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Abstract

In this paper kink scattering processes are investigated in the Montonen-Sarker-Trullinger-Bishop
model. The MSTB model is in fact a one-parametric family of relativistic scalar field theories living in
a one-time one-space Minkowski space-time which encompasses two coupled scalar fields. Between the
static solutions of the model two kinds of topological kinks are distinguished in a precise range of the
family parameter. In that regime there exists one unstable kink exhibiting only one non-null component
of the scalar field. Another type of topological kink solutions, stable in this case, includes two different
kinks for which the two-components of the scalar field are non-null. Both one-component and two-
component topological kinks are accompanied by their antikink partner. The decay of disintegration
of the unstable kink to one of the stable pair plus radiation is numerically computed. The pair of
stable two-component kinks living respectively on upper and lower half-ellipses in field space belong to
identical topological sectors in configuration space and provides an ideal playground to address several
scattering events involving one kink and either its own antikinks or either the antikink of the other
stable kink of the pair. By means of a numerical computation procedure we shall find and describe
interesting physical phenomena. Bion (kink-antikink oscillations) formation, kink reflection, kink-
antikink annihilation, kink transmutation and resonances are examples of these type of events. The
appearance of these special phenomena emerging in kink-antikink scattering configurations depends
critically on the initial collision velocity and the chosen value of the coupling constant parametrizing
the family of MSTB models.

1 Introduction

Over the last fifty years, topological defects behaving as solitary waves in non-linear scalar field theories,
but never occurring in linear system, have been understood as the cornerstone in explaining the existence
and the role of wall and/or brane structures in Condensed Matter [1, 2], Cosmology [3], Optics [4],
Molecular systems [5], etc.. One-dimensional solitons or kinks, becoming domain walls in 3D space, are
accompanied in different nonlinear gauge theories or sigma models by the existence of vortices and cosmic
strings as line topological defects, monopoles and skyrmions, point defects, and instantons or textures,
(-1)-brane defects, all of them sharing the essential feature of living in non-linear scenarios. We shall focus
in this paper on solitons and kinks, whose paradigms are the solitary waves arising in the sine-Gordon and
φ4 models. The impact of its study has been enormous both in the physical and mathematical literature
in diverse contexts, despite that these models involve only one real scalar field. Search for static kinks in
N -scalar field theories proved to be also an active research area, see, for instance, the references [6, 7, 8, 9].
The discovery of kink solutions for which N -components of the scalar field arranged in an iso-vector were
non-null opened a window to new possibilities ranging from its use to get a better knowledge of known
phenomena to its application to understand another physical properties. In this paper we shall deal with
the particularly interesting one-parametric family of relativistic (1+1)-dimensional N = 2 scalar field
theory known as the MSTB model. This system arises as a deformation of the O(2) linear sigma model
and has been the focus of study by many researchers for decades. It constitutes a natural generalization
of the φ4 model, whose potential further presents two absolute minima of the potential as a function of
the two scalar field. Henceforth, the existence of two degenerate vacua and the associated spontaneous
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symmetry breakdown in the quantum version of the model is envisaged. The part of the potential energy
density independent of the field derivatives in this system is the fourth-degree polynomial isotropic in
quartic field powers but anisotropic in quadratic powers: U(φ1, φ2) = 1

2(φ21 + φ22 − 1)2 + 1
2σ

2φ22. The
anisotropy parameter σ2 is the family parameter. A brief chronology of the main works concerning the
family of MSTB models is organized in the following steps:

1. Birth of the model: In 1976 Montonen discovered this family of models in his search for charged
solitons in complex scalar field theories with a global U(1) phase symmetry [10]. In his paper two
different classes of static topological kinks were identified in the parameter range σ ∈ (0, 1): there
were one-null component kinks, for which the second scalar field component φ2 vanished whereas
the φ1 kink profile is precisely the same as the kink profile in the standard N = 1 φ4-model. There
exist also two non-null component kinks, such that the φ1 and φ2 kink profiles are both non-null
and constrained to live in one of the two half-ellipses: φ21 + 1

1−σ2φ
2
2 = 1 with φ2 > 0 or φ2 < 0,

in field space. One year earlier, Rajaraman and Weinberg obtained the first type of these solitary
waves and described the qualitative behavior of the second class in a more general family of models
[11].

2. Stability analysis of the topological kinks: Since it was known that the topology of the configuration
space played a crucial role in the existence and stability of kinks in one field scalar field theory the
question arouse: which class of the MSTB kinks belonging both to the same topological sector is
stable?. The stability analysis of the MSTB topological kinks was addressed and established by
Sarker, Trullinger and Bishop from an energetic point of view by the end of 1976. They concluded
that the two component non-null kinks are stable whereas the famous φ4 one-component kink
embedded in the MSTB model still is a static solution but is unstable [12] in the N = 2 ambient
space. Further stability analysis based on the nature of the small kink fluctuations were performed
in 1979, see [13].

3. Discovery of non-topological kinks: In the same year, a non-topological kink, for which the two field
components were non-null, was discovered by Rajaraman [14] for the parameter value σ = 1

2 , whose
orbit in field space is a circle. The kink profile of the non-topological kinks tends to the same vacua
at the two ends of the spatial line. Along the two subsequent years Subbaswamy and Trullinger
numerically found that this kink was a single member of a one-parametric family of non-topological
kinks. They proved the existence of this family in the parameter range σ ∈ (0, 1) and showed that
these solutions are unstable [15, 16]. In addition it was checked the compliance of the so called
energy sum rule: the total energy of the non-topological kinks is the sum of the energies of the two
classes of topological kinks.

4. Integrability of the analogue mechanical system: In 1984, Magyari and Thomas [17] showed that
the system of static field equations, equivalent to the Newton equations in the potential V =
−U , is completely integrable by finding two constants of motion in involution for the analogue
mechanical system of two degrees of freedom. Indeed, the system is not only completely integrable
but Hamilton-Jacobi separable by using elliptic coordinates. In 1985 Ito was able to obtain implicit
expressions in these coordinates for every orbit in the whole static kink variety [18]. He also proved
that the non-topological kinks are unstable by applying the Morse index theorem to the kink orbit
manifold [19]. This conclusion is based on the fact that all the non-topological kink orbits cross each
other at one of the foci of the elliptic coordinate lines. In a series of three papers, [20, 21, 22], the
full Morse Theory of the MSTB configuration space was developed by Mateos-Guilarte through the
understanding of the kink variety in the MSTB model as the space of geodesics of the Maupertuis-
Jacobi action of the analogue mechanical system.
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5. Generalizations of the MSTB models: In 1998 it was noted that the MSTB model is not a rara avis
between relativistic two scalar field models. New two-component scalar field theory models, having
Hamilton-Jacobi separable analogue mechanical system as well as rich varieties of kink orbits, were
proposed and studied in [23]. In 2000 extensions of the MSTB model to N -component scalar field
theories, analogue mechanical systems with N degrees of freedom, were constructed and discussed
in [24]. All these extensions are deformations of the O(N) linear sigma model where the potential
energy density remains being a fourth-degree polynomial isotropic in quartic but anisotropic in
quadratic powers of the fields. In this last paper the entire static kink manifold is analytically
identified as in the MSTB model by using a system of elliptic coordinates. The stability analysis
of these kinks was completed in [25]. In 2008, a systematic classification of the two-component
generalized MSTB models and the description of its static kink manifolds were established in the
work [26].

6. Quantum kinks: Finally, it is worth mentioning that the promotion of the MSTB model to the
quantum realm has been considered in [27]. In this work the semiclassical mass of the stable static
topological kinks is computed by controlling the ultraviolet divergences in the generalized zeta
function regularizatio scheme.

All the results achieved in the previously alluded works were obtained within the analysis of static
structures, like instantaneous pictures in a movie. The central theme in this paper is the understanding
and description of the kink dynamics in the MSTB model. For example, the scattering between two
two-component topological kinks will be one of the main problems to be studied and will be thoroughly
discussed. Pursuing this endeavour we shall encounter a great difficulty. Contrarily to the analogue
mechanical system governing static solutions in the MSTB model search for MSTB solutions evolving in
time, besides been spread along the spatial line is not an integrable problem in (1+1)D scalar field theory.
The MSTB field theory is a non-integrable field theoretical system rather different to the integrable sine-
Gordon field theory which admits an infinite number of conserved charges. The consequence is that we
cannot apply analytical tools to study the dynamics of any object, extended or not, in the MSTB field
theory. Therefore, we shall rely in our analysis on a mixture of numerical and symbolic computations.

Rather than meson scattering we are interested in the study of kink-kink scattering in the MSTB
model giving rise to very intriguing and complex dynamical process. Collisions of infinitely extended
objects may bring us to contemplate highly non-trivial and exotic evolution patterns. Kink-kink and kink-
antikink collisions have been deeply studied in one-component scalar field theoretical models. Indeed,
this subject drew great attention towards the seminal paper by Campbell and collaborators [28]. In
this work, Campbell, Schonfeld and Wingate investigated the dynamical interactions between kinks and
antikinks in the archetypical φ4 model by varying initial collision velocities. For initial collision velocity
greater than a critical velocity vc ≈ 0.2598 kink reflection takes place. If the initial collision velocity is
great enough the kink and the antikink collide, bounce back and escape respectively towards x = −∞
and x = +∞ losing certain amount of energy through meson radiation emission. If v0 < vc, however, the
kink and the partner antikink are compelled to collide a second time. In fact the formation of a kink-
antikink quasi-bound state, a bion, is prevalent in this range v0 < vc. The kink and the antikink collide
and bounce back over and over again, losing a decreasing amount of kinetic energy in every impact.
Moreover, there exist certain initial velocity windows in this regime where the kink and the antikink
escape after the second impact. Narrower velocity windows were also found in the φ4-model where the
kink and the antikink escape after colliding N ≥ 3 times. Campbell and his collaborators were able to
explain this behaviour by using the collective coordinates approach initially introduced for the φ4 model
in [29] and later corrected in [30, 31]. These authors concluded that the so called resonant energy transfer
mechanism is responsible for this phenomenon. In this process there is an energy exchange between the
kink translational mode and the internal vibrational mode in each collision. Another novel property
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unveiled in this work is that the distribution of the resonant windows exhibits a fractal structure [32].
An analytical explanation of this phenomenon, based on a collective coordinates model for the resonant
energy transfer mechanism, can be found in references [33, 34, 35]. Similar patterns have also been found
in many other one-component scalar field theories. For example, the kink-antikink scattering has been
investigated in the modified sine-Gordon model [36], in the φ6 model [30, 37], in the φ8 model [38], in
non-polynomial models [39, 40], etc. All these studies have led to the conclusion that the relationship
between the resonant energy transfer mechanism and the kink vibrational modes is more complicated
than previously thought. Indeed, the kink in the φ6 model lacks internal vibrational modes [30] but
the resonant energy transfer mechanism operating in this model is triggered by an internal vibrational
mode of the combined kink-antikink configuration [41]. On the other hand, the existence of many kink
vibrational modes can provoke the suppression of bounce-windows in kink-antikink collisions [42] or
the inclusion of quasiresonances [43, 44, 45]. In a recent paper [46] Dorey and Romanczukiewicz have
demonstrated that the presence of quasi-normal modes can also serve as catalyst for the formation of
resonance windows. In addition to the previous works, kink dynamics in one-component scalar field
theory models that involve impurities, defects or local inhomogeneities have been considered in the
references [47, 48, 49, 50, 51, 52, 53, 54]. Another interesting phenomenon in this framework, known
as the negative radiation pressure, is discussed in [55, 56]. In this situation a kink hit by a plane wave
is accelerated towards the source of radiation. Finally, it is also worth to mention the investigation on
collision of vector solitons in the coupled nonlinear Schrödinger model [57, 58] and the kink scattering in
some two-component scalar field theories [59, 60].

We plan thus to investigate here similar phenomena arising in kink collision dynamics in the MSTB
models. Besides, another kink evolution is worth to study in the MSTB model: the decay process of
the one-component unstable topological kink or its antikink. We want thus to elucidate the mechanism
of disintegration of the unstable kinks and the description of the emerging objects in the final state for
this event. The kink manifold also includes two stable topological kinks together with their correspond-
ing antikinks. It is crucial to understand and classify the possible scattering processes between these
extended particles. A specific kink can be forced to collide with its own antikink or the antikink of the
second existing stable topological kink. It is interesting to know if resonance phenomena arise in these
cases. All of these events are explored in detail in this paper. Some partial results about the scattering
between topological kinks with opposite topological charge but not forming an antikink-kink pair has
been described in [61].

The organization of this paper is as follows: in Section §.2 the MSTB model is introduced and its
variety of kink solitary waves is described; in Section §.3 the kink dynamics in the MSTB model is thor-
oughly discussed, in particular the disintegration of the unstable kinks and the two types of kink/antikink
scattering processes are explained. Finally, some conclusions are drawn and future prospects are outlined
in Section §.4.

2 The MSTB model and its static kink variety

The dynamics of the one-parameter family of MSTB models is governed by the action

S =

∫
d2x

[
1

2
∂µφa∂

µφa − U(φ1, φ2)

]
, (1)

where the functional U [φ1, φ2] as a function of the fields is the fourth-degree polynomial

U(φ1, φ2) =
1

2
(φ21 + φ22 − 1)2 +

σ2

2
φ22 . (2)

Here φa : R1,1 → R, a = 1, 2, are two dimensionless real scalar fields and the Minkowski metric gµν is
chosen as g00 = −g11 = 1 and g12 = g21 = 0. The notation x0 ≡ t and x1 ≡ x will be used from now on.
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The coupling constant σ arising in the second summand of (2) is a real parameter, σ ∈ R. The MSTB
model is thus a deformation of the O(2)-linear sigma model, where explicit symmetry breaking of O(2) to
the discrete sub-group Z2×Z2 generated respectively by (φ1 → −φ1, φ2 → φ2) and (φ1 → φ1, φ2 → −φ2)
takes place due to the last summand in (2).

The system of coupled PDE equations

∂2φ1
∂t2

− ∂2φ1
∂x2

= 2φ1(1− φ21 − φ22) , (3)

∂2φ2
∂t2

− ∂2φ2
∂x2

= 2φ2(1− φ21 − φ22 − σ2

2 ) , (4)

encompasses the two Euler-Lagrange equations of the action functional (1). The configuration space
is defined as the set of finite energy maps from the Minkowski space-time to the field space, i.e., C =
{Φ(x, t) ≡ (φ1(x, t), φ2(x, t)) ∈ Maps(R1,1,R2) : E[Φ(x, t)] < +∞}. The energy density carried by a
particular configuration Φ(x, t) = (φ1(x, t), φ2(x, t)) is :

E [Φ(x, t)] =
1

2

(∂φ1
∂t

)2
+

1

2

(∂φ2
∂t

)2
+

1

2

(∂φ1
∂x

)2
+

1

2

(∂φ2
∂x

)2
+ U(φ1, φ2) ,

whereas its spatial integration along the whole real line defines the total energy:

E[φ1, φ2] =

∫ ∞
−∞
dx E [Φ(x, t)] . (5)

Evolution of the different elements in the configuration space taken as initial values of the system (3)-(4)
is determined by solving the corresponding Cauchy problems for this PDE system. The energy finiteness
condition forces configurations to satisfy the following asymptotic conditions:

lim
x→±∞

∂Φ(x, t)

∂t
= lim

x→±∞

∂Φ(x, t)

∂x
= 0 and lim

x→±∞
Φ(x, t) ∈M ,

where M = {A+ = (+1, 0), A− = (−1, 0)} is the set of zeros or absolute minima of the MSTB potential
U(φ1, φ2). Since M is a discrete set Φ(±∞, t) are constant of the motion because any variation of the
asymptotic values of the fields would cost infinite energy. The configuration space is therefore the union
of four disconnected topological sectors: C = C++∪C+−∪C−+∪C−− distinguished by the four admissible
values of the fields at the two ends of the real spatial line. It is standard to define the “topological”charge

q =
1

2

(
φ1(+∞, t)− φ1(−∞, t)

)
,

as the invariant distinguishing between the different sectors of the configuration space1. Configurations
carrying non-zero topological charges living in C+−, q = +1, or C−+, q = −1, stay at their sector and are
unable to evolve in time to configurations belonging to C++ and C−−, all the forbidden evolutions would
require infinite energy.

The simplest solutions of the partial differential equation system (3)-(4) are static and homogeneous,
precisely the elements of the set M, which are the absolute minima of U : Φ±(x, t) = A± = (±1, 0).
Therefore, these zero energy solutions are classically stable and provide bona fide ground states to quantize
the MSTB model: The choice of one of the two degenerate absolute minima of U as the vacuum of the
quantum version of the model spontaneously breaks further the remaining symmetry Z2 × Z2 to the Z2

sub-group generated by (φ1 → φ1, φ2 → −φ2). The potential U(φ1, φ2) as a function of the fields is
non-negative and admits critical points that are thus static homogeneous solutions of the field equations.

1To distinguish between C++ and C−−, both having q = 0, one needs to fix, e.g., φ1(−∞, t) also.
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The character of the critical points depends on the ranges of σ. If σ2 ∈ (0, 2) the potential term U(φ1, φ2)
has two degenerate absolute minima A± = (±1, 0), a local maximum located at the internal plane origin
(0, 0) and two saddle points placed at (0,

√
1− σ2/2), see Figure 1(left). If σ2 ∈ [2,∞) the potential term

U(φ1, φ2) has two absolute minima A± = (±1, 0) again, but now the origin (0, 0) becomes a saddle point
of U(φ1, φ2) and the saddle points of the previous range become imaginary losing their physical sense,
see Figure 1(right). Only the absolute minima will play a role in the quantum realm because attempts
to use the other types of classical solutions as quantum ground states will be plagued with tachyons in
at least one of the two phonon branches.

Figure 1: Graphical representation of the potential term (2) for σ = 0.5 (left) and σ = 1.5 (right). Notice that in
the first case (φ1, φ2) = (0, 0) is a local maximum whereas in the second case is a saddle point.

The next step is the search for static but space-dependent solutions to the field equations (3) and (4)
which become:

d2φ1
dx2

= −2φ1(1− φ21 − φ22) ,
d2φ2
dx2

= −2φ2(1− φ21 − φ22 − σ2

2 ) . (6)

Re-interpreting x as mechanical time and thinking of (φ1, φ2) as the coordinates of a particle moving in
a plane, the ODE system (6) is no more than the Newton equations for a particle moving in the force
field created by the potential V = −U . Kinks, which are static solutions of the field equations of finite
energy, or, localized energy density, correspond in this way to finite mechanical action trajectories of this
Newtonian system. It happens that mechanical systems with two degrees of freedom isotropic in quartic
powers of the coordinates but anisotropic in the quadratic powers are Hamilton-Jacobi separable by using
elliptic coordinates. In the Euler version the variable u ∈ [σ,+∞) measures half the sum of the distances
of the particle position to two fixed points in the plane F± = (±σ, 0) and v ∈ [−σ, σ] is half the difference
between these distances. The change of coordinates is tantamount to a map from the infinite strip to the
upper half plane: ρ± : [σ,∞)× [−σ, σ]→ R2/Z2. Allowing negative signs also in the φ2 coordinates the
1 : 2 map reads:

ρ∗±(φ1) ≡ φ1 =
1

σ
uv , ρ∗±(φ2) ≡ φ2 = ± 1

σ

√
(u2 − σ2)(σ2 − v2) . (7)

The energy functional (5) expressed in these elliptic coordinates

E[Φ(x)] =

∫ ∞
−∞

dx
[1

2

u2 − v2

u2 − σ2
(du
dx

)2
+

1

2

u2 − v2

σ2 − v2
(dv
dx

)2
+

+
1

2(u2 − v2)
[(u2 − 1)2(u2 − σ2) + (1− v2)2(σ2 − v2)]

]
may be rewritten á la Bogomolny in the form:

E[Φ(x)] =

∫ ∞
−∞
dx
{1

2

u2 − v2

u2 − σ2
[du
dx
−(−1)a

u2 − σ2

u2 − v2
(1−u2)

]2
+

1

2

u2 − v2

σ2 − v2
[dv
dx
−(−1)b

σ2 − v2

u2 − v2
(1−v2)

]2}
+|T |

(8)
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where a, b = 0, 1 and

|T | =
∫ ∞
−∞

dx
∣∣∣du
dx

(1− u2)
∣∣∣+

∫ ∞
−∞

dx
∣∣∣dv
dx

(1− v2)
∣∣∣ . (9)

Given the structure of the functional (8), one sees that the Bogomolny-Prasad-Sommerfeld bound |T | is
saturated by static configurations complying with any of the following four systems of first-order ODE’s:

du

dx
= (−1)a

u2 − σ2

u2 − v2
(1− u2) ,

dv

dx
= (−1)b

σ2 − v2

u2 − v2
(1− v2) . (10)

After finding the finite “action”solutions of the ODE system (10) one immediately obtains all the kink
solitary waves of the MSTB model by going back to Cartesian coordinates by means of the change of
variables (7). The coordinate lines back in the (φ1, φ2)-plane are confocal ellipses and hyperbolae whose
foci are located at F± = (±σ, σ). We remark that the two copies ρ± are needed in (7) to cover the entire
plane. Thus, smoothness conditions must be imposed on the solutions when crossing the axis φ1. The
static kink variety of the MSTB model will be analytically identified on these grounds.

Before of doing that it is convenient to distinguish two Regimes determined from the σ parameter
where different kink patterns arise: (1) Regime A: σ ∈ [0, 1) and (2) Regime B : σ ∈ [1,+∞). We start
now describing the topological kinks:

– (1) One non-null component topological kinks K(q)
static(x). For any positive value of σ kink solutions

whose second field component vanishes exist. In this case the kink solutions are given by

K(q)
static(x) = (q tanhx, 0) , (11)

where x = x − x0 with x0 ∈ R being the kink center. Here q = ±1 is the topological charge which
distinguishes respectively between kinks and antikinks. Notice that the mirror symmetry πx : x 7→ −x
relates these solutions. Obviously, the minima A+ and A− are connected by these kinks by means of
the straight line φ2 = 0, see Figure 2. The energy density of these solutions is depicted also in Figure 2.
These topological defects consist of only one energy density lump, thus, they may be interpreted as basic
extended particles of the physical system.

Figure 2: Graphical representations of the field components (a), energy density (b), and the orbits in the Cartesian

(c) and elliptic (d) plane for the K(q)
static(x)-kink.

The description of these kinks in the elliptic plane comprises two possibilities:

1. In the regime B (σ > 1) the vacuum points are characterized by u± = σ and v± = ±1. The
condition u = σ solves the u-equation in (10). The ensuing v-equation dv

dx = (−1)a(1− v2) is easily
integrated in the range −1 < v < 1 to find v(x) = (−1)a tanh(x − x0). These expression leads to
the solution (11). In this case, the kink energy is a proper topological bound

E[K(q)
static(x)] = |T | =

∫ 1

−1
dv (1− v2) =

4

3
.
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2. In the Regime A (0 < σ < 1) the vacuum points are u± = 1 and v± = ±σ. One non-null
component kinks also exist in this case but are composed of three steps in the (u, v) strip. In
the first stage u varies in the range σ < u < 1 but v = −σ remains fixed. One must integrate
du
dx = (−1)a(1 − u2) to find u(x) = (−1)a tanh(x − x0) for x − x0 ∈ (−∞, arctanhσ). The second
stage runs with u = σ being constant and v varying in the range −σ < v < σ according to the
equation: dv

dx = (−1)a(1− v2). The trajectory is therefore: v(x) = (−1)a tanh(x− x0), starting and
ending at the foci: −arctanhσ < x−x0 < arctanhσ if a = 0. The inequality goes in the other sense
if a = 1. The third stage is the reverse of the first stage although now v = σ remains constant and
u varies in the interval σ < u < 1. The trajectory is u(x) = (−1)a tanh(x− x0). Back in Cartesian
coordinates the kink solitary wave if σ < 1 follows the form (11). In Regime A the one non-null
component kink energy is not a proper topological quantity because it depends on two points in
the mid of the trajectory:

E[K(q)
static(x)] = 2

∫ 1

σ
dv(1− v2) +

∫ σ

−σ
du(1− u2) =

4

3
.

In Regime A one non-null component kinks are not BPS states.

Thus, even though being apparently identical, one non-null component topological kinks are very
different in Regimes A and B. In the original field variables the difference emerges in the study of the
stability of these solutions. Linear stability of a static solution Φ(x) is dictated by the evolution of small
fluctuations around the solution Φ(x). In this context, it is imposed that the perturbed solution Ψ(x, t) =
Φ(x)+εeiωtFω(x) be a solution of field equations (3) and (4) up to first order in the infinitesimal parameter
ε. As a result, the two-component perturbations Fω(x) = (fω1 (x), fω2 (x))t must be eigenfunctions of the
second order small fluctuation matrix operator

Hij [Φ(x)] = −δij
d2

dx2
+ Vij(x) = −δij

d2

dx2
+

∂2U

∂φi∂φj
[Φ(x)] , i, j = 1, 2 ,

belonging to a rigged Hilbert space H. In other words, the spectral equation

H[Φ(x)]Fω(x) = ω2Fω(x) (12)

holds if Ψ(x, t) is still solution and Φ(x) is stable if ω2 > 0, although neutral equilibrium small fluctuations
may exist for which ω2 = 0. Analytical identification of the spectrum of the matrix operatorH, Spec(H) =
{ω2 ∈ R : (∃Fω(x) : HFω(x) = ω2Fω(x), Fω(x) ∈ H)} is, in general, unapproachable. However, the

K(q)
static(x)-kink fluctuation operator

H[K(q)(x)] =

(
− d2

dx2
+ 4− 6 sech2x 0

0 − d2

dx2
+ σ2 − 2 sech2x

)

is diagonal and the spectral problem in this case corresponds to two exactly solvable spectral problems
(independents from each other) for Schrödinger operators with transparent Pöschl-Teller potentials. The
longitudinal eigenmodes Fω1 = (fω1 (x), 0)t comprise a zero mode F 0

1 (x) = (sech2x, 0)t, an excited discrete

eigenmode F
√
3

1 (x) = (sechx tanhx, 0) with eigenvalue (ω1)
2 = 3 and a continuous spectrum which

emerges on the threshold value 4, ω2
k1

= 4 + k21 with k1 ∈ R and eigenfunctions which are plane waves
times the second Jacobi polynomial in tanhx. The discrete spectrum of the transverse fluctuations
Fω2 = (0, fω2 (x))t contains only the eigenvalue (ω2)

2 = σ2 − 1 with eigenfunction Fω2
2 = (0, sechx)t while

the continuous spectrum ω2
k2

= σ2 + k22 with k2 ∈ R is in this case build from similar eigenfunctions
replacing the second by the first Jacobi polynomial. In Figure 3 the complete spectrum of the operator
H[K(q)(x)] is depicted as a function of the coupling constant σ in the interval [0, 3]. The spectra of
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both the longitudinal and the transverse kink fluctuation operators have been overlapped in Figure 3.
Note that discrete longitudinal/tranverse eigenvalues can be immersed in the continuous spectrum of the
tranverse/longitudinal fluctuations. The most relevant result from this analysis is that the eigenvalue
ω2
2 = σ2 − 1 (emerging in the transverse fluctuation operator) is negative if 0 < σ2 < 1. Therefore, the

one-null component static kink K(q)(x) is unstable in Regime A and stable in Regime B. Indeed, this is
the only topological defect solution which exists in Regime B.

Figure 3: Spectrum of the small kink fluctuation operator H[K(q)(x)] as a function of the coupling constant σ.

– (2) Two types of two non-null component topological kinks K
(q,λ)
static(x): In Regime A (0 < σ < 1), one

non-null component topological kinks are unstable. There are, however, two classes of topological kinks
which are stable. In the (u, v)-strip one searches for trajectories where u = 1 is fixed but v varies in the
interval −σ < v < σ joining the two vacua in one stage. The solution of the ODE dv

dx = (−1)b(σ2 − v2)
leads to the expression v = (−1)bσ tanhσ(x − x0). Back in Cartesian coordinates in field space we find
the two pairs of kink/antikinks

K
(q,λ)
static(x) =

(
q tanh(σx), λ

√
1− σ2 sech(σx)

)
. (13)

Here q = ±1 is the topological charge and λ = ±1 distinguishes if the second field φ2 is positive o
negative, see Figure 4. It is immediate to check that the two components of these kinks live on an ellipse

φ21 +
φ22

1− σ2
= 1 (14)

in field space, or better, the upper and lower half-ellipses depending on the sign of the second field
component. Charge conjugation turns a kink into its antikink, i.e., K(q,λ)(x) = K(q,λ)(−x) = K(−q,λ)(x).

Writing the energy of the K
(q,λ)
static(x)-kinks as a topological BPS bound

E[K
(q,λ)
static(x)] = |T | =

∫ σ

−σ
du (1− u2) = 2σ

(
1− σ2

3

)
.

the two non-null component topological kinks emerge as BPS states, a fact that ensures their absolute
stability. These kinks may be interpreted as a basic single extended particle because the energy density
is confined within a small region, see Figure 4.

The second-order small fluctuations around K(q,λ)(x)-kinks are governed by the following 2×2-matrix
Schrödinger operator:

H[K
(q,λ)
static(x)] =

(
− d2

dx2
+ 4− 2(2 + σ2) sech2σx 4

√
1− σ2 sechσx tanhσx

4
√

1− σ2 sechσx tanhσx − d2

dx2
+ σ2 + 2(2− 3σ2) sech2σx

)
. (15)

Usually, one expands the small fluctuations in terms of the eigenfunctions of this matrix differential

operator: H[K
(q,λ)
static(x)]F ν(x) = ν2F ν(x). No analytical information is available about this spectral
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Figure 4: Graphical representations of the field components (a), energy density (b), and the orbits in the Cartesian

(c) and elliptic (d) plane for the K
(q,λ)
static(x)-kink.

problem except some qualitative features which guarantee that these two types of two non-null topological
kinks are stable in Regime A. We mention the three main points: (1) The translational zero mode

F 0(x) =
(
sech2(σx),±σ sech(σx) tanh(σx)

)t
belong to the kernel of H in the range σ ∈ (0, 1). (2) A pair of doubly degenerate continuous spectra
emerging respectively on the threshold values 4 and σ2 exist. (3) In addition, numerical investigations
reveal the presence of a discrete eigenvalue ν21 for large enough values of σ in this Regime. In Figure 5

the spectrum of the operator H[K
(q,λ)
static(x)] is plotted for the range σ ∈ (0, 1]. Observe that the discrete

eigenvalue ν21 is non-negative. Thus, there are no negative eigenvalues in the spectrum of H[K
(q,λ)
static(x)]

and these kinks are stable, as previously pointed out.

Figure 5: Spectrum of the small kink fluctuation operator H[K
(q,λ)
static(x)] as a function of the coupling constant σ.

– (3) Two one-parametric families of two non-null component non-topological kinks: In Regime A, there
also exits a pair of one-parametric families of non-topological kinks N±static(x; γ) = (φ±1 (x, γ), φ2(x, γ)),
whose two field components are both non-null:

φ±1 (x; γ) = ± σ− cosh(σ+x+)− σ+ cosh(σ−x−)

σ− cosh(σ+x+) + σ+ cosh(σ−x−)
, φ2(x; γ) =

2σ+σ− sinhx

σ− cosh(σ+x+) + σ+ cosh(σ−x−)
. (16)

The notation σ± = 1 ± σ and x± = x − γσ(σ ∓ 1) have been used in (16) to emphasize the regularity
of these expressions. To derive the kink profiles (16) the separability of the ODE system (10) has been
used. A particular member belonging to these families is singled out by the value of the real parameter
γ ∈ R and the A± asymptotic value reached by these kink trajectories at both ends of the spatial line.
In Figure 6, the field components, the energy density and the orbit for the particular N+

static(x; γ)-kink
have been displayed for γ = 6. In general, all the N±static(x; γ)-kinks connect one of the two vacua A±
with itself by means of closed orbits, all of them crossing one of the two foci F∓.

In the elliptic strip the projection of these kink trajectories runs twice over the u ∈ [−σ, σ] and
v ∈ [σ, 1] intervals, see Figure 6. Therefore, the following kink energy sum rule holds between the
different types of MSTB kinks:

E[N±static(x; γ)] = 2

∫ 1

σ
dv(1− v2) + 2

∫ σ

−σ
du(1− u2) = E[K

(q,λ)
static(x)] + E[K(q)

static(x)]

10



Figure 6: Graphical representations of the field components (a), energy density (b), and the orbits in the Cartesian
(c) and elliptic (d) plane for the N+

static(x; 6)-kink.

that is, the total energy of a non-topological kink is the sum of the total energies of the two classes of
topological kinks. From the graphical representation of the N±static(x; γ)-kink energy density in Figure
6, it can be understood that this relation is not accidental. Two energy lumps can be visualized in

this graphics, which correspond to a K
(q,λ)
static(x) lump together a K(q)

static(x) lump. In other words, the
N±static(x; γ)-kinks describe a non-linear combination of the two basic extended particles of the system.
The parameter γ sets the separation between these particles, a kind of relative coordinate. For γ = 0 the
lumps are exactly overlapped whereas for large values of γ the lumps of energy density are increasingly
separated.

3 Kink dynamics

In this section the kink dynamics in the MSTB model will be numerically addressed. This study will be
restricted to the Regime A where several types of kinks coexist. Two types of basic extended particles

were identified in this regime, which are described by the topological K
(q,λ)
static(x) and K(q)

static(x) kinks. Note,
however, that the second of these solutions is unstable, so the question about the fate of this unstable
topological defect naturally arises. This particle carries a non-null topological charge and cannot decay

to the vacuum sector. Therefore, the only possibility is that the unstable K(q)
static(x) kink decays into the

stable K
(q,λ)
static(x) kink. This matter will be discussed in Section 3.1.

The scattering between two stable K
(q,λ)
static(x) kinks where q, λ = ±1 will also be investigated in

this Section. Due to topological constraints the scattering processes must involve kinks with opposite
topological charges. This allows the construction of a continuous initial multi-kink configuration, whose
evolution is studied later. If symmetry considerations are also included in this framework, all the possible
scattering events fall into one of the following two classes:

(a) K
(q,λ)
static(x)−K(−q,λ)

static (x) scattering processes. The collisions between a kink-antikink pair are encom-
passed in this category. This kind of phenomena will be discussed in Section 3.2.

(b) K
(q,λ)
static(x)−K(−q,−λ)

static (x) scattering processes. These events comprise the collisions between a kink
and the antikink of the other existing kink in this model. This situation will be described in Section
3.3.

As previously mentioned, numerical analysis is applied on the evolution equations (3) and (4) to determine
the behavior of the scattering solutions. The numerical scheme that has been employed in this paper
follows the algorithm introduced in [62] by Kassam and Trefethen, which is spectral in space and fourth
order in time. As a complement to the previous scheme, an energy conservative second-order finite
difference algorithm [63, 60] implemented with Mur boundary conditions [64] has also been used. This
algorithm lets to control the effect of radiation in the simulation because it absorbs the linear plane waves
at the boundaries. The two previous numerical schemes provide identical results.
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3.1 Disintegration of the K(q)(x)-kink

The linear stability study of the K(q)(x)-kink, given in Section 2, concludes that the application of an
infinitesimal fluctuation following the form of the eigenmode Fω2 (x) = (0, sechx)t of (15) causes the
instability of this solution. The evolution of the K(q)(x)-kink under these circumstances is investigated in
this Section. Topological arguments maintains that this kink decays to the K(q,λ)(x) kink, which belongs
to the same topological sector but is less energetic than the previous one.

In Figure 7 the evolution of the K(q)(x)-kink when slightly perturbed by a Fω2 (x)-fluctuation is
displayed for the case σ = 0.7. The two first graphics in Figure 7 illustrate the behavior of the field
components. Globally, the initial configuration K(q)(x) evolves to the K(q,λ)(x)-kink although some
internal vibration modes of this last solution are excited. Note, for example, the periodic oscillations of
the maximum values of φ2 which are reached at x = 0. A strong radiation emission is also apparent,
mainly through the second field channel.

Figure 7: K(q)(x)-kink disintegration: Evolution of (a) the first field component, (b) the second field component
and (c) the total energy of the evolving kink configuration (solid curve). The total energies of the static K(q)(x)
and K(q,λ)(x) kinks are depicted as dashed lines.

In Figure 7 the total energy of the evolving topological defect in the simulation interval is plotted
by using a solid line. A large amount of the K(q)(x, t)-kink energy is lost due to radiation emission.
This fact implies that E[K(q)(x, t)] is a decreasing function as we can see in Figure 7(c). For the sake
of comparison, the total energies of the static topological kinks K(q)(x) and K(q,λ)(x) have been drawn
by means of dashed lines in Figure 7. Observe that the K(q)(x, t)-kink total energy asymptotically
approaches to the K(q,λ)(x)-kink total energy, although a small amount of energy seems to be saved in
internal vibrational eigenmodes. This process can be represented as

K(q)(x)→ K∗(q,λ)(x) + radiation

The asterisk superscript used in the previous relation emphasizes the fact that the resulting kink has
excited internal vibration modes.

A explicit study of this fact can be visualized in Figure 8, where a spectral analysis of the behavior
of the magnitude φ2(0, t) is shown for values of the coupling constant σ ∈ [0.5, 1]. The Fourier transform
shows that several frequencies are excited with strengths that have been represented by using a gray
scale. It can be checked that one of these frequencies is dominant over the other ones. In Figure 8(b)
the square root of the eigenvalue ν21 of the second order small fluctuation operator (15) has been plotted
for several values of σ overlapped with the previous spectral graphics. These frequencies of the operator
H[K(q,λ)(x)] are represented by small red circles. It can be checked the concordance between these values
and the excited frequencies extracted from the spectral analysis. This fact allows to conclude that the
K(q)(x)-kink decays to the K(q,λ)(x)-kink and that this process excites the discrete eigen-fluctuation of
this stable kink described in Section 2. This justifies the internal shape oscillations which suffer the
K(q,λ)(x)-kink after the disintegration, see Figure 7.
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Figure 8: Spectral analysis of the second field component valued at the spatial origin φ2(0, t) for the evolution of
the static K(q)(x)-kink when perturbed by the fluctuation Fω2 (x). In the second graphics the frequency ν1 of the
operator H[K(q,λ)(x)] have been overlapped as red small circles.

3.2 K
(q,λ)
static(x)−K

(−q,λ)
static (x) scattering processes

The scattering between a stable kink K(q,λ) and its antikink K(−q,λ) is the topic numerically investigated
in this Section. We are interested in classifying all the possible scattering events arising in this scenario,
which depend on the initial velocity v0 and the value of the coupling constant σ. The identities of the
emerging topological defects and its separation velocity vf are the significant variables of this problem.
The initial configuration for these numerical studies consists of two well separated boosted static kinks

K(q,λ)(x− x0, t; v0) ∪K(−q,λ)(x+ x0, t;−v0) , (17)

which are pushed together with speed v0. HereK(q,λ)(x, t; v0) = K
(q,λ)
static[(x−v0t)/

√
1− v20]. The trajectory

of the multi-kink configuration (17) describes a semi-elliptic curve, which is traversed twice. For q = ±1,
the curve defined by (17) goes from the vacuum A∓ to the opposite vacuum A± and later the same path
is travelled in the reverse direction arriving to the point A∓ again. If λ = 1 the multi-kink orbit (17) lives
in the semiplane φ2 ≥ 0 whereas if λ = −1 the second component of the concatenation (17) is negative.

Figure 9: Final kink velocity as a function of the initial velocity v0 ∈ (0, 1) and the model parameter σ ∈ (0.5, 1)
for the K(q,λ)-K(−q,λ) collisions (left, top view). Plane sections of the 3D graphics for the values σ = 0.6, 0.71 and
0.94 (right). Zero final velocity indicates the formation of a kink-antikink bound state.

The final velocity vf of the scattered kinks is plotted in Figure 9 (left) as a function of the collision
velocity v0 and the coupling constant σ where σ ∈ [0.5, 1). Plane sections of this 3D graphics for three
fixed values of the parameter σ are displayed in Figure 9 (right). The behaviour of these three plots are
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considered representative of the scattering events arising in this framework, which are described in the
following points:

– (1) For large enough values of the initial velocity v0 the kink K(q,λ)(x) and its antikink K(−q,λ)(x)
collide and emerge mutated into its φ2-mirror symmetric partners K(q,−λ)(x) and K(−q,−λ)(x), which
travel away with a certain velocity vf < v0. A certain amount of kinetic energy is used to excite kink
internal vibration eigenmodes and to emit radiation. This phenomenon, which is symbolized as

K(q,λ)(v0) +K(−q,λ)(−v0)→ K∗(q,−λ)(−vf ) +K∗(−q,−λ)(vf ) + radiation (18)

is illustrated in Figure 10 for the particular values σ = 0.72 and v0 = 0.5. As before, the asterisk
superscript stands for internal vibration mode excitation. The set of initial velocities v0 and parameters
σ where this behaviour arises will be referred to as the one-bounce transmutation regime. For a fixed
value σ, the minimum initial velocity vc of this set will be named critical velocity. The magnitude of vc
depends on σ in a non-trivial way. For v0 < 0.86 the critical velocity vc can be well approximated by the
function vc(σ) ≈ 0.0036339 + 0.589746σ3.7. However, for greater values the dependence is much more
complex due to the presence of the resonance phenomenon.

Figure 10: Evolution of the first (left) and second (right) component in the K(q,λ)-K(−q,λ) collision with impact
velocity v0 = 0.5 for the model parameter σ = 0.72. The kink and its own antikink collide and mutate into its
φ2-mirror symmetric partners (one-bounce transmutation regime).

An extreme type of kink scattering event included in this scenario emerges for large values of the parameter
σ and collision velocities, see Figure 11. In this case a great amount of the kinetic energy (stored in the
zero mode of each traveling kink) is transferred to the transversal discrete eigenmode. The amplitude of
this new excited mode is so large that the induced φ2-fluctuations make the evolving solutions repeatedly
jump the potential peak located in the internal plane origin. As a consequence, the scattered kinks
periodically mutate into its φ2-mirror partners, see Figure 11. The radiation emission can decrease the
amplitude of this mode and stop this transmutation sequence.

Figure 11: Evolution of the first (left) and second component (right) in the K(q,λ)-K(−q,λ) collision with impact
velocity v0 = 0.65 for the model parameter σ = 0.94. Here, the excitation of the φ2-fluctuations after the kink
collision is so large that provokes the successive change between each topological defects and its φ2-mirror partner.
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– (2) On the other hand, for small enough values of the initial velocity v0 the extended particles described
by the solutions K(q,λ)(x) and K(−q,λ)(x) get trapped in a long lasting bound state (bion). In this process
the kink K(q,λ)(x) and the antikink K(−q,λ)(x) approach each other and collide. The impact turns these
solutions into its symmetric partners K(q,−λ)(x) and K(−q,−λ)(x), which live in the opposite branch of
the elliptical orbit (14). These new lumps move away a certain distance, but later they attract each other
again. The transformed kinks approach, collide and change into the original pair of solutions, the kink
K(q,λ)(x) and the antikink K(−q,λ)(x). The reborn kinks bounce back and move apart until they attract
again. This process is repeated over and over emitting a decreasing amount of radiation in every impact.
In Figure 12 this scattering event has been plotted for the values σ = 0.72 and v0 = 15. The region
(σ, v0) where this behavior manifests will be referred to as the bion formation regime.

Figure 12: Evolution of the first (left) and second component (right) in the K(q,λ)-K(−q,λ) collision with impact
velocity v0 = 0.15 for the model parameter σ = 0.72. The kink and its own antikink collide and form a bound
state where a transmutation occurs after every kink collision (bion formation regime).

– (3) For σ ≥ 0.68 the resonant energy transfer mechanism arises in this type of scattering events. An
energy exchange between the kink translational mode and the internal vibrational mode is now possible
in each collision and so the chance that the kink and antikink escape after colliding a finite number of
times. The presence of resonance windows starts timidly for parameter values close to 0.68 but the effect
is accentuated for greater values of σ. For example, a complex pattern of resonance windows can be
observed for σ = 0.94, see Figure 13. The number of bounces suffered by the kinks before escaping is
pointed out in this Figure.

Figure 13: Final kink velocity as a function of the initial velocity v0 ∈ (0.58, 0.64) for the coupling constant
σ = 0.94 showing the resonance window structure.

It is assumed that other n-bounce windows with narrower than our search step ∆v0 = 10−4 widths can
exist. Indeed, the final scattered kink configuration depends on the number of collisions. In every collision
the kinks are transmuted into its φ2-reflected kinks. As a result, if N is odd the scattering process is
characterized by the process (18) whereas if N is even a global kink reflection

K(q,λ)(v0) ∪K(−q,λ)(−v0)→ K∗(q,λ)(−vf ) ∪K∗(−q,λ)(v1) + radiation

is found. These phenomena are illustrated in Figure 14, for the parameter σ = 0.72 and v0 = 0.01603.

The presence of this resonance scheme can be justified by the existence of the discrete eigenvalue ν21
in the small kink fluctuation operator spectrum. The isolation of this discrete eigenvalue in the spectrum
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Figure 14: Evolution of the first (left) and second component (right) in the two-bounce K(q,λ)-K(−q,λ) collision
with impact velocity v0 = 0.1603 for the model parameter σ = 0.72. The kink and the antikink collide twice before
escaping (resonance regime).

strengthens the resonance mechanism for large values of σ. On the other hand, for small values of σ the
continuous spectrum dominates the behaviour of the kink collision and the resonance windows disappear.
The MSTB model with σ = 1 restores the φ4 model resonance window arrangement because in this case
the second component of the K(q,λ)(x)-kinks vanishes and the evolution equations (3) and (4) do not
change this circumstance.

3.3 K
(q,λ)
static(x)−K

(−q,−λ)
static (x) scattering processes

In this Section the study of the collisions between a kink K(q,λ) and the antikink K(−q,−λ) will be ad-
dressed. The K(q,1)(x)-solution describes a semi-ellipse orbit confined in the φ2 > 0-semi-plane whereas
the K(−q,−1)-solitary wave survives in the semi-plane φ2 < 0, see Figure 4. Again, we are interested in
cataloguing the distinct scattering events which are possible in this scenario. This task can be system-
atized by analyzing the dependence of the final velocity of the scattered kinks as a function of the initial
collision velocity and the coupling constant σ. In this situation, the initial configuration consists of two
well separated boosted static kinks

K(q,λ)(x− x0, t; v0) ∪K(−q,−λ)(x+ x0, t;−v0) (19)

which are pushed together with collision velocity v0. The concatenation (19) describes a loop starting and
ending at A∓ that surrounds the local maxima of the MSTB potential located at the origin (φ1, φ2) =
(0, 0), see Figure 4. This loop configuration governs the behaviour of the K(q,λ) − K(−q,−λ) scattering
processes.

Figure 15: Final kink velocity as a function of the initial velocity v0 ∈ (0, 1) and the model parameter σ ∈ (0.5, 1)
for the K(q,λ)-K(−q,−λ) collisions (left, top view). Plane sections of the 3D graphics for the values σ = 0.60, 0.72
and 0.84 (right). Zero final velocity indicates mutual kink annihilation.
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The data found in the numerical analysis are displayed in Figure 15 (left), where the dependence of
the final velocity vf of the scattered kinks on the initial velocity v0 and the parameter σ is plotted. Three
plane sections of this 3D graphics are included in Figure 15 (right). The particular behavior of vf with
respect to v0 is shown for particular values of σ = 0.60, 0.72 and 0.84. The orography presented in Figure
15 (left) allows to distinguish five types of initial velocity regimes, which are described in the following
points:

– (1) For low enough collision velocities v0 the kink scattering is almost elastic for any value of the
coupling constant σ. This process, symbolically represented as

K(q,λ)(v0) ∪K(−q,−λ)(−v0)→ K(q,λ)(−v0) ∪K(−q,−λ)(v0) ,

is illustrated in Figure 16, where the evolution of the kink components is displayed. Here, the kinks
approach each other with initial velocity v0, collide, bounce back and move away approximately with
the same speed. This set of initial velocities and coupling constants, where the two involved kinks are
reflected, will be named as the elastic reflection regime. The upper boundary of this regime implies a
practically linear dependence on the parameter σ. Indeed, if we denote v1(σ) = 1.16073− 1.15325σ then
the region 0 < v0 < v1(σ) approximately delimitates this domain, as we can see in the Figure 15. In
this regime the kink-antikink impact slightly perturbs the simple closed orbit of the initial configuration
(19) by introducing fluctuations along the φ1 and φ2 components. However, the evolution of this kink-
composite loop preserves the simplicity and closeness of the original configuration (19) because the
evolving multikink solution is unable to jump the potential maximum.

Figure 16: Evolution of the first (left) and second component (right) in the K(q,λ)-K(−q,−λ) collision with impact
velocity v0 = 0.3 for the model parameter σ = 0.72. The kink K(q,λ)(v0) and the antikink K(−q,−λ)(−v0) (of
different type) collide and elastically reflect (elastic reflection regime).

– (2) For initial velocities v0 ranged in a band of values greater than those defining the previous regime,
the kinks mutually annihilate almost instantaneously after the creation of a short-living bound state
(bion), see Figure 17. Here, the kink impact is followed by a strong radiation emission. The final
configuration consists of traveling plane waves around the vacuum A− = −1. This can be observed in
Figure 17 (left) by the lack of red hues in the first component of the evolving solution. This type of
processes is characterized as

K(q,λ)(v0) ∪K(−q,−λ)(−v0)→ radiation .

For these events the φ1-perturbations provoked by the collision are strong enough to make the composite
kink orbit (19) jump the potential peak located at (φ1, φ2) = (0, 0). This process involves a kinetic
energy loss in form of radiation emission and internal mode excitations. This energy loss prevents the
evolving solution from returning to the original loop configuration. Consequently, kink annihilation takes
place and a radiation vestige remains, see Figure 17. The set of collision velocity windows where these
events happen will be referred to as the annihilation regime. It is approximately confined in the band
v1(σ) < v0 < v2(σ) where v2(σ) = 1.29566− 1.1214σ. However, for large enough values of σ some small
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regions must be excluded in this regime because kink and antikink manage to escape due to a resonance
mechanism, see Figure 15. This situation will be discussed later.

Figure 17: Evolution of the first (left) and second component (right) in the K(q,λ)-K(−q,−λ) collision with impact
velocity v0 = 0.4 for the model parameter σ = 0.72. The kink K(q,λ)(v0) and the antikink K(−q,−λ)(−v0) (of
different type) collide and mutually annihilate (annihilation regime).

– (3) Another remarkable feature in Figure 15 (left) is the presence of a curve in the (v0, σ)-space where the
final velocity of the scattered topological defects substantially drops with respect to the its neighbourhood.
Therefore, this curve determines the loci of quasiresonances. It is approximately interpolated by the
expression vq(σ) ≈ 0.945028 − 1.757σ5.3 for 0.5 ≤ σ ≤ 0.8. An heuristic explanation of the presence
of this quasiresonance curve based on the orbit dynamics is as follows: the quasiresonances arise when
the kinks K(q,λ) and K(−q,−λ) (pushed together with velocity vq) evolves to a configuration close to the
metastable K(q)-K(−q) configuration (with orbit φ2 = 0) after the kink-antikink impact. This scenario
allows to approximately compute the expression of this curve by using an energetic argument. The

original configuration carries a total energy 2E[K
(q,λ)
static(x)]/

√
1− v20. A part of the kinetic energy, which

can be assessed as 2ρ{E[K
(q,λ)
static(x)]/

√
1− v20−E[K

(q,λ)
static(x)]} with 0 < ρ < 1, is lost by radiation emission

or vibrational mode excitation. The K(q)-K(−q) configuration energy is given by 2E[K(q)
static(x)]. An energy

balance leads to the expression

vq(σ) ≈
(1− σ)

√
2 + σ

√
2 + σ(1− 2ρ)(3− σ2)

2− 3ρσ + ρσ3

This expression is a good approximation to the quasiresonance curve for ρ = 0.6 and this supports the
previous interpretation. Besides, this curve is the upper boundary of the transmutation regime, defined by
the condition v2(q) ≤ v0 ≤ vq(σ). For this regime the K(q,λ) and K(−q,−λ) kinks collide and emerge as its
corresponding antikinks after the impact, see Figure 18. This type of events is symbolically represented
as

K(q,λ)(v0) ∪K(−q,−λ)(−v0)→ K∗(q,−λ)(−v1) ∪K∗(−q,λ)(v1) + radiation (20)

with v1 < v0. The excitation of internal modes has been symbolized by the asterisk superscript in (20).
Another possible interpretation of the previous event is that the kink K(q,λ) and the antikink K(−q,−λ)

collide and reflect exchanging the charge λ. The collision velocity v0 in this regime is large enough to
make the K(q,λ)-K(−q,−λ) solution overcome the potential barrier twice, returning to the original loop
configuration. However, the φ2-fluctuations produced by the kink collision flip the elliptic orbit branches
of the original loop configuration (19) with respect to the φ1 axis. This flip transforms the original kinks
into the K∗(q,−λ)(−v1) ∪K∗(−q,λ)(v1) configuration.

– (4) The following distinguished domain corresponds to initial velocities greater than the values of the
rest of regimes, that is, for v0 > vq(σ) and v0 > v2(σ). The scattering processes in this case can be
described by the relation

K(q,λ)(v0) ∪K(−q,−λ)(−v0)→ K∗(q,λ)(−v1) ∪K∗(−q,−λ)(v1) + radiation
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Figure 18: Evolution of the first (left) and second component (right) in the K(q,λ)-K(−q,−λ) collision with impact
velocity v0 = 0.5 for the model parameter σ = 0.72. The kink K(q,λ)(v0) and the antikink K(−q,−λ)(−v0) (of
different type) collide and mutate into its φ2-mirror partners (transmutation regime).

with v1 < v0. The final result can be summarized as a non-elastic kink reflection. However, in contrast
to the elastic reflection regime the kinks in this case suffer several transformations before reaching its
ultimate configuration. The loop dynamics follows a similar pattern to the previous regime but now the
φ2-fluctuations induced by the kink collision provoke a double flip in the elliptic orbit branches. This
implies that the existence of the K∗(q,−λ) ∪ K∗(−q,λ) configuration is ephemeral and the original kink
configuration is restored although with excited internal vibrational modes and radiation emission. The
term inelastic reflection regime will be coined to name this domain.

– (5) As previously mentioned for some ranges of v0 and σ a resonant energy transfer mechanism is
triggered, which implies that the kinks collide and bounce back a finite number N of times before
recovering the kinetic energy necessary to escape. The final result, however, depends on the number of
collisions. In every collision the kinks are transmuted into its antikinks. As a result, if N is odd the
scattering process is characterized as

K(q,λ)(v0) ∪K(−q,−λ)(−v0)→ K∗(q,−λ)(−v1) ∪K∗(−q,λ)(v1) + radiation

whereas if N is even the scattering events

K(q,λ)(v0) ∪K(−q,−λ)(−v0)→ K∗(q,λ)(−v1) ∪K∗(−q,−λ)(v1) + radiation

are found. These phenomena are illustrated in Figure 19.

Figure 19: Evolution of the first (left) and second component (right) in the K(q,λ)-K(−q,−λ) collision with impact
velocity v0 = 0.344 for the model parameter σ = 0.84. The kink K(q,λ)(v0) and the antikink K(−q,−λ)(−v0) (of
different type) collide twice before escaping (resonance regime).

4 Conclusions and further comments

Kink dynamics in the one-parametric family of relativistic (1 + 1)-dimensional two scalar field theories
known as MSTB models has been thoroughly explored. Increasing the number of fields in the theory,
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henceforth enriching the number and types of kinks in a model, enlarges the variety of possible scattering
processes. In particular, the presence of two different stable topological kinks doubles the number of
kink-antikink scattering events. The kink can be obliged to collide with its own antikink or with the
antikink of the other stable topological kink. The output of these processes depends on the collision
velocity v0 and the coupling constant σ of the model. The domains in the (v0, σ)-plane where different
types of scattering events take place have been established.

In the K(q,λ)−K(−q,λ) scattering a one-bounce transmutation regime (where the kinks are converted
into its φ2-mirror symmetric partners K(q,−λ)−K(−q,−λ) after the collision) and a bion formation regime
(where the kink and the antikink collide and bounce back over and over mutating into its symmetric
solutions in every impact) are found. The previous pattern is general except for tiny regions where the
resonant energy transfer mechanism is turned on. In this situation the bion state is broken after a finite
number N of collisions. The final scattered kinks depends on the parity of N .

The second class of scattering events in this framework corresponds to the K(q,λ)−K(−q,−λ) collisions.
Now, the range of events is wider. An elastic reflection regime (where kink and antikink elastically
reflect), an annihilation regime (where kink and antikink mutually annihilate), a transmutation regime
(where kink and antikink mutate into its φ2-mirror partners) and a ineslastic reflection regime (where
the solutions reflect with energy loss) are found. Resonant windows are also found in this context.

The large variety of kink scattering events found in the one-parametric family of MSTB models shows
that the study of the kink collisions in N ≥ 2 scalar field theory models can provide new insights in the
broad topic of one-dimensional topological defect (domain walls in 3D) dynamics. It would be worth-
while, thus, to analyse kink collisions in others models involving several scalar fields.Continuous models
of spin chains describing ferromagnetic or antiferromagnetic phases are particularly interesting in this
direction. In Reference [65] Haldane showed that kinks breaking the O(3) symmetry in the non-linear
sigma-model with target space a 2D-sphere are important in characterizing some topological phase in
anti-ferromagnetic materials. The full variety of kinks in this effective model was analyzed by me and
my collaborators in the work [66]). The surprising result is that the kink variety in the massivenon-linear
sigma model is identical to the kink variety in the MSTB model. There exists a discrete set of stable
and unstable topological kinks and one-parametric families of unstable non-topological kinks. Moreover,
in [67] the semi-classical corrections to the masses of topological kinks where computed using heat ker-
nel/zeta function regularization methods. It is therefore tantalizing to study kink scattering processes in
the massive non-linear sigma model in the hope of grasping deeper understanding of topological phases
in antiferromagnetic materials.
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