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majorities, is introduced and characterized. Given two alternatives, the winning alternative

is the one with a number of votes exceeding that obtained by the other in a previously fixed

quantity. Moreover, a subclass of these voting procedures has been considered, by demanding

additionally a number of votes greater than a previously fixed threshold. The main results of this

paper are characterizations of these voting procedures through aggregation functions of fuzzy

preferences associated with quasiarithmetic means and OWA operators.
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1 Introduction

When only two alternatives are in conflict, simple and absolute majorities are the most used

voting procedures. In some cases, when the decision to take is very important, several qualified

majorities, such as two thirds, are also used. Nevertheless, a wide class of decisions, of very

different kind and importance, are taken with the same voting procedure.. In our opinion,

according to the number of voters and the nature or transcendency of the decision, the voting

procedure should be different. We note that some special majorities have been studied by

Fishburn (1973, chapter 6) and Ferejohn – Grether (1974), among others.
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is gratefully acknowledged. The authors are grateful to an anonymous referee for valuable comments.
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In this paper two classes of voting procedures are studied. Firstly we consider the difference of

votes as the criterion to decide the winning alternative. After that, we also take into account

a threshold of votes, which must be surpassed for an alternative to defeat. Both numbers, the

difference and the threshold of votes, can previously be chosen in each decision problem in order

to fix the desired support.

More specifically, we suppose m voters, with m ≥ 3, and two alternatives x and y. In

simple majority voting, x defeats y when the number of individuals who prefer x to y is

greater than the number of individuals who prefer y to x. Therefore, when there is high

abstention, an alternative can be elected with very poor support. For example, we suppose

a hundred voters; two of them prefer x to y; one prefers y to x and the remaining ninety

seven are indifferent. In this case, the simple majority chooses x as the elected alternative.

This choice seems inappropriate. For this reason, other kinds of majorities are used. The best

known is absolute majority voting. In this case an alternative needs more than one half of the

voters’ support to be selected. But there are other qualified majorities, such as two thirds or

three fourths majorities, where at least two thirds or three fourths of votes are needed. And

unanimous majority, where the support of all the voters is necessary. Although these kinds

of voting procedures solve the problem of abstention, they require a large number of votes.

Consequently, there is a increasing loss of decisivity.

To avoid in some way the two problems mentioned, power of abstention and loss of decisivity, in

this paper we have introduced a class of voting procedures based on difference of votes, the Mk

majorities (similar classes were noted by Fishburn (1973, p. 18) and Saari (1990, pp. 122–123)).

For Mk, x is collectively preferred to y when the number of individuals who prefer x to y

exceeds the number of individuals who prefer y to x by at least a fixed integer k between 0

and m − 1. We note that Mk majorities are found between simple majority, in the extreme

case of k = 0, and unanimous majority, in the other extreme case, k = m− 1.

Moreover, we have introduced a modification of the previous class of voting procedures, the M l
k

majorities, where x is collectively preferred to y when the number of voters who prefer x to

y simultanously exceeds the threshold l and the number of voters who prefer y to x in the

quantity k.

The two classes of voting procedures, Mk and M l
k majorities, are neutral, anonymous, mono-

tonic and unanimous discrete aggregation functions. In both cases we will suppose that voters

have, or have to show, crisp preferences. Mk and M l
k majorities can be adapted in a more

appropiate way than simple and absolute majorities, to a wide range of realistic situations. It

is only necessary to choose the more convenient values of the parameters k and l, according to

each case.

In this paper we have proven several results where the above voting procedures are generated

by two classes of aggregation functions: quasiarithmetic means and OWA operators. By means

of these aggregation functions it is possible to extend Mk and M l
k majorities to fuzzy case

maintaining anonymity, neutrality, monotonicity and unanimity. This viewpoint for extending
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voting rules from crisp to fuzzy preferences is different to the one used by some authors, who

adapt the axioms of the crisp case to the fuzzy case (see, for example, Marchant (1996) and

(2000)).

Quasiarithmetic means were characterized by Kolmogoroff (1930) and Nagumo (1930). In Bullen

– Mitrinović – Vasić (1988) there is an exhaustive study on means (chapters IV and VI are

devoted to quasiarithmetic meaans). On results about quasiarithmetic means as aggregation

rules of fuzzy preferences, see Ovchinnikov (1990) and Garćıa–Lapresta – Llamazares (2000),

among others. OWA (“Ordered Weighted Averaging”) operators were introduced by Yager

(1988); a wide study can be found in Yager et al. (1997). On aggregation functions, see

Dubois – Prade (1985), Yager (1991), Fodor – Roubens (1994) and Grabisch (1996), among

other contributions.

The organization of the paper is as follows. In Section 2 we introduce aggregation functions.

They define the collective preference between alternatives as an outcome of individual pref-

erences, fuzzy or crisp. In both cases, we consider some properties of aggregation functions:

anonymity, neutrality (in the sense of May, 1952), monotonicity and unanimity. In Section 3 the

two voting procedures studied in the paper, Mk and M l
k majorities, are formally introduced.

Sections 4 and 5 are devoted to the aggregation functions corresponding to quasiarithmetic

means and OWA operators, respectively. These sections contain the main results of the paper.

2 Aggregation functions

Individuals who prefer one alternative to other, can prefer it with different levels of intensity.

Fuzzy preferences reflect this information, evaluating the levels of preference intensity between

0 and 1. So, with ri ∈ [0, 1] we denote the intensity with which voter i prefers x to y. Under

this assumption it is usual to suppose that 1 − ri is the intensity with which voter i prefers

y to x (see Bezdek et al. (1978), Nurmi (1981), Tanino (1984) and Nakamura (1992), among

others). If ri ∈ {0, 12 , 1}, we say that voter i has crisp preferences. In this case, we understand

that ri is 1, 0 or 1
2 , if voter i prefers x to y, prefers y to x or is indifferent between the two

alternatives, respectively. For more details, see Garćıa–Lapresta – Llamazares (2000).

A profile of preferences is a vector r = (r1, . . . , rm) which describes the voters’ preferences of

x to y. Obviously, (1− r1, . . . , 1− rm) shows the voters’ preferences of y to x.

Definition 1. An aggregation function is a mapping F : [0, 1]m −→ [0, 1]. Given a profile of

preferences r = (r1, . . . , rm) ∈ [0, 1]m, F (r) is the intensity with which x is collectively preferred

to y. A discrete aggregation function (DAF) is a mapping F : {0, 12 , 1}
m −→ {0, 12 , 1}. Given

a profile of crisp preferences r = (r1, . . . , rm) ∈ {0, 12 , 1}
m, F (r) shows us if x is collectively

preferred to y, y is collectively preferred to x, or x and y are collectively indifferent, according
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to whether F (r) is 1, 0 or 1
2 , respectively.

Now we introduce several properties of the aggregation functions: anonymity, neutrality, mono-

tonicity and unanimity. Anonymity means that collective intensity of preference depends on

only the set of individual intensity of preferences, but not on which individuals have these pref-

erences. Neutrality means that if everyone reverses their preference between x and y, then the

collective preference is also reversed. Thus, neutrality assures an egalitarian treatment to the

alternatives: the collective intensity of preference between two alternatives does not depends on

the label of the alternatives. Monotonicity means that collective intensity of preference does not

decrease if no individual intensity decreases. And unanimity means that collective intensity of

preference coincides with individual intensities when these are the same.

Definition 2. Let F be an aggregation function or a DAF.

1. F is anonymous if and only if for all profile r = (r1, . . . , rm) and for all permutation σ

of {1, . . . ,m} the following holds

F (rσ(1), . . . , rσ(m)) = F (r).

2. F is neutral if and only if for all profile (r1, . . . , rm) the following holds

F (1− r1, . . . , 1− rm) = 1− F (r1, . . . , rm).

3. F is monotonic if and only if for all pair of profiles (r1, . . . , rm) and (r′1, . . . , r
′
m) the

following holds

∀i ∈ {1, . . . ,m} r′i ≥ ri ⇒ F (r′1, . . . , r
′
m) ≥ F (r1, . . . , rm).

4. F is unanimous if and only if for all r the following holds F (r, . . . , r) = r.

Now some consequences of the previous properties are obtained. The cardinal of a set will be

denoted by means of #.

Remark 1. If F : {0, 12 , 1}
m −→ {0, 12 , 1} is an anonymous DAF, then F (r) depends on only

the number of 1, 1
2 and 0. Given a profile (r1, . . . , rm), if we consider:

1. m1 = #{i | ri = 1}, the number of voters who prefer x to y,

2. m2 = #{i | ri = 1
2}, the number of voters who are indifferent between x and y,

3. m3 = #{i | ri = 0}, the number of voters who prefer y to x,

then m1 +m2 +m3 = m.
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By Remark 1, every anonymous DAF can be represented by a mapping over the triples

(m1,m2,m3) ∈ {0, 1, . . . ,m}3 such that m1 +m2 +m3 = m.

Definition 3. Let F : {0, 12 , 1}
m −→ {0, 12 , 1} be an anonymous DAF. We define the mapping

f :M−→ {0, 12 , 1}, where

M = {(m1,m2,m3) ∈ {0, 1, . . . ,m}3 | m1 +m2 +m3 = m}

and

f(m1,m2,m3) = F (1, (m1). . . , 1 , 1
2 ,

(m2). . . , 12 , 0, (m3). . . , 0).

We say that F is represented by f .

Moreover, we define

C(f) = {(m1,m2,m3) ∈M | f(m1,m2,m3) = 1}.

Remark 2. If F : [0, 1]m −→ [0, 1] is an anonymous aggregation function, then the restriction

of F to profiles of crisp preferences,

F |{0, 1
2
,1}m : {0, 12 , 1}

m −→ [0, 1],

is determined, as in the case of the anonymous DAF, by the number of 1, 1
2 and 0. Hence,

F |{0, 1
2
,1}m can be represented by a mapping f :M−→ [0, 1], where

f(m1,m2,m3) = F (1, (m1). . . , 1 , 1
2 ,

(m2). . . , 12 , 0, (m3). . . , 0).

Remark 3. Let F : {0, 12 , 1}
m −→ {0, 12 , 1} be an anonymous DAF represented by the

mapping f : M −→ {0, 12 , 1}. Then F is neutral if and only if for all (m1,m2,m3) ∈ M
it is satisfied f(m1,m2,m3) + f(m3,m2,m1) = 1. In this case F is characterized by the set

C(f), since f(m1,m2,m3) = 0 is equivalent to (m3,m2,m1) ∈ C(f), and f(m1,m2,m3) = 1
2

is equivalent to (m1,m2,m3) /∈ C(f) and (m3,m2,m1) /∈ C(f).

Remark 4. If F is a monotonic and unanimous aggregation function or DAF, then

min (r1, . . . , rm) ≤ F (r1, . . . , rm) ≤ max (r1, . . . , rm),

for all profile (r1, . . . , rm). This property is satisfied by all the DAF studied in the paper.

It guarantees that collective intensity of preference is located between minimum and maximum

individual intensities of preference. It has been widely used in the literature (in Fodor – Roubens

(1994, p. 108) this property is called compensative).
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When voters have crisp preferences, every aggregation function F : [0, 1]m −→ [0, 1] can be

restricted to profiles of crisp preferences, F |{0, 1
2
,1}m : {0, 12 , 1}

m −→ [0, 1]. If we wish to obtain

a DAF from F, then it will be necessary for collective intensities of preference to be 0, 1
2 or 1.

Now we present a way to generate a DAF from an aggregation function when voters have, or

have to show, crisp preferences.

Definition 4. Given an aggregation function F : [0, 1]m −→ [0, 1] and α ∈ [12 , 1), we define

the α–DAF associated with F as the DAF Fα : {0, 12 , 1}
m −→ {0, 12 , 1} defined by

Fα(r1, . . . , rm) =


1, if F (r1, . . . , rm) > α,

1
2 , if 1− α ≤ F (r1, . . . , rm) ≤ α,

0, if F (r1, . . . , rm) < 1− α.

Now we present the following proposition whose proof is straightforward.

Proposition 1. Given an aggregation function F : [0, 1]m −→ [0, 1], for all α ∈ [12 , 1) the

following statements hold:

1. If F is anonymous, then Fα is also anonymous.

2. If F is neutral, then Fα is also neutral.

3. If F is monotonic, then Fα is also monotonic.

4. If F is unanimous, then Fα is also unanimous.

Remark 5. Let F : [0, 1]m −→ [0, 1] be an aggregation function and α ∈ [12 , 1). If F is

anonymous, by Remark 5, Fα is an anonymous DAF and, consequently, it can be represented

by a mapping fα :M−→ {0, 12 , 1}, where

fα(m1,m2,m3) = Fα(1, (m1). . . , 1 , 1
2 ,

(m2). . . , 12 , 0, (m3). . . , 0).

3 Mk and M l
k majorities

Now we introduce the two classes of DAF corresponding to the Mk and M l
k majorities studied

in this paper.
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Definition 5. Given k ∈ {0, 1, . . . ,m−1}, we define the Mk majority as the anonymous DAF

defined by

f(m1,m2,m3) =


1, if m1 > m3 + k,

1
2 , if |m1 −m3| ≤ k,

0, if m3 > m1 + k.

In other words, x is collectively preferred to y by Mk when the number of voters who prefer

x to y exceeds those who prefer y to x in the prefixed number of votes k. Analogously, y

is collectively preferred to x when the number of voters who prefer y to x exceeds those who

prefer x to y in k votes. Alternatives x and y are collectively indifferent if the absolute

difference between the number of votes obtained by each one of them does not exceed k.

We note that Mk is neutral, monotonic and unanimous.

Remark 6. Simple and unanimous majorities are particular cases of Mk majorities.

1. If k = 0, we obtain simple majority.

2. If k = m− 1, x is collectively preferred to y if and only if all the individuals prefer x to

y.

Remark 7. When different values of k are taken, different Mk majorities are obtained, i.e.,

if k, k′ ∈ {0, 1, . . . ,m− 1}, then Mk = Mk′ ⇔ k = k′.

It is possible to define the class of Mk majorities by considering percentages instead number of

individuals, in a similar way to Saari (1994, p. 30). In this case, Mk majorities do not depend

on the total number of individuals, m.

Remark 8. Given ρ ∈ [0, 1) and

S = {(x1, x2, x3) ∈ Q3 | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1},

we can define on S a majority by means of the mapping f : S −→ {0, 12 , 1}, where

f(x1, x2, x3) =


1, if x1 > x3 + ρ,

1
2 , if |x1 − x3| ≤ ρ,

0, if x3 > x1 + ρ.
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This majority corresponds to Mk majority for ρ = k
m . We note that simple majority is obtained

for ρ = 0. However, it is not possible to find a value for ρ in order to obtain unanimous majority.

Now we introduce M l
k majorities, a subclass of Mk majorities. Given a ∈ IN, with [a] we

denote the integer part of a, i.e., the largest integer smaller than or equal to a.

Definition 6. Given k ∈ {0, 1, . . . ,m− 4} and l ∈ {k + 1, . . . , [m+k
2 ]− 1}, we define the M l

k

majority as the anonymous DAF defined by

f(m1,m2,m3) =


1, if m1 > max (m3 + k, l),

1
2 , if |m1 −m3| ≤ k or max (m1,m3) ≤ l,

0, if m3 > max (m1 + k, l).

In other words, x is collectively preferred to y when the number of voters who prefer x to

y simultaneously exceeds the threshold l and the number of voters who prefer y to x in the

quantity k. Analogously, y is collectively preferred to x when the number of voters who prefer

y to x simultaneously exceeds the threshold l and the number of voters who prefer x to y in

the quantity k. Alternatives x and y will be collectively indifferent if the absolute difference

between the votes obtained by each one of them does not exceed k or if no alternative exceeds

the number of votes fixed by the threshold l.

We note that M l
k is neutral, monotonic and unanimous.

Remark 9. In Definition 6, the parameters k and l take their values in the corresponding sets

so that the conditions m1 > m3+k and m1 > l will both be effective. The restriction l ≥ k+1

is necessary to guarantee that the condition m1 > l will not be redundant. On the other hand,

m1 > m3 +k is not redundant if there exists a profile of crisp preferences satisfying m1 > l, but

not m1 > m3 + k. In order to find the maximum possible value of l, we consider the minimum

possible values of m1 and m3 that satisfy the conditions m1 > l and m1 ≤ m3 + k. These

values are m1 = l+1 and m3 = m1−k = l+1−k. If we consider the restriction m1 +m3 ≤ m,

the maximum value of l is the integer solution of the equation (l + 1) + (l + 1 − k) = m, i.e.,

l = [m+k
2 ]− 1. Moreover, since k + 1 ≤ l, the maximum possible value of k is obtained taking

l = k + 1 in (l + 1) + (l + 1− k) = m, i.e., k = m− 4.

Remark 10. When different values of k and l are taken, different M l
k majorities are obtained,

i.e., if k, k′ ∈ {0, 1, . . . ,m − 4} and l, l′ ∈ {k + 1, . . . , [m+k
2 ] − 1}, then M l

k = M l′
k′ ⇔ k = k′

and l = l′.

Analogously to Mk majorities, it is possible to define the class of M l
k majorities when we only

consider percentage of individuals.
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Remark 11. Given ρ ∈ [0, 1), θ ∈ (ρ, 1+ρ2 ) and

S = {(x1, x2, x3) ∈ Q3 | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1},

we can define on S a majority by means of the mapping f : S −→ {0, 12 , 1}, where

f(x1, x2, x3) =


1, if x1 > max (x3 + ρ, θ),

1
2 , if |x1 − x3| ≤ ρ or max (x1, x3) ≤ θ,

0, if x3 > max (x1 + ρ, θ).

This majority corresponds with M l
k majority for ρ = k

m and θ = l
m .

4 Quasiarithmetic means

In this section we study a class of aggregation functions widely used in the literature: quasiarith-

metic means. Furthermore, we prove that Mk majorities are generated through neutral

quasiarithmetic means.

Definition 7. A mapping ϕ : [0, 1] −→ [0, 1] is an order automorphism if and only if ϕ is

bijective and increasing.

Now we show some properties of order automorphisms (see Garćıa–Lapresta – Llamazares (2000,

pp. 684–685)).

Proposition 2. For every order automorphism ϕ : [0, 1] −→ [0, 1] the following statements

hold:

1. ϕ is strictly increasing.

2. ϕ−1 is an order automorphism.

3. ϕ(0) = 0 and ϕ(1) = 1.

4. ϕ is continuous.

Definition 8. An order automorphism ϕ : [0, 1] −→ [0, 1] is neutral if and only if the following

holds ϕ(a) + ϕ(1− a) = 1 for all a ∈ [0, 1].

Obviously, if ϕ is a neutral order automorphism, then ϕ(12) = 1
2 and ϕ−1 is also neutral.
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Definition 9. Given an order automorphism ϕ : [0, 1] −→ [0, 1], the quasiarithmetic mean

associated with ϕ is the aggregation function F ϕ defined by

F ϕ(r1, . . . , rm) = ϕ−1
(
ϕ(r1) + · · ·+ ϕ(rm)

m

)
.

Simple examples of quasiarithmetic means are

F ϕ(r1, . . . , rm) =



r1 + · · ·+ rm
m

, when ϕ(a) = a,

√
r21 + · · ·+ r2m

m
, when ϕ(a) = a2,

(
rp1 + · · ·+ rpm

m

) 1
p

, when ϕ(a) = ap ( p > 0 ).

We note that Ovchinnikov (1990, Th. 5.1) characterizes the quasiarithmetic means, when indi-

viduals have crisp preferences, by means of some properties of fuzzy aggregation; the restrictions

of these properties on the ordinary case are similar to those given by May (1952) for simple ma-

jority voting.

Now we establish that every quasiarithmetic mean is anonymous, monotonic and unanimous.

Moreover, we give a necessary and sufficient condition so that it will be neutral.

Proposition 3. For every order automorphism ϕ : [0, 1] −→ [0, 1] the following statements

hold:

1. F ϕ is anonymous, monotonic and unanimous.

2. F ϕ is neutral ⇔ ϕ is neutral.

Proof.
1. Obvious.

2. ⇒ ) It is sufficient to prove that ϕ−1 is neutral. For each n ∈ IN, we define the set

Cn =

{
p

mn
| p ∈ {0, 1, . . . ,mn}

}
.

We prove by induction on n that ϕ−1 is neutral in the points of the sets Cn. For n = 1,

let p ∈ {0, 1, . . . ,m} and (r1, . . . , rm) ∈ [0, 1]m such that

ri =

 1, if i ∈ {1, . . . , p},

0, if i ∈ {p+ 1, . . . ,m}.
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Then, we have

F ϕ(r1, . . . , rm) = ϕ−1
(

1

m

( p∑
i=1

ϕ(1) +
m∑

i=p+1

ϕ(0)
))

= ϕ−1
( p
m

)
.

On the other hand,

F ϕ(r1, . . . , rm) = 1− F ϕ(1− r1, . . . , 1− rm) =

= 1− ϕ−1
(

1

m

( p∑
i=1

ϕ(0) +
m∑

i=p+1

ϕ(1)
))

=

= 1− ϕ−1
(m− p

m

)
= 1− ϕ−1

(
1− p

m

)
.

Hence,

ϕ−1
(
1− p

m

)
= 1− ϕ−1

( p
m

)
.

Suppose, by hypothesis of induction, that ϕ−1 is neutral in the points of Ck. Now we

prove that ϕ−1 is also neutral in the points of Ck+1. If p ∈ {0, 1, . . . ,mk+1}, then there

exist p0 ∈ {0, 1, . . . ,m} and p1 ∈ {0, 1, . . . ,mk − 1} such that p = p0m
k + p1. Consider

(r1, . . . , rm) ∈ [0, 1]m such that

ri =


1, if i ∈ {1, . . . , p0},

ϕ−1
(
p1
mk

)
, if i = p0 + 1,

0, if i ∈ {p0 + 2, . . . ,m}.

Then, we have

F ϕ(r1, . . . , rm) = ϕ−1
(

1

m

( p0∑
i=1

ϕ(1) + ϕ

(
ϕ−1

(
p1
mk

))
+

m∑
i=p0+2

ϕ(0)

))
=

= ϕ−1
(

1

m

(
p0 +

p1
mk

))
= ϕ−1

(
p

mk+1

)
.

On the other hand,

F ϕ(r1, . . . , rm) = 1− F ϕ(1− r1, . . . , 1− rm) =

= 1− ϕ−1
(

1

m

( p0∑
i=1

ϕ(0) + ϕ

(
1− ϕ−1

(
p1
mk

))
+

m∑
i=p0+2

ϕ(1)

))
=

= 1− ϕ−1
(

1

m

(
m− (p0 + 1) + 1− p1

mk

))
=

= 1− ϕ−1
(

1

m

(
m− p

mk

))
= 1− ϕ−1

(
1− p

mk+1

)
.
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Hence,

ϕ−1
(

1− p

mk+1

)
= 1− ϕ−1

(
p

mk+1

)
.

Now we justify that C =
∞⋃
n=1

Cn is dense in [0, 1]. It is sufficient to prove that for every

r ∈ [0, 1]− C there exists an element of C whose distance to r is less than a given ε > 0.

Let n ∈ IN such that
1

mn
< ε. Then, there exists p ∈ {0, 1, . . . ,mn − 1} such that

p

mn
< r <

p+ 1

mn
; so, we have r − p

mn
< ε.

Finally, we shall show that ϕ−1 is neutral in every point of [0, 1]. Given r ∈ [0, 1], there ex-

ists a sequence of points of C, {rn}∞n=1, which converges to r. Then, lim
n→∞

(1− rn) = 1− r
and, by the continuity of ϕ−1, we have

ϕ−1(1− r) = lim
n→∞

ϕ−1(1− rn) = lim
n→∞

(
1− ϕ−1(rn)

)
=

= 1− lim
n→∞

ϕ−1(rn) = 1− ϕ−1(r).

⇐ ) Since ϕ−1 is neutral, for every (r1, . . . , rm) ∈ [0, 1]m we have

F ϕ(1− r1, . . . , 1− rm) = ϕ−1
(
ϕ(1− r1) + · · ·+ ϕ(1− rm)

m

)
=

= ϕ−1
(

1− ϕ(r1) + · · ·+ ϕ(rm)

m

)
= 1− ϕ−1

(
ϕ(r1) + · · ·+ ϕ(rm)

m

)
=

= 1− F ϕ(r1, . . . , rm).

Remark 12. For every order automorphism ϕ : [0, 1] −→ [0, 1] and every α ∈ [12 , 1), the

anonymous DAF F ϕ
α is represented by f ϕα :M−→ {0, 12 , 1}, where

f ϕα (m1,m2,m3) =



1, if ϕ−1
(

1

m

(
m1 +

m2

2

))
> α,

1

2
, if 1− α ≤ ϕ−1

(
1

m

(
m1 +

m2

2

))
≤ α,

0, if ϕ−1
(

1

m

(
m1 +

m2

2

))
< 1− α.

Moreover, according to Propositions 3 and 1, if ϕ is neutral, then F ϕ
α is a neutral DAF.

Now we establish that every α–DAF associated with a neutral quasiarithmetic mean is a Mk

majority.
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Proposition 4. If ϕ : [0, 1] −→ [0, 1] is a neutral order automorphism and α ∈ [12 , 1), then

F ϕ
α = M[m(2ϕ(α)−1)].

Proof. By Remark 12, for every (m1,m2,m3) ∈M, we have

f ϕα (m1,m2,m3) = 1 ⇔ ϕ−1
(

1

m

(
m1 +

m2

2

))
> α ⇔ 2m1 +m2 > 2mϕ(α) ⇔

⇔ m1 > m3 +m(2ϕ(α)− 1) ⇔ m1 > m3 + [m(2ϕ(α)− 1)].

In the following theorem we justify that, for every Mk majority and every neutral order au-

tomorphism ϕ, there exists some α ∈ [12 , 1) such that Mk is the α–DAF associated with the

quasiarithmetic mean defined by ϕ.

Theorem 1. If ϕ : [0, 1] −→ [0, 1] is a neutral order automorphism, k ∈ {0, . . . ,m − 1} and

α ∈ [12 , 1), then

Mk = F ϕ
α ⇔ ϕ−1

(
m+ k

2m

)
≤ α < ϕ−1

(
m+ k + 1

2m

)
.

Proof. By Proposition 4 and Remark 7, we have

Mk = F ϕ
α ⇔ Mk = M[m(2ϕ(α)−1)] ⇔ k = [m(2ϕ(α)− 1)] ⇔ k ≤ 2mϕ(α)−m < k + 1 ⇔

⇔ m+ k

2m
≤ ϕ(α) <

m+ k + 1

2m
⇔ ϕ−1

(
m+ k

2m

)
≤ α < ϕ−1

(
m+ k + 1

2m

)
.

Remark 13. By Theorem 1, simple majority, M0, and unanimous majority, Mm−1, can be

obtained by α–DAF associated with quasiarithmetic means. So, if ϕ : [0, 1] −→ [0, 1] is a

neutral order automorphism and α ∈ [12 , 1), then the following conditions hold:

1. M0 = F ϕ
α ⇔

1

2
≤ α < ϕ−1

(
m+ 1

2m

)
.

2. Mm−1 = F ϕ
α ⇔ ϕ−1

(
2m− 1

2m

)
≤ α < 1.

We also note that if we work on S it is easy to check that simple majority is only obtained for

α = 1
2 .

In the following theorem we justify that for all α ∈ (12 , 1), every Mk majority can be obtained

by the α–DAF associated with some neutral quasiarithmetic mean. So, it is possible to extend

every Mk majority to fuzzy preferences by means of quasiarithmetic means associated with

neutral order automorphisms. However, this extension is not unique. We note that for α = 1
2 ,

by Remark 15, we have M0 = F ϕ
1
2

, for every neutral order automorphism ϕ.
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Theorem 2. For every k ∈ {0, . . . ,m − 1} and every α ∈ (12 , 1), there exists a neutral order

automorphism ϕ : [0, 1] −→ [0, 1] such that Mk = F ϕ
α .

Proof. By Theorem 1, we have

Mk = F ϕ
α ⇔

m+ k

2m
≤ ϕ(α) <

m+ k + 1

2m
.

Now we take ψ : [12 , 1] −→ [12 , 1], defined by

ψ(a) =



1

2
+

2k + 1

4m(α− 1
2)

(
a− 1

2

)
, if a ∈ [12 , α],

1 +
2m− 2k − 1

4m(1− α)
(a− 1) , if a ∈ (α, 1].

Then we have ψ(12) = 1
2 , ψ(1) = 1 and

ψ(α) =
2m+ 2k + 1

4m
∈
(
m+ k

2m
,
m+ k + 1

2m

)
.

Thus, the mapping ϕ : [0, 1] −→ [0, 1], defined by

ϕ(a) =


1− ψ(1− a), if a ∈ [0, 12),

ψ(a), if a ∈ [12 , 1],

is a neutral order automorphism that satisfies the required condition.

5 OWA operators

In this section we introduce the OWA operators, a class of aggregation functions where the

collective intensity of preference is defined as a weighted average, not of the individual intensities

of preference, but of their ordered values. Moreover, we prove that M l
k majorities are generated

through the class of window OWA operators.

Definition 10. Given w = (w1, . . . , wm) ∈ [0, 1]m satisfying
m∑
i=1

wi = 1, the OWA operator

associated with w is the aggregation function Fw defined by

Fw(r1, . . . , rm) =
m∑
i=1

wi · rσ(i),

where σ is a permutation of {1, . . . ,m} such that rσ(1) ≥ · · · ≥ rσ(m).
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Simple examples of OWA operators are

Fw(r1, . . . , rm) =



max (r1, . . . , rm), when w = (1, 0, . . . , 0),

min (r1, . . . , rm), when w = (0, . . . , 0, 1 ),

r1 + · · ·+ rm
m

, when w = ( 1
m ,

1
m , . . . ,

1
m).

Now we establish that every OWA operator is anonymous, monotonic and unanimous. Moreover,

we give a necessary and sufficient condition so that it will be neutral.

Proposition 5. For every w = (w1, . . . , wm) ∈ [0, 1]m such that
m∑
i=1

wi = 1 the following

statements hold:

1. Fw is anonymous, monotonic and unanimous.

2. Fw is neutral ⇔ wm+1−i = wi for all i ∈ {1, . . . , [m2 ]}.

Proof.

1. Obvious.

2. Given (r1, . . . , rm) ∈ [0, 1]m, let σ be a permutation of {1, . . . ,m} such that rσ(1) ≥ · · · ≥
rσ(m). Therefore, we have 1− rσ(m) ≥ · · · ≥ 1− rσ(1). Thus,

Fw(1− r1, . . . , 1− rm) = 1− Fw(r1, . . . , rm) ⇔

⇔
m∑
i=1

wi · (1− rσ(m+1−i)) = 1−
m∑
i=1

wi · rσ(i) ⇔

⇔
m∑
i=1

wi · rσ(m+1−i) =
m∑
i=1

wi · rσ(i) ⇔

⇔
m∑
i=1

wm+1−i · rσ(i) =
m∑
i=1

wi · rσ(i).

The last equality is true for all (r1, . . . , rm) ∈ [0, 1]m if and only if wm+1−i = wi for all

i ∈ {1, . . . , [m2 ]}.

Now the window OWA operators are defined. They average only the central values, and do not

consider the extreme values.
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Definition 11. Given j ∈ {1, . . . , [m+1
2 ]}, we define wj = (wj1, . . . , w

j
m) as

wji =


1

m− 2(j − 1)
, if i = j, j + 1, . . . ,m− (j − 1),

0, otherwise.

The OWA operator associated with wj , Fwj
, called j–th window OWA operator , is defined by

Fwj
(r1, . . . , rm) =

rσ(j) + · · ·+ rσ(m−(j−1))
m− 2(j − 1)

.

Obviously, it is neutral (and by Proposition 3, it is also anonymous, monotonic and unanimous).

Remark 14. Fw1
is the arithmetic mean. Fw2

makes the average of the individual preferences

excepting the minimum and the maximum values. Fw3
makes the average of the individual

preferences excepting the two minimum and the two maximum values. Finally, Fw[m+1
2 ]

makes

the average of the two central values of the individual preferences, if m is even; and it selects

the central value of the individual preferences, if m is odd.

Remark 15. The restriction of the j–th window OWA operator, Fwj
, to profiles of crisp

preferences r ∈ {0, 12 , 1}
m, is represented by the mapping fw

j
:M−→ [0, 1] defined by

fw
j
(m1,m2,m3) =

m1∑
i=1

wji +
1

2

m2∑
i=1

wjm1+i
.

According to six possible cases of m1, m2 and m3, f
wj

takes the following values:

1. If m1 < j and m1 +m2 < j, then fw
j
(m1,m2,m3) = 0.

2. If m1 < j and j ≤ m1 +m2 ≤ m− (j − 1), then

fw
j
(m1,m2,m3) =

1

2

m1 +m2 − (j − 1)

m− 2(j − 1)
.

3. If m1 < j and m1 +m2 > m− (j − 1), then fw
j
(m1,m2,m3) =

1

2
.

4. If j ≤ m1 ≤ m− (j − 1) and j ≤ m1 +m2 ≤ m− (j − 1), then

fw
j
(m1,m2,m3) =

m1 − (j − 1)

m− 2(j − 1)
+

1

2

m2

m− 2(j − 1)
.

5. If j ≤ m1 ≤ m− (j − 1) and m1 +m2 > m− (j − 1), then
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fw
j
(m1,m2,m3) =

m1 − (j − 1)

m− 2(j − 1)
+

1

2

m− (j − 1)−m1

m− 2(j − 1)
.

6. If m1 > m− (j − 1) and m1 +m2 > m− (j − 1), then fw
j
(m1,m2,m3) = 1.

Now we establish that every α–DAF associated with a window OWA operator is a M l
k majority

or, in some particular cases, a Mk majority or the absolute majority.

Proposition 6. If j ∈ {1, . . . , [m+1
2 ]} and α ∈ [12 , 1), then Fwj

α coincides with:

1. M[(2α−1)m], if j = 1.

2. The absolute majority, if m is odd and j = m+1
2 .

3. M l
k, where k = [(2α− 1)(m− 2(j − 1))] and l = j − 1 + k, if j ∈ {2, . . . , [m2 ]}.

Proof. We note that for every (m1,m2,m3) ∈M we have:

fw
j

α (m1,m2,m3) = 1 ⇔ fw
j
(m1,m2,m3) > α.

According to Remark 15, fw
j
(m1,m2,m3) > α is not possible in the cases 1, 2 and 3; and

it is always satisfied in the case 6. So, we need to study only the cases 4 and 5, where

j ≤ m1 ≤ m − (j − 1) holds. In case 4 m2 ≤ m − (j − 1) − m1 holds; while in case 5 we

have m2 > m− (j − 1)−m1. So then, in cases 4 and 5 we have

fw
j
(m1,m2,m3) =

m1 − (j − 1)

m− 2(j − 1)
+

1

2

min (m2,m− (j − 1)−m1)

m− 2(j − 1)
=

=
m1 − (j − 1)

m− 2(j − 1)
+
m−m1 + min (−m3,−(j − 1))

2(m− 2(j − 1))
=

=
m1 − (j − 1)

m− 2(j − 1)
+
m−m1 −max (m3, j − 1)

2(m− 2(j − 1))
.

Consequently, in these cases we have

fw
j
(m1,m2,m3) > α ⇔

⇔ m1 − (j − 1)

m− 2(j − 1)
+
m−m1 −max (m3, j − 1)

2(m− 2(j − 1))
> α ⇔
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⇔ 2m1 − 2(j − 1) +m−m1 −max (m3, j − 1) > 2α(m− 2(j − 1)) ⇔

⇔ m1 > max (m3, j − 1) + (2α− 1)(m− 2(j − 1)).

Therefore, for every (m1,m2,m3) ∈M we have

fw
j
(m1,m2,m3) > α ⇔

⇔


m1 > m− (j − 1)

or

j ≤ m1 ≤ m− (j − 1) and m1 > max (m3, j − 1) + (2α− 1)(m− 2(j − 1))

⇔


m1 > m− (j − 1) or j ≤ m1 ≤ m− (j − 1)

and

m1 > m− (j − 1) or m1 > max (m3, j − 1) + (2α− 1)(m− 2(j − 1)).

We note that if m1 > m− (j − 1), since m3 < j − 1 and

j − 1 + (2α− 1)(m− 2(j − 1)) < m− (j − 1),

for all α ∈ [12 , 1), we have

m1 > max (m3, j − 1) + (2α− 1)(m− 2(j − 1)).

Hence,

fw
j
(m1,m2,m3) > α ⇔

⇔


m1 ≥ j

and

m1 > max (m3, j − 1) + (2α− 1)(m− 2(j − 1))

⇔ m1 > max (m3, j − 1) + (2α− 1)(m− 2(j − 1))

⇔ m1 > max (m3, j − 1) + [(2α− 1)(m− 2(j − 1))].

Consequently,

fw
j

α (m1,m2,m3) = 1 ⇔ m1 > max (m3, j − 1) + [(2α− 1)(m− 2(j − 1))].
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Now we justify the required conditions, according to the different values of m and j.

1. If j = 1, then

fw
1

α (m1,m2,m3) = 1 ⇔ m1 > m3 + [(2α− 1)m].

So, Fw1

α = M[(2α−1)m].

2. If m is odd and j = m+1
2 , then

fw
j

α (m1,m2,m3) = 1 ⇔ m1 > max (m3,
m−1
2 ) + [2α− 1] ⇔

⇔ m1 > max (m3,
m−1
2 ).

By m1 +m3 ≤ m, if m1 >
m−1
2 , then m3 < m− m−1

2 = m+1
2 , i.e., m3 ≤ m−1

2 . Thus,

fw
j

α (m1,m2,m3) = 1 ⇔ m1 > max (m3,
m−1
2 ) ⇔ m1 >

m−1
2 ⇔ m1 >

m
2 .

So, Fwj

α coincides with the absolute majority.

3. Let j ∈ {2, . . . , [m2 ]}, k = [(2α− 1)(m− 2(j − 1))] and l = j − 1 + k. We have

fw
j

α (m1,m2,m3) = 1 ⇔ m1 > max (m3, l − k) + k.

Since

max (m3, l − k) + k = max (m3 + k, l),

we obtain Fwj

α = M l
k.

Remark 16. We have noted that Fw1
and F ϕ, when ϕ is the identity automorphism, are the

arithmetic mean. Considering these cases in Propositions 4 and 6, we obtain the same result:

the α–DAF associated with the arithmetic mean coincides with M[(2α−1)m].

In the following theorem we justify that for every M l
k majority, there exist a window OWA

operator and some α ∈ [12 , 1) such that M l
k is the α–DAF associated with the window OWA

operator. This result allows to extend every M l
k majority to fuzzy preferences by means of

window OWA operators.

Theorem 3. If j ∈ {2, . . . , [m2 ]}, k ∈ {0, 1, . . . ,m − 4}, l ∈ {k + 1, . . . , [m+k
2 ] − 1} and

α ∈ [12 , 1), then:

M l
k = Fwj

α ⇔



j = l − k + 1

and

1

2
+

k

2(m− 2(l − k))
≤ α < 1

2
+

k + 1

2(m− 2(l − k))
.
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Proof. By Proposition 6 and Remark 10, we have

M l
k = Fwj

α ⇔


l = j − 1 + k

and

k = [(2α− 1)(m− 2(j − 1))].

Then, we only need to prove

k = [(2α− 1)(m− 2(j − 1))] ⇔ 1

2
+

k

2(m− 2(j − 1))
≤ α < 1

2
+

k + 1

2(m− 2(j − 1))
.

Since j ∈ {2, . . . , [m2 ]}, we have j < m+2
2 and, consequently, m− 2(j − 1) > 0. Hence

k = [(2α− 1)(m− 2(j − 1))] ⇔ k ≤ (2α− 1)(m− 2(j − 1)) < k + 1 ⇔

⇔ k

m− 2(j − 1)
≤ 2α− 1 <

k + 1

m− 2(j − 1)
⇔

⇔ 1

2
+

k

2(m− 2(j − 1))
≤ α < 1

2
+

k + 1

2(m− 2(j − 1))
.
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