the Shapley values of the subjects are 0.2 and 0.1.

r + s p1, p2, p3 p4, p5, p6, p7

0 0.2 0.1
1 0.21142857 0.09142857
2 0.2285714 0.07857142
3 0.2571428 0.0571428
4 0.3142857 0.0142857

Table 6 shows the ranking of the students obtained through M
(r,s)
p when

the new weighting vectors are considered. It is interesting to note that now,
in all cases, except for the weighted mean, the winner is student C. In fact, in
all cases, except for the pairs (0, 0) and (0, 1), the ranking is C�B�A.

Notice that, from a practical point of view, it is necessary to choose a
Winsorized weighted mean to rate the students. For that, we can use the
following strategies:

1. To use a pair (r, s) previously fixed (some typical percentages are 10%,
15%, 20% or 25%; although smaller percentages are also used; see Hoitash
and Hoitash 2009). In this case the pair (r, s) is chosen independently of the



An analysis of Winsorized weighted means 15

Table 6 Ranking of the students when the new weights are used.

r
s 4 3 2 1 0

0 C�B�A C�B�A C�B�A C�A�B A�C�B

1 C�B�A C�B�A C�B�A C�B�A

2 C�B�A C�B�A C�B�A

3 C�B�A C�B�A

4 C�B�A

outliers present in the data. For instance, suppose we choose a percentage
of 20% at both ends. Then, in our example, 0.2 · 7 = 1.4, and when we
round down 1.4 to the nearest integer we have r = s = 1. As we can see in
Table 6, the winner is student C.

2. To choose a pair (r, s) so that the outliers of all students are removed.
For that, first of all we have to choose a method to detect outliers.3 Usual
procedures to detect outliers in the case of one-dimensional data are the
boxplot rule (Tukey 1977) and the MAD–median rule (see, for instance,
Iglewicz and Hoaglin 1993, Wilcox 2012, and Leys et al 2013). In our ex-
ample, with both methods we get the following outliers:
(a) For the student A: 9.8.
(b) For the student B: 5.2.
(c) For the student C: 5.2.
Therefore, to remove the outliers of the three students we should take the
pair (1, 1),4 and the winner is student C (see again Table 6).

6 Conclusion

In this paper we have generalized Winsorized means to include weighting vec-
tors. For this, we have introduced, in a natural way, a new family of functions
called Winsorized weighted means. These functions are a specific case of Cho-
quet integrals (in fact, they are a specific case of SUOWA operators) and their
capacities are relatively simple. This fact allows that several indices such as
the orness degree, the k-conjunctiveness and k-disjunctiveness indices, the veto
and favor indices, etc., can be given in closed-form expressions. Of particular
interest are the closed-form expressions obtained for the Shapley values be-
cause they reflects the global importance of each information source. From
them, we can determine the weights that allow us to get Shapley values previ-
ously fixed, and, in this way, we can aggregate data so that each information

3 There is an abundant literature on this subject; see, for instance, Iglewicz and Hoaglin
(1993), Barnett and Lewis (1994), Wilcox and Keselman (2003), Seo (2006), and Aggarwal
(2017).

4 In general, the pair (r, s) is obtained by taking r = max ri and s = max si, where (ri, si)
is the pair used for removing the outlier of the ith alternative.
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source has the desired weighting and outliers have no influence in the aggre-
gation. It is important to note that other families of functions built in the
framework of the Choquet integral do not exhibit this behavior (see Beliakov
2018).
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A Proofs

We first recall the definition and some properties of binomial coefficients (see,
for instance, Riordan (1968, pp. 1–3) and Grabisch (2016, p. 3)).

Remark 2 Let m ∈ N and k ∈ Z. Then:

1.

(
m

k

)
=


m!

k!(m− k)!
if 0 ≤ k ≤ m,

0 otherwise.

2.

(
m

k

)
=

(
m

m− k

)
.

3. If 0 ≤ k ≤ m, then

k∑
j=0

(−1)j
(
m

j

)
= (−1)k

(
m− 1

k

)
.

The following simple remarks on summation will be useful in some of the
proofs.

Remark 3 Let p, q ∈ N, with p ≤ q + 1.5 Then:

q∑
t=p

t =

q∑
t=1

t−
p−1∑
t=1

t =
q(q + 1)− p(p− 1)

2
.

Remark 4 Let p be a weighting vector. If ∅ ( A ⊆ N and t ≥ 1, then∑
T⊆A
|T |=t

∑
i∈T

pi =

(
|A| − 1

t− 1

)∑
i∈A

pi.

In particular, when A = N we have∑
T⊆N
|T |=t

∑
i∈T

pi =

(
n− 1

t− 1

) n∑
i=1

pi =

(
n− 1

t− 1

)
=

(
n

t

)
t

n
.

5 Notice that we use the convention
∑q

t=p f(t) = 0 when p > q.
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Remark 5 Let p be a weighting vector and j ∈ N . If t ≥ 1, then

∑
T⊆N\{j}
|T |=t

∑
i∈T

pi =

(
n− 2

t− 1

) n∑
i=1
i 6=j

pi =

(
n− 2

t− 1

)
(1− pj) =

(
n− 1

t

)
t(1− pj)
n− 1

.

Remark 6 Let p be a weighting vector and j, k ∈ N . If t ≥ 1, then

∑
T⊆N\{j,k}
|T |=t

∑
i∈T

pi =

(
n− 3

t− 1

) n∑
i=1
i6=j,k

pi =

(
n− 3

t− 1

)
(1− pj − pk)

=

(
n− 2

t

)
t(1− pj − pk)

n− 2
.

Proof of Proposition 1. Let p be a weighting vector and (r, s) ∈ R. Since

orness
(
M (r,s)

p

)
=

1

n− 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(r,s)
p (T ),

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish two cases:

1. If r + s = n− 1, then

orness
(
M (r,s)

p

)
=

1

n− 1

n−1∑
t=s+1

1 =
n− s− 1

n− 1
=

r

n− 1
.

2. If r + s < n− 1, then, by Remarks 4 and 3, we have

orness
(
M (r,s)

p

)
=

1

n− 1

n−r−1∑
t=s+1

1(
n
t

) ∑
T⊆N
|T |=t

∑
i∈T

pi + r


=

1

n− 1

(
1

n

n−r−1∑
t=s+1

t+ r

)

=
1

n− 1

(
(n− r)(n− r − 1)− s(s+ 1)

2n
+ r

)
=

1

n− 1

n(n− 1) + r(r + 1)− s(s+ 1)

2n

=
1

2
+
r(r + 1)− s(s+ 1)

2n(n− 1)
.

Notice that, when r+ s = n− 1, the previous expression returns r/(n− 1).
So, it is also valid in the case r + s = n− 1.
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Proof of Proposition 2. Let p be a weighting vector, (r, s) ∈ R, and k ∈ N \
{n}. Since

conjk
(
M (r,s)

p

)
= 1− 1

n− k

n−k∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(r,s)
p (T ),

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish the following cases:

1. If n− k ≤ s (or, equivalently, k ≥ n− s), then

conjk
(
M (r,s)

p

)
= 1.

2. If s < n− k < n− r (or, equivalently, r < k < n− s), by Remarks 4 and 3
we have

conjk
(
M (r,s)

p

)
= 1− 1

n− k

n−k∑
t=s+1

1(
n
t

) ∑
T⊆N
|T |=t

∑
i∈T

pi = 1− 1

n− k

n−k∑
t=s+1

t

n

= 1− 1

n− k
(n− k)(n− k + 1)− s(s+ 1)

2n

= 1− n− k + 1

2n
+

s(s+ 1)

2n(n− k)

=
n+ k − 1

2n
+

s(s+ 1)

2n(n− k)

=
n(n− 1) + s(s+ 1)− k(k − 1)

2n(n− k)
.

3. If n− k ≥ n− r (or, equivalently, k ≤ r), we distinguish two cases:
(a) If r + s = n− 1, then

conjk
(
M (r,s)

p

)
= 1− 1

n− k

n−k∑
t=n−r

1 = 1− r − k + 1

n− k
=
n− (r + 1)

n− k
.



An analysis of Winsorized weighted means 19

(b) If r + s < n− 1, then

conjk
(
M (r,s)

p

)
= 1− 1

n− k

n−r−1∑
t=s+1

1(
n
t

) ∑
T⊆N
|T |=t

∑
i∈T

pi + r − k + 1


= 1− 1

n− k

(
n−r−1∑
t=s+1

t

n
+ r − k + 1

)

= 1− 1

n− k

(
(n− r)(n− r − 1)− s(s+ 1)

2n
+ r − k + 1

)
= 1− 1

n− k

(
n+ 1− 2k

2
+
r(r + 1)− s(s+ 1)

2n

)
=
n(n− 1) + s(s+ 1)− r(r + 1)

2n(n− k)
.

Notice also that, when r + s = n − 1, the previous expression returns
(n− r − 1)/(n− k). So, it is also valid in the case r + s = n− 1.

Proof of Proposition 3. Let p be a weighting vector, (r, s) ∈ R, and k ∈ N \
{n}. Since

disjk
(
M (r,s)

p

)
=

1

n− k

n−1∑
t=k

1(
n
t

) ∑
T⊆N
|T |=t

µ(r,s)
p (T ),

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish the following cases:

1. If k ≥ n− r, then

disjk
(
M (r,s)

p

)
=

1

n− k

n−1∑
t=k

1 = 1.

2. If s < k < n− r, by Remarks 4 and 3 we have

disjk
(
M (r,s)

p

)
=

1

n− k

n−r−1∑
t=k

1(
n
t

) ∑
T⊆N
|T |=t

∑
i∈T

pi + r


=

1

n− k

(
n−r−1∑
t=k

t

n
+ r

)

=
1

n− k

(
(n− r)(n− r − 1)− k(k − 1)

2n
+ r

)
=
n(n− 1) + r(r + 1)− k(k − 1)

2n(n− k)
.
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3. If k ≤ s, we distinguish two cases:
(a) If r + s = n− 1, then

disjk
(
M (r,s)

p

)
=

1

n− k

n−1∑
t=n−r

1 =
r

n− k
.

(b) If r + s < n− 1, then

disjk
(
M (r,s)

p

)
=

1

n− k

n−r−1∑
t=s+1

1(
n
t

) ∑
T⊆N
|T |=t

∑
i∈T

pi + r

 .

Notice that the above expression coincides with that of the second item
when k = s+ 1. Therefore,

disjk
(
M (r,s)

p

)
=
n(n− 1) + r(r + 1)− s(s+ 1)

2n(n− k)
.

Notice also that, when r + s = n − 1, the previous expression returns
r/(n− k). So, it is also valid in the case r + s = n− 1.

Proof of Proposition 4. Let p be a weighting vector, (r, s) ∈ R and j ∈ N .
Since

veto
(
M (r,s)

p , j
)

= 1− 1

n− 1

n−1∑
t=1

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(r,s)
p (T ),

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish two cases:

1. If r + s = n− 1, then

veto
(
M (r,s)

p , j
)

= 1− 1

n− 1

n−1∑
t=s+1

1 = 1− r

n− 1
=

s

n− 1
.

2. If r + s < n− 1, then, by Remarks 5 and 3, we get

veto
(
M (r,s)

p , j
)

= 1− 1

n− 1

n−r−1∑
t=s+1

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

∑
i∈T

pi + r


= 1− 1

n− 1

(
1− pj
n− 1

n−r−1∑
t=s+1

t+ r

)

= 1− r

n− 1
−

(1− pj)
(
(n− r)(n− r − 1)− s(s+ 1)

)
2(n− 1)2

.

Notice that, when r+ s = n− 1, the previous expression returns s/(n− 1).
So, it is also valid in the case r + s = n− 1.
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Proof of Proposition 5. Let p be a weighting vector, (r, s) ∈ R and j ∈ N .
Since

favor
(
M (r,s)

p , j
)

=
1

n− 1

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(r,s)
p (T ∪ {j})− 1

n− 1
,

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish two cases:

1. If r + s = n− 1, then

favor
(
M (r,s)

p , j
)

=
1

n− 1

n−1∑
t=s

1− 1

n− 1
=
n− s− 1

n− 1
=

r

n− 1
.

2. If r + s < n− 1, then, by Remarks 5 and 3, we get

favor
(
M (r,s)

p , j
)

=
1

n− 1

n−r−2∑
t=s

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

(∑
i∈T

pi + pj

)
+ r + 1

− 1

n− 1

=
1

n− 1

(
1− pj
n− 1

n−r−2∑
t=s

t+ pj(n− r − s− 1) + r

)

=
(1− pj)

(
(n− r − 2)(n− r − 1)− s(s− 1) + 2r(n− 1)

)
2(n− 1)2

+
pj(n− s− 1)

n− 1

= (1− pj)
(n− 1)(n− 2) + r(r + 1)− s(s− 1)

2(n− 1)2
+ pj

(
1− s

n− 1

)
.

Notice that, when r+ s = n− 1, the previous expression returns r/(n− 1).
So, it is also valid in the case r + s = n− 1.

Proof of Proposition 6. Let p be a weighting vector, (r, s) ∈ R and j ∈ N .
Since

φj
(
µ(r,s)
p

)
=

1

n

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(r,s)
p (T ∪ {j})

− 1

n

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(r,s)
p (T ).

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish two cases:
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1. If r + s = n− 1, then

φj
(
µ(r,s)
p

)
=

1

n

n−1∑
t=s

1− 1

n

n−1∑
t=s+1

1 =
1

n
.

2. If r + s < n− 1, then, by Remark 5, we have

φj
(
µ(r,s)
p

)
=

1

n

n−r−2∑
t=s

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

(
pj +

∑
i∈T

pi

)
+ r + 1



− 1

n

n−r−1∑
t=s+1

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

∑
i∈T

pi + r


=

1

n

(
(n− r − s− 1)pj +

1− pj
n− 1

(s− (n− r − 1)) + 1

)
=

1

n

(
s+ r + n(n− r − s− 1)pj

n− 1

)
=
r + s

n− 1

1

n
+
n− 1− r − s

n− 1
pj

=
r + s

n− 1

1

n
+

(
1− r + s

n− 1

)
pj .

Notice that, when r + s = n− 1, the previous expression returns 1/n. So,
it is also valid in the case r + s = n− 1.

Proof of Proposition 7. Let p be a weighting vector, (r, s) ∈ R and j, k ∈ N .

Notice that Ijk
(
µ
(r,s)
p

)
can be written as

Ijk
(
µ(r,s)
p

)
=

1

n− 1

(
I{j,k} − I{j} − I{k} + I∅

)
,

where IK , K ⊆ N , is defined by

IK =

n−2∑
t=0

1(
n−2
t

) ∑
T⊆N\{j,k}
|T |=t

µ(r,s)
p (T ∪K).

Since µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n− 1),

we distinguish two cases:

1. If r+ s = n− 1, then it is easy to check that I{j,k}, I{j}, I{k}, and I∅ take
the following values:

I{j,k} =


∑n−2
t=0 1 = n− 1 if s = 0,∑n−2
t=s−1 1 = n− s otherwise,
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I{j} = I{k} =

n−2∑
t=s

1 = n− 1− s,

I∅ =


∑n−2
t=s+1 1 = n− 2− s if s < n− 1,

0 otherwise.

We now calculate Ijk
(
µ
(r,s)
p

)
taking into account the different values of

I{j,k}, I{j}, I{k}, and I∅. We distinguish three cases:
(a) If s = 0, which is equivalent to r = n− 1, we get

Ijk
(
µ(r,s)
p

)
=

1

n− 1
(n− 1− 2(n− 1) + n− 2) = − 1

n− 1
.

(b) If 0 < s < n− 1 we have

Ijk
(
µ(r,s)
p

)
=

1

n− 1
(n− s− 2(n− 1− s) + n− 2− s) = 0.

(c) If s = n− 1, which is equivalent to r = 0, we obtain

Ijk
(
µ(r,s)
p

)
=

1

n− 1
.

Therefore,

Ijk
(
µ(r,s)
p

)
=


1

n−1 if r = 0,

− 1
n−1 if r = n− 1,

0 otherwise.

(4)

2. If r+ s < n− 1, then, by Remark 6, we can see that I{j,k}, I{j}, I{k}, and
I∅ take the following values:

I{j,k} =



∑n−2
t=0 1 = n− 1 if s = 0 and r = n− 2,∑n−r−3
t=0

(
pj + pk +

t(1−pj−pk)
n−2

)
+ r + 1 if s = 0 and r < n− 2,∑n−r−3

t=s−1

(
pj + pk +

t(1−pj−pk)
n−2

)
+ r + 1 otherwise,

I{j} =

n−r−2∑
t=s

(
pj +

t(1− pj − pk)

n− 2

)
+ r,

I{k} =

n−r−2∑
t=s

(
pk +

t(1− pj − pk)

n− 2

)
+ r,

I∅ =


0 if r = 0 and s = n− 2,∑n−2
t=s+1

t(1−pj−pk)
n−2 if r = 0 and s < n− 2,∑n−r−1

t=s+1
t(1−pj−pk)

n−2 + r − 1 otherwise,
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We now calculate Ijk
(
µ
(r,s)
p

)
taking into account the different values of

I{j,k}, I{j}, I{k}, and I∅. For instance, when s = 0 and r = n− 2 we get

Ijk
(
µ(r,s)
p

)
=

1

n− 1

(
n− 1− pj − (n− 2)− pk − (n− 2) +

1− pj − pk
n− 2

+ n− 3

)
=

1

n− 1

1− (n− 1)(pj + pk)

n− 2
= − 1

n− 2

(
pj + pk −

1

n− 1

)
.

Once all the cases have been analyzed (to avoid tedious calculations, the
remaining cases are left to the reader), we have

Ijk
(
µ(r,s)
p

)
=


1

n−2

(
pj + pk − 1

n−1

)
if r = 0 and 0 < s < n− 1,

− 1
n−2

(
pj + pk − 1

n−1

)
if s = 0 and 0 < r < n− 1,

0 otherwise.

(5)

Expressions (4) and (5) together establish the truth of Proposition 7.

Proof of Proposition 8. Let p be a weighting vector and (r, s) ∈ R. Given
A ⊆ N , since

mµ(r,s)
p (A) =

|A|∑
t=1

(−1)|A|−t
∑
T⊆A
|T |=t

µ(r,s)
p (T ),

and µ
(r,s)
p is given by expression (1) (or expression (2) when r + s = n − 1),

we distinguish the following cases:

1. If |A| ≤ s, then

mµ(r,s)
p (A) = 0.

2. If s < |A| < n− r, by Remark 4 and the third item of Remark 2, we get

mµ(r,s)
p (A)

=

|A|∑
t=s+1

(−1)|A|−t
∑
T⊆A
|T |=t

∑
i∈T

pi =

|A|∑
t=s+1

(−1)|A|−t
(
|A| − 1

t− 1

)∑
i∈A

pi

=

(∑
i∈A

pi

) |A|∑
t=s+1

(−1)|A|−t
(
|A| − 1

|A| − t

)
=

(∑
i∈A

pi

)|A|−s−1∑
j=0

(−1)j
(
|A| − 1

j

)

=

(∑
i∈A

pi

)
(−1)|A|−s−1

(
|A| − 2

|A| − s− 1

)
= (−1)|A|−s−1

(
|A| − 2

s− 1

)(∑
i∈A

pi

)
.

Notice that when s = 0 we have mµ(r,s)
p (A) = 0.
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3. If |A| ≥ n− r, we distinguish two cases:
(a) If r + s = n− 1, then, by the third item of Remark 2 we have

mµ(r,s)
p (A) =

|A|∑
t=s+1

(−1)|A|−t
(
|A|
t

)
=

|A|∑
t=s+1

(−1)|A|−t
(
|A|
|A| − t

)

=

|A|−s−1∑
j=0

(−1)j
(
|A|
j

)
= (−1)|A|−s−1

(
|A| − 1

|A| − s− 1

)

= (−1)|A|−s−1
(
|A| − 1

s

)
.

(b) If r+ s < n− 1, by Remark 4 and the third item of Remark 2, we have

mµ(r,s)
p (A)

=

n−r−1∑
t=s+1

(−1)|A|−t
(
|A| − 1

t− 1

)∑
i∈A

pi +

|A|∑
t=n−r

(−1)|A|−t
(
|A|
t

)

=

(∑
i∈A

pi

)
n−r−1∑
t=s+1

(−1)|A|−t
(
|A| − 1

|A| − t

)
+

|A|∑
t=n−r

(−1)|A|−t
(
|A|
|A| − t

)

=

(∑
i∈A

pi

) |A|−s−1∑
j=|A|−n+r+1

(−1)j
(
|A| − 1

j

)
+

|A|−n+r∑
j=0

(−1)j
(
|A|
j

)

=

(∑
i∈A

pi

)(
(−1)|A|−s−1

(
|A| − 2

|A| − s− 1

)
−(−1)|A|−n+r

(
|A| − 2

|A| − n+ r

))
+ (−1)|A|−n+r

(
|A| − 1

|A| − n+ r

)
=

(∑
i∈A

pi

)(
(−1)|A|−s−1

(
|A| − 2

s− 1

)
− (−1)|A|−n+r

(
|A| − 2

n− r − 2

))
+ (−1)|A|−n+r

(
|A| − 1

n− r − 1

)
.

Notice also that, when r + s = n − 1, the previous expression returns
(−1)|A|−s−1

(|A|−1
s

)
. So, it is also valid in the case r + s = n− 1.
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