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Abstract. We introduce new weak topologies and spaces of Carathéodory

functions where the solutions of the ordinary differential equations depend con-
tinuously on the initial data and vector fields. The induced local skew-product

flow is proved to be continuous, and a notion of linearized skew-product flow is

provided. Two applications are shown. First, the propagation of the exponen-
tial dichotomy over the trajectories of the linearized skew-product flow and the

structure of the dichotomy or Sacker-Sell spectrum. Second, how particular

bounded absorbing sets for the process defined by a Carathéodory vector field
f provide bounded pullback attractors for the processes with vector fields in

the alpha-limit set, the omega-limit set or the whole hull of f . Conditions for

the existence of a pullback or a global attractor for the skew-product semiflow,
as well as application examples are also given.

1. Introduction

This paper contains the development of topological methods to study the local
and global behaviour of the solutions of families of nonautonomous Carathéodory
ordinary differential equations. In the first part of this work, we introduce new
weak topologies and Carathéodory spaces where the solutions of the differential
equations depend continuously on the initial data. Such contributions complete and
extend some results obtained in Longo et al. [17], where the strong version of these
topologies and spaces has been investigated. Thanks to the obtained continuity
theorems, the propagation of the exponential dichotomy over the trajectories of
the linearized semiflows as well as the structure of the corresponding Sacker-Sell
spectrum can be analyzed. In the last part of the paper, we provide conditions
under which the existence of particular bounded absorbing sets for the processes
defined by a suitable dissipative Carathéodory vector field f , allows to deduce
the existence of bounded pullback attractors for the processes with vector field
belonging to either the alpha-limit set, the omega-limit set, or the whole hull of
f . Under appropriate assumptions, these theorems also provide the existence of a
pullback or a global attractor for the induced skew-product semiflow.
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The study of the topologies of continuity for Carathéodory differential equations
is a classical question considered by Artstein [2, 3, 4], Heunis [12], Miller and
Sell [18, 19], Neustadt [20], Opial [22], among many others. We continue the work
started in [17] introducing new dynamical arguments and methods that allow a more
exhaustive analysis of the qualitative behavior of the solutions and some of their
important dynamical implications. A range of dynamical scenarios is opened where
it is possible to combine techniques of continuous skew-product flows, processes and
random dynamical systems in order to obtain more precise dynamical information
(see Arnold [1], Aulbach and Wanner [5], Berger and Siegmund [6], Caraballo and
Han [7], Carvalho et al. [9], Johnson et al. [13], Pötzsche and Rasmussen [23], Sacker
and Sell [24, 25, 26, 27], Sell [29], Shen and Yi [30] and the references therein).

The structure and main results of the paper are organized as follows. Subsec-
tion 2.1 is devoted to the introduction of the spaces and topologies used along
the paper. In particular, the classical weak topology σD and the classical strong
topology TD on the space SC of strong Carathéodory functions, are recalled.
Such topologies, as well as other weak and strong topologies, have been studied
in [2, 3, 4, 12, 20, 18, 19]. Additionally, we recall the strong topology TΘ on the
space ΘC, presented in [17], and introduce a new weak topology σΘ, defined on the
new space WΘC in terms of a countable family of moduli of continuity Θ. The
locally convex space (WΘC, σΘ) represents the weak version of the locally convex
space (ΘC, TΘ). Subsection 2.2 contains some preliminary topological results for
such a new metric space.

In Section 3 we prove that if E ⊂ WΘC admits L1
loc-equicontinuous m-bounds

then the translation map is continuous on (E, σΘ). As a corollary, when f ∈WΘC
has L1

loc-equicontinuous m-bounds and E is the Hull of f in (WΘC, σΘ), one ob-
tains a continuous flow on E. Furthermore, if E ⊂ LC admits L1

loc-equicontinuous
m-bounds, one has that the m-bounds determine a suitable set of moduli of con-
tinuity Θ. Then, starting from Θ and considering any set B ⊂ WΘC(RN ) and
C ⊂WΘC(RN ) with L1

loc-equicontinuous m-bounds, we prove the continuity of the
solutions of the triangular Carathéodory systems{

ẋ = f(t, x), x(0) = x0 ,

ẏ = F (t, x) y + h(t, x), y(0) = y0 ,

with respect to the initial data (f, F, h, x0, y0) in the product space (E, σΘ) ×
(B, σΘ) × (C, σΘ) × RN × RN . As a consequence, we deduce the continuity of
the local skew-product flow given by the base flow (t, g,G, k) 7→ (gt, Gt, kt) on the
Hull of (f, F, h) in (LC×WΘC(RN×N )×WΘC, σΘ×σΘ×σΘ), and by the solutions,
x(t, g, x0) and y(t, g,G, k, x0, y0), of the corresponding differential equations.

Section 4 studies the linearized skew-product flow, defined when f ∈ LC is
continuously differentiable with respect to x and both f and its jacobian Jxf ∈
SC(RN×N ) has L1

loc-equicontinuous m-bounds. Denoting by H the hull of (f, Jxf)
in the space (LC×ΘC, σΘ × σΘ) and by Ω = H× RN , one can write

Ψ: R× Ω× RN → Ω× RN
(t, g,G, x0, y0) 7→ (gt, Gt, x(t, g, x0), y(t, g,G, x0, y0))

when the solutions of ẋ = g(t, x) are globally defined. For each ω = (g,G, x0) we
show that, if the linear system ẏ = G(ωt) y = G(t, x(t, g, x0)) y has exponential
dichotomy, then it has exponential dichotomy over H(ω) = cls{ωt | t ∈ R} and
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hence, the dynamical spectrum Σ(ω) = Σ(H(ω)). From here we describe Σ(ω)
following the arguments given in [27] when H(ω) is compact and in Siegmund [31]
for general L1

loc-coefficients, case in which Σ(ω) could be unbounded. However,
when x(t, g, x0) is bounded we deduce that the solutions of the linear system have
bounded growth and Σ(ω) is the union of k ≤ N compact intervals. An analogous
analysis is also carried out for the strong topology TΘ.

Section 5 deals with pullback and global attractors for Carathéodory ODEs as an
application of the continuity of the local skew-product flow. In particular, starting
from specific properties on the solutions of an initial problem ẋ = f(t, x), it is
possible to obtain the existence of a bounded pullback attractor for the processes
induced by systems with vector field in either the alpha limit set of f , the omega
limit set of f , or the whole hull of f . Furthermore, conditions for the existence of
pullback and global attractors for the induced skew-product flow are also provided.

Finally, Section 6 provides sufficient conditions under which the results of the
previous section can be applied. In fact, several types of attractors, both for the
induced process and the induced skew-product flow, are obtained. In Subsection 6.1
the size of the solutions of a Carathéodory differential system ẋ = f(t, x) is com-
pared with the size of the solutions of a scalar linear equation, while in Subsec-
tion 6.2 a comparison with a system of linear Carathéodory equations is given.

2. Topological preliminaries

This section provides the topological set up for the entire paper. Initially, the
topological spaces and the most important topological properties are introduced or
recalled. Then, some preliminary results on such spaces are shown.

2.1. Spaces and topologies. In the following, we will denote by RN the N -
dimensional euclidean space with norm | · | and by Br the closed ball of RN centered
at the origin and with radius r. When N = 1 we will simply write R and the symbol
R+ will denote the set of positive real numbers. Moreover, for any interval I ⊆ R
and any W ⊂ RN , we will use the following notation

C(I,W ): space of continuous functions from I to W endowed with the
norm ‖ · ‖∞.
CC(R): space of real continuous functions with compact support in R,
endowed with the norm ‖ · ‖∞. When we want to restrict to the positive
continuous functions with compact support in R, we will write C+

C (R).
L1(I,RN ): space of measurable functions from I to RN whose norm is in
the Lebesgue space L1(I).
L1
loc(RN ): the space of all functions x(·) of R into RN such that for every

compact interval I ⊂ R, x(·) belongs to L1
(
I,RN

)
. When N = 1, we will

simply write L1
loc.

We will consider, and denote by C(RM ) (or simply C when M = N), the set of
functions f : R× RN → RM satisfying

(C1) f is Borel measurable and
(C2) for every compact set K ⊂ RN there exists a real-valued function mK ∈

L1
loc, called m-bound in the following, such that for almost every t ∈ R, one

has |f(t, x)| ≤ mK(t) for any x ∈ K.

Now we introduce the sets of Carathéodory functions which are used in this work.
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Definition 2.1. A function f : R×RN → RM is said to be Lipschitz Carathéodory,
and we will write f ∈ LC(RM ) (or simply f ∈ LC when M = N), if it satisfies (C1),
(C2) and

(L) for every compact set K ⊂ RN there exists a real-valued function lK ∈ L1
loc

such that |f(t, x)−f(t, y)| ≤ lK(t)|x−y| for any x, y ∈ K and almost every
t ∈ R.

In particular, for any compact set K ⊂ RN , we refer to the optimal m-bound and
the optimal l-bound of f as to

mK(t) = sup
x∈K
|f(t, x)| and lK(t) = sup

x,y∈K
x 6=y

|f(t, x)− f(t, y)|
|x− y|

, (2.1)

respectively. Clearly, for any compact set K ⊂ RN the suprema in (2.1) can be
taken for a countable dense subset of K leading to the same actual definition, which
grants that the functions defined in (2.1) are measurable.

Definition 2.2. A function f : R × RN → RM is said to be strong Carathéodory,
and we will write f ∈ SC(RM ) (or simply f ∈ SC when M = N), if it satisfies
(C1), (C2) and

(S) for almost every t ∈ R, the function f(t, ·) is continuous.

The concept of optimal m-bound for a strong Carathéodory function on any compact
set K ⊂ RN , is defined exactly as in equation (2.1).

Functions which are not necessarily continuous in the second variable are also
considered. First, we set some notation.

Definition 2.3. We call a suitable set of moduli of continuity, any countable set
of non-decreasing continuous functions

Θ =
{
θIj ∈ C(R+,R+) | j ∈ N, I = [q1, q2], q1, q2 ∈ Q

}
such that θIj (0) = 0 for every θIj ∈ Θ, and with the relation of partial order given by

θI1j1 ≤ θ
I2
j2

whenever I1 ⊆ I2 and j1 ≤ j2 .

Now we introduce the family of sets ΘC(RM ) and WΘC(RM ), where Θ is a
suitable set of moduli of continuity.

Definition 2.4. Let Θ be a suitable set of moduli of continuity, and KIj the set of

functions in C(I,Bj) which admit θIj as modulus of continuity.

• We say that f is Θ-Carathéodory and write f ∈ ΘC(RM ) (or simply f ∈
ΘC when M = N), if f satisfies (C1), (C2), and for each j ∈ N and
I = [q1, q2], q1, q2 ∈ Q one has

(T) if
(
xn(·)

)
n∈N is a sequence in KIj uniformly converging to x(·) ∈ KIj ,

then

lim
n→∞

∫
I

∣∣f(t, xn(t)
)
− f

(
t, x(t)

)∣∣dt = 0.

• We say that f is weak Θ-Carathéodory, and write f ∈WΘC(RM ) (or simply
f ∈WΘC when M = N), if f satisfies (C1), (C2) and
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(W) for each j ∈ N and I = [q1, q2], q1, q2 ∈ Q, if
(
xn(·)

)
n∈N is a sequence

in KIj uniformly converging to x(·) ∈ KIj , then

lim
n→∞

∫
I

f
(
t, xn(t)

)
dt =

∫
I

f
(
t, x(t)

)
dt. (2.2)

As regards Definitions 2.1, 2.2 and 2.4, we identify the functions which lay in
the same set and only differ on a negligible subset of R1+N , following the same
reasoning presented in [17]. The constraint about belonging to the same set is
crucial. Indeed, without any additional constraint, a function in SC(RM ) could
actually be identified with a function which is not in SC(RM ). Furthermore, such
identifications imply that LC(RM ) ⊂ SC(RM ) and ΘC(RM ) ⊂ WΘC(RM ), but
SC(RM ) is not included in ΘC(RM ). Nevertheless, a continuous injection, which
is not a bijection, of SC(RM ) in ΘC(RM ) is straightforward. Thus, the following
chain can be sketched

LC(RM ) ⊂ SC(RM ) ↪→ ΘC(RM ) ⊆WΘC(RM ) , (2.3)

where Θ is any suitable set of moduli of continuity.

The following result characterizes the process of identification in WΘC(RM ) and,
as a consequence, implies that WΘC(RM ) is a metric space when endowed with the
topology defined immediately after. We skip the proof because it presents minor
changes with respect to the one of Proposition 2.6 in [17].

Proposition 2.5. Let f, g ∈ WΘC(RM ) coincide almost everywhere in R × RN .
Then, for any KIj as in Definition 2.4, we have that

∀x(·) ∈ KIj : f
(
t, x(t)

)
= g
(
t, x(t)

)
for a.e. t ∈ I .

We endow the previously introduced sets with suitable topologies. As a rule,
when inducing a topology on a subspace we will denote the induced topology with
the same symbol which denotes the topology on the original space. The space
WΘC(RM ) will be endowed with the following topology.

Definition 2.6. Let Θ be a suitable set of moduli of continuity. We call σΘ the
topology on WΘC(RM ) generated by the family of seminorms

pI, j(f) = sup
x(·)∈KIj

∣∣∣∣ ∫
I

f
(
t, x(t)

)
dt

∣∣∣∣ , f ∈WΘC(RM ) ,

with I = [q1, q2], q1, q2 ∈ Q, j ∈ N, and KIj as in Definition 2.4.
(
WΘC(RM ), σΘ

)
is a locally convex metric space.

On SC(RM ), we introduce the following topology

Definition 2.7. Let D be a countable and dense subset of RN . We call σD the
topology on SC(RM ) generated by the family of seminorms

pI, x(f) =

∣∣∣∣ ∫
I

f(t, x) dt

∣∣∣∣ , f ∈ SC(RM ), x ∈ D, I = [q1, q2], q1, q2 ∈ Q .(
SC(RM ), σD

)
is a locally convex metric space.

Notice that SC(RM ) and LC(RM ) can be endowed with both previous topologies
and the following chain of order holds

σD ≤ σΘ . (2.4)

We also recall two strong topologies for the spaces ΘC and SC respectively.
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Definition 2.8. Let Θ be a suitable set of moduli of continuity. We call TΘ the
topology on ΘC(RM ) generated by the family of seminorms

pI, j(f) = sup
x(·)∈KIj

∫
I

∣∣f(t, x(t)
)∣∣ dt, f ∈ ΘC(RM ) ,

with I = [q1, q2], q1, q2 ∈ Q, j ∈ N, and KIj as in Definition 2.4.
(
ΘC(RM ), TΘ

)
is a

locally convex metric space.

Definition 2.9. Let D be a countable and dense subset of RN . We call TD the
topology on SC(RM ) generated by the family of seminorms

pI, x(f) =

∫
I

| f(t, x) | dt, f ∈ SC(RM ), x ∈ D, I = [q1, q2], q1, q2 ∈ Q .(
SC(RM ), TD

)
is a locally convex metric space.

Notice, once again, that the space LC can be endowed with both TΘ and TD and
also that σΘ ≤ TΘ.

Finally, we recall the notions of L1
loc-equicontinuity and L1

loc-boundedness and
prove some results on the previously outlined topological spaces once such proper-
ties are assumed to hold. A subset S of positive functions in L1

loc is bounded if for
every r > 0 the following inequality holds

sup
m∈S

∫ r

−r
m(t) dt <∞ .

In such a case we will say that S is L1
loc-bounded.

Definition 2.10. A set S of positive functions in L1
loc is L1

loc-equicontinuous if
for any r > 0 and for any ε > 0 there exists a δ = δ(r, ε) > 0 such that, for any
−r ≤ s ≤ t ≤ r, with t− s < δ, the following inequality holds

sup
m∈S

∫ t

s

m(u) du < ε .

Remark 2.11. Notice that the L1
loc-equicontinuity implies the L1

loc-boundedness.

The following definition extends the previous notions to sets of Carathéodory
functions through their m-bounds and/or l-bounds. By time translation at time t
of a function f we mean the application ft : R × RN → RM defined by (s, x) 7→
ft(s, x) = f(s+ t, x).

Definition 2.12. We say that

(i) a set E ⊂ C(RM ) has L1
loc-bounded (resp. L1

loc-equicontinuous) m-bounds,
if for any j ∈ N there exists a set Sj ⊂ L1

loc of m-bounds of the functions
of E on Bj , such that Sj is L1

loc-bounded (resp. L1
loc-equicontinuous);

(ii) f ∈ C(RM ) has L1
loc-bounded (resp. L1

loc-equicontinuous) m-bounds if the
set {ft | t ∈ R} admits L1

loc-bounded (resp. L1
loc-equicontinuous) m-

bounds;
(iii) a set E ⊂ LC(RM ) has L1

loc-bounded (resp. L1
loc-equicontinuous) l-bounds,

if for any j ∈ N, the set Sj ⊂ L1
loc, made up of the optimal l-bounds on Bj

of the functions in E, is L1
loc-bounded (resp. L1

loc-equicontinuous);
(iv) f ∈ LC(RM ) has L1

loc-bounded (resp. L1
loc-equicontinuous) l-bounds if the

set {ft | t ∈ R} has L1
loc-bounded (resp. L1

loc-equicontinuous) l-bounds.
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2.2. First topological results. Some preliminary information on the previously
outlined topological spaces is given. In particular, we also generalize some of the
results given in [17, Section 4]. Firstly, notice that, if a function x(·) belongs to the
set KIj given in definition 2.4, and we take p1, p2 ∈ Q such that J = [p1, p2] ⊂ I,

then x(·) does not necessarily belong to KJj . Thus, the next technical lemma is
needed.

Lemma 2.13. Let Θ be a suitable set of moduli of continuity.

(i) Let f be a function of WΘC(RM ). For each j ∈ N and I = [q1, q2], q1, q2 ∈
Q, if

(
xn(·)

)
n∈N is a sequence in KIj uniformly converging to x(·) ∈ KIj ,

then

lim
n→∞

∫ p2

p1

f
(
t, xn(t)

)
dt =

∫ p2

p1

f
(
t, x(t)

)
dt.

whenever p1, p2 ∈ Q and q1 ≤ p1 < p2 ≤ q2.

(ii) Let (gn)n∈N be a sequence in WΘC(RM ) converging to a function g in(
WΘC(RM ), σΘ

)
. Then, for each I = [q1, q2], q1, q2 ∈ Q and j ∈ N

lim
n→∞

sup
x(·)∈KIj

∣∣∣∣∫ p2

p1

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣ = 0

whenever p1, p2 ∈ Q and q1 ≤ p1 < p2 ≤ q2.

Proof. First, for every n ∈ N, we define x̂n : I → Bj by x̂n(t) = xn(p1) if t ∈ [q1, p1],
x̂n(t) = xn(t) if t ∈ [p1, p2], and x̂n(t) = xn(p2) if t ∈ [p2, q2]. Notice that for all
n ∈ N one can write∫ p2

p1

f
(
t, xn(t)

)
dt =

∫ q2

q1

f
(
t, x̂n(t)

)
dt−

∫ p1

q1

f
(
t, xn(p1)

)
dt−

∫ q2

p2

f
(
s, xn(p2)

)
dt . (2.5)

The sequence
(
x̂n(·)

)
n∈N is in KIj and converges uniformly to the function x̂ : I →

RN defined by x̂(t) = x(p1) if t ∈ [q1, p1], x̂(t) = x(t) if t ∈ [p1, p2] and x̂(t) =
x(p2) if t ∈ [p2, q2]. Moreover, the sequences of constant functions

(
xn(p1)

)
n∈N

and
(
xn(p2)

)
n∈N respectively belong to K[q1,p1]

j and K[p2,q2]
j , and converge to the

constant functions given by x(p1) and x(p2) respectively. Therefore, statement (i)
follows from (2.5) and (2.2). The proof of (ii) is obtained through similar reasonings
and using the definition of convergence in

(
WΘC(RM ), σΘ

)
. �

A technical Lemma, proving that any time translation of a function in WΘC(RM )
is still a function in WΘC(RM ), is also necessary.

Lemma 2.14. Let Θ be a suitable set of moduli of continuity. If t ∈ R and
f ∈WΘC(RM ), then ft ∈WΘC(RM ).

Proof. Firstly, notice that for any fixed f ∈WΘC(RM ) and t ∈ R, the function ft
trivially satisfies (C1) and (C2). In order to prove that condition (W) of Definition
2.4 holds, consider j ∈ N, I = [q1, q2], q1, q2 ∈ Q, and a sequence

(
xn(·)

)
n∈N in KIj
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converging uniformly to x(·) ∈ KIj . Then, one has that

lim
n→∞

∣∣∣∣∫
I

[
ft
(
s, xn(s)

)
− ft

(
s, x(s)

)]
ds

∣∣∣∣
= lim
n→∞

∣∣∣∣∫
I

[
f
(
s+ t, xn(s)

)
− f

(
s+ t, x(s)

)]
ds

∣∣∣∣
= lim
n→∞

∣∣∣∣∫
I+t

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣ . (2.6)

Considering an interval J with rational extremes such that I ∪ (I + t) ⊂ J and, up
to an extension by constants to J , the functions xn(· − t) and x(· − t) are in KJj .
If t ∈ Q we immediately obtain the thesis thanks to Lemma 2.13(i). If t ∈ R, fix
ε > 0 and let δ1, δ2 > 0 be such that∫ q1+t

q1+t−δ1
mj
f (u) du <

ε

4
and

∫ q2+t+δ2

q2+t

mj
f (u) du <

ε

4
,

where mj
f (·) is the m-bound of f on Bj . The previous inequalities hold because

of the continuity of the integral. Thus, denoted by δ = min{δ1, δ2}, consider p1 ∈
[q1 + t−δ, q1 + t]∩Q and p2 ∈ [q2 + t, q2 + t+δ]∩Q. Starting from the last member
of the chain of equalities in (2.6), one has

lim
n→∞

∣∣∣∣ ∫ q2+t

q1+t

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣
≤ lim
n→∞

∣∣∣∣∫ p2

p1

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣
+ 2

∫ q1+t

p1

mj
f (u) du+ 2

∫ p2

q2+t

mj
f (u) du

≤ lim
n→∞

∣∣∣∣∫ p2

p1

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣+ ε .

Therefore, we obtain the thesis, thanks to Lemma 2.13(i), putting together the
previous chain of inequalities and (2.6). �

Proposition 2.15. Let Θ be a suitable set of moduli of continuity and σΘ the
topology defined as in Definition 2.4. The following statements hold

(i) If E ⊂ WΘC(RM ) (resp. E ⊂ LC(RM )) admits L1
loc-equicontinuous m-

bounds (resp. L1
loc-equicontinuous l-bounds), then cls(WΘC(RM ),σΘ)(E) has

L1
loc-equicontinuous m-bounds (resp. L1

loc-equicontinuous l-bounds).
(ii) If E ⊂ WΘC(RM ) (resp. E ⊂ LC(RM )) admits L1

loc-bounded m-bounds
(resp. L1

loc-bounded l-bounds) then cls(WΘC(RM ),σΘ)(E) has L1
loc-bounded

m-bounds (resp. L1
loc-bounded l-bounds).

Proof. Consider E ⊂ WΘC(RM ) with L1
loc-equicontinuous m-bounds, that is, for

every j ∈ N there is a family of m-bounds for E, namely Sj = {mj
f (·) | f ∈

E, mj
f (·) m-bound for f on Bj}, satisfying the condition in Definition 2.10. More-

over, we will assume, by simplicity, that for every j ∈ N, mj
f (t) ≤ mj+1

f (t) for

almost every t ∈ R. Let us denote by E = cls(WΘC(RM ),σΘ)(E), and, for any g ∈ E,

let (gn)n∈N be a sequence in E converging to g in
(
WΘC(RM ), σΘ

)
.
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Now, consider the topological space (M+, σ̃), i.e. the space of positive and
regular Borel measures on R with the topology σ̃ defined through convergence of
sequences as follows; we say that a sequence (µn)n∈N of measures in M+ vaguely

converges to µ ∈M+, and write µn
σ̃−→ µ, if and only if

lim
n→∞

∫
R
φ(s) dµn(s) =

∫
R
φ(s) dµ(s) for each φ ∈ C+

C (R).

Then, fixed j ∈ N, for every n ∈ N, let µjn ∈M+ be the positive absolutely contin-
uous measure (with respect to Lebesgue measure) with density mj

gn(·). We recall

that since Sj is L1
loc-equicontinuous, then it is in particular L1

loc-bounded, which
implies that {µjn | n ∈ N} is relatively compact in (M+, σ̃) (see Kallenberg [14,
Theorem 15.7.5, p.170]). Thus (µjn)n∈N vaguely converges, up to a subsequence, to
a measure µj ∈ M+. Moreover, by Lebesgue-Besicovitch differentiation theorem,
there exists mj(·) ∈ L1

loc such that

mj(t) = lim
h→0

µj([t, t+ h])

h
, for a.e. t ∈ R ,

and mj(·) is the density of the absolutely continuous part of the Radon-Nikodým
decomposition of µj in each compact interval. We claim that mj(·) is an m-bound
for g on Bj . Let us fix x ∈ Bj , I = [q1, q2] with q1, q2 ∈ Q, and firstly assume
that t, h ∈ Q, with h > 0 such that t + h ∈ I. If φ ∈ C+

C (R) is such that φ ≡ 1 in

[t, t+ h], then recalling that gn
σΘ−−→ g and using Lemma 2.13, we have∣∣∣∣∣ 1

h

∫ t+h

t

g(s, x) ds

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 1

h

∫ t+h

t

gn(s, x) ds

∣∣∣∣∣
≤ lim
n→∞

1

h

∫
R
φ(s)mj

gn(s) ds =
1

h

∫
R
φ(s) dµj(s) .

Moreover, by the regularity of the measure µj one has that

µj
(
[t, t+ h]

)
= inf

{∫
R
φ(s) dµj(s)

∣∣∣ φ ∈ C+
C (R), φ ≡ 1 in [t, t+ h]

}
.

Hence, for any t, h ∈ Q, with h > 0, one has∣∣∣∣∣ 1

h

∫ t+h

t

g(s, x) ds

∣∣∣∣∣ ≤ µj([t, t+ h])

h
. (2.7)

Now, consider t, h ∈ R, with h > 0 and t + h ∈ I, and let (sn)n∈N and (tn)n∈N be
two sequences in Q such that, as n→∞, sn ↓ t and tn ↑ t + h, respectively. By
(2.7), applied on the intervals [sn, tn], and noticing that µj([sn, tn)] ≤ µj([t, t+ h])
for every n ∈ N, one can write∣∣∣∣ 1

h

∫ tn

sn

g(s, x) ds

∣∣∣∣ ≤ µj([t, t+ h])

h
, for all n ∈ N . (2.8)

Therefore, passing to the limit as n→∞ and using the continuity of the integral,
one obtains (2.7) for every t, h ∈ R with h > 0 and t+ h ∈ I. As a further step, we
take the limit as h → 0 and obtain that for every x ∈ Bj there exists Ix ⊂ I with
meas(I \ Ix) = 0 such that for all t ∈ Ix one has

|g(t, x)| ≤ mj(t) . (2.9)
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From the arbitrariness of I, for any fixed x ∈ Bj one obtains (2.9) for almost every
t ∈ R using a numerable covering of the real line. For every fixed x ∈ Bj let us
now denote, with a little bit of abuse of notation, by Ix the subset of R such that
meas(R \ Ix) = 0 and (2.9) holds for all t ∈ Ix. Such a set clearly depends on
x ∈ Bj . However, by Fubini’s Theorem we obtain that for almost every t ∈ R
the inequality (2.9) holds for almost every x ∈ Bj . Therefore, we look for a new
function g∗ ∈ WΘC(RM ) that coincides with g almost everywhere, which implies
that g and g∗ are in fact representatives of the same element in WΘC(RM ), and
such that for almost every t ∈ R, the function g∗ satisfies an inequality of the type
(2.9) for all x ∈ Bj . Let us consider the function g∗ : R × RN → RM defined as
follows: for every t ∈ R we set

g∗(t, x) =

{
g(t, x) if x ∈ Bi \Bi−1 and |g(t, x)| ≤ mi+1(t) , with i ∈ N
0 otherwise ,

(2.10)

where 0 represents the zero vector of RN . The function g∗ is Borel measurable and
coincides with g almost everywhere. Furthermore, we have that for each j ∈ N and
for every t ∈ R, g∗ satisfies

|g∗(t, x)| ≤ mj+1(t) , (2.11)

for all x ∈ Bj . Thus, g∗ satisfies (C1) and (C2). Therefore, to prove that g and g∗

are representatives of the same element in WΘC(RM ), we only need to prove that
g∗ satisfies (W) of 2.4. In order to do that, we firstly show that for any I = [q1, q2],
q1, q2 ∈ Q, if x(·) ∈ KIj , then g∗

(
t, x(t)

)
= g

(
t, x(t)

)
for almost every t ∈ I. Let

x(·) ∈ KIj and reason locally. Consider t0 ∈ I and assume that i ≤ |x(t0)| < i + 1
for some i ∈ N. Then, by the continuity of x(·), there exist δ > 0, such that
|x(t)| ∈ (i−1, i+1] for every t ∈ It0 = [t0− δ, t0 + δ]∩ I. Let x̃(·) be the continuous
function defined on I which coincides with x(·) on It0 and it is its extension by
constants on I \ It0 . Trivially, x̃(·) ∈ KIj and ‖x̃(·)‖L∞(It0 ) ≤ i+1. Hence, for every

t ∈ I ∩ Q and for every h ∈ Q, with h > 0 and t + h ∈ I, considered φ ∈ C+
C (R)

such that φ ≡ 1 in [t, t+ h] and using Lemma 2.13, we have that∣∣∣∣∣ 1

h

∫ t+h

t

g
(
s, x̃(s)

)
ds

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 1

h

∫ t+h

t

gn
(
s, x̃(s)

)
ds

∣∣∣∣∣
≤ lim
n→∞

1

h

∫
R
φ(s)mi+1

gn (s) ds =
1

h

∫
R
φ(s) dµi+1(s) .

Reasoning as in (2.8), one can prove that the previous inequality actually holds for
any t ∈ I and h > 0 such that t + h ∈ I. Thus, taking the limit as h → 0 and
reasoning as before, we obtain that

∣∣g(t, x̃(t)
)∣∣ ≤ mi+1(t) for almost every t ∈ I.

In particular, for almost every t ∈ It0 ,∣∣g(t, x(t)
)∣∣ ≤ mi+1(t)

and recalling how g∗ is defined in (2.10), we have that g∗
(
t, x(t)

)
= g

(
t, x(t)

)
for

almost every t ∈ It0 . Thanks to the compactness of I, we can repeat such an
argument a finite number of times and deduce that actually g∗

(
t, x(t)

)
= g
(
t, x(t)

)
for almost every t ∈ I. As a consequence, one can easily prove that condition (W)
of Definition 2.4 holds for g∗. Therefore, g and g∗ are two representatives of the
same element of WΘC(RM ), because both are in WΘC(RM ) and only differ from
each other on a negligible subset of R× RN .
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Finally, we prove that E admits L1
loc-equicontinuous m-bounds. For each f ∈ E

and any j ∈ N let mj
f be either, the m-bound of f in Sj if f ∈ E, or the m-bound

given by (2.11) if f ∈ E \E, i.e. the absolutely continuous part of a limit measure.
Consider j ∈ N, r, ε > 0 and let δ = δ(r, ε) > 0 be the one given by the L1

loc-
equicontinuity of Sj+1. If t, s ∈ [−r, r] with s < t, t− s < δ/3, and φ ∈ C+

C is such
that suppφ ⊂ [s− δ/3, t+ δ/3] and φ ≡ 1 in [s, t]. Then, we have∫ t

s

mj
f (u) du ≤

∫
R
φ(u)mj

f (u) du ≤ lim
n→∞

∫
R
φ(u)mj+1

fn
(u) du

≤ sup
g∈E

∫ t+δ/3

s−δ/3
mj+1
g (u) du < ε ,

and thus, taking the superior over the functions in E in the previous expression,
one gets

sup
f∈E

∫ t

s

mj
f (u) du < ε .

Therefore, E admits L1
loc-equicontinuous m-bounds. Analogous reasonings apply

to the remaining cases in (i) and (ii). �

Below, the definition of hull of a function is given.

Definition 2.16. Let E denote one of the spaces in (2.3) and σ one of the topologies
in (2.4), assuming that endowing E with the topology σ makes sense. If f ∈ E, we
call the hull of f with respect to (E, σ), the topological subspace of (E, σ) defined by

Hull(E,σ)(f) =
(
cls(E,σ){ft | t ∈ R}, σ

)
,

where, cls(E,σ)(A) represents the closure in (E, σ) of the set A, and σ is the induced
topology.

Thus, as a corollary of Proposition 2.15 and considering the previous definition,
one has the following result.

Corollary 2.17. Let Θ be a suitable set of moduli of continuity and σΘ the topology
defined as in Definition 2.4. The following statements hold

(i) If f ∈WΘC(RM ) (resp. LC(RM )) has L1
loc-equicontinuous m-bounds (resp.

L1
loc-equicontinuous l-bounds), then any g ∈ Hull(WΘC(RM ),σΘ)(f) has L1

loc-

equicontinuous m-bounds (resp. L1
loc-equicontinuous l-bounds).

(ii) If f ∈WΘC(RM ) (resp. LC(RM )) has L1
loc-bounded m-bounds (resp. L1

loc-
bounded l-bounds) then any g ∈ Hull(WΘC(RM ),σΘ)(f) has L1

loc-bounded

m-bounds (resp. L1
loc-bounded l-bounds).

3. Continuity of the flow

This section contains several results of continuity for skew-product flows gen-
erated by either, a singular Carathéodory system with vector field in LC or, by
triangular systems composed of a nonlinear system with vector field in LC and a
linear system with vector field in WΘC. The second case assumes additional rele-
vance when the linear system is the variational equation of the non-linear one. The
classic theory of Carathéodory ODEs provides the differentiability of the solutions
with respect to the initial conditions when the respective vector fields are continu-
ously differentiable with respect to x (see Kurzweil [16]). Nevertheless, in the last
part of the section, we provide conditions that allow to extend such conclusions to
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the solutions of specific Carathéodory differential equations whose vector fields may
possibly not admit continuous partial derivatives with respect to x. In particular,
we recall the notion of linearized skew-product flow given in [17, Definition 6.2] and
introduce a weak and new type of continuous linearized skew-product flow.

We start with a result of continuity of the base flow, that is, continuity of the
time translations in the space

(
WΘC(RM ), σΘ

)
.

Theorem 3.1. Let Θ be a suitable set of moduli of continuity and consider the
space

(
WΘC(RM ), σΘ

)
. If E ⊂ WΘC(RM ) admit L1

loc-equicontinuous m-bounds,

then, denoted by E = cls(WΘC(RM ),σΘ)(E), one has that the map

ϕ : R× E →WΘC(RM ) , (t, f) 7→ ϕ(t, f) = ft ,

is well defined and continuous.

Proof. Firstly, notice that the map is well-defined thanks to Lemma 2.14. Let
(fn)n∈N be a sequence in E converging to f in

(
WΘC(RM ), σΘ

)
and (tn)n∈N a

sequence in R converging to t ∈ R. We want to prove that for every I = [q1, q2],
q1, q2 ∈ Q, and every j ∈ N one has that

lim
n→∞

sup
x(·)∈KIj

∣∣∣∣ ∫
I

[
fn
(
tn + s, x(s)

)
− f

(
t+ s, x(s)

)]
ds

∣∣∣∣ = 0 .

Let us fix ε > 0, j ∈ N, and I = [q1, q2], q1, q2 ∈ Q and consider an interval [r1, r2]
such that, for every n ∈ N, one has [q1 + tn, q2 + tn] ⊂ [r1, r2]. Since E admits
L1
loc-equicontinuous m-bounds, and thanks to Proposition 2.15, one has that there

exists δ > 0 such that

sup
g∈E

∫ τ2

τ1

mj
g(u) du < ε/6 ,

whenever τ1, τ2 ∈ [r1, r2] and 0 < τ2 − τ1 < δ. Consider p1(t), p2(t) ∈ Q such that
q1 + t < p1(t) < p2(t) < q2 + t and

p1(t)− q1 − t < δ and q2 + t− p2(t) < δ .

Notice also that, since tn → t, then there exists n0 ∈ N such that for every n > n0

one has that q1 + tn < p1(t) < p2(t) < q2 + tn and

p1(t)− q1 − tn < δ and q2 + tn − p2(t) < δ .

Then, for every n > n0 one has that

sup
x(·)∈KIj

∣∣∣∣ ∫
I

[
fn
(
tn + s, x(s)

)
− f

(
t+ s, x(s)

)]
ds

∣∣∣∣
= sup
x(·)∈KIj

∣∣∣∣ ∫ q2+tn

q1+tn

fn
(
u, x(u− tn)

)
du−

∫ q2+t

q1+t

f
(
u, x(u− t)

)
du

∣∣∣∣
≤ sup
x(·)∈KIj

∣∣∣∣ ∫ p2(t)

p1(t)

[
fn
(
u, x(u− tn)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣+
4ε

6

≤ sup
x(·)∈KIj

∣∣∣∣ ∫ p2(t)

p1(t)

[
fn
(
u, x(u− tn)

)
− f

(
u, x(u− tn)

)]
du

∣∣∣∣+
+ sup
x(·)∈KIj

∣∣∣∣ ∫ p2(t)

p1(t)

[
f
(
u, x(u− tn)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣+
2ε

3
= Pn +Rn +

2ε

3
.
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Then, if we take an interval J with rational extremes such that I∪[p1(t), p2(t)] ⊂ J ,
up to a suitable extension by constants to J , the functions yn(·) = x(· − tn) belong
to KJj and we deduce that

lim
n→∞

Pn ≤ lim
n→∞

sup
y(·)∈KJj

∣∣∣∣ ∫ p2(t)

p1(t)

[
fn
(
u, y(u)

)
− f

(
u, y(u)

)]
du

∣∣∣∣ = 0

because (fn)n∈N converges to f in
(
WΘC(RM ), σΘ

)
and thanks to Lemma 2.13(ii).

Analogously, recalling that f ∈WΘC satisfies an equality of the type (2.2), from
Lemma 2.13(i) we deduce that limn→∞Rn = 0, which finishes the proof. �

As a corollary of the previous theorem, one has that the following map is well
defined and continuous. Thus, a continuous flow on the hull of a function in WΘC
with L1

loc-equicontinuous m-bounds is obtained.

Corollary 3.2. Let f ∈ WΘC(RM ) admit L1
loc-equicontinuous m-bounds. Then,

the map

ϕ : R×Hull(WΘC,σΘ)(f)→ Hull(WΘC,σΘ)(f) , (t, g) 7→ ϕ(t, g) = gt ,

defines a continuous flow on Hull(WΘC,σΘ)(f).

As follows, ordinary differential equations whose vector fields belong to the al-
ready introduced Carathéodory spaces, are treated. For the sake of completeness
and to set some notation, we state a theorem of existence and uniqueness of the
solution for Cauchy problems of Carathéodory type. A proof can be found in Cod-
dington and Levinson [11, Theorems 1.1, 1.2 and 2.1].

Theorem 3.3. For any f ∈ LC and any x0 ∈ RN there exists a maximal interval
If,x0

= (af,x0
, bf,x0

) and a unique continuous function x(·, f, x0) defined on If,x0

which is the solution of the Cauchy problem

ẋ = f(t, x) , x(0) = x0 .

In particular, if af,x0
> −∞ (resp. bf,x0

<∞), then |x(t, f, x0)| → ∞ as t→ af,x0

(resp. as t→ bf,x0
).

Corollary 3.4. Let Θ be a suitable set of moduli of continuity. For any f ∈ LC,
F ∈ WΘC

(
RN×N

)
, h ∈ WΘC, and x0, y0 ∈ RN , there exists a unique solution of

the Cauchy problem {
ẋ = f(t, x), x(0) = x0 ,

ẏ = F (t, x) y + h(t, x), y(0) = y0 ,
(3.1)

which will be denoted by (x(·, f, x0), y(·, f, F, h, x0, y0)), and whose maximal interval
of definition coincides with the interval If,x0

provided by Theorem 3.3.

Definition 3.5. Let E ⊂ LC admit L1
loc-equicontinuous m-bounds. For any j ∈ N

and for any interval I = [q1, q2], q1, q2 ∈ Q, define

θIj (s) := sup
t∈I,f∈E

∫ t+s

t

mj
f (u) du ,

where, for any f ∈ E, the function mj
f (·) ∈ L1

loc denotes the optimal m-bounds

of f on Bj . Notice that, since E admits L1
loc-equicontinuous m-bounds, then Θ =

{θIj (·) | I = [q1, q2], q1, q2 ∈ Q, j ∈ N} defines a suitable set of moduli of continuity.
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Remark 3.6. If f ∈ LC has L1
loc-equicontinuous m-bounds we similarly define for

any Bj ⊂ RN ,

θj(s) := sup
t∈R

∫ t+s

t

mj(u) du ,

where mj(·) is the optimal m-bound for f on Bj . Here again, notice that Θ =
{θIj (·) | I = [q1, q2], q1, q2 ∈ Q, j ∈ N} defines a suitable set of moduli of continuity

thanks to the L1
loc-equicontinuity.

Eventually, before proving the theorem of continuity of the solutions with respect
to the initial data and the variation on the vector fields, we present a technical
lemma that will be necessary in the second part of the proof of the theorem. The
proof is carried out through standard arguments of measure theory and thus it is
omitted.

Lemma 3.7. Let
(
an(·)

)
n∈N be a sequence in L1

loc such that {an(·) | n ∈ N} is

L1
loc-bounded. If there exists a(·) ∈ L1

loc such that for any t1, t2 ∈ Q with t1 < t2
one has

lim
n→∞

∫ t2

t1

an(s) ds =

∫ t2

t1

a(s) ds , (3.2)

then, for any t1, t2 ∈ Q

lim
n→∞

∫ t2

t1

an(s)φn(s) ds =

∫ t2

t1

a(s)φ(s) ds , (3.3)

where
(
φn(·)

)
n∈N is any sequence in C[t1, t2] converging uniformly to some φ(·) ∈

C[t1, t2].

Theorem 3.8. Consider E ⊂ LC with L1
loc-equicontinuous m-bounds and let Θ =

{θIj | I = [q1, q2], q1, q2 ∈ Q, j ∈ N} be the countable family of moduli of continu-

ity in Definition 3.5. Additionally, consider B ⊂ WΘC
(
RN×N

)
and C ⊂ WΘC,

both with L1
loc-equicontinuous m-bounds. With the notation of Theorem 3.3 and

Corollary 3.4,

(i) if (fn)n∈N in E converges to f in (LC, σΘ) and (x0,n)n∈N in RN converges
to x0 ∈ RN , then

x(·, fn, x0,n)
n→∞−−−−→ x(·, f, x0)

uniformly in any [T1, T2] ⊂ If,x0
;

(ii) if (Fn)n∈N in B converges to F in
(
WΘC

(
RN×N

)
, σΘ

)
, (hn)n∈N in C con-

verges to h in (WΘC, σΘ), and (y0,n)n∈N in RN converges to y0 ∈ RN ,
then

y(·, fn, Fn, hn, x0,n, y0,n)
n→∞−−−−→ y(·, f, F, h, x0, y0)

uniformly in any [T1, T2] ⊂ If,x0
.

Proof. (i) We will prove the uniform convergence of
(
x(·, fn, x0,n)

)
n∈N to x(·, f, x0)

in [0, T ] for any 0 < T < bf,x0
. The case af,x0

< T < 0 is analogous. Denote

0 < ρ = 1 + max
{

(|x0,n|)n∈N, ‖x(·, f, x0)‖L∞([0,T ])

}
, (3.4)

and define

zn(t) =

{
x(t, fn, x0,n), if 0 ≤ t < Tn,

x(Tn, fn, x0,n), if Tn ≤ t ≤ T .
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where Tn = sup{t ∈ [0, T ] | |x(s, fn, x0,n)| ≤ ρ, ∀ s ∈ [0, t]}. Notice that by (3.4)
and by the continuity of

(
x(·, fn, x0,n)

)
n∈N, we have that Tn > 0 for any n ∈ N. In

particular notice that (zn(·))n∈N is uniformly bounded. Moreover, consider j ∈ N so

that ρ < j and let (mn(·))n∈N = (mj
fn

(·))n∈N be the sequence of optimal m-bounds

of (fn)n∈N on Bj . If t1, t2 ∈ [0, Tn), t1 < t2, then

|zn(t1)− zn(t2)| ≤
∫ t2

t1

∣∣fn(s, zn(s)
)∣∣ ds ≤ ∫ t2

t1

mn(s) ds . (3.5)

Fixed ε > 0, since E admits L1
loc-equicontinuous m-bounds, there exists δ =

δ(T, ε) > 0 such that, if 0 ≤ t1 ≤ t2 < Tn, then the right-hand side in (3.5) is smaller
than ε whenever t2−t1 < δ. Notice that, in fact, the inequality |zn(t1)−zn(t2)| < ε
is true on the whole interval [0, T ] whenever t2 − t1 < δ because in [Tn, T ] the dif-
ference on the left side of equation (3.5) is zero. Thus, the sequence (zn(·))n∈N is
equicontinuous. Then, Ascoli-Arzelá’s theorem implies that (zn(·))n∈N converges
uniformly, up to a subsequence, to some continuous function z : [0, T ]→ RN .

In order to conclude the proof, we prove that z(·) ≡ x(·, f, x0) in [0, T ]. Define

T0 = sup{t ∈ [0, T ] | |z(s)| < ρ− 1/2 ∀ s ∈ [0, t]} , (3.6)

and notice that T0 > 0 because (x0,n)n∈N converges to x0 and z(·) is continuous.
Since zn(·) converges uniformly to z(·) in [0, T ], then there exists n0 ∈ N such that
if n > n0, then

|zn(t)| < ρ− 1/4 ∀ t ∈ [0, T0] .

Therefore, for any t ∈ [0, T0] and for any n > n0 one has zn(t) = x(t, fn, x0,n) and
thus

zn(t) = x0,n +

∫ t

0

fn
(
s, zn(s)

)
ds , t ∈ [0, T0] , n > n0 . (3.7)

Now let us fix t ∈ [0, T0] ∩ Q and consider the compact set K = {zn(·) | n ∈ N} ∪
{z(·)} ⊂ C

(
[0, t],RN

)
. Notice that K ⊂ K[0,t]

j for the previously identified j ∈ N.

Moreover, remind that (fn)n∈N converges to f in σΘ, (zn(·))n∈N converges uniformly
to z(·) in [0, T ] and (x0,n)n∈N converges to x0 as n→∞. Then, passing to the limit
in (3.7), we have that

z(t) = x0 +

∫ t

0

f
(
s, z(s)

)
ds for t ∈ [0, T0] ∩Q .

As a matter of fact, the equality holds on the whole interval [0, T0] because of
the continuity of z(·) and of the integral operator. Therefore, z(·) coincides with
x(·, f, x0) on [0, T0]. We prove that T0 = T in order to conclude the proof. Other-
wise, by (3.6) and by the continuity of z(·), one would have |z(T0)| = |x(T0, f, x0)| =
ρ − 1/2, which contradicts (3.4). Hence, T0 = T , as claimed, and thus for any
t ∈ [0, T ] we have that x(t, f, x0) = z(t) and x(t, fn, x0,n) = zn(t) for any n ∈ N,
which concludes the proof of (i).

(ii) In order to simplify the notation, let us denote by xn(·) = x(·, fn, x0,n),
yn(·) = y(·, fn, Fn, hn, x0,n, y0,n), x(·) = x(·, f, x0), and y(·) = y(·, f, F, h, x0, y0).
Consider 0 < T < bf,x0

and, as well as we did in (3.4) of (i), define 0 < ρ =
1 + max

{
(|y0,n|)n∈N, ‖y(·)‖L∞([0,T ])

}
. Define the functions

ζn(t) =

{
yn(t), if 0 ≤ t < Tn,

yn(Tn), if Tn ≤ t ≤ T .
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where Tn = sup{t ∈ [0, T ] | |yn(s)| ≤ ρ, ∀ s ∈ [0, t]}. Then, thanks to the assump-
tions on B ⊂ WΘC

(
RN×N

)
and C ⊂ WΘC and reasoning like in (3.5) one can

easily prove that the sequence
(
ζn(·)

)
n∈N is equicontinuous. Thus, since

(
ζn(·)

)
n∈N

is also uniformly bounded by construction, once again we obtain that it converges
uniformly up to a subsequence to some ζ(·) ∈ C

(
[0, T ]

)
. Therefore, defining T0

similarly to (3.6), we have that there exists n0 ∈ N such that if n > n0, then for
any t ∈ [0, T0] one has that

ζn(t) = y0,n +

∫ t

0

Fn
(
s, xn(s)

)
ζn(s) ds+

∫ t

0

hn
(
s, xn(s)

)
.

Hence, using the fact that (hn)n∈N converges to h in (WΘC, σΘ), (y0,n)n∈N con-
verges to y0 ∈ RN , (Fn)n∈N converges to F in

(
WΘC

(
RN×N

)
, σΘ

)
and apply-

ing Lemma 3.7 with an(t) = Fn
(
t, xn(t)

)
, a(t) = F

(
t, x(t)

)
, φn(t) = ζn(t) and

φ(t) = ζ(t), one has that passing to the limit as n→∞

ζ(t) = y0 +

∫ t

0

F
(
s, xn(s)

)
ζ(s) ds+

∫ t

0

h
(
s, x(s)

)
for t ∈ [0, T0] ∩Q .

Reasoning as in the last part of (i), one obtains the previous inequality on the whole
interval [0, T0] and eventually proves that T0 = T , which ends the proof. �

Consider f ∈ LC, a suitable set of moduli of continuity Θ = (θj)j∈N, and the fam-
ily of differential equations ẋ = g(t, x), where g ∈ Hull(LC,σΘ)(f). With the notation

introduced in Theorem 3.3, let us denote by U1 the subset of R×Hull(LC,σΘ)(f)×RN
given by

U1 =
⋃

g∈Hull(LC,σΘ)(f) ,

x∈RN

{(t, g, x) | t ∈ Ig,x} .

Analogously, let f ∈ LC, F ∈WΘC(RN×N ) and h ∈WΘC, where Θ = (θj)j∈N is a
suitable set of moduli of continuity, and consider the family of differential equations
of the type (3.1) for (g,G, k) ∈ H = Hull(LC×WΘC×WΘC,σΘ×σΘ×σΘ)(f, F, h), where
the hull is constructed as in Definition 2.16. Then, we denote by U2 the subset of
R×H× RN× RN given by

U2 =
⋃

(g,G,k)∈H ,
x0∈RN

{(t, g,G, k, x0, y0) | t ∈ Ig,x0
, y0 ∈ Rn} .

With the previous notation we can state the following theorem.

Theorem 3.9. Let the functions f ∈ LC, F ∈ WΘC(RN×N ) and h ∈ WΘC have
L1
loc-equicontinuous m-bounds, where Θ = (θj)j∈N is the suitable set of moduly of

continuity given by the m-bounds of f as shown in Remark 3.6.

(i) The set U1 is open in R×Hull(LC,σΘ)(f)× RN and the map

Π: U1 ⊂ R×Hull(LC,σΘ)(f)× RN → Hull(LC,σΘ)(f)× RN

(t, g, x0) 7→
(
gt, x(t, g, x0)

)
defines a local continuous skew-product flow on Hull(LC,σΘ)(f)× RN .

(ii) The set U2 is open in R×H× RN × RN and the map

Ψ: U2 ⊂ R×H× RN× RN → H× RN× RN

(t, g,G, k, x0, y0) 7→
(
gt, Gt, kt, x(t, g, x0), y(t, g,G, k, x0, y0)

)
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defines a local continuous skew-product flow on H× RN× RN .

Proof. The proof is a direct consequence of Theorem 3.1, Theorem 3.8 and Corol-
lary 2.17. �

We end this section introducing the concept of linearized skew-product flow.

Definition 3.10. Let f ∈ LC be continuously differentiable with respect to x
for a.e. t ∈ R and with L1

loc-equicontinuous m-bounds. Let Θ be defined as in
Remark 3.6 and denote by Jxf ∈ SC

(
RN×N

)
the Jacobian of f with respect to the

coordinates x.

• If HT = Hull(LC×ΘC,TΘ×TΘ)(f, Jxf) and U is the subset of R×HT ×RN×RN
given by

UT =
⋃

(g,G)∈HT
x0∈RN

{
(t, g,G, x0, y0) | t ∈ Ig,x0

, y0 ∈ RN
}
,

then we call a linearized skew-product flow the map

ΨT : UT ⊂ R×HT × RN× RN → HT × RN× RN

(t, g,G, x0, y0) 7→
(
gt, Gt, x(t, g, x0), y(t, g,G, x0, y0)

)
,

• If Hσ = Hull(LC×WΘC,σΘ×σΘ)(f, Jxf), where Jxf has L1
loc-equicontinuous

m-bounds, and if Uσ is the subset of R×Hσ × RN× RN given by

Uσ =
⋃

(g,G)∈Hσ
x0∈RN

{
(t, g,G, x0, y0) | t ∈ Ig,x0 , y0 ∈ RN

}
,

then, we call a σ-linearized skew-product flow the map

Ψσ : Uσ ⊂ R×Hσ × RN× RN → Hσ × RN× RN

(t, g,G, x0, y0) 7→
(
gt, Gt, x(t, g, x0), y(t, g,G, x0, y0)

)
,

The use of the name linearized skew-product flow is meaningful thanks to The-
orem 6.1 in [17]. Moreover, one can easily check that a slight generalization of the
proof of such theorem gives meaning to the definition of σ-linearized skew-product
flow. Indeed, the weak topology σΘ used in Theorem 3.8 is a good and weaker
alternative. However, a stricter assumption on the m-bounds of the Jacobian of f
has to be assumed. In any case, one has that for every (g,G) ∈ HT ((g,G) ∈ Hσ
resp.) and every t ∈ Ig,x0

∂x(t, g, x0)

∂x0
· y0 = y(t, g,G, x0, y0) ,

and therefore in particular whenG ∈ ΘC
(
RN×N

)
\SC

(
RN×N

)
(G ∈WΘC

(
RN×N

)
\

SC
(
RN×N

)
resp.), i.e. when g does not have continuous partial derivatives with

respect to x for almost every t ∈ R.

4. Exponential dichotomy and dichotomy spectrum

In this section we look more deeply into the properties of the linearized skew-
product flows introduced at the end of last section. In particular we investigate the
behavior of the solutions of the linear system when it has exponential dichotomy
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and study its dichotomy spectrum. Firstly, let us state some assumptions and
simplify the notation.

Let H be either HT or Hσ as defined in Definition 3.10, and assume that for each
(g,G) ∈ H. the solutions of{

ẋ = g(t, x) , x(0) = x0 ,

ẏ = G(t, x) y , y(0) = y0 ,

are globally defined or, equivalently, x(t, g, x0) is globally defined. As a consequence,
the linearized skew-product flow is defined on the whole R×H× RN× RN .

Moreover, denoting by Ω = H × RN , the continuous skew-product flow Ψ in
definition 3.10 can be read as a continuous linear skew-product flow

Ψ: R× Ω× RN → Ω× RN

(t, ω, y0) 7→
(
ωt, y(t, ω, y0)

)
,

(4.1)

where the flow on the base R×Ω→ Ω, (t, ω) 7→ ωt is defined, for each ω = (g,G, x0),
by ωt = (gt, Gt, x(t, g, x0)). Additionally, consider the function A : Ω → RN×N
defined as follows

A(ω) =

 lim
h→0

1

h

∫ h

0

G
(
s, x(s, g, x0)

)
ds if the limit exists

0 otherwise.

Notice that, in fact,

A(ωt) = G
(
t, x(t, g, x0)

)
for a.e. t ∈ R. (4.2)

Indeed, fixed ωt =
(
gt, Gt, x(t, g, x0)

)
one has

lim
h→0

1

h

∫ h

0

Gt

(
s, x
(
s, gt, x(t, g, x0)

))
ds = lim

h→0

1

h

∫ h

0

G
(
s+ t, x(s+ t, g, x0)

)
ds

= lim
h→0

1

h

∫ t+h

t

G
(
u, x(u, g, x0)

)
du = G(t, x(t, g, x0)) for a.e. t ∈ R,

which implies (4.2).

Then, the family of systems ẏ = G(t, x(t, g, x0)) y, with ω = (g,G, x0) ∈ Ω, can
be written as

ẏ = A(ωt) y , ω ∈ Ω , (4.3)

and if Φ(t, ω) denotes the fundamental matrix solution of the system corresponding
to ω with Φ(0, ω) = IN , we have that y(t, ω, y0) = Φ(t, ω) y0.

Definition 4.1. Let I be one of the half-lines (−∞, 0], [0,∞) or the real line R and
let ∆ be a subset of Ω. We say that the linear skew-product flow (4.1), or that the
family (4.3), has exponential dichotomy on I over the set ∆ if there are a family of
continuous projections P : ∆ → L(RN ,RN ), ω 7→ P (ω), and constants K ≥ 1 and
α > 0, such that for every s, t ∈ I and every ω ∈ ∆∥∥Φ(t, ω)P (ω) Φ−1(s, ω)

∥∥ ≤ K e−α (t−s) if t ≥ s,∥∥Φ(t, ω)
(
IN − P (ω)

)
Φ−1(s, ω)

∥∥ ≤ K eα (t−s) if t ≤ s.
(4.4)

When ∆ reduces to a point ω = (f,G, x0), it is said that the corresponding system
ẏ = A(ωt) y, i.e. ẏ = G(t, x(t, g, x0) y has exponential dichotomy on I. If I = R the
interval will be omitted from the definition.
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Definition 4.2. The set A(ω) will denote the alpha limit set of a point ω =

(g,G, x0) ∈ Ω, that is, ω̂ = (ĝ, Ĝ, x̂0) ∈ A(ω) if there is a sequence (tn)n∈N in R
such that tn ↓ −∞ and ω̂ = limn→∞ ωtn in the corresponding product topology,

i.e. (ĝ, Ĝ, x̂0) = limn→∞(gtn , Gtn , x(tn, g, x0)).

Analogously ω̂ = (ĝ, Ĝ, x̂0) belongs to the omega limit set O(ω) if there is a

sequence (tn)n∈N in R such that tn ↑ ∞ and ω̂ = limn→∞ ωtn , i.e. (ĝ, Ĝ, x̂0) =
limn→∞(gtn , Gtn , x(tn, g, x0)). Finally, H(ω) will denote the closure in Ω of the set
{ωt = (gt, Gt, x(t, g, x0)) | t ∈ R} for the corresponding product topology on Ω.

The next result shows how the exponential dichotomy of a particular system can
be transferred to the exponential dichotomy of the skew-product flow over its alpha
limit set, its omega limit set or its hull.

Proposition 4.3. Let ω = (g,G, x0) ∈ Ω.

(i) If the linear system ẏ = A(ωt) y has exponential dichotomy on (−∞, 0],
then the skew-product flow (4.1) has exponential dichotomy over the alpha
limit set A(ω) ⊂ Ω.

(ii) If the linear system ẏ = A(ωt) y has exponential dichotomy on [0,∞), then
the skew-product flow (4.1) has exponential dichotomy over the omega limit
set O(ω) ⊂ Ω.

(iii) If the linear system ẏ = A(ωt) y has exponential dichotomy, then the skew-
product flow (4.1) has exponential dichotomy over the whole hull H(ω) ⊂ Ω.

Proof. (i) Let P (ω) be the projection corresponding to the exponential dichotomy
on (−∞, 0] for the system ẏ = A(ωt) y and define the family of projections

P (ωr) = Φ(r, ω)P (ω) Φ−1(r, ω) for each r ≤ 0 . (4.5)

We deduce that
∥∥Φ(t, ωr)P (ωr) Φ−1(s, ωr)

∥∥ =
∥∥Φ(t+ r, ω)P (ω) Φ−1(s+ r, ω)

∥∥
and

∥∥Φ(t, ωr) (IN − P (ωr)) Φ−1(s, ωr)
∥∥ =

∥∥Φ(t+ r, ω) (IN − P (ω)) Φ−1(s+ r, ω)
∥∥

and, consequently∥∥Φ(t, ωr)P (ωr) Φ−1(s, ωr)
∥∥ ≤ K e−α (t−s) if s ≤ t ≤ −r,∥∥Φ(t, ωr)

(
IN − P (ωr)

)
Φ−1(s, ωr)

∥∥ ≤ K eα (t−s) if t ≤ s ≤ −r.
(4.6)

Next we take ω̂ ∈ A(ω) with ω̂ = limn→∞ ωrn for a sequence rn ↓ −∞. From (4.5)
and (4.4) we deduce that ‖P (ωr)‖ ≤ K for every r ≤ 0 and hence, the sequence
of projections {P (ωrn)}n∈N admits a subsequence converging to a projection P (ω̂)
whose uniqueness is guaranteed by Proposition 1.56 in [13]. From this fact, (4.6)
and the continuity of the flow on the base Ω, we deduce that ẏ = A(ω̂t) y admits
exponential dichotomy with projection P (ω̂), that is∥∥Φ(t, ω̂)P (ω̂) Φ−1(s, ω̂)

∥∥ ≤ K e−α (t−s) if t ≥ s∥∥Φ(t, ω̂)
(
IN − P (ω̂)

)
Φ−1(s, ω̂)

∥∥ ≤ K eα (t−s) if t ≤ s.
(4.7)

In order to conclude the proof, we show the continuity of

P : A(ω)→ L(RN ,RN ), ω̂ 7→ P (ω̂).

To the aim, consider a sequence (ω̂n)n∈N in A(ω) converging to some ω̂ ∈ A(ω)
and let us prove that

(
P (ω̂n)

)
n∈N converges to P (ω̂). As before, from (4.7), with

t = s, one has that for all n ∈ N: ‖P (ω̂n)‖ ≤ K and thus, it converges, up to a sub-

sequence, to a projection P̂ , and again, from (4.7) for each n ∈ N, the continuity of



20 I.P. LONGO, S. NOVO, AND R. OBAYA

the flow on the base Ω and the uniqueness of the projection, we have that P̂ = P (ω̂).
Then, one has the exponential dichotomy of the skew-product flow (4.1) over A(ω),
as stated in (i). The proofs of (ii) and (iii) are omitted because analogous. �

We recall the definition of dichotomy spectrum, or Sacker-Sell spectrum, for one
of the systems and for a subfamily of the family (4.3).

Definition 4.4. Let ω ∈ Ω be fixed. The dichotomy spectrum of ẏ = A(ωt) y,
which will be denoted by Σ(ω), is the set of γ ∈ R such that ẏ =

(
A(ωt)− γ IN

)
y

does not have exponential dichotomy. The resolvent set is ρ(ω) = R \ Σ(ω).

Definition 4.5. Let ∆ be a subset of Ω. The dichotomy spectrum of the linear
skew-product flow (4.1) over ∆, denoted by Σ(∆) is the set of γ ∈ R such that the
family ẏ =

(
A(ωt)− γ IN

)
y does not have exponential dichotomy over ∆.

When ∆ is an invariantly connected compact invariant set of Ω, Sacker and
Sell [27] proved that Σ(∆) is the union of k compact intervals

Σ(∆) = [a1, b1] ∪ · · · ∪ [ak, bk] ,

where 1 ≤ k ≤ N and a1 ≤ b1 < a2 ≤ b2 < · · · ≤ ak ≤ bk.

From Proposition 4.3 we deduce that Σ(ω) = Σ
(
H(ω)

)
but H(ω) is not nec-

essarily compact. Therefore, we follow Siegmund’s approach in [31] to study the
dichotomy spectrum Σ(ω). He showed that either Σ(ω) is empty, or it is the whole
R, or there exists k ∈ N, with 1 ≤ k ≤ N , such that

Σ(ω) = I1 ∪ [a2, b2] ∪ · · · ∪ [ak−1, bk−1] ∪ Ik ,
where I1 is either [a1, b1] or (−∞, b1], Ik is either [ak, bk] or [ak,∞), and a1 ≤ b1 <
a2 ≤ b2 < · · · ≤ ak ≤ bk. In addition, a decomposition of R × RN in spectral
manifolds holds, i.e.

R× RN =W0 ⊕ · · · ⊕Wk+1 ;

see [31] for details.
He also proved that Σ(ω) = [a1, b1] ∪ · · · ∪ [ak, bk], with 1 ≤ k ≤ N , if and only

if the system ẏ = A(ωt) y has bounded growth, i.e. there exist constants K ≥ 1 and
α ≥ 0 such that

‖Φ(t, ω) Φ−1(s, ω)‖ ≤ K eα |t−s| for t, s ∈ R
Moreover, in such a case the spectral manifolds W0 and Wk+1 are trivial, i.e.
R× RN =W1 ⊕ · · · ⊕Wk.

We finish this section providing conditions under which Carathéodory systems
have bounded growth and, as a consequence, the dichotomy spectrum Σ(ω) =
Σ
(
H(ω)

)
is a finite number of compact intervals as in the Sacker-Sell dichotomy

spectrum.

Proposition 4.6. Let ω = (g,G, x0) ∈ Ω fixed. Assume that G has L1
loc-bounded

m-bounds and that x(·, g, x0) is bounded. Then the system ẏ = A(ωt) y has bounded
growth and Σ(ω) = [a1, b1] ∪ · · · ∪ [ak, bk].

Proof. Using the notation introduced in Theorem 3.3, let Ig,x0
be the interval of

definition of x(·, g, x0) and let j ∈ N such that ‖x(·, g, x0)‖L∞(Ig,x0
) ≤ j. Since G,

has L1
loc-bounded m-bounds, there is a positive constant α such that

sup
s∈R

∫ 1

0

mj(r + s) dr ≤ α (4.8)
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where mj is the m-bound of G on Bj satisfying the assumption of L1
loc-boundedness.

Consider s, t ∈ Ig,x0 and, for simplicity, assume that s ≤ t, the other case being
analogous. Notice that Φ(t, ω) Φ−1(s, ω) y0 = y(t, ω, s, y0). Then

|y(t, ω, s, y0)| ≤ |y0|+
∫ t

s

‖G(u, x(u, g, x0))‖ |y(u, ω, s, y0)| du ,

and Gronwall inequality provides

|y(t, ω, s, y0)| ≤ |y0| exp

(∫ t

s

‖G(u, x(u, g, x0))‖ du
)

= |y0| exp

(∫ t−s

0

‖Gs(r, x(r + s, g, x0))‖ dr
)
.

(4.9)

Using the equivalence of the 2-norm and the matrix norm, the inequality (4.8), and
covering the interval [0, t− s] with intervals of unit length, (4.9) yields

|y(t, ω, s, y0)| ≤ K eα (t−s)|y0|
for an appropriate constant K ≥ 1, which finishes the proof. �

Recall that Ω is defined as either HT × RN or Hσ × RN where Hσ and HT
are defined in Definition 3.10. Notice that in the case in which Ω = HT × RN
both the assumptions of Proposition 4.6 are necessary, whereas if Ω = Hσ × RN ,
then the L1

loc-boundedness for the m-bounds of G is already implied by the L1
loc-

equicontinuity for the m-bounds of Jxf thanks to Corollary 2.17.

5. Pullback and global attractors for Carathéodory ODEs

This section deals with pullback and global attractors for Carathéodory ODEs
as an application of the continuity of the skew-product flow. In particular we
show how, starting from specific properties on the solutions of an initial problem
ẋ = f(t, x), it is possible to obtain the existence of a bounded pullback attractor
for the processes induced by systems with vector field in either the alpha limit set
of f , the omega limit set of f , or the whole hull of f . Furthermore, conditions for
the existence of pullback and global attractors for the induced skew-product flow
are also provided.

Let us recall two cases in which, depending on the properties on f and on the
used topology T , one has a continuous skew-product flow on Hull(LC,T )(f)× RN .

• Case 1: f ∈ (LC, σΘ) with L1
loc-equicontinuous m-bounds; see Theo-

rem 3.9.

• Case 2: f ∈ (LC, TD) with Lploc-bounded l-bounds; see [17, Theorem 5.9].

In the rest of the section, (LC, T ) will denote any of the topological spaces outlined
in the previous cases.

5.1. Statement and definitions. We set the environment in which we subse-
quently develop our results. Let f be a function in LC and consider the nonau-
tonomous initial value problems

ẋ = f(t, x), x(r) = x0, with r ∈ R and x0 ∈ RN. (5.1)

If f is such that for any x0 ∈ RN and any r ∈ R, the unique solution x(·, f, r, x0)
is defined on [r,∞), then a process is induced by

Sf (t+ r, r)x0 = x(t+ r, f, r, x0) = x(t, fr, x0) , (5.2)
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where t ≥ 0, r ∈ R and x0 ∈ RN . We recall that, given a metric space (X, d) a
process is a family of continuous maps {S(t, s) | t ≥ s} ⊂ C(X) satisfying

• S(t, t)x = x for every t ∈ R and x ∈ X.
• S(t, s) = S(t, r)S(r, s), for every t ≥ r ≥ s.
• (t, s, x) 7→ S(t, s)x is continuous for every t ≥ s and x ∈ X.

The different types of ultimately bounded character of the solutions are defined in
terms of the process as follows.

Definition 5.1. Let f ∈ LC. The solutions of ẋ = f(t, x) are said to be

• uniformly ultimately bounded if there is a positive constant c > 0 such that
for every d > 0 there is a time T (d) > 0 satisfying

|Sf (t+ r, r)x0| ≤ c for every r ∈ R, t ≥ T (d) and |x0| ≤ d ;

• uniformly ultimately bounded on [τ,∞) if there is a positive constant c(τ)
such that for every d > 0 there is a time T (τ, d) > 0 satisfying

|Sf (t+ r, r)x0| ≤ c(τ) , (5.3)

whenever r ≥ τ , t ≥ T (τ, d) and |x0| ≤ d.

The definitions of pullback attractor for a process is also hereby recalled.

Definition 5.2. A family of subsets A(·) = {A(t) | t ∈ R} of the phase space X is
said to be a pullback attractor for the process S(·, ·) if

(i) A(t) is compact for each t ∈ R;
(ii) A(·) is invariant, that is, S(t, s)A(s) = A(t) for all t ≥ s;

(iii) for each t ∈ R, A(t) pullback attracts bounded sets at time t, i.e. for any
bounded set B ⊂ X one has

lim
s→−∞

dist(S(t, s)B,A(t)) = 0 ,

where dist(A,B) is the Hausdorff semi-distance between two nonempty sets
A, B ⊂ X i.e. dist(A,B) := supx∈A infy∈B d(x, y).

(iv) A is the minimal family of closed sets with property (iii).

The pullback attractor is said to be bounded in the past (resp. bounded) if for all
τ > 0 one has that

⋃
t≤τ A(t) (resp.

⋃
t∈RA(t)) is bounded.

The notion of pullback absorbing family will also be necessary.

Definition 5.3. Let S(·, ·) be a process on a metric space (X, d). A family of
nonempty bounded sets {B(t) ⊂ X | t ∈ R} pullback absorbs bounded sets, if for
every t ∈ R and every bounded subset D of X there exists a time T (t,D) > 0
such that

S(t, t− s)D ⊂ B(t) for every s ≥ T (t,D) .

We also say that {B(t) ⊂ X | t ∈ R} is a pullback bounded absorbing family. If for
all t ∈ R one has B(t) ≡ B ⊂ X we will say that B is a pullback absorbing set.

Definition 5.4. A process S(·, ·) is pullback strongly bounded dissipative on (−∞, τ ]
if there exists a family {B(t) ⊂ X | t ∈ R} of pullback bounded absorbing sets such
that for every bounded subset D ⊂ X, there is a time T (τ,D) > 0 so that

S(t, t− s)D ⊂ B(τ) for every t ≤ τ and s ≥ T (τ,D) . (5.4)



WEAK TOPOLOGIES FOR CARATHÉODORY DIFFERENTIAL EQUATIONS 23

Remark 5.5. In the finite dimensional case, the existence of a pullback bounded
absorbing family ensures the existence of a pullback attractor (see, e.g., Car-
valho et al. [9] and Kloeden and Rasmussen [15]). If in addition the family satis-
fies (5.4), then the pullback attractor {A(t) | t ∈ R} is bounded in the past because⋃
t≤τ A(t) ⊂ B(τ) .

Finally, if there is a bounded set B such that for every bounded subset D ⊂ X
there is a time T (D) > 0 so that

S(t, t− s)D ⊂ B for every t ∈ R and s ≥ T (D) , (5.5)

then there is a bounded pullback attractor.

Remark 5.6. Notice that condition (5.5) is equivalent to the uniformly ultimately
bounded character of the solutions of the system.

Finally, we recall the definitions of pullback and global attractor for a skew-
product flow. Let f ∈ LC and let T be a topology in LC such that the induced
local skew-product flow

Π: U ⊂ R×Hull(LC,T )(f)× RN → Hull(LC,T )(f)× RN

(t, g, x0) 7→
(
gt, x(t, g, x0)

)
,

(5.6)

is continuous.

Definition 5.7. Assume that for any g ∈ Hull(LC,T )(f) and any x0 ∈ RN , the
solution x(·, g, x0) of ẋ = g(t, x), x(0) = x0, is defined on [0,∞), i.e. the skew-
product semiflow (5.6) is defined on R+×Hull(LC,T )(f)× RN .

• A family Â = {Ag | g ∈ Hull(LC,T )(f)} of nonempty, compact sets of

RN is said to be a pullback attractor for the skew-product semiflow if it is
invariant, i.e.

x(t, g, Ag) = Agt for each t ≥ 0 and g ∈ Hull(LC,T )(f) ,

and, for every nonempty bounded set D of RN and every g ∈ Hull(LC,T )(f)
one has

lim
t→∞

dist(x(t, g−t, D), Ag) = 0 ,

where dist(A,B) denotes the Hausdorff semi-distance of two nonempty sets
A, B of RN . A pullback attractor for the skew-product flow is said to be
bounded if ⋃

g∈Hull(LC,T )(f)

Ag is bounded.

• A compact set A of Hull(LC,T )(f)× RN is said to be a global attractor for
the skew-product semiflow if it is the maximal nonempty compact subset
of Hull(LC,T )(f)× RN which is Π-invariant, i.e.

Π(t,A) = A for each t ≥ 0 ,

and attracts all compact subsets D of Hull(LC,T )(f)× RN , i.e.

lim
t→∞

dist(Π(t,D),A) = 0 ,

where now dist(B, C) denotes the Hausdorff semi-distance of two nonempty
sets B, C of Hull(LC,T )(f)× RN .
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Remark 5.8. Analogous definitions hold when we change Hull(LC,T )(f) by the
alpha limit set A(f) or by the omega limit set O(f) in (5.6) and consider the
corresponding skew-product semiflows.

5.2. General results for processes and skew-product semiflows. The next
result gives conditions under which, given a pullback attractor bounded in the past
for the process induced by ẋ = f(t, x), with f ∈ LC, one has the existence of a
bounded pullback attractor for the process induced by ẋ = g(t, x), where g ∈ LC is
any function in the alpha limit set A(f).

Theorem 5.9. Let f be in LC and T be a topology such that the induced local skew-
product flow (5.6) is continuous, and assume that for any g ∈ {fs | s ≤ 0} ∪A(f),
and x0 ∈ RN , the solution x(·, g, x0) of ẋ = g(t, x), x(0) = x0, is defined on
[0,∞). If there is a τ ∈ R for which the process Sf (·, ·) is strongly pullback bounded
dissipative on (−∞, τ ], and if g is any function in A(f), then the solutions of
ẋ = g(t, x) are uniformly ultimately bounded. In particular, the induced process
Sg(·, ·) has a bounded pullback attractor.

Proof. Let D be a bounded set. By hypothesis, there are c = c(τ) > 0 and T (D) =
T (τ,D) > 0 such that for each x0 ∈ D one has

|Sf (t, t− s)x0| = |x(s, ft−s, x0)| ≤ c for t ≤ τ and s ≥ T (D) .

If g = limn→∞ ftn with tn ↓ −∞, then we have gt−s = limn→∞ ftn+t−s and by the
continuity of the semiflow

|Sg(t, t− s)x0)| = |x(s, gt−s, x0)| =
∣∣∣ lim
n→∞

x(s, ftn+t−s, x0)
∣∣∣ .

Finally, there exists n0 ∈ N such that, if n ≥ n0, then tn + t ≤ min{0, τ}, and thus

|Sg(t, t− s)x0| ≤ c for every t ∈ R and s ≥ T (D) .

Therefore, from Remark 5.6 the solutions of ẋ = g(t, x) are uniformly ultimately
bounded and, as stated in Remark 5.5, a bounded pullback attractor exists. �

Analogously, we give conditions to have a bounded pullback attractor for the
process induced by ẋ = g(t, x), when g ∈ LC is any function in the omega limit
set O(f).

Theorem 5.10. Let f be in LC and T be a topology such that the induced local skew-
product flow (5.6) is continuous, and assume that for any g ∈ {fs | s ≥ 0} ∪O(f),
and x0 ∈ RN , the solution x(·, g, x0) of ẋ = g(t, x), x(0) = x0, is defined on
[0,∞). If there is a τ ∈ R for which the solutions of ẋ = f(t, x) are uniformly
ultimately bounded on [τ,∞), and g is any function in O(f), then the solutions of
ẋ = g(t, x) are uniformly ultimately bounded and the induced process Sg(·, ·) has a
bounded pullback attractor.

Proof. From (5.3) it holds

|Sf (t+ s, s)x0| = |x(t+ s, f, s, x0)| = |x(t, fs, x0)| ≤ c(τ)

if s ≥ τ , t ≥ T (τ, d) and |x0| ≤ d. Since g ∈ O(f) there is a sequence tn ↑ ∞ with
limn→∞ ftn = g. Thus, gr = limn→∞ ftn+r and by the continuity of the solutions

|Sg(t+ r, r)x0| = |x(t, gr, x0)| =
∣∣∣ lim
n→∞

x(t, ftn+r, x0)
∣∣∣ .
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Since there is n0 ∈ N such that, if n ≥ n0, then tn+r ≥ max{0, τ}, we conclude that

|Sg(t+ r, r)x0| ≤ c(τ) whenever r ∈ R , t ≥ T (τ, d) and |x0| ≤ d ,
that is, the solutions of ẋ = g(t, x) are uniformly ultimately bounded, as claimed.
As in Theorem 5.9, from Remarks 5.6 and 5.5 we obtain the thesis. �

Finally, we give conditions to have a bounded pullback attractor for the process
induced by ẋ = g(t, x), when g ∈ LC is any function in the hull of f .

Theorem 5.11. Let f be in LC and T be a topology such that the induced local
skew-product flow (5.6) is defined on R+×Hull(LC,T )(f)×RN and it is continuous.
If there is a pullback bounded absorbing set B satisfying (5.5), then, for any g ∈
Hull(LC,T )(f), one has that the solutions of ẋ = g(t, x) are uniformly ultimately
bounded and the induced process Sg(·, ·) has a bounded pullback attractor.

Proof. First, notice that Hull(LC,T )(f) = A(f) ∪ O(f) ∪ {fτ | τ ∈ R}. Moreover,
condition (5.5) implies that the assumptions of Theorems 5.9 and 5.10 are satisfied,
as shown in Remarks 5.6 and 5.5. Therefore, if g ∈ A(f) (resp. g ∈ O(f)) the
result follows from Theorem 5.9 (resp. Theorem 5.10). If g is f , or one of its time-
translations, the uniformly ultimately bounded character of the solutions cames
again from Remark 5.6, which together with Remark 5.5 allows to end the proof. �

The next result provides the existence of a pullback attractor as well as a global
attractor (when Hull(LC,T )(f) is compact) of the skew-product semiflow (5.6) and

the relation between them. We denote by x(t, f,D) the subset of RN given by
{x(t, f, x0) | x0 ∈ D}.
Theorem 5.12. Let f be in LC and T be a topology such that the induced skew-
product semiflow (5.6) is defined on R+×Hull(LC,T )(f)×RN and it is continuous.

Assume that there is a bounded set B ⊂ RN such that for each nonempty bounded
set D there is a time T (D) such that

x(t, fs, D) ⊂ B whenever t ≥ T (D) (5.7)

for every s ∈ R. Then

(i) there is a unique bounded pullback attractor Â = {Ag | g ∈ Hull(LC,T )(f)}
of the skew-product semiflow (5.6) given by

Ag =
⋂
τ≥0

⋃
t≥τ

x(t, g−t, B) for each g ∈ Hull(LC,T )(f) ,

(ii) if Hull(LC,T )(f) is compact, there is a global attractor of the skew-product
semiflow (5.6) given by

A =
⋂
τ≥0

⋃
t≥τ

Π(t,Hull(LC,T )(f)×B) =
⋃

g∈Hull(LC,T )(f)

{{g} ×Ag} .

Proof. First, from the continuity of the skew-product flow, we deduce that

x(t, g,D) ⊂ B for every t ≥ T (D) and every g ∈ Hull(LC,T )(f).

Therefore, among other references, (i) follows from Theorem 3.20 of [15]. The
existence of a global attractor A under the compactness of the base Hull(LC,T )(f)
follows from Theorem 2.2 of Cheban et al. [10] and, as shown in Theorem 16.2
of [9], Ag is the section of A over g, that is A =

⋃
g∈Hull(LC,T )(f) {{g} ×Ag}, which

finishes the proof. �
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Remark 5.13. Notice that (5.7) is equivalent to (5.5), that is, the process induced
by f has a pullback bounded absorbing set B.

Remark 5.14. Under the assumptions of Theorem 5.13(i-ii), in general the pull-
back attractors {Agt | t ∈ R} with g ∈ Hull(LC,T )(f) have no forward attraction
properties for the corresponding processes. However the global attractor A always
exhibits collective properties of forward attractivity (see Caraballo et al. [8]).

Finally, from Theorems 5.9, 5.10 and 5.12 we obtain the corresponding results
for the induced skew-product flow on A(f)× RN and O(f)× RN .

Corollary 5.15. Let f ∈ LC and T be a topology such that the induced local skew-
product flow (5.6) is continuous, and assume that for any g ∈ {fs | s ≤ 0} ∪A(f),
and any x0 ∈ RN , the solution x(·, g, x0) of ẋ = g(t, x), x(0) = x0 is defined on
[0,∞). If there is a τ ∈ R for which Sf (·, ·) is strongly pullback bounded dissipative
on (−∞, τ ], then (i) and (ii) of Theorems 5.12 hold for the skew-product flow on
A(f)× RN .

Corollary 5.16. Let f ∈ LC and T be a topology such that the induced local skew-
product flow (5.6) is continuous, and assume that for any g ∈ {fs | s ≥ 0} ∪O(f),
and any x0 ∈ RN the solution x(·, g, x0) of ẋ = g(t, x), x(0) = x0 is defined on
[0,∞). If there is a τ ∈ R for which the solutions of ẋ = f(t, x) are uniformly
ultimately bounded on [τ,∞), then (i) and (ii) of Theorems 5.12 hold for the skew-
product flow on O(f)× RN .

6. Comparison methods for Carathéodory ODEs

This section provides sufficient conditions under which the abstract results of
subsection 5.2 can be applied. In fact, several types of attractors, both for the
induced process and the induced skew-product flow, are obtained. In the first
subsection the size of the solutions of a Carathéodory differential system ẋ = f(t, x)
is compared with the size of the solutions of a scalar linear equation, while in the
second subsection a comparison with a system of linear Carathéodory equations is
carried out.

6.1. Comparison with a scalar Carathéodory linear equation. Consider a
Carathéodory differential system ẋ = f(t, x) and the condition below for f ∈ LC:

H1: there exist α(·), β(·) ∈ L1
loc, with β(·) non-negative, such that

2 〈f(t, x), x〉 ≤ α(t) |x|2 + β(t) for a.e. (t, x) ∈ RN+1 ,

where 〈·, ·〉 represents the scalar product in RN .

This assumption implies the following inequality for the solutions of ẋ = f(t, x).

Proposition 6.1. Assume that H1 holds. If x(t) is a solution of ẋ = f(t, x)
defined on an interval I, then it satisfies

2 〈f(t, x(t)), x(t)〉 ≤ α(t) |x(t)|2 + β(t) for a.e. t ∈ I. (6.1)

Proof. Let V ⊂ R× RN be such that measR1+N

(
R1+N \ V

)
= 0 and

2 〈f(t, x), x〉 ≤ α(t) |x|2 + β(t) for all (t, x) ∈ V.
Consider the set E =

{
(t, ε) ∈ I ×B1 |

(
t, x(t) + ε

)
∈ V

}
, where B1 is the closed

ball of RN centered at the origin and with radius 1, and for any t ∈ I denote by
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Et the section in t of E, i.e. Et = {ε ∈ B1 | (t, ε) ∈ E}. Moreover, given t ∈ I one
has that x(t) + (B1 \Et) ⊂ Br \ Vt for some r, and hence measRN (B1 \Et) = 0 for
almost every t ∈ I. Then, applying Fubini’s theorem twice, one has

measR(I) ·measRN (B1) = measR1+N (E) =

∫
RN

measR(Eε) dε ,

where Eε denotes the section of E given for any fixed ε ∈ B1. Therefore, one has
measR(Eε) = measR(I) for almost every ε ∈ B1. Now, let (εn)n∈N ⊂ B1 be such
that

εn
n→∞−−−−→ 0 and measR(Eεn) = measR(I) ∀ n ∈ N .

As a consequence, taking J = ∩
n∈N

Eεn we deduce that

2 〈f(t, x(t) + εn), x(t) + εn〉 ≤ α(t) |x(t) + εn|2 + β(t) ∀t ∈ J ,
and as n→∞ we obtain (6.1) because measR(I) = measR(J). �

Remark 6.2. If f ∈ LC satisfies H1 then, considering the Cauchy problem ẋ =
f(t, x), x(t0) = x0, and denoted by x(·) its solution, from (6.1) and |x(r)|2 =
〈x(r), x(r)〉 one has that

d

dr
|x(r)|2 = 2 〈x(r), f(r, x(r))〉 ≤ α(r) |x(r)|2 + β(r) , for a.e. r ∈ R .

Then, a standard comparison argument yields

|x(t)|2 ≤ exp

(∫ t

t0

α(u) du

)
|x0|2 +

∫ t

t0

β(r) exp

(∫ t

r

α(u) du

)
dr . (6.2)

As a consequence, the solutions of such a differential system are defined on [t0,∞)
and thus a process Sf (·, ·) can be induced as in (5.2).

In addition to H1 we also consider the following conditions:

H2: the equation ẏ = α(t) y has exponential dichotomy on (−∞, 0] with pro-
jection P = Id, that is, there are constants α1 > 0 and K ≥ 1 such that

exp

(∫ t

s

α(u) du

)
≤ K e−α1 (t−s) for s ≤ t ≤ 0 ; (6.3)

H3: the set of functions {βt(·)}t∈R is L1
loc-bounded,

Assumptions H1, H2 and H3 allow to obtain that the process Sf (·, ·) is strongly
pullback bounded dissipative on (−∞, τ ] for all τ ∈ R.

Theorem 6.3. Consider f ∈ LC and assume that H1, H2 and H3 hold. Then the
induced process Sf (·, ·) is strongly pullback bounded dissipative on (−∞, τ ] for all
τ ∈ R. Consequently, there exists a pullback attractor which is bounded in the past.

Proof. First we check from H2 that there is a nondecreasing function K(t) ≥ 1
such that

exp

(∫ r

s

α(u) du

)
≤ K(t) e−α1 (r−s) for s ≤ r ≤ t . (6.4)

Let t ≥ 0 and denote N(t) = exp
(∫ t

0
|α(u)| du

)
. From (6.3) we deduce that

exp

(∫ r

s

α(u) du

)
≤ K eα1 sN(t) = K eα1 rN(t) e−α1 (r−s) ,

and (6.4) holds for K(t) := K eα1 tN(t) for t ≥ 0, and K(t) := K for t ≤ 0.
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Let D be a bounded set. Thus, there is a positive constant d > 0 such that
supx∈D |x| ≤ d. We take x0 ∈ D, t ∈ R, s ≥ 0 and denote by x(·) := x(·, f, t−s, x0),
i.e. the solution of the Cauchy problem ẋ = f(t, x) , x(t − s) = x0. In particular,
since Sf (t, t− s)x0 = x(t, f, t− s, x0) = x(t) from (6.2) and (6.4) we deduce that

|Sf (t, t− s)x0|2 ≤ |x0|2K(t) e−α1 s + I(t, s) (6.5)

where

I(t, s) =

∫ t

t−s
β(r) exp

(∫ t

r

α(u) du

)
dr ≤ K(t)

∫ t

−∞
e−α1 (t−r) β(r) dr

= K(t)

∫ ∞
−t

e−α1 (t+u) β(−u) du .

Now, from H3 there is a c1 > 0 such that
∫ t+1

t
β(u) du ≤ c1 for every t ∈ R and,

hence, if we decompose [−t,∞) ⊂
⋃∞
j=0[−t+ j,−t+ j + 1] , we obtain

I(t, s) ≤ K(t)

∞∑
j=0

∫ −t+j+1

−t+j
e−α1j β(−u) du ≤ c1K(t)

∞∑
j=0

e−α1j ≤ c1K(t)

1− e−α1
, (6.6)

because α1 > 0. Therefore, denoting by ρ2(t) := 1 + c1K(t)/(1− e−α1) one has

|Sf (t, t− s)x0|2 ≤ d2K(t) e−α1 s + I(t, s) ≤ ρ2(t) ,

provided that s ≥ ln(d2K(t))/α1 := T (t,D) > 0.

Hence, {Bρ(t) | t ∈ R} is a family of bounded absorbing sets. In addition, since
the function K(t) is nondecreasing, then ρ(t) and T (t,D) are also nondecreasing.
Therefore, we deduce that

Sf (t, t− s)D ⊂ Bρ(τ) for t ≤ τ and s ≥ T (τ,D),

and the process is strongly pullback bounded dissipative on (−∞, τ ] for all τ ∈ R,
as claimed. The existence of a pullback attractor bounded in the past follows from
Remark 5.5. �

Consequently, an application of Theorem 5.9 provides for each g in the alpha
limit set A(f) the existence of a bounded pullback attractor for the process Sg(·, ·).

Corollary 6.4. Let f be in LC and T be a topology such that the induced local
skew-product flow on Hull(LC,T )(f) × RN is continuous. Under assumptions H1,
H2 and H3, for each g ∈ A(f) the solutions of ẋ = g(t, x) are uniformly ultimately
bounded. In particular, the induced process Sg(·, ·) has a bounded pullback attractor.

Proof. In order to apply Theorem 5.9, we only need to prove that for any g ∈ A(f)
and any x0 ∈ RN the solution of ẋ = g(t, x), x(0) = x0 is defined on [0,∞).
From (6.5) and (6.6) and recalling that the function K(·) is non decreasing, one
has that for any d ≥ 0, and x0 ∈ RN with |x0| < d

|Sf (t, t− s)x0|2 = |x(s, ft−s, x0)| ≤ c2(d) for all t ≤ 0, s ≥ 0 , (6.7)

where c2(d) = K(0)
(
d2 + c1/(1− e−α1)

)
. Let us fix s ∈ [0, bg,x0

) and take g =
limn→∞ ftn with tn ↓ −∞. Notice that, for any n ∈ N, one may write x(s, ftn , x0)
as x(s, f(tn+s)−s, x0). Thus, considered n0 ∈ N such that tn+ s ≤ 0 for any n ≥ n0,
one has that x(s, ftn , x0) = x(s, f(tn+s)−s, x0) satisfies (6.7) for any n ≥ n0 and, by
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the continuity of the flow, the sequence
(
x(s, ftn , x0)

)
n∈N converges to x(s, g, x0).

Therefore, we conclude that

|x(s, g, x0)| ≤ c(d) for all s ∈ [0, bg,x0) and x0 ∈ RN with |x0| < d .

As a consequence, one has that the solution x(·, g, x0) of ẋ = g(s, x), x(0) = x0

can not explode in finite time, i.e. it has to be defined on [0,∞). Otherwise it
is easy to prove that a contradiction arises. One concludes the proof applying
Theorem 5.9. �

In order to have that for all τ ∈ R the solutions of ẋ = f(t, x) are uniformly
ultimately bounded on [τ,∞), we change hypothesis (H2) by

H∗2: the linear equation ẏ = α(t) y has exponential dichotomy on (0,∞] with
projection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

exp

(∫ t

s

α(u) du

)
≤ K e−α1 (t−s) for every 0 ≤ s ≤ t .

Theorem 6.5. Under conditions H1, H∗2 and H3, for each fixed τ ∈ R the solu-
tions of ẋ = f(t, x) are uniformly ultimately bounded on [τ,∞).

Proof. As in Theorem 6.3 we can prove the existence of a nonincreasing function
K(·) ≥ 1 such that

exp

(∫ r

s

α(u) du

)
≤ K(t0) e−α1 (r−s) for every t0 ≤ s ≤ r ,

and hence,
|Sf (t+ t0, t0)x0|2 ≤ |x0|2K(t0) e−α1t0 + I(t, t0)

where

I(t, t0) =

∫ t+t0

t0

β(r) exp

(∫ t+t0

r

α(u) du

)
dr ≤ K(t0)

∫ t+t0

t0

β(r) e−α1 (t+t0−r) dr

= K(t0)

∫ t−t0

−t0
β(t− u) e−α1 (t0+u) du ≤ K(t0)

∫ ∞
−t0

β(t− u) e−α1 (t0+u) du .

Again, as in Theorem 6.3, from H3 we deduce that I(t, t0) ≤ c1K(t0)/(1 − e−α1)
and denoting c2(t0) := 1 + c1K(t0)/(1− e−α1) and T (t0, d) := (ln(d2K(t0))/α1 ,
it holds

|Sf (t+ t0, t0)x0| ≤ c(t0) whenever t ≥ T (t0, d) and |x0| ≤ d ,
and the nonincreasing character of c(·) and T (·, d) proves (5.3) and finishes the
proof. �

As in Corollary 6.4, from the inequalities obtained in Theorem 6.5 we can check
that for any g ∈ O(f) and any x0 ∈ Rn, the solution x(·, g, x0) of the Cauchy
problem ẋ = g(t, x), x(0) = x0 is defined on [0,∞). Hence, an application of
Theorem 5.10 provides, for each g in the omega limit set O(f), the existence of a
bounded pullback attractor for the induced process Sg(·, ·).

Corollary 6.6. Let f be in LC and T be a topology such that the induced local
skew-product flow on Hull(LC,T )(f)×RN is continuous and assume that conditions
H1, H∗2 and H3 hold. Then, for each g ∈ O(f) the solutions of ẋ = g(t, x) are
uniformly ultimately bounded and the induced process Sg(·, ·) has a bounded pullback
attractor.
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Next, substituting H2 with the stronger assumption below, we obtain a pullback
bounded absorbing set B satisfying (5.5) which is what we need in the assumptions
of Theorem 5.11.

H•2: the linear equation ẏ = α(t) y has exponential dichotomy on R with pro-
jection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

exp

(∫ t

s

α(u) du

)
≤ K e−α1 (t−s) for s ≤ t ; (6.8)

Theorem 6.7. Consider f ∈ LC and assume that H1, H•2 and H3 hold. Then
there is a pullback bounded absorbing set B satisfying (5.5) and, hence, the induced
process Sf (·, ·) has a bounded pullback attractor.

Proof. Since the constant K in inequality (6.8) holds for every s ≤ t, reasoning as
in Theorem 6.3 one has that

Sf (t, t− s)D ⊂ Bρ for every t ∈ R and s ≥ T (D), (6.9)

where ρ2 = 1 + c1K/(1− e−α1), T (D) = ln(d2K)/α1, and (5.5) holds with Bρ, as
stated. In particular, Sf (·, ·) has a bounded pullback attractor. �

As a consequence, an application of Theorem 5.11 provides the existence of a
bounded pullback attractor for the process Sg(·, ·) induced by g ∈ Hull(LC,T )(f).
From the inequalities derived from (6.9), it is easy to check that the induced skew-
product semiflow (5.6) is defined on R+×Hull(LC,T )(f)× RN , and it is skipped.

Corollary 6.8. Let f be in LC and T be a topology such that the induced local
skew-product flow on Hull(LC,T )(f) × RN is continuous and assume that H1, H•2
and H3 hold. Then if g ∈ Hull(LC,T )(f) one has that the solutions of ẋ = g(t, x)
are uniformly ultimately bounded, and the induced process Sg(·, ·) has a bounded
pullback attractor.

We summarize the results for the existence of a pullback and a global attractor
for the induced skew-product semiflow in the following remark.

Remark 6.9. Under assumptions H1, H•2 and H3, (i) and (ii) of Theorem 5.12
hold. The same happens for Corollary 5.15 (resp. 5.16) when H1, H2 and H3 (resp.
H1, H∗2 and H3) are assumed.

6.2. Comparison with a system of Carathéodory linear equations. In this
subsection we use a system of linear equations in order to control the vector field of
our Carathéodory differential equation. Let us set some notation. In the following,
for every i = 1, . . . , N the ith component of x ∈ RN will be denoted by xi. More-
over, if we write x ≥ 0 we mean that for all i = 1, . . . , N one has xi ≥ 0, whereas

we will write x� 0 if for every i = 1, . . . N one has xi > 0. The space
(
RN
)+

will

denote the set of points x ∈ RN such that x ≥ 0. Analogously, the ith component
of a vector function f : R× RN → RN will be denoted by fi. We consider the new
assumptions for f ∈ LC:

A1: if x ≥ 0 with xi = 0, then fi(t, x) ≥ 0 for a.e. t ∈ R;

A2: for a.e (t, x) ∈ R×
(
RN
)+

f(t, x) ≤ A(t)x+ b(t) ,
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where the functions A(·) = [aij(·)] ∈ L1
loc

(
RN×N

)
, aij(·) ≥ 0 for every

i 6= j, b(·) ∈ L1
loc

(
RN
)
, and b(t) ≥ 0 for every t ∈ R;

A3: the linear equation ẏ = A(t) y has exponential dichotomy on (−∞, 0] with
projection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

‖Φ(t) Φ−1(s)‖ ≤ K e−α1 (t−s) for s ≤ t ≤ 0 ,

where Φ(t) is the fundamental matrix solution with Φ(0) = IN ;

A4: the set of functions {bt(·)}t∈R is L1
loc

(
RN
)
-bounded.

The inequality in A2 actually holds for the positive solutions of ẋ = f(t, x). The
proof is similar to the one of Proposition 6.1 and thus omitted.

Proposition 6.10. Let f be a function in LC satisfying A2. If x(t) is a solution
of ẋ = f(t, x) defined on an interval I, with x(t) ≥ 0 for all t ∈ I, then

f
(
t, x(t)

)
≤ A(t)x(t) + b(t) for a.e. t ∈ I . (6.10)

Conditions A1 and A2 imply that the system ẋ = f(t, x) induces a continuous

time process on
(
RN
)+

, as shown in the following result.

Proposition 6.11. Let f be a function in LC and x(t, f, t0, x0) the solution of (5.1)
with x0 ≥ 0.

(i) If f satisfies A1, then x(t, f, t0, x0) ≥ 0 for every t ≥ t0 on its maximal
interval of existence.

(ii) If f satisfies A1 and A2, then x(t, f, t0, x0) is defined on [t0,∞).

As a consequence, under assumptions A1 and A2 a continuous time process is

induced on
(
RN
)+

by

Sf (t, s)x0 = x(t, f, s, x0) = x(t− s, fs, x0) ≥ 0 , ∀ t ≥ s and x0 ∈
(
RN
)+
. (6.11)

Proof. (i) From the continuity with respect to initial data, it is enough to check that
x̃(t) = x(t, f, t0, x0) � 0 for t ≥ t0 whenever x0 � 0. Assume, on the opposite,
that there is a first time t1 > t0 for which one of the components vanishes. By
simplicity of notation let the first one to be such a component. Then, x̃1(t) > 0 for
t ∈ [t0, t1) and x̃1(t1) = 0.

Notice that x̃1(t) is the solution of the scalar Carathéodory Cauchy value problem
ẏ = g(t, y) , y(t0) = (x0)1, with g defined by

g(t, y(t)) = f1(t, y(t), x̃2(t), . . . , x̃N (t)) ,

f1 being the first component of the function f . From A1 we deduce that g(t, 0) =
f1(t, 0, x̃2(t), . . . , x̃N (t))) ≥ 0 for almost every t in the maximal interval of definition
of x̃. Therefore, denoting by n(·) ≡ 0, one has

ṅ(t) ≤ g(t, n(t)) for a.e. t ∈ [t0, t1] ,

and the comparison theorem for Carathéodory scalar differential equations (see
Olech and Opial [21]) yields n(t) ≤ y(t, t0, g, 0) for every t ∈ [t0, t1]. Moreover,
since y(t, g, t0, 0) < y(t, g, t0, (x0)1) = x̃1(t) we deduce that 0 < x̃1(t) for every
t ∈ [t0, t1], contradicting that x̃1(t1) = 0 and finishing the proof of (i).

(ii) For simplicity of notation, let x(t) = x(t, f, t0, x0). From (6.10) we deduce
that ẋ(t) ≤ A(t)x(t) + b(t) for a.e. t. Thus, since aij(·) ≥ 0 for i 6= j, the
linear system ẏ = A(t) y+b(t) is quasi-monotone and the comparison argument for
Carathéodory systems, which is a consequence of the scalar one, yields x(t) ≤ y(t)
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for every t ≥ t0 where y(t) denotes the solution of ẏ = A(t) y+b(t) with initial data
y(t0) = x0. This fact together with the inequality 0 ≤ x(t) shown in (i), finishes
the proof. �

The following result provides the existence of a pullback attractor bounded in

the past in
(
RN
)+

.

Theorem 6.12. Let f be a function in LC satisfying A1, A2, A3 and A4. Then,
the induced process (6.11) is strongly pullback bounded dissipative on (−∞, τ ] for
all τ ∈ R and, as a consequence, there exists a pullback attractor which is bounded
in the past.

Proof. As is Theorem 6.3, from A3 we deduce the existence of exponential di-
chotomy on (−∞, t] for any fixed t ≥ 0. More precisely, there is a nondecreasing
function K(·) ≥ 1 such that

‖Φ(r) Φ−1(s)‖ ≤ K(t) e−α1 (r−s) for s ≤ r ≤ t . (6.12)

Let D be a bounded set of
(
RN
)+

. Thus, there is a positive constant d > 0 such
that supx∈D |x| ≤ d. We take x0 ∈ D, s ≥ 0 and consider x(r) := x(r, f, t− s, x0),
i.e. the solution of the Cauchy problem ẋ(r) = f(r, x(r)) , x(t − s) = x0 . As in
Proposition 6.11, we deduce that 0 ≤ x(r) ≤ y(r) for every r ∈ [t− s, t] where y(r)
denotes the solution of ẏ = A(r) y + b(r) with initial data y(t− s) = x0, that is,

0 ≤ x(t) ≤ Φ(t) Φ−1(t− s)x0 +

∫ t

t−s
Φ(t) Φ−1(r) b(r) dr .

Therefore, inequality (6.12) provides

|Sf (t, t− s)x0| ≤ |x0|K(t) e−α1 s +K(t)

∫ t

t−s
e−α1 (t−r) |b(r)| dr ,

and the rest of the proof follows step by step the one of Theorem 6.3 and thus it is
omitted. �

Remark 6.13. The part in condition A2 which implies that the system ẏ =
A(r) y + b(r) is quasi monotone, i.e. aij(·) ≥ 0 for i 6= j, can be substituted
by the quasi monotone condition for ẋ = f(r, x), that is,

fi(r, x) ≤ fi(r, z) whenever x ≤ z and xi = zi .

In this case, maintaining the notation of Theorem 6.12, we would obtain

f(r, y(r)) ≤ ẏ(r) for a.e. r ,

which implies x(r) ≤ y(r) for every r ∈ [t− s, t], and the rest of the proof remains
the same.

From Theorems 6.12 and 5.9 we obtain we following result, whose proof is omitted
because it is analogous to the one of Corollary 6.4.

Corollary 6.14. Let f be a function in LC and T be a topology such that the in-
duced skew-product flow on Hull(LC,T )(f)× (RN )+ is continuous. If f satisfies A1,
A2, A3 and A4, and g ∈ A(f), then the solutions of ẋ = g(t, x) are uniformly ulti-

mately bounded, and the induced process Sg(·, ·) on
(
RN
)+

has a bounded pullback
attractor.

Analogously if we change hypothesis A3 by



WEAK TOPOLOGIES FOR CARATHÉODORY DIFFERENTIAL EQUATIONS 33

A∗3: the linear equation ẏ = A(t) y has exponential dichotomy on [0,∞) with
projection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

‖Φ(t) Φ−1(s)‖ ≤ K e−α1 (t−s) for 0 ≤ s ≤ t ,
where Φ(t) is the fundamental matrix solution with Φ(0) = IN ,

we obtain a result analogous to Theorem 6.5, whose proof is omitted.

Theorem 6.15. Let f be a function in LC satisfying A1, A2, A∗3 and A4, for
each fixed τ ∈ R the solutions are uniformly ultimately bounded on [τ,∞).

In particular, this implies that Theorem 5.10 holds in this case and we deduce
the following result.

Corollary 6.16. Let f be a function in LC and T be a topology such that the
induced skew-product flow on Hull(LC,T )(f) × (RN )+ is continuous. If f satisfies
conditions A1, A2, A∗3 and A4 and g ∈ O(f), then the solutions of ẋ = g(t, x)

are uniformly ultimately bounded, and the induced process Sg(·, ·) on
(
RN
)+

has a
bounded pullback attractor.

Finally, if we change hypothesis A3 by

A•3: the linear equation ẏ = A(t) y has exponential dichotomy on R with pro-
jection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

‖Φ(t) Φ−1(s)‖ ≤ K e−α1 (t−s) for s ≤ t ,
where Φ(t) is the fundamental matrix solution with Φ(0) = IN ,

we obtain a result analogous to Theorem 6.7, whose proof is omitted, and the
corresponding corollary, consequence of Theorem 5.11.

Theorem 6.17. Consider f ∈ LC satisfying A1, A2, A•3 and A4. Then there is
a pullback bounded absorbing set B satisfying (5.5) and, hence, the induced pro-
cess (6.11) has a bounded pullback attractor.

Corollary 6.18. Let f be a function in LC and T be a topology such that the in-
duced local skew-product flow on Hull(LC,T )(f)×(RN )+ is continuous. If f satisfies
A1, A2, A•3 and A4, and g ∈ Hull(LC,T )(f), then the induced process Sg(·, ·) has a
bounded pullback attractor.

Again, we summarize the results for the existence of a pullback and a global
attractor for the induced skew-product semiflow on Hull(LC,T )(f) × (RN )+ (resp.

A(f)× (RN )+ and O(f)× (RN )+) in the following remark.

Remark 6.19. Under assumptions A1, A2, A•3 and A4, (i) and (ii) of Theorem 5.12
hold. The same happens for the conclusions of Corollary 5.15 (resp. 5.16) when A1,
A2, A3 and A4 (resp. A1, A2, A∗3 and A4) are assumed.
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loc type for Carathéodory functions with

applications in non-autonomous differential equations, to appear in J. Differential Equations.
[18] R.K. Miller, G. Sell: Volterra Integral Equations and Topological Dynamics, Mem. Amer.

Math. Soc., no. 102, Amer. Math. Soc., Providence, 1970.

[19] R.K. Miller, G. Sell: Existence, uniqueness and continuity of solutions of integral equa-
tions, Ann. Math. Pura Appl. 80 (1968), 135–152; Addendum: ibid. 87 (1970), 281–286.

[20] L.W. Neustadt: On the solutions of certain integral-like operator equations. Existence,

uniqueness and dependence theorems, Arch. Rational Mech. Anal. 38 (1970), 131–160.
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