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Abstract

Signal processing techniques have lately been becoming more and more important in many
agro-industrial applications. This signal processing-oriented approach is enabling new
perspectives for many areas in the agro-industrial environment, such as real-time machinery
monitoring, among others.

The main goal of this thesis is to design, implement, and assess specific signal processing
techniques enabling the monitoring of agro-industrial equipment in three senses: predictive
maintenance, vehicle tracking, and measurement equipment. The proposed techniques
contribute by expanding and extending, and even pioneering, current state-of-the-art techniques.

The methodology followed along this thesis in order to reach the intended goals can be
divided into five stages: review of the state of the art, hypothesis formulation, development and
evaluation, result analysis, and results publication. The review of the state of the art was
conducted in order to learn about other already existing techniques. After that, a research
hypothesis was formulated to be used as the inception point of the research. Then, in the
development and evaluation stage, an experimental setup was designed to develop and assess
the proposed signal processing techniques. In the result analysis stage, the obtained results were
compared against the literature. From this comparison, the validity of the research hypothesis
could be checked. Finally, whenever redefinition of the research hypothesis was mandatory, the
methodology went back to the hypothesis formulation stage. If the hypothesis was deemed to be
valid, the obtained results were published.

The aforementioned methodology was applied to three different agro-industrial problems:
the predictive maintenance of an agricultural harvester, the kinematic tracking of a vehicle, and
the monitoring of the flow rate through each individual nozzle in agricultural sprayers. A
predictive maintenance approach, based on signal processing of the acquired mechanical
vibration signals from an accelerometer placed on the chassis of an agricultural harvester, was
proposed to estimate the mechanical status of several components of the machinery before it
irretrievably cracks (first article of the compendium). A kinematic tracking approach, based on
gathering several motion-related data and applying data fusion techniques, was proposed to
enable a more accurate mechanical status estimation of a vehicle (second article of the
compendium). An acoustic-based flow rate measurement approach, based on signal processing
of the acquired acoustic signal gathered by a nearby microphone, was proposed to estimate, in
real time, the actual flow rate coming out of each nozzle in agricultural sprayers (third article of
the compendium).

Three different experimental setups were used for each one of the three aforementioned
agro-industrial problems tackled in this thesis. These setups were carefully designed so as to
properly assess the developed methods.



Abstract

Three main features of the proposed methods highlight over the rest. The first one is that all
proposed methods satisfy the intended goals with high enough accuracy. The second feature is
that all proposed methods lead to affordable, inexpensive systems. The last feature is the
optimization of the methods, leading to less computational needs as compared to other existing
approaches. This feature enables these methods to be used in real-time applications.

The results obtained in this thesis are proof of the capability of the proposed signal
processing techniques to enable monitoring of agro-industrial machinery. There are two main
general conclusions that can be drawn from these results. The first one is that signal processing
techniques can extract useful information related to agro-industrial problems. The second
conclusion is that all proposed solutions tend to be more cost-effective, more accurate, and
easier to deploy as compared to existing solutions. Three main particular conclusions, one for
each of the three tackled agro-industrial problems, highlight over the rest: (i) signal processing
techniques can successfully be applied for monitoring machinery components without removing
and isolating them, even while in normal operating conditions; (ii) real-time monitoring of flow
rate from individual nozzles in agricultural sprayers can be achieved by processing the acoustic
signal in their surroundings; and (iii) kinematic monitoring of agro-industrial vehicles can be
improved by using signal processing techniques for data fusion of GNSS and on-vehicle sensors
data.

Keywords

Agricultural, classification, data fusion, industrial, monitoring, predictive maintenance
(PdM), regression, signal processing, support vector machines (SVM).



Resumen

En los ultimos tiempos, las técnicas de procesado de sefial han ido ganando importancia
dentro de numerosas aplicaciones industriales. Estos enfoques orientados al procesado de sefial
estan abriendo nuevas perspectivas en muchas areas del ambito agro-industrial, destacando
entre ellas la monitorizacion de maquinaria.

El principal objetivo de esta tesis es el disefio, implementacion y evaluacion de esquemas
de procesado de sefial especificos que permitan la monitorizacion de equipamiento agro-
industrial en tres sentidos: mantenimiento predictivo, seguimiento de vehiculos y equipos de
medida. Las técnicas propuestas en esta tesis contribuyen al estado del arte, expandiendo o
extendiendo técnicas existentes, e incluso proponiendo esquemas completamente novedosos.

La metodologia seguida a lo largo de esta tesis, con objeto de alcanzar los objetivos
marcados, se puede dividir en cinco etapas: revision del estado del arte, formulacién de
hipotesis, desarrollo y evaluacion, andlisis de resultados y publicacion de resultados. La revision
del estado del arte fue llevada a cabo para aprender sobre otras técnicas similares ya existentes.
Seguidamente, se formuld la hip6tesis de investigacion, que fue empleada como punto de
partida de esta tesis. Con ello, en la etapa de desarrollo y evaluacién, se disefid un escenario
experimental en el cual desarrollar y evaluar las técnicas de procesado de sefial propuestas. En
la etapa de analisis de resultados, los resultados obtenidos fueron comparados con técnicas
similares disponibles en diversas fuentes bibliograficas. Esta comparacién hizo posible validar
la hipétesis. Cuando los resultados asi lo sugerian, la hipotesis de partida era modificada y todas
las etapas anteriores se repetian nuevamente. Si la hipétesis, original o modificada, era validada,
los resultados eran publicados en revistas y congresos cientificos.

Dicha metodologia ha sido aplicada a tres problemas agro-industriales diferentes:
mantenimiento predictivo de una cosechadora agricola, seguimiento cinematico de un vehiculo
y monitorizacion del flujo a través de cada una de las boquillas en un pulverizador agricola. Un
enfoque de mantenimiento predictivo, basado en el procesado de una sefial de vibracion
mecéanica adquirida por un acelerdmetro situado en el chasis de la cosechadora agricola, fue
propuesto para estimar el estado mecéanico de diversos componentes de la maquinaria con el fin
de evitar roturas irreparables (primer articulo del compendio). Un enfoque de seguimiento de
vehiculos, basado en recuperar datos relativos a su estado cinematico y fusionarlos, fue
propuesto para permitir una estimacion mas precisa del estado cinemético de un vehiculo
(segundo articulo del compendio). Un enfoque de medicion acustica de flujo, basado en el
procesado de la sefial adquirida con un micr6fono préximo a la boquilla, se propuso para
estimar, en tiempo real, el flujo saliente por cada una de las boquillas en un pulverizador
agricola (tercer articulo del compendio).



Resumen

Tres escenarios experimentales han sido utilizados para cada uno de los tres problemas
agro-industriales en los que se centra esta tesis. Estos escenarios fueron cuidadosamente
disefiados para poder evaluar adecuadamente los métodos desarrollados.

Tres caracteristicas principales de los métodos propuestos destacan sobre el resto. La
primera es que todos los métodos satisfacen los objetivos con una precision suficiente. La
segunda caracteristica es que todos los métodos propuestos conducen a sistemas que son
asequibles y baratos. La ultima caracteristica es la optimizacion de los métodos, que conduce a
menores necesidades computacionales en comparacion con otros enfoques existentes. Esta
Gltima propiedad hace que estos métodos puedan emplearse en aplicaciones con requisitos de
tiempo real.

Los resultados obtenidos en esta tesis ofrecen muestras de la capacidad de monitorizar
maquinaria agro-industrial ofrecida por los métodos de procesado de sefial. Hay dos
conclusiones principales que se puede extraer de estos resultados. La primera es que las técnicas
de procesado de sefial pueden obtener informacion util relativa a los problemas agro-industriales
abordados. La segunda conclusion es que las soluciones propuestas tienden a proporcionar
mayor precisién, mejor relacion efectividad-coste y son mas faciles de desplegar, en
comparacion con otras alternativas existentes. Tres conclusiones particulares principales, una
para cada uno delos tres problemas agro-industriales abordados, destacan sobre el resto: (i) las
técnicas de procesado de sefial puede aplicarse de manera exitosa para la monitorizacion de
componentes de maquinaria sin necesidad de retirarlas y aislarlas, incluso mientras la
maquinaria esta funcionando en condiciones normales; (ii) el flujo de cada boquilla de un
pulverizador agricola se puede monitorizar en tiempo real empleando procesamiento de la sefial
acustica adquirida en los alrededores de la boquilla; y (iii) se puede mejorar la monitorizacién
cinematica de vehiculos agro-industriales empleando técnicas de procesado de sefial para
fusionar datos procedentes de los sensores del vehiculo con datos de posicionamiento GNSS.

Palabras clave:

Agricola, clasificacion, fusién de datos, industrial, mantenimiento predictivo (PdM),
maquinas de soporte vectorial (SVM), monitorizacion, procesado de sefial, regresion.
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I Introduction to the compendium

The first chapter of this document presents an introduction for this doctoral thesis by
compendium of publications. The first section presents a general overview for the reader to
understand the underlying research context. The second section briefly introduces the main
processing algorithms employed throughout this thesis. The third section formulates the
research hypothesis guiding this whole thesis. The fourth section deals with the addressed
objectives. The fifth section presents the methodology employed to reach the intended
objectives. The sixth section focuses on clarifying the links between the articles comprising this
thesis. The seventh section summarizes the results obtained during the thesis. The eighth section
presents the main conclusions of this thesis. The ninth section suggests some possible future
work to do after this thesis. Finally, the tenth section briefly presents all the activities done
during this thesis and the main results obtained from it.






1. Contextualization

1. Contextualization

More and more areas are benefiting from signal processing techniques since its inception
steps. From medicine (Unser & Aldroubi, 1996) to economics (White, 1988), including many
other more related areas, almost all imaginable areas can make substantial profit from using
signal processing techniques.

Signal processing techniques have been becoming increasingly important in the agro-
industrial field in the recent years (Jardine, Lin, & Banjevic, 2006; Liakos, Busato, Moshou,
Pearson, & Bochtis, 2018; Staszewski, 2002). The introduction of this kind of techniques in the
agro-industrial environment is enabling new perspectives for many areas (Smith & Shankar,
2018), such as machinery monitoring, drones and loT for crop monitoring, remote sensing,
precision spraying, robotics, machine learning, among others.

In this context, this thesis aims at investigating and proposing new signal processing-based
approaches for machinery monitoring in the agricultural and industrial fields. In particular, this
thesis focuses on three subareas of one of such areas, namely machinery monitoring: predictive
maintenance, vehicle tracking, and measurement instrument. Agro-industrial equipment
demands for ways to monitor its behavior, so as to enable the machinery operator to adjust in
real time while working (Zhang, Wang, & Wang, 2002).

Agro-industrial machinery has many components that require an accurate monitoring so as
to perform well when conducting their work. Some prototypical examples of magnitudes that
need for accurate estimations while operating are kinematic properties, namely, position, speed,
and so on. However, there exist other important magnitudes that are relevant to achieve the
goals of precision agriculture, such as sprayed chemicals, rotating components status, among
others.

Agro-industrial machinery is prone to suffer from wear due to its use, being advisable a
proper early supervision in order to avoid large expenditures in maintenance. Thus, machinery
predictive maintenance is compulsory whenever an efficient handling is desired. Inspections
performed by qualified operators have traditionally been the most common way to undertake
those maintenance tasks. Nevertheless, lately, new automatic procedures have appeared thanks
to signal processing techniques (Han & Yang, 2006). Those approaches, though, need for
component isolation before analyzing its condition. A new method, enabling automatic
predictive maintenance of all components simultaneously while operating, seems to be in much
need.

Agro-industrial vehicles do also require an accurate estimation of their kinematic properties.
A well-known example is automatic guidance in agricultural tasks (Keicher & Seufert, 2000).
Nevertheless, systems merely based on GNSS data are prone to suffer from inaccuracies or even
outages, which could be catastrophic. As a consequence, current systems employ a data fusion
scheme to incorporate IMU sensors (Caron, Duflos, Pomorski, & Vanheeghe, 2006) or other
relevant sources of information. On-vehicle sensors accessible via OBD-II communication
standard is a viable and economic option.



I Introduction to the compendium

Agro-industrial machinery exhibits other equipment demanding for measuring devices.
Those measuring devices are employed to control other magnitudes that are paramount for
proper operation in precision agriculture. The sprayed quantity of chemicals is a variable of
great importance when spreading pesticides, fungicides or herbicides on a crop (Tellaeche,
BurgosArtizzu, Pajares, Ribeiro, & Fernandez-Quintanilla, 2008). A mistaken quantity may lead
to damaging the crops or reducing the yield. The flow rate measurement devices currently used
are expensive, making completely unaffordable to employ one for each nozzle in an agricultural
sprayer with over sixteen nozzles. Thus, an acoustics-based device, requiring an inexpensive
microphone, could be used instead, realizing that the nearby acoustic signal depends on the flow
rate coming out of the nozzle.

In this context, this thesis focuses on the application of signal processing techniques to
solve the three aforementioned problems in the agricultural and industrial fields, namely:
predictive maintenance, vehicle tracking, and measurement devices.
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2. Algorithms involved

Several well-known algorithms are involved in the proposed signal processing technigues
from this thesis. This section deals with a brief summary of them to serve as a basic introduction
for the interested reader.

2.1. Supervised learning in machine learning

Machine learning, as a sub-field of artificial intelligence, deals with intelligent systems that
can modify their behavior in accordance with the input data. Those intelligent systems must
have the capability of deducing the function that best fits the input data, in order to learn from
the data. Supervised learning is a branch of machine learning. Supervised learning builds an
input to output mapping based on sample known input-output pairs. It is opposed to
unsupervised learning, where learning happens without being given any known input-output
mapping. Supervised learning algorithms employ training data in order to generate an inferred
function or mapping. This generated function is to be used for future mapping of new data.
Learning algorithms are required to generalize well to possible data discrepancies in the test set.

2.1.1. Regression

Regression is a branch of supervised learning, even though classical approaches appeared
before machine learning techniques even existed. It aims at estimating the relationships between
a dependent variable and one or more independent variables. Regression helps understand how
the dependent variable depends on the independent variables.

Regression involves the following variables and parameters:

e The unknown parameters, denoted as .
e The independent variables, denoted as x.
e The dependent variable, denoted as y.

Regression relates y to a function (f) of x and B, i.e. y = f(x, ). This function, f, is
typically chosen to fit well the underlying relationship between data, but generic adaptable
polynomial functions are also commonly used when no prior knowledge about this relationship
is at hand.

There exist several methods to accomplish regression, as can be seen in the literature
(Sheather, 2009). As far as this thesis is involved, nonlinear regression with data linearization
was employed. More specifically, a square root-like function was fitted by means of data
linearization plus least squares (LS) technique.

y="4Y(@a+b- -x)m (1)

with m and n being known constants, and a and b being the parameters to be fitted.
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It can be rearranged so that LS fitting can be performed between y’ and x:

!

n
y =ym=a+b-x )

2.1.2. Classification

Classification, as a branch of supervised learning, is defined as the process of identifying
the class to which a previously unseen observation belongs, based on previous knowledge given
by a training dataset that contains instances the category membership of which is certain. Any
algorithm which performs classification tasks —i.e. the mapping of input data to an assigned
class—is called a classifier.

Classifiers must be trained, based on previous knowledge, in order to function properly.
The training process makes use of a sample of N observations, the corresponding classes of
which are certain. This sample of N observations is typically divided into two subsamples: the
training and the test datasets. Firstly, the training dataset is used in the process of computing a
classifier that is well-adapted to these data. Then the test dataset is used to assess the
generalization capability of the previously computed classifier.

Both the misclassification rate and the success rate in the test dataset are commonly used as
quality measurements to assess classifier performance. The misclassification rate is defined as
the proportion of observations which are wrongly assigned to an incorrect class. It is expressed
as follows:

MR = Number of Incorrect Classifications
~ Total Number of Classifications 3)

Alternatively, the success rate (also called the hit rate) is defined as the proportion of
observations that are properly assigned to the corresponding class and is calculated as follows:

Number of Correct Classifications
SR = —— =1-—MR
Total Number of Classifications 4)

The k-fold cross-validation is an enhanced method of evaluating classifier performance,
especially with small training and test datasets. In this method, the original sample of N
observations is randomly partitioned into k subsamples of equal size. From those k subsamples,
a single subsample is retained as the test dataset, and the remaining k — 1 subsamples are used
as the training dataset. The k-fold cross-validation repeats this training and test process k times,
using each of the k subsamples only once as the test dataset. Cross-validation accuracy is
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calculated as the average of the success rate obtained for each of the k different test datasets.
When k=N, k-fold cross-validation is also known as leave-one-out cross-validation.

Many different classifiers have been proposed in the literature (Jain, Duin, & Mao, 2000;
Kotsiantis, 2007). Some of the main ones include k-nearest neighbor classifier, Bayes classifier,
logistic regression, Fisher’s linear discriminant, decision tree, Artificial Neural Networks
(ANN), and Support-Vector Machine (SVM). SVM classifier is described in greater detail in
subsection 2.1.3.

2.1.3. Support Vector Machines (SVM)

Support-Vector Machine (SVM) is a statistical supervised machine learning technique,
used both for classification and for regression purposes. Originally proposed by Vapnik and
Cortes (Cortes & Vapnik, 1995; Vapnik, 1998), in 1995, although its principles and derivation
differ from those of Artificial Neural Networks (ANN), some authors sometimes consider
SVMs as a special kind of ANN (Haykin, 1998). However, many authors refuse to do so, due to
essential differences between SVM and ANN techniques (Ren, 2012). While SVM mechanisms
are mainly based on a rigorous geometrical and statistical approach, ANNs try to emulate the
behavior of the human brain and its neural system.

The original SVM proposal was aimed at both the binary classification problem,
considering only two possible classification classes, and the multiclass classification problem,
which considers more than two classification classes.

Binary linear SVM classification performs the calculation of the optimal hyperplane
decision boundary, separating one class from the other, on the basis of a training dataset.
Optimality can be understood, depending on whether perfect classification of the training
dataset is feasible and desired, in two separate ways:

o If perfect separability of training dataset classes can be achieved, a Hard Margin
optimality can be used. In this case, the hyperplane decision boundary is chosen to
maximize the distance from the hyperplane to the nearest training data point.

o If perfect classification is not desired or if it is impossible, a Soft Margin optimality
is used. In this case, the hyperplane selection is a customizable tradeoff between
minimizing the misclassification rate and maximizing the distance to the nearest
properly classified training point.

The decision boundary hyperplane in SVM classification is calculated by employing the
training dataset. This decision boundary is completely determined by the so-called Support
Vectors, a subset of training input vectors which by themselves alone lead to the same decision
boundary. After this hyperplane is determined, the SVM classifier is ready to be used with a
different dataset from the one used in the training stage. The assigned class, labeled either +1 or
-1, depends on the side of the decision boundary on which the input vector falls. Figure 1
represents a graphical example of linear SVM-based classification, both in the case of linearly
separable classes and non-linearly separable classes.
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SVM multiclass classification usually tackles the classification and computation of the
decision boundary, by reducing the problem to a set of binary classification problems. The main
such approaches are pairwise and one-versus-all classification methods (Hsu & Lin, 2002).
Compact multiclass reformulations of the binary classification problem have also been proposed
(Hsu & Lin, 2002).

X A

O Class 1
M Class 2

O Class 1
M Class 2

(b)

Figure 1. Representation of a Support-Vector Machine classifier corresponding to (a) a
linearly separable pattern, where the hyperplane totally separates green circles from red squares,
and (b) a non-linearly separable pattern, where no hyperplane separates all the green circles
from the red squares.

To be mathematically rigorous, the most general SVM linear binary classification problem
can be stated as follows:

“Given a training dataset, {x;, di}’i"=1, the goal is to compute the optimal weight vector w,
bias b, and slack variables &, such that satisfy the following constraints:

diwix; +b) =1-§,Vi=1,2,..,N
&=20vi=1,2,..,N (5)

and such that the following cost function is minimized:

N
dw,§) = %WTW + CZEL- (6)
i=1
where, x; € R™o denotes the i-th input vector, d; € {- 1, 1} denotes the class corresponding to
the i-th input vector, & = {&}_, represents the slack variables, and the constant C is a user-
specified parameter that determines the tradeoff between misclassification and maximum inter-
class margin.”

In practice, most classification problems cannot be solved by using a simple hyperplane as
the decision boundary. In such cases a more complex and elaborate decision boundary is
required. SVM achieves this goal by increasing the dimensionality of the input space, of
dimension m,, by applying a nonlinear transformation, denoted by ¢(:), into a feature space of
dimension my >m, (Figure 2). This transformation, ¢(-) , serves to reduce the
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misclassification probability in the transformed feature space. The most typical transformation
functions, as in the case of ANNS, are radial basis functions, higher-order polynomials, and
sigmoid functions. Figure 2 represents a graphical example of an SVM nonlinear classification.

X2 @2(X15 X)A
(0] © Class1 © Class 1
o B Class 2 ] M Class 2

¢ (x)

.. 1]

. = X
m [} X1 /./ e / O (pl(Xll XZ)
1] o °

o

(b)

Figure 2. Representation of a Support-Vector Machine classifier with a nonlinear kernel.
Function ¢(-) is the nonlinear transformation mapping vectors from (a) the input space to (b)
the feature space.

The boundary in the nonlinear classification problem is still a hyperplane, not in the
original input space but in the feature space, and can be expressed as the points ¢(x) that
satisfy that:

’ +b=0
w(x) @

where, x € R™° and ¢(x) € R/,

Following the application of the Lagrange multipliers method, it has been shown that the
optimal weight vector can be expressed as (Haykin, 1998):

N
w = Z a;d; p(x;) (8)
i=1
where, a; stands for the Lagrange multiplier coefficients.

So, the optimal decision boundary can be rewritten as:

N

Z a;d; @(x) @(x) +b =0 (9)

i=1

Renaming u; = a;d; and K (x;, x) = @(x)Tp(x) = @(x)T@(x;) = K(x, x;), the decision
function, y, can be expressed as:

N
y=;uil((x,xi)+b (10)

In case of linear classifiers, K(x, x;) is the conventional Euclidean inner product of the
input vector x with the Support Vector x;. In case of nonlinear classifiers, K(x, x;) is the
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conventional Euclidean inner product of the nonlinear transformation ¢ (x) of the input vector x
with the nonlinear transformation ¢ (x;) of the Support Vector x;.

The decision function in Eq. (10) results in the architecture depicted in Figure 3, once the
proper weights and Support Vectors have been computed in the training stage. Only the Support
Vectors have to be considered, as they are the only vectors that generate non-zero a;
coefficients (Haykin, 1998).

Classification is therefore performed by identifying the sign of the output value, y, in Eq.
(10). If sign(y) = +1, then this input is labeled as class +1 and if otherwise as class -1.

Input Output (y)

vector (X) B V

Linear output
layer

Input layer of ~ Hidden layer

dimension m, _ Of Ns kernel
inner products

Figure 3. Architecture of a Support-Vector Machine classifier. Inner product kernels,
K(:,-), denote the m,-dimensional kernel inner product of the input vector with each of the N;
Support Vectors.

The most well-known and widely used nonlinear kernels are radial basis functions (RBF),
sigmoids, and polynomials. The RBF kernel can be expressed as K (x,y) = exp(—y |lx — y||?),
where vy is a user-defined parameter; the sigmoidal kernel can be expressed as K(x,y) =
tanh(y xTy +c,), where y > 0 and c, < 0 are user-defined parameters; and, the d -order
polynomial kernel can be expressed as K(x,y) = (y xTy + co)%, where y and c, are user-
defined parameters and where d denotes the polynomial degree. Other kernels may also be
found, in addition to those listed above.

The underlying SVM training process undertakes the problem of minimizing a quadratic
functional subject to linear constraints. This problem, known as Quadratic Programming, has a
closed solution. Although the solution can be analytically computed by applying the Lagrange
multipliers method, other computational methods are typically used, especially when the
dimensionality of the problem becomes high. Some of these methods include, among others,
Interior Point methods (Ferris & Munson, 2006), the Sequential Minimal Optimization (SMO)
algorithm (B. Schoélkopf, C. J. C. Burges & A. J. Smola, Platt, 1998; Platt, Abril 1998),
Incremental methods (Shilton, Palaniswami, Ralph, & Tsoi, 2005), and the Kernel-Adatron
(KA) algorithm (Campbell & Cristianini, 1998). More information about the SVM training
process has been gathered by Campbell and Ying (R. J. Brachman & T. Dietterich, Campbell &
Ying, 2011).

Those readers eager to discover the rigorous mathematical statement and solution of the
problem underlying Support Vector Machines are encouraged to read the comprehensive
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introduction to SVM provided by Haykin (Haykin, 1998) or the in-depth work by Steinwart and
Christmann (Steinwart & Christmann, 2008).

2.2. Data fusion

2.2.1. Kalman Filter (KF)

The Kalman filter (Kalman, 1960) is an efficient, recursive, mathematical algorithm that
processes, at each step, inaccurate observation input data and generates a statistically optimal
estimate of the subjacent real system state, by employing a prediction model and an observation
model.

The basic functioning of the filter is conceptualized into two stages. The first stage is called
the prediction stage, as it produces an a priori system state estimate from the previous state, by
using a system evolution prediction model. The second stage, known as the update stage, takes
into account measurements in the system to produce an a posteriori state estimate, by correcting
the previous a priori estimate. This two-stage process starts with an initial estimated state, X,
and is repeated in a loop recursively until filtering ends (Figure 4).

N+ + N+ L+
%5.Po) e P |
Prediction Stage Update Stage
1.a priori estimate of the system-state using 1. Kalman gain matrix: K,=Pg-Hg- (HPrHk + Ry)™
t,\h_e sys,{?m model: 2.a posteriori estimate of the system-state using
X =F Xt the measurements, Z: Xi=Xx + Ky (Zx - HiXo)
2. covariance matrix of the a priori estimate: 3. covariance matrix of the a posteriori estimate:
Pi=FPirFet Qc Pi=(-KH)Py
N -

Figure 4. Stage diagram of the Kalman filtering loop.

Figure 4 summarizes the steps in each stage of the Kalman filtering process and it presents
the matrices that are involved and the steps followed to implement the Kalman filter. F, is the
state transition model matrix, which performs the prediction model. H,, is the observation model
matrix, which maps the state vector space into the measurements vector space. X, is the a priori
state estimate vector, resulting from the prediction stage. 52]4(- is the a posteriori state estimate
vector, derived from the measurements update stage. z, is the measurements vector obtained
from the system sensors. K, is the optimal Kalman gain matrix, which weights the importance
of the innovation that introduces the measurements vector z, in the update stage. Pj, is the a
priori state covariance matrix, which provides the a priori estimation error covariance after the
prediction stage. P} is the a posteriori state covariance matrix, containing the a posteriori
estimation error covariance, given after the update stage. Q is the process noise covariance
matrix of the prediction stage noise, which somehow ponders the weight of the process
estimates. R is the observation noise covariance matrix of the update stage noise, which in a
way ponders the degree of confidence in each one of the measurements. The relative weights
become greater as the covariance matrix elements become smaller, meaning that the quantities
involved are increasingly reliable.
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2.2.2. Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is a nonlinear version of the Kalman filter (KF), that is
to say, linear relationships between quantities can become nonlinear. The following changes
have to be applied to Figure 4 to generalized KF into EKF.

F and H,, state transition and observation matrices, respectively, are replaced by

f and h, nonlinear state transition and observation functions.

The a priori estimate (prediction stage) is computed now as:
Xe = f@i-n)
F, matrix is computed as the Jacobian matrix derived from f.

of
= axlyy

H;, matrix is computed as the Jacobian matrix derived from h.

_0h
k™ ax

Xy
The a posteriori estimate (update stage) is computed now as:

ir\,t = &I: + Kk(zk - h(ir\,:))
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3. Motivation and hypothesis formulation

3. Motivation and hypothesis formulation

The inception point of this thesis was the observation of the need for simpler mechanisms
to enable less complex but still highly accurate machinery monitoring. Based on the state-of-
the-art literature, signal processing techniques have traditionally fit very well to this aim and
have shown promising results in the past few years.

From this observation, the following general research hypothesis was established: “signal
processing techniques applied to raw acquired signals coming from different sensors can let us
gather useful information from agro-industrial machinery, thus enabling its accurate
monitoring”. Therefore, this information, that is somehow hidden otherwise, can be used for
monitoring agro-industrial machinery.

This hypothesis is based on previous studies from the literature (Jardine, et al., 2006;
Liakos, et al., 2018; Staszewski, 2002) and widely supported by the academic community.

The general research hypothesis can be divided into three sub-hypothesis, related to the
three tackled agro-industrial problems and intimately related to the specific objectives intended
to be reached in this thesis:

e “Signal processing techniques enable effective predictive maintenance monitoring
of agricultural machinery components based on the vibration signal acquired with
an accelerometer”.

e “Signal processing techniques enable effective positioning data fusion for
monitoring vehicles based on relative and absolute positioning sources”.

e “Signal processing technigques enable flow rate monitoring in agricultural sprayers
based on the acoustic signal acquired with a microphone”.

13
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4. Objectives

Developing, implementing, and assessing signal processing-based techniques for
monitoring agricultural and industrial machinery based on raw data coming from
different kinds of sensors is the main objective of this thesis. In addition, five particular sub-
objectives have been posed for this thesis:

To design, implement, and evaluate signal processing techniques that enable the
prediction of the status of the rotating components of machinery without removing
and isolating them, using as an input the vibration signal acquired by an
accelerometer.

Previous work had tackled monitoring and predictive maintenance of small
components isolated (gears, engine, bearings, etc.). These components had to be
extracted from the machine in order to analyze its operation. The objective of this
thesis is to consider the whole machinery without needing to remove them from the
machine they form part. Therefore, monitoring simplifies greatly.

To design, implement, and evaluate signal processing techniques that enable the
prediction of the status of the rotating components of machinery while in normal
operating conditions, using as an input the vibration signal acquired by an
accelerometer.

Another objective of this thesis is to consider machinery working in normal operation
too, in addition to machinery working at controlled conditions. This way, real-time
monitoring can be performed without requiring performing any particular monitoring
setup.

To design, implement, and evaluate signal processing techniques that enable
monitoring flow rate from individual nozzles in agricultural sprayers, using as an
input the acoustic signal acquired by a nearby microphone.

No previous work had been done before in this area. Other somewhat similar acoustic
approaches had been used for pipes, taps, and faucets. The goal of this thesis is to
focus on each individual nozzle to reach a flow rate measurement device that merely
requires a microphone and signal processing.

To design, implement, and evaluate signal processing techniques that enable
monitoring Kinematic quantities for agro-industrial vehicles tracking, using data
coming from several on-board sensors.

Previous work had tackled data fusion using a different set of sensors and kinematic
quantities. This thesis focuses on fusing data from global navigation satellite systems
(GNSS) with other kinematic information available through the on-vehicle sensors.
The intention of this data fusion scheme is to keep track of vehicle when outages
occur and also improving low-quality GNSS positioning.
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e To design, implement, and evaluate signal processing techniques with good
performance in terms of processing time and computational load in order to work
in real time.

The developed methods in this thesis intend to reduce the amount of variables needed
and try to avoid including complex processing algorithms.
e To design machinery monitoring methods that are low-cost, in order to ease the
widespread adoption by local farmers.

The proposed methods should have a low cost associated, as compared to existing
expensive alternatives. To this end, low-cost sensors and computing platforms should
be used to be able to achieve this objective.

16
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5. Methodology

The following methodological steps were followed in this thesis in order to achieve the
objectives explained in the previous section. The methodology was designed to match the
objectives presented in the previous section. The proposed methodology is composed of five
stages: literature review, hypothesis formulation, development and evaluation, result analysis,
and results publication. The relationships among these stages are represented in Figure 5.

literature hypothesis development results results

review [ formulation*&evaluation *analysis T publication

Figure 5. Block diagram of the methodological stages of this thesis and their relationships.

The first stage of the methodology, namely literature review, involved the study of the
state of the art. This stage was mandatory so as to gain the necessary knowledge to tackle the
research in this thesis. This stage of the methodology encompasses both documentation about
signal processing techniques as well as other published articles and previous work on the
subject. The documentation about signal processing techniques focused on supervised learning,
data fusion techniques, and the rest of employed signal processing techniques (filtering, data
acquisition, mechanical vibration, etc.). For its part, documentation about previous studies
related to the topic of this thesis included several sources, from literature review to discussions
with knowledgeable experts.

The second stage of the methodology undertook the formulation of the research
hypothesis. The research hypothesis formulation was done after the first stage using the
acquired knowledge and after having identified the research question for this thesis. This
hypothesis was refined several times and, after its final version was reached, allowed for the
definition of the objectives in this thesis.

The third stage of the methodology consisted of the development and evaluation of the
signal processing techniques proposed for accomplishing the intended goals. First, the particular
signal processing models were designed for each problem, focusing on defining an adaptive
approach that could be refined after it assessment when needed until successful results were
achieved. Furthermore, in this stage, the experimental setups were defined and data acquisition
was performed. The experimental setups, which were designed so as to enable proper data
acquisition to guarantee meaningful data for the later stages, consisted on placing the sensors in
appropriate locations for later data acquisition. It involved removing or controlling noise
sources as well as a pre-analysis of the data to check its correctness. The data acquisition was
undertaken after having properly deployed the experimental setup. The acquired data was
subsequently used for analyzing the adequacy of the proposed models as well as for their
validation.

The fourth stage of the methodology focused on assessing the proposed hypothesis. This
assessment was mainly based on comparing the obtained results against other methods from
other articles in the literature. This stage allowed for the validation and redefinition of the
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research hypothesis formulated in stage number two. Whenever the results showed that the
research hypothesis could be validated, publication of the obtained results followed (last stage
of the methodology). In contrast, when the results showed that the research hypothesis should
be reformulated, the methodology went back to the second stage in order to try to offer a new
valid hypothesis.

The fifth stage of the methodology was the publication of the obtained results. This
publication consisted of journal and conference articles, divulging the work of each experiment.
The articles produced as a result of this thesis have been submitted to peer-reviewed scientific
journals and conferences, trying to facilitate its diffusion in academia and looking forward to
validating the research from this thesis.

18
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6. Articles in the compendium and their relationship

This thesis comprises three articles for compendium of publications; all of them published
in JCR indexed journals belonging to first quartile (Q1) in their respective categories. Each of
these articles will be respectively named hereinafter as:

Article 1. Predictive maintenance monitoring
Ruiz-Gonzalez, R.; Gomez-Gil, J.; Gomez-Gil, F.; Martinez-Martinez, V. (2014). An
SVM-Based Classifier for Estimating the State of Various Rotating Components in
Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on
the Machine Chassis. Sensors 14 (11): 20713-20735. — Impact factor: 2.245 (Q1)

Article 2. Vehicle tracking monitoring
Melendez-Pastor, C.; Ruiz-Gonzalez, R.; Gomez-Gil, J. (2017). A data fusion system
of GNSS data and on-vehicle sensors data for improving car positioning precision in
urban environments. Expert Systems with Applications 80: 28-38. — Impact factor:
3.768 (Q1)

Article 3. Flow rate monitoring
Ruiz-Gonzalez, R.; Stombaugh, T.S.; Martinez-Martinez, V.; Gomez-Gil, J. (2017). An
acoustic method for flow rate estimation in agricultural sprayer nozzles. Computers
and Electronics in Agriculture 141: 255-266. — Impact factor: 2.427 (Q1)
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Figure 6. Relationship between three articles composing this thesis.

Figure 6 summarizes the relationship between the articles comprising this thesis. A further
explanation is provided in the subsequent paragraphs.

All three articles comprising this thesis deal with three different agro-industrial monitoring
problems by employing signal processing technigues. This section intends to further clarify the
relationships among all of them as a unique topic.

All of the articles included for compendium undertake relevant problems within the
agricultural and industrial areas. Since existing solutions are not fully satisfactory in terms of
cost or accuracy, alternative approaches are posed in this thesis. The methods proposed in all
three articles contribute by incorporating new knowledge into previous literature.

Moreover, all the approaches in this thesis rely on signal processing techniques to achieve
the intended objectives. Both the first and third article use a common methodology to achieve
the intended goals, based on similar filtering and classification schemes, while the second article
employs a different approach, based on data fusion techniques.

As can clearly be observed by an eager reader, the three articles focus on monitoring agro-
industrial machinery. The first article focuses on estimating the statuses of several components
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of the agricultural harvester. The second article focuses on monitoring a general vehicle (which
could be used for tractors, harvesters, cultivators, seeders, sprayers, etc.), by improving the
estimation of its kinematic properties. The third article focuses on agricultural sprayers, by
proposing a novel estimation method for flow rate on individual nozzles.

Moreover, the first and second articles propose two methods to monitor the mechanical and
kinematic status of machinery, respectively. There exists an obvious relationship between the
kinematics of the machinery and the rotation speed of certain components of the machinery.
Therefore, estimation of both statuses is highly related and merging together the information
from both methods could further improve the accuracies of both of them.

The first and third articles have a lot of similarities, as can be easily appreciated. They both
work with mechanical vibrations, whether propagated along the chassis of the machinery or in
the air. Moreover, the developed methods both deal with agricultural machinery components. In
addition, the proposed preprocessing approach is quite analogous, mainly differing in the latest
stages of the processing.

The second and third articles are also intimately related as part of accurate spraying
systems in precision agriculture environments. The magnitude under monitoring in the third
article, namely the flow rate, is typically being controlled so as to perform a spraying of
chemicals while agricultural machinery is moving along a plot of land. Thus, by making use of
both the data fusion approach from the second article and the per-nozzle flow rate measurement
device, a more accurate control of the quantity being sprayed can be achieved.
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7. Results

The main results of this thesis are three signal processing methods presented in the three

articles comprising the compendium of publications. Each of these methods undertakes a
different agro-industrial problem.

In this thesis, the three agricultural and industrial problems considered for proposing

solutions employing signal processing methods were: predictive maintenance of an agricultural
machine, kinematic tracking of an agro-industrial vehicle, and flow rate estimation of an
agricultural sprayer. The following paragraphs briefly detail each of these problems.

7.1.

Predictive maintenance monitoring

Problem to be solved: Machinery rotating components generate mechanical vibration
signals that propagate along the machinery structure. Therefore, the status of machinery
components is expected to be estimable by acquiring from a single point of the
machinery chassis. The status of several rotating components of an agricultural
harvester machine was to be estimated by applying signal processing techniques to the
vibration signal acquired by an accelerometer.

Proposed solution: A signal processing approach, consisting of feature extraction and
selection plus classification, was employed to predict the status of the rotating
components. This method can be applied while in normal operating conditions, thus
avoiding the disadvantages of other alternative techniques. This solution can accurately
estimate the status of three rotating components of the machinery in real time.

Original contributions: The proposed system was the first system in the literature
capable of diagnosing the status of several rotating components in agricultural
machinery while in normal operation, without needing to remove or isolate the
components from the rest of the machinery. The same problem as in the first article of
this compendium (predictive maintenance monitoring) was undertaken while the
agricultural sprayer was harvesting sunflower under normal working operating
conditions (E. Velasco Sanchez, Ruiz Gonzalez, Gémez Gil, Gomez Gil, Meléndez
Pastor, & Feijoo Garcia, 2016). The results obtained in this scenario yielded similar
accuracies as when machinery was not moving, i.e. under well-controlled conditions.

Figure 7 depicts the experimental setup employed to acquire the data acquisition related to

this problem. Further details can be found in the original article (Ruiz-Gonzalez, Gomez-Gil,
Gomez-Gil, & Martinez-Martinez, 2014).
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Figure 7. Data acquisition setup for predictive maintenance monitoring. An accelerometer

was placed on the structure of the machine, connected by means of a cable to an acquisition
system, and a laptop was used to register and visualize the acquired data.

7.2.

Vehicle tracking monitoring

Problem to be solved: Vehicle tracking suffers from inaccuracies when operating in
environments with poor GNSS coverage. Therefore, incorporating other sources of
positioning can considerably improve the accuracies achieved. Several techniques,
incorporating relative positioning data, have been widely used in the literature when
trying to improve accuracy in keeping track of vehicle’s kinematic information. This
thesis dealt with data fusion of GNSS data with other sources of relative positioning
data. In particular, this thesis copes with employing relative positioning data coming
from on-vehicle sensors accessible via OBD-II standard communication.

Proposed solution: A data fusion model, employing the extended Kalman filter (EKF),
was proposed. Absolute positioning data, coming from GNSS receiver, was fused with
relative positioning data, obtained via OBD-II from the on-vehicle sensors. Ackermann
steering model was used for simplifying the underlying vehicle kinematics too.

Original contributions: The proposed model employed to describe the state of car
systems has not been previously used. New relationships between the measured
variables were derived, based on Ackermann steering model. The proposed system was
capable of fusing data coming from on-vehicle sensors with GNSS data, allowing for
accurate positioning when GNSS accuracy worsens and even for short times of
complete GNSS signal outages. Moreover, data fusion in this article is performed
requiring less overall variables than other counterpart alternatives, thus being more
efficient. The proposed system performs positioning data fusion as a single EKF-based
stage and is, thus, more flexible to the addition of new on-vehicle sensors as input or
measured data and being less computationally complex.
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Figure 8 depicts the experimental setup employed to acquire the data acquisition related to
this problem. Further details can be found in the original article (Melendez-Pastor, Ruiz-
Gonzalez, & Gomez-Gil, 2017).

Figure 8. Data acquisition setup for vehicle tracking monitoring. An accurate GPS receiver,
shown in foreground, was placed on top of the car to use as reference for comparison of the
results coming from the data fusion approach.

7.3. Flow rate monitoring

- Problem to be solved: Employing traditional flow rate measurement devices for each
nozzle is quite expensive in an agricultural sprayer, and per-nozzle accurate
measurements are mandatory when aiming at precision agriculture spraying. Based on
the observation that the nearby acoustic signal varies as flow rate coming out of the
nozzle does, an acoustics-based signal processing method seems to be useful to tackle
this problem.

- Proposed solution: An acoustics-based signal processing method was developed in
order to estimate flow rate through the nozzles. The method employed several stages
including frequency domain analysis, in-band power calculation, normalization, and
nonlinear regression.

- Original contributions: The proposed system was the first-ever method in the literature
capable of accurately measuring flow rate in real-time in an agricultural sprayer by
means of processing the acoustic signal acquired nearby. In addition, the proposed
system is low-cost when compared to traditional flow rate measurement devices.
Moreover, most suitable frequency bands were analyzed in the frequency domain as
well as the influence of distance and quality of microphone device.

Figure 9 depicts the experimental setup employed to acquire the data acquisition related to
this problem. Further details can be found in the original article (Ruiz-Gonzalez, Stombaugh,
Martinez-Martinez, & Gomez-Gil, 2017).
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Figure 9. Data acquisition setup for flow rate monitoring. A microphone was placed close
to the nozzle to acquire the acoustic signal while water was flowing out of it. The signal
acquired by the microphone was digitalized by an acquisition system, and a laptop was used to
record the data.
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8. Conclusions

The results derived from this thesis, summarized in the previous section and available as an
annex in the following chapter, suggest the next conclusions. Two general conclusions are
posed together with four particular conclusions, which are associated with the sub-objectives of
this thesis.

The first general conclusion is that it is feasible to develop and implement signal
processing-based techniques for monitoring agricultural and industrial machinery. This
conclusion is supported by the results from all three articles composing this thesis by
compendium. The work conducted in all three articles composing this thesis show that
signal processing techniques enable feasible solutions for the undertaken problems in
the agricultural and the industrial fields. It is expected that other particular problems,
within the area of monitoring agricultural and industrial machinery, can also benefit
from similar signal processing techniques.

The second general conclusion is that all proposed solutions tend to be more cost-
effective, more accurate, and easier to deploy as compared to existing solutions. When
compared to the literature, the proposals made in this thesis have a lower cost, achieve
accuracies otherwise unreachable, and do not require complex procedures to deploy the
associated system. The results from all three articles give evidence supporting this
conclusion. All three methods proposed in this thesis employ low-cost sensors for its
operation, as opposed to alternative systems, and only require cheap commodity
computing platforms to work in real time. Further details are given in all three articles.

The third general conclusion is that all proposed solutions can operate in real time.
Due to the processing optimization leading to low computational power requirements,
all three methods proposed in this thesis could be deployed for real-time operation.
Therefore, this enables effective machinery monitoring while it is being used instead of
those alternative methods that just perform monitoring a posteriori. The advantage of
that lies in the ability to detect improper statuses beforehand, just right after they
happen. The results from all three articles give evidence supporting this conclusion.

The first particular conclusion is that signal processing techniques can be employed
for monitoring machinery components, using as an input the vibration signal acquired
by an accelerometer, without removing and isolating them, even while in normal
operating conditions. The results from the first article of this compendium (predictive
maintenance), provides proof of this. This conclusion can be further subdivided into the
following conclusions:

» Accurate estimation of the status of various rotating components in agro-industrial

machinery is possible by processing the vibration signal acquired from a single point
on the machine structure. The results reveal the potential of this method to estimate
the status of distant components by processing vibration signals from a unique sensor
located at a fixed position, midway along the harvester chassis, because a mean cross-
validation accuracy higher than 85% was obtained.
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» Analyzing the individual cross-validation accuracy obtained for each rotating
component, the suitability of the SVM classifier for estimating each separate
machinery status is evident. On the one hand, the rotating component status with the
best cross-validation accuracy was the engine speed, with a cross-validation accuracy
of 100% in all cases. On the other hand, the worst cross-validation accuracy was
obtained for threshing cylinder balance status, for which the cross-validation accuracy
was between 63.41% and 87.49%. These values are perfectly valid for deploying a
predictive maintenance system, since it can detect unbalances in certain components,
thus alerting the operator of the machinery to perform some corrective maintenance on
this component.

» The vibration signal can be acquired with a uniaxial accelerometer, the orientation of
which does not significantly affect the classification accuracy. The comparison of the
results of cross-validation accuracy along the three accelerometer axes supports this
conclusion. The higher differences observable for the threshing cylinder balance status
shows differences of around 20%. However, almost no differences in accuracy were
appreciated for the rest of the states, which were lower than 10% in all cases.
Although vibrations are usually generated in a specific direction, the results obtained
here suggest that the machine structure spreads them along all of the axes, making the
use of an arbitrary axis for their detection possible.

» The accelerometer sensor does not need to be placed very close to the rotating
components, which makes the acquisition stage simple and non-intrusive. Previous
work in the scientific literature has only analyzed isolated mechanical components,
using one accelerometer for each isolated component.

» The proposed approach, using feature extraction plus feature selection, only requires a
maximum of seven features as input for the SVM classifier. This way, the subsequent
classifier is simpler and more efficient than other existing alternatives requiring a
much larger set of features.

> No significant improvements are noted between the use of either nonlinear or linear
kernels, when using an SVM classifier. For the undertaken problem, no significant
improvements appeared when introducing more complex nonlinear kernels.

» Real-time monitoring of the machinery can be performed thanks to the ability of the
proposed system to operate in normal working conditions, i.e. while the harvester is
working harvesting in the field.

» The proposed method provides a low-cost way of estimating the status of the
machinery, just requiring an accelerometer and low-cost computing platform in order
to achieve high accuracies. The low cost of this method contrasts with existing
alternative methods that require expensive transportation of the machinery to
inspection facilities.

The second particular conclusion is that real-time monitoring of flow rate from
individual nozzles in agricultural sprayers can be achieved by processing the acoustic
signal in their surroundings. The results from the third article of this compendium (flow
rate monitoring) are proof of this.

» The nozzle-generated acoustic signal contains enough information to enable accurate
flow rate estimation. It is evident, from the achieved results, that the generated
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acoustic signal contains information related to the flow rate through the nozzle tip, and
many processing techniques can be proposed for this end.

The proposed method can be used to estimate the flow rate of individual nozzles in a
low-cost way with a high accuracy in a laboratory environment. The flow rate
estimation accuracies obtained with the proposed acoustic method are close enough to
some of the traditionally used flowmeters, whose relative RMSE errors can reach 4%.
The flow rate estimation becomes more difficult, i.e. the errors increase, for either
very low or very high flow rates, when operating outside the flow range recommended
by the nozzle manufacturer. One possible explanation for this behavior is the fact that
the spray deposition pattern and output droplet size distribution of the nozzles changes
appreciably outside of the manufacturer recommended range, which will consequently
change the acoustic signature. The increased difficulty in estimation could also be due
to the acoustic signals being more similar in these extreme cases. This effect is even
more noticeable for low flow rates due to the inherently lower intensity of the nozzle-
generated signal. This lower intensity leads to the acoustic noise floor being relatively
stronger with respect to the signal of interest, thus making the estimation more
difficult.

The proposed method can work in real time. When executed in post-processing in
MATLAB®, it requires less than five seconds to process the 61-second-long
recordings for 10 flow rates, where the reported times were obtained in a Dell Latitude
E6400 laptop. This execution time, less than 0.01 seconds for each single epoch,
shows the feasibility of performing all the necessary tasks between the acquisitions of
two consecutive epochs, which is 0.5 seconds. It is worth remarking that no explicit
code optimization was done and the computational efficiency of the method could be
further improved for real-time operation.

Consistent results, with neither significant improvements nor detriments, can be
obtained when using a high-end or a low-end microphone. The results prove that the
high-end microphone does not outperform the low-end microphone. Furthermore, the
measurements provided by both are coherent, since moderate (0.40-0.59), strong
(0.60-0.79) or very strong (0.80-1.0) positive correlations were found. Additionally,
the reported p-values from the Welch’s t-test showed no statistically significant
differences between both microphones for two out of the three tested nozzles. The fact
that the proposed method is highly independent of microphone quality makes it
economically feasible to replicate flow sensors across a large boom with many nozzles.
The frequency band between 1450 Hz and 1950 Hz provided the best accuracies.
Several bandwidths were tested, and a bandwidth of 500 Hz was found to be the best
because it gave acceptable accuracies and was narrow enough to avoid excessive
wideband interferences. Looking over the frequencies from 0 Hz to 50 kHz, the band
from 1450 Hz to 1950 Hz contained more information than any other related to the
flow rate.

The method accuracy does not depend too much on the nozzle-to-microphone distance.
The results show a tendency of a slow but progressive accuracy degradation as
distance is increased. Only distances over 6 cm were tested in order to prevent the
microphones from getting wet and thus being damaged. Moreover, since specific
calibrations are required for each distance, it is worth noting that the proposed method
will require strict control of microphone location while operating. However, a simple
straightforward calibration can be used in this case, requiring just the determination of
the in-band power for highest and lowest flow rates for the normalization stage.
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The proposed method presents a low-cost design, requiring for its deployment only a
low-end microphone and a microcontroller-based computing platform.

There is an oscillatory behavior in the estimated flow rates, which highlights the
possibility of the integral errors in flow rate compensating over time. Thus, an even
lower error can be achieved in terms of the cumulative volume applied to the whole
plot of land that is being sprayed.

Each nozzle tip requires its own calibration since no singular curve could be fitted
accurately for all nozzle tips.

These studies were conducted in a relatively controlled laboratory environment; thus,
the reproducibility of these accuracies in real agricultural settings has yet to be
verified.

The third particular conclusion is that kinematic monitoring of agro-industrial
vehicles can be improved by using signal processing techniques for data fusion of
GNSS and on-vehicle sensors data. The results from the second article of this
compendium (vehicle tracking monitoring) support this conclusion with evidence.

On-vehicle sensors data can be employed through the proposed data fusion system for
improving the car positioning precision provided by a standalone low-cost GNSS
receiver. Positioning errors can be reduced by half in terms of the RMSE and the 95th-
percentile of the distance error distribution, and up to one fourth in terms of the
maximum distance error.

The best precision improvements are expected to be achieved in urban or forest areas,
where tall buildings or trees hinder the effectiveness of GNSS systems. It is expected
that the proposed system could be of great value in the event of short-term GNSS
signal outages, which are prevalent in cities with tall buildings and skyscrapers or in
forests-like environments. Wherever the GNSS receiver provides high accuracies, the
proposed system becomes less effective. Thus, all scenarios where GNSS accuracies
worsen can take more profit from the proposed system.

The proposed system requires less variables than other existing alternatives, thus being
more efficient. Previously proposed approaches, also employing EKF, required several
stages and intermediate variables, which yielded to much more complex systems, both
in computational terms and as far as tuning of covariance matrices is involved.

The proposed system can be easily adapted to incorporate new variables and sensors,
since the EKF allows for simple addition of new sensed variables into the model.
Merely deriving the mathematical relationship between sensed variables and state
variables is enough for system update as well as covariance matrices tuning too.

This method presents a low cost due to the use of low-cost GPS and a set of sensors
that is currently incorporated on-board of the agro-industrial vehicles.
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9. Future work

In this thesis several solutions were satisfactorily proposed for three particular agro-
industrial problems. All along the research performed in this thesis, several lines of future work
appeared.

The following future work lines, among others, have been identified.

o Related to the predictive maintenance monitoring: A currently live project is working
on replacing feature extraction stage by a frequency selection approach, so as to identify
most suitable frequencies and trying to relate them to rotating speed with the help of an
expert person. Another future line could be working on continuous estimation of the
speed of the rotating components by processing the vibration signal, enabling real-time
monitoring of the speed of certain rotating components. In addition, diagnostics and
prognostics, in the sense of estimating the level of damage and predicting its future
evolution, could be tackled too.

o Related to the vehicle tracking monitoring: The employed data fusion approach did not
consider dynamic tuning of the covariance matrices. Since sensor accuracy varies,
especially for GNSS receivers as coverage improves or worsens, a modified method,
which relies more or less on each sensor based on their accuracy at each time instant,
could outperform the proposed approach.

e Related to the flow rate monitoring: Since the experiments in this thesis were conducted
on a well-controlled laboratory environment, where acoustic interferences and noises
were avoided, testability on a real environment would be necessary. It is expected that, as
a result, a new refined approach becomes necessary after that testing in the real field. An
exhaustive study about optimal microphone location could be another possible line of
future research. Another line of research could further delve into acoustics generation in
agricultural sprayer nozzles, probably using Computational Fluid Dynamics (CFD) for
simulations.

In addition to those particular lines of future work, a more general line of research could
focus on how to properly incorporate all the systems proposed in this thesis into a whole system,
which could lead to complete systems of great usefulness in precision agriculture tasks. For
example, by employing accurate kinematic data together with accurate flow rate measurements,
a very accurate control of chemicals spraying could be achieved.

Additional future work could focus on trying to develop an abstract framework, valid for
any particular agro-industrial problem, which examines signals in order to provide an a priori
likelihood of success without the need of proposing a particular signal processing technique
beforehand.
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10. Merits and diffusion of the results

This section presents a summary of the merits obtained during the research process of this

thesis and the diffusion of the obtained results: the scientific publications, the granted patents,
the participation in research projects, the research stays in other international research groups,
the courses lectured, and other merits.

10.1. Publications

This subsection presents the articles sent to peer-reviewed international journals and

conferences, which has been published or accepted for publication.

10.1.1.Publications in JCR-indexed international journals

The articles published in JCR-indexed international journals are presented below.

Moreover, Table 1 shows the main quality parameters of the journals where these articles were
published:

Gomez-Gil, J.; Ruiz-Gonzalez, R.; Alonso-Garcia, S.; Gomez-Gil, F.J. (2013). A Kalman
filter implementation for precision improvement in Low-Cost GPS positioning of tractors.
Sensors 13 (11): 15307-15323.

Ruiz-Gonzalez, R.; Gomez-Gil, J.; Gomez-Gil, F.; Martinez-Martinez, V. (2014). An
SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-
Industrial Machinery with a Vibration Signal Acquired from a Single Point on the
Machine Chassis. Sensors 14 (11): 20713-20735.

Martinez-Martinez, V.; Gomez-Gil, F.J.; Gomez-Gil, J.; Ruiz-Gonzalez, R. (2015). An
Artificial Neural Network based expert system fitted with Genetic Algorithms for
detecting the status of several rotary components in agro-industrial machines using a
single vibration signal. Expert Systems with Applications 42 (17-18): 6433-6441.

Melendez-Pastor, C.; Ruiz-Gonzalez, R.; Gomez-Gil, J. (2017). A data fusion system of
GNSS data and on-vehicle sensors data for improving car positioning precision in urban
environments. Expert Systems with Applications 80: 28-38.

Ruiz-Gonzalez, R.; Stombaugh, T.S.; Martinez-Martinez, V.; Gomez-Gil, J. (2017). An
acoustic method for flow rate estimation in agricultural sprayer nozzles. Computers and
Electronics in Agriculture 141: 255-266.
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Journal

Impact
Factor

Journal Ranking

Sensors

1424-8220

2.048

Q1 on Instruments & Instrumentation
(10/57)

Q2 on Chemistry, Analytical (36/76)
Q3 on Electrochemistry (15/27)

Q1 on Instruments & Instrumentation
(10/56)
Q2 on Chemistry, Analytical (31/74)

e Q3 on Electrochemistry (14/28)

Computers
and
Electronics

in
Agriculture

0168-1699

Q1 on Agriculture, Multidisciplinary
(7/57)

Q2 on Computer Science,
Interdisciplinary Applications (39/105)

Expert
Systems
with
Applications

0957-4174

Q1 on Operations Research &
Management Science (6/82)

Q1 on Engineering, Electrical &
Electronic (27/257)

Q1 on Computer Science, Artificial
Intelligence (19/130)

Q1 on Operations Research &
Management Science (8/84)

Q1 on Engineering, Electrical &
Electronic (42/260)

Q1 on Computer Science, Artificial
Intelligence (20/132)

Table 1: Quality parameters of the JCR-indexed journals where articles have been
published.

10.1.2.Publications in international conference proceedings

This subsection presents the works presented in international conferences and international

workshops:

e Ruiz-Gonzalez, R.; Gomez-Gil, J.; Gomez-Gil, F.J.; Navas-Gracia, L.M. Blind 3D
localization and separation of multiple vibration and acoustic sources simultaneously

active. The 18th IEEE Conference on Sensors, IEEE Sensors 2017, Glasgow, Scotland

(United Kingdom), October 29" to November 1% 2017.

10.1.3.Publications in national conference proceedings

This subsection presents the works presented in national conferences:

e Ruiz Gonzélez, R. A Kalman filter based system for relative positioning improvement
in low-cost GPS receivers. Congreso para la Difusion de la Produccién Cientifica e
Innovadora (CODIPROCIN). January 14™ -15™ 2015.
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e Ruiz Gonzélez, R.; Gomez Gil, F.J.; Gémez Gil, J.; Meléndez Pastor, C.; Feijoo Garcia,
F. Estimacion del estado mecéanico de maquinaria agricola en funcionamiento mediante
el analisis automatico de vibraciones. XXI Congreso Nacional de Ingenieria Mecanica,
Elche, Alicante (Spain). November 9" -11™ 20186.

e Feijoo Garcia, F.; Gomez Gil, F. J.; Ruiz Calvo, J.; Peldez Vara, J.; Martinez Martinez,
A.; R. Ruiz Gonzalez. Andlisis espectral de desequilibrios rotantes en maquinaria
agricola. XXI Congreso Nacional de Ingenieria Mecanica, Elche, Alicante (Spain).
November 9" -11™ 2016.

10.2. Projects

This subsection presents information about a project in which | have participated during
my PhD thesis:

e Simplificacion del diagnostico de la apnea del suefio infantil mediante nuevas técnicas
de procesado de sefiales cardiorrespiratorias (SIMPLICITY):

Reference: DP12017-84280-R

Starting date: January, 2018.

Finishing date: December, 2020.

Duration: 36 months.

Funding entity: Ministerio de Economia y Competitividad (Ministry of Economy
and Competitiveness, Spain).

Participant entities: Grupo de Investigacion Biomédica (Biomedical Engineering
Research Group), University of Valladolid.

Principal investigator: Roberto Hornero Sanchez.

Role: Investigator.

10.3. Research stays

This subsection presents information about the four research stays done in this thesis:

o First stay:

Organization: University of Kentucky.

Center: Department of Biosystems & Agricultural Engineering.

Location: Lexington (Kentucky), USA.

Start of the stay: September, 2015.

Duration: 3.5 months.

Funding entity: University of Valladolid (Spain).

Stay purpose: Research for a CNH Industrial company project about estimating
the flux of water through nozzles by means of the acoustic signal.
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e Second stay:

Organization: University of Kentucky.

Center: Department of Biosystems & Agricultural Engineering.

Location: Lexington (Kentucky), USA.

Start of the stay: September, 2016.

Duration: 3.5 months.

Funding entity: University of Valladolid (Spain).

Stay purpose: Research for a CNH Industrial company project about estimating
the flux of water through nozzles by means of the acoustic signal.

e Third stay:

Organization: Universidade Federal de Vicosa.

Center: Departamento de Engenharia Agricola.

Location: Vigosa (Minas Gerais), Brazil.

Start of the stay: April, 2017.

Duration: 2 months.

Funding entity: Banco Santander, by means of the “Becas Iberoamérica. Jovenes
profesores e investigadores. Santander Universidades” grant.

Stay purpose: Research about the macaw palm fruit-stem system: anisotropic
viscoelastic modeling and structural analysis.

o Fourth stay:

Organization: Universidade Federal de Vigosa.

Center: Departamento de Engenharia Agricola.

Location: Vigosa (Minas Gerais), Brazil.

Start of the stay: January, 2018.

Duration: 6 months.

Funding entity: None.

Stay purpose: Research about the macaw palm fruit-stem system: anisotropic
viscoelastic modeling and structural analysis.

10.4. Teaching

This subsection presents information about the four courses lectured during this thesis:

e Redesy Servicios Telematicos

Type of course: Undergraduate.

Date: February-June 2016.

Place: Departamento de Teoria de la Sefial y Comunicaciones e Ingenieria
Teleméatica — Escuela Técnica Superior de Ingenieros de Telecomunicacion
(ETSIT) — Universidad de Valladolid (UVa), Valladolid, Spain.

Teaching load: 20 hours.
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Desarrollo de Aplicaciones Distribuidas

Type of course: Undergraduate.
Date: September 2017-January 2018.

Place: Departamento de Teoria de la Sefial y Comunicaciones e Ingenieria

Telematica — Escuela Técnica Superior de Ingenieros de Telecomunicacion
(ETSIT) — Universidad de Valladolid (UVa), Valladolid, Spain.

Teaching load: 15 hours.

Desarrollo de Aplicaciones Distribuidas

Type of course: Undergraduate.

Date: September 2018-January 2019.

Place: Departamento de Teoria de la Sefial y Comunicaciones e Ingenieria
Teleméatica — Escuela Técnica Superior de Ingenieros de Telecomunicacion
(ETSIT) — Universidad de Valladolid (UVa), Valladolid, Spain.

Teaching load: 30 hours.

Operacion, Administracion y Mantenimiento de Redes Telematicas

Type of course: Master degree.

Date: September 2018-January 2019.

Place: Departamento de Teoria de la Sefial y Comunicaciones e Ingenieria
Telematica — Escuela Técnica Superior de Ingenieros de Telecomunicacion
(ETSIT) — Universidad de Valladolid (UVa), Valladolid, Spain.

Teaching load: 15 hours.

10.5. Other merits

This subsection presents information about other merits obtained during this thesis:

Registration of a patent with the next information:

Name: Sistema de asistencia al conductor y métodos de adquisicion y procesado
de datos asociados.

Country: Spain.

Patent number: P201600489.

Authors: MARTINEZ MARTINEZ, Victor; MELENDEZ PASTOR, Carlos;
RUIZ GONZALEZ , Rubén.

Owner: Universidad de Valladolid (University of Valladolid).

Issue date: September 18", 2018.
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e Obtained a prize with the next information:

Name of the prize: Premio Prometeo 2015.

Founding entity: Fundacion General Universidad de Valladolid.

Date: June 2015.

Name of the project: Sistema para la asistencia al conductor empleando sensores
inerciales y de automocién.

Authors: Carlos Meléndez Pastor, Rubén Ruiz Gonzalez, Victor Martinez
Martinez.

e Co-directed a Bachelor Final Project with the next information:

Title of the project: Disefio, implementacion y testeo de un Sistema de fusion de
datos de posicionamiento GPS y datos de sensores, empleando filtro de Kalman
extendido y sistema de comunicacion OBDII, para la mejora de la precisién de
posicionamiento de un vehiculo.

Degree: Ingeniero Superior de Telecomunicacion, Universidad de Valladolid.
Date: July 2015.

Author: Carlos Meléndez Pastor.

Directors: Rubén Ruiz Gonzalez, Victor Martinez Martinez, Jaime Gomez Gil.

e Co-directed a Bachelor Final Project with the next information:

Title of the project: Sistema para la deteccion del estado de funcionamiento de los
elementos rotantes de una cosechadora a partir del procesado de vibraciones:
analisis de las frecuencias mas relevantes mediante algoritmos evolutivos.
Degree: Grado en Ingenieria de Tecnologias Especificas de Telecomunicacion:
Sistemas de Telecomunicacion, Universidad de Valladolid.

Date: September 2019.

Author: Lidia Martinez Martinez.

Directors: Rubén Ruiz Gonzalez, Victor Martinez Martinez, Jaime Gomez Gil.

e Co-directed a Bachelor Final Project with the next information:

Title of the project: Avanzando hacia una red auto-adaptativa: simulacion de
redes definidas por software (SDN) mediante el simulador GNS3.

Degree: Grado en Ingenieria de Tecnologias de Telecomunicacion, Universidad
de Valladolid.

Date: July 2019.

Author: Rubén Blanco Pérez.

Directors: Rubén Ruiz Gonzalez, Jaime Gomez Gil.
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II Articles in the compendium

The second chapter of this document presents the articles that take part of this thesis as a
compendium of publications. It is divided into three sections; each one related to one of the
three articles included in the compendium. The three articles of this compendium have been
published in JCR-indexed peer-reviewed journals of the first quartile of their category. Each one
of the next sections contains an introduction to the article, some bibliographic information, and
a version of the published article.
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Article 1: Predictive maintenance monitoring

The first article tackles the predictive maintenance monitoring problem, previously
described in chapter “Introduction to the compendium”. The main bibliographic data about this
article is shown below:

e Title: An SVM-Based Classifier for Estimating the State of Various Rotating
Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a
Single Point on the Machine Chassis.

e Authors: Ruben Ruiz-Gonzalez; Jaime Gomez-Gil; Francisco Javier Gomez-Gil; Victor
Martinez-Martinez

e Journal: Sensors
e Editor: MDPI
e Impact factor: 2.245 (2014)

e Journal Ranking:

- Q1 on Instruments & Instrumentation (10/56).
- Q2 on Chemistry, Analytical (31/74).
- Q3 on Electrochemistry (14/28).

e Date of publication: November 3, 2014.

e ISSN: 1424-8220.

o Volume (Issue): 14 (11).

e Pages: 20713-20735.

e DOI: 10.3390/5141120713.

e URL: https://www.mdpi.com/1424-8220/14/11/20713.

e Number of cites: 18.

The article presented below is a version of the original article published in the previously
mentioned journal. This version of the article has been authorized by the journal editor to be
included in this PhD thesis as a compendium of publications.
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Article 1: Predictive maintenance monitoringArticle 1:

Sensors 2014, 14, 20713-20735; doi:10.3390/s141120713
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Article

An SVM-Based Classifier for Estimating the State of Various
Rotating Components in Agro-Industrial Machinery with a

Vibration Signal Acquired from a Single Point on the
Machine Chassis

Ruben Ruiz-Gonzalez '*, Jaime Gomez-Gil !, Francisco Javier Gomez-Gil ? and
Victor Martinez-Martinez !
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Abstract: The goal of this article is to assess the feasibility of estimating the state of
various rotating components in agro-industrial machinery by employing just one vibration
signal acquired from a single point on the machine chassis. To do so, a Support Vector
Machine (SVM)-based system is employed. Experimental tests evaluated this system by
acquiring vibration data from a single point of an agricultural harvester, while varying
several of its working conditions. The whole process included two major steps. Initially,
the vibration data were preprocessed through twelve feature extraction algorithms, after
which the Exhaustive Search method selected the most suitable features. Secondly, the
SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with
the selected features as the input data. The results of this study provide evidence that
(1) accurate estimation of the status of various rotating components in agro-industrial
machinery is possible by processing the vibration signal acquired from a single point on
the machine structure; (ii) the vibration signal can be acquired with a uniaxial
accelerometer, the orientation of which does not significantly affect the classification
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accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy
can be reached, which only requires a maximum of seven features as its input, and no

significant improvements are noted between the use of either nonlinear or linear kernels.

Keywords: Support Vector Machine (SVM); predictive maintenance (PdM); agricultural
machinery; condition monitoring; fault diagnosis; vibration analysis; feature extraction and
selection; pattern recognition

1. Introduction

Agro-industrial machinery has a high initial investment and requires regular maintenance il [urther
expensive repairs are to be avoided [1]. The need for machine maintenance programs and their
appropriateness is a well-argued topic in the industry, which is reflected in the literature [2]. Early
detection of a mechanical component that is malfunctioning will lead to its prompt replacement,
thereby avoiding more costly repairs in the future.

Nowadays, many predictive maintenance techniques are employed, in order to reduce hazards and
subscquent failures of machinery [1-3]. According to Scheffcr ef al. [4], the main such techniques
are vibration monitoring, acoustic emission, oil analysis, particle analysis, corrosion monitoring,
thermography, and performance monitoring.

Vibration analysis is a non-intrusive method that is widely employed in machinery status
inspections, mainly on rotating equipment including engines, turbines, and compressors, among
others [4-6]. In the case of machinery with no vibration isolation, the vibration signal propagates
throughout the whole structure of the machine with moderate attenuation. The propagation of these
vibrations makes it possible to monitor certain rotating components by placing an accelerometer at a
different point on the machine structure [7]. However, the propagation of vibrations has a disadvantage,
in so far that it transmits various vibration signals from various other machine components, in addition
to the signal of interest, making it more difficult to identify the relevant signal [8].

Vibration signals from rotating components are usually analyzed in the frequency domain, because
significant peaks in the signal spectrum appear at frequencies that are related to the rotation frequency
of the component [4]. Various authors have performed this analysis using fast Fourier transform [9],
short-time Fourier transform [10], the wavelet transform [11-15], the S-transform [16], and the
Hilbert-Huang transform [17-20], among others. Duc to the relationship between the rotation
frequency of the machine component and the highest peaks in the spectrum signal, experts can
estimate the status of machine components by looking for patterns in the spectrum signal.
Nevertheless, doing so requires expert analysis of the vibration signal spectrum, which implies detailed
knowledge of the machine, the way it functions and full information on the rotation speed of the
component. Automated systems have been proposed to estimate the status of machine components
using frequency analysis in the absence of expert analysis [19,21]. These systems incorporate
knowledge of the machine component to extract characteristics from the spectrum signal and to

estimate its status on the basis of these characteristics.
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A Support Vector Machine (SVM) [22] is a supervised learning model widely used in the discipline
of pattern recognition for classifying purposes. Due to its learning and generalization capabilities it is
well suited for the implementation of estimation methods, which are widely required in automated
diagnosis systems. According to the literature, many SVM-based applications have successfully been
implemented [23], both for classification [24] and nonlinear regression [25]. Numerous improvements
have been proposed over recent years that focus specifically on vibration monitoring in machinery
laull diagnosis [26,27]. Widodo and Yang [28] offered a very thorough review of the latest major
advances in the field of SVM-based vibration analysis for predictive maintenance.

Although a good deal of research has previously examined SVMs in machinery predictive
maintenance [21,28], to the best of our knowledge, automatic prediction of the state of various rotating
components in an agro-industrial machine by employing only one vibration signal acquired from a
single point on the machine chassis, has not been conducted in previous research.

The purpose of this article is to present evidence to assess the feasibility of estimating the state of
various rotating components in agro-industrial machinery by employing one vibration signal acquired
from a single point on the machine chassis as the system input. The following five rotating component
states in an agricultural harvester were selected to assess that estimation capability: (1) engine speed
status (high speed/low speed); (2) threshing cylinder operating status {en/off); (3) threshing cylinder
balance status (balancediunbalanced), (4) straw chopper operating status (ow/off); and (5) straw
chopper balance status (balanced/unbalanced).

2. Background

This section comprises some fundamentals about vibration analysis in agro-industrial machinery,
classification in supervised machine learning, feature extraction and selection, and SVM-based
classification.

2.1. Vibrations in Agro-Industrial Machinery

Vibration can be defined as the repeated motion of a certain component back and forth from a given
position. Accelerometers are sensors that measure proper acceleration. These devices are the most
widely used for capturing vibration signals in rotating machinery applications. Typical accelerometers
capture signals in frequency ranges from | Hz to 10 kHz [4].

The most common defects causing high vibration levels in machinery, in accordance with
Scheffer et al. [4], are: unbalance of rotating parts, misalignment of couplings and bearings, bent
shafts, worn or damaged gears and bearings, bad drive belts and chains, torque variations,
electromagnetic forces, aerodynamic forces, hydraulic forces, looseness, rubbing, and resonance.
When machinery rotating components operate at high speeds or under harsh operating conditions for a
long time, some of these defects start to appear.

Vibrations can rcveal the presence of machinery defects. Usually, vibrations on rotating
components appear at specific frequencies, which are characteristic of each specific component and
also depend on the component rotation speed and other properties [19,21]. Traditionally, depending on
the vibration amplitude at those specific frequencies, the severity of the defects can be assessed.
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Therefore, plenty of information on the condition of a component, e.g., possible deterioration, can be
detected by analyzing the vibration characteristics of isolated components [4].

In addition, the vibration signals of a specific machine component can be acquired from almost any
point on the machine structure, cven though the signals will be slightly attenuated, duc to their
propagation throughout the machine structure and the imperfect isolation of the main sources of
vibration. Propagation complicates data processing and the extraction of useful information, because
information from several machine components is mixed. It nevertheless greatly simplifies the data

acquisition stage, as just a sensor may be installed at a single point on the machine,
2.2. Classification in Supervised Machine Learning

Machine learning, as a sub-field of artificial intelligence in computer science, deals with intelligent
systems that can modify their behavior in accordance with the input data. Intelligent systems must
have the capability of deducing the function that best fits the input data, in order to learn from the data.
Machine learning can be divided into unsupervised and supervised learning, depending on the
information that is available for the learning process. Unsupervised machine learning undertakes the
inference process by using an unlabeled training set, ie., without any information on the desired
output, and it seeks to deduce relationships by looking for similarities in the dataset. Meanwhile,
supervised machine leamning assumes that a labeled training set, for which the desired output is
completely known, is available.

Classification, as a branch of supervised learning, is defined as the process of identifying the class
to which a previously unseen observation belongs, based on previous knowledge given by a training
dataset that contains instances the category membership of which is certain. Any algorithm which
performs classification tasks, i.e., the mapping of input data to an assigned class, is called a classifier.

Classifiers must be frained, based on previous knowledge, in order to function properly, The
training process makes use of a sample of NV observations, the corresponding classes of which are
certain. This sample of N observations is typically divided into two subsamples: the training and the
test datasets. Firstly, the training dataset 1s used in the process of computing a classifier that is
well-adapted to these data. Then the test dataset is used to assess the generalization capability of the
previously computed classifier.

Both the misclassification rate and the success rate in the test dataset are commonly used as quality
measurements to assess classifier performance. The misclassification rate is defined as the proportion

of observations which are wrongly assigned to an incorrect class. It is expressed as follows:

MR = Number of Incorrect Classifications

Total Number of Classifications

Alternatively, the success rate {also called the hit rate) 1s defined as the proportion of observations
that are properly assigned to the corresponding class and is calculated as follows:
Number of Correct Classifications

SR = =1-MR
Total Number of Classifications
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The k-fold cross-validation is an enhanced method of evaluating classifier performance, especially
with small training and test datasets. In this method, the original sample of NV observations is randomly
partitioned into £ subsamples of equal size. From those & subsamples, a single subsample is retained
as the test datasct, and the remaining k — 1 subsamples arc used as the training datasct. The &-fold
cross-validation repeats this training and test process k times, using each of the & subsamples only once
as the test dataset. Cross-validation accuracy is calculated as the average of the success rate obtained
for each of the & different test datasets. When k£ = N, k-fold cross-validation 1s also known as
leave-one-out cross-validation.

Many different classifiers have been proposed in the literature [29,30]. Some of the main ones
include k-nearest neighbor classifier, Bayes classifier, logistic regression, Fisher’s linear discriminant,
decision tree, Artificial Neural Networks (ANN), and Support Vector Machines (SVM). An SVM
classifier is used in this article and hence SVM is described in greater detail in Section 2.4.

2.3. Feature Extraction and Selection for Classification

Machine learning systems, including classifiers, are typically required to process large volumes of
information. The application of dimensionality reduction techniques to the input data prevents the
classifier from processing too much data and improves its performance. Dimensionality reduction,
within statistical machine learning field, is defined as the process of reducing the number of
variables of a dataset while retaining most of its degrees of freedom, thereby simplifying the
subsequent classification problem. Feature extraction and selection are methods to accomplish
dimensionality reduction.

Featurc extraction [29] consists in reducing the dimensions of a d-dimensional input data vector
by transforming it into a new m -dimensional output data vector, where m < d. The resulting
m-dimensional vector, called feature vector, should retain from the original vector most of the useful
information for the subsequent classification stage. This property is often referred as degrees of
freedom preservation. Attending to their data type, features can be categorical, ordinal, integer-valued,
or real-valued. A very wide variety of feature extraction algorithms have been proposed in the
literature [31-34]. A taxonomy of these algorithms exists on the basis of their relationship to specific
mathematical fields. The most popular such categories are nenlinear, statistical and transformed-domain
based. Some of the nonlinear feature extraction algorithms are Correlation Dimension [35], Kolmogorov
Complexity [36], Lempel-Ziv Complexity [31,37], Approximate Entropy |38], and Sample Entropy [39].
Classical time-domain based methods of statistical feature extraction include Mean Value, Standard
Deviation, Skewness, Kurtosis, Average Power, and Shannon Entropy [40]. Some of the notable
frequency domain feature extraction techniques are Spectral Entropy (32], Median Frequency [33,41],
Bandwidth Containing 90% of the Signal Energy, and Relative Wavelet Packet Energy [34].

Feature selection [29] involves choosing, among an original set of features of size m, the subset of
size n that best represents the original set and that yields the smallest classification error. The feature
selection process can be conducted, among other methods by means of Exhaustive Search or
Sequentiol Forward/Backward Floating Search [29]. On the one hand, Exhaustive Search explores all

the possible subsets, ie., 2™ if nis a {ree parameter, or (r:) if n is a preset constant. This method

therefore guarantees the selection ol the best subset, although its use of computational resources is
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excessive. On the other hand, Sequeniial Forward/Backward Floating Search restricts the search to a
smaller subtree by only allowing feature deletion and addition at each step. Consequently, this method
presents a more affordable computational load, but it fails to guarantee optimal subset selection, even
though it has been proven to yicld suboptimal results that are almost optimal,

The performance improvements offered by feature extraction and selection techniques are linked to:
(1) dimension reduction that mitigates the ‘curse of dimensionality’ problem and therefore reduces the
risk of over-fitting [29,42]; and (i1) simplification of the resulting classifier, which results in using less

memory and fewer computational resources [29].
2.4. Support Vector Machines for Classification

Support Vector Machines (SVM) is a statistical supervised machine learning technique, used both
for classification and for regression purposes. Originally proposed by Vapnik and Cortes [22,43],
in 1995, although its principles and derivation differ from those of Artificial Newral Networks (ANN),
some authors sometimes consider SVMs as a special kind of ANN [44]. However, many authors refuse
to do so, due to essential differences between SVM and ANN techniques [45]). While SVM mechanisims
are mainly based on a rigorous geometrical and statistical approach, ANNs try to emulate the behavior
of the human brain and its neural system.

The original SVM proposal was aimed at both the binary classification problem, considering only
two possible classification classes, and the multiclass classification problem, which considers more
than two classification classes.

Binary linear SVM classification performs the calculation of the optimal hyperplane decision
boundary, scparating onc class from the other, on the basis of a training datasct. Optimality can be
understood, depending on whether perfect classification of the training dataset is feasible and desired,
in two separate ways:

e [f perfect separability of training dataset classes can be achieved, a Hard Margin optlimality
can be used. In this case, the hyperplane decision boundary is chosen to maximize the
distance from the hyperplane to the nearest training data point.

e [f perfeet classification is not desired or if it is impossible, a Soft Margin optimality 1s
used. In this case, the hyperplane selection is a customizable tradeoff between minimizing
the misclassification rate and maximizing the distance to the nearest properly classified

training point.

The decision boundary hyperplane in SVM classification is calculated by employing the training
dataset. This decision boundary is completely determined by the so-called Support Vectors, a subset of
training input vectors which by themselves alone lead to the same decision boundary. After this
hyperplane is determined, the SVM classifier is ready to be used with a different dataset from the one
used in the training stage. The assigned class, labeled either +1 or —1, depends on the side of the decision
boundary on which the input vector falls. Figure | represents a graphical example of linear SVM-based
classification, both in the case of linearly separable classes and non-linearly separable classes.

SVM multiclass classification usually tackles the classification and computation of the decision
boundary by reducing the problem to a set of binary classification problems. The main such approaches are
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pairwise and one-versus-all classification methods [46]. Compact multiclass reformulations of the
binary classification problem have also been proposed [46].

Figure 1. Representation of a Support Vector Machine (SVM)) classifier corresponding to
(a) a linearly separable pattern, where the hyperplane totally separates green circles from
red squares; and (b) a non-linearly separable pattern, where no hyperplane separates all the

green circles from the red squares.
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To be mathematically rigorous, the most general SVM linear binary classification problem can be
stated as follows:

“Given a training dataset, {x;, d;},, the goal is to compute the optimal weight vector w, bias b,

and slack variables &, such that satisfy the following constraints:
dw'x;+b)=21-§,vi=1,2,..,N
&=0vi=12,..,N

and such that the following cost function is minimized:
N
1
d(w,§) = EwTw + CZ &
i=1

where, x; € R™0 denotes the i-th input vector, d; € {-1, 1} denotes the class corresponding to the i-th
input vector, & = {§YIL, represents the slack variables, and the constant C is a user-specified

parameter that determines the tradeoff between misclassification and maximum inter-class margin.”

In practice, most classification problems cannot be solved by using a simple hyperplane as the
decision boundary. In such cases a more complex and elaborate decision boundary is required. SVM
achieves this goal by increasing the dimensionality of the input space, of dimension mg, by applying a
nonlinear transformation, denoted by @(+), into a feature space of dimension my > m, (Figure 2). This
transformation, ¢@(-), serves to reduce the misclassification probability in the transformed feature
space. The most typical transformation functions, as in the case of ANNSs, are radial basis functions,
higher-order polynomials, and sigmoids. Figure 2 represents a graphical example of an SVM

nonlinear classification.
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Figure 2. Representation of a Support Vector Machine classifier with a nonlinear kernel.
Function ¢(-) is the nonlinear transformation mapping vectors from (a) the input space to
(b) the feature space.
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The boundary in the nonlinear classification problem is still a hyperplane, not in the original input
space but in the feature space, and can be expressed as the points ¢ (x) that satisfy that:

wlox)+b=0 (1)

where, x € R™0 and ¢(x) € R"/.
Following the application of the Lagrange multipliers method, it has been shown that the optimal
weight vector can be expressed as [44]:

N
w = Z a;d; @(x;) )
=1

where, a; stands for the Lagrange multiplier coefficients.
Therefore, the optimal decision boundary can be rewritten as:
N
> ad; p(x) o) +b =0 (3)
i=1
Renaming wu; = a;d; and K(x;,x) = @(x)T@(x) = @(x)T@(x;) = K(x,x;), the decision
function, y, can be expressed as:

N
y=) uK(x,x;)+b (4)
2

In case of linear classifiers, K (x, x;) is the conventional Euclidean inner product of the input vector
x with the Support Vector x;. In case of nonlinear classifiers, K(x, x;) is the conventional Euclidean
inner product of the nonlinear transformation ¢(x) of the input vector x with the nonlinear
transformation ¢@(x;) of the Support Vector x;.

The decision function in Equation (4) results in the architecture depicted in Figure 3, once the
proper weights and Support Vectors have been computed in the training stage. Only the Support
Vectors have to be considered, as they are the only vectors that generate non-zero a; coefficients [44].
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Classification is therefore performed by identifying the sign of the output value, v, in Equation (4).
If sign(y) = +1, then this input is labeled as class +1 and if otherwise as class —1.

Figure 3. Architecture of a Support Vector Machine classifier. Inner product kernels,
K(,-), denote the my-dimensional kernel inner product of the input vector with each of the
N Support Vectors.

Input
vector (x) °

Linear output
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of N, kernel
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The most well-known and widely used nonlinear kernels are radial basis functions (RBF), sigmoids,
and polynomials. The RBF kernel can be expressed as K(x,¥) = exp(—v |lx — y||*), where y is a
user-defined parameter; the sigmoidal kernel can be expressed as K (x,y) = tanh(y x'y + c,), where
y > 0 and ¢y < 0 are user-defined parameters; and, the d-order polvnomial kernel can be expressed as
K(x,¥) = (v xTy +¢y)%, where y and ¢, are user-defined parameters and where d denotes the
polynomial degree. Other kernels may also be found, in addition to those listed above.

The underlying SVM training process undertakes the problem of minimizing a quadratic functional
subject to linear constraints. This problem, known as Quadratic Programming, has a closed solution.
Although the solution can be analytically computed by applying the Lagrange multipliers method,
other computational methods are typically used, especially when the dimensionality of the problem
becomes high. Some of these methods include, among others, [mrerior Point methods [47],
the Sequential Minimal Optimization (SMO) algorithm [48,49], Incremental methods [50], and the
Kernel-Adatron (KA) algorithm [51]. More information about the SVM training process has been
gathered by Campbell and Ying [52].

Those readers eager to discover the rigorous mathematical statement and solution of the problem
underlying Support Vector Machines are encouraged to read the comprehensive introduction to SVM
provided by Haykin [44] or the in-depth work by Steinwart and Christmann [53].

3. Materials and Methods

The main processing stages performed in this study can be conceptualized as follows: (i) the data
acquisition stage (Section 3.1); (ii) the preprocessing stage (Section 3.2); (iil) the feature extraction and
selection stage (Section 3.3} (iv) the SVM-based classification stage (Section 3.4); and (v) the
evaluation stage (Section 3.5). Figure 4 summarizes the main processing stages and contains a high-level
description of the methods, which are explained in greater detail in the remainder of this section.
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Figure 4. Overall block diagram summarizing the main processing stages.
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3.1. Data Acquisition Stage

Vibration data were experimentally obtained from an eleven-year-old New Holland TC56 harvester
that had clocked 3800 working hours. Vibration signals were acquired from a stationary harvester
operating in threshing mode. A Kistler 8690C50 triaxial accelerometer was used to measure the
vibration signals on transverse, longitudinal and vertical axes (Figure 5). After several trial and error
tests, the accelerometer sensor was placed on the left hand side of the harvester chassis, neither very
close nor very far away from the rotating components under analysis (Figure 5). The sensor was
positioned by using an adhesive mounting following the guidelines in Scheffer er al. [4]. This
mounting method was selected because the frequency analysis in this article was bandlimited below
200 Hz and it permits accurate measurements within this frequency range [4]. Vibration signals were
acquired using the NI Sound and Vibration Assistant software and a National Instruments (NI) data
acquisition (DAQ) system. The data acquisition system was composed of an NI 9234 data acquisition
module for analog input signals and an NI compact DAQ chassis NI/ ¢DAQ-9172, to connect the DAQ
module to a laptop.

Figure 5. (a) Harvester schematic in which the red symbol represents the precise location
of the accelerometer sensor on the chassis, the yellow cross represents the location of the
engine, the blue cross represents the location of the threshing cylinder, and the orange
cross represents the location of the straw chopper; (b) The coordinate axes of the
accelerometer in this study were as follows: the x axis was transverse to the front direction
of the harvester, the y axis pointed to the reverse direction of the harvester, and the z axis
was upward vertical with respect to the ground; (e} The experimental setup for data
acquisition and a close up of the position of the Kistler 8690C50 triaxial accelerometer.

(a) (b)
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A total of 18 different data acquisition processes were performed to acquire data on all the
combinations of the following harvester working conditions: (i) engine speed status (kigh speed/low
speed); (ii) threshing cylinder operating status (ow/off); (iii) threshing cylinder balance status
(balanced/unbalanced) in the on operating status; (iv) straw chopper operating status (en/off), and
(v) straw chopper balance status (balanced/unbalanced) in the on operating status. The straw chopper
was unbalanced on purpose by the breakage of a blade. The unbalance was provoked in this way,
because blade breakage against stones is a frequent cause of unbalances. The threshing cylinder was
unbalanced by adding an eccentric weight to it. The unbalance was provoked in this way, because the
threshing cylinder can typically become unbalanced when its bars suffer from non-uniform wear, due
to usage and an eccentric weight simulates the same effect.

Sixty-second long epochs or frames of machine operation were recorded for each of the 18
acquisition processes, using a sampling frequency of 1706.48 Hz, which generated a total of 99,120
samples per epoch.

3.2. Preprocessing Stage

The acquired acceleration time-series data were first preprocessed in order to adapt them to the
subsequent feature extraction stage. The entire preprocessing stage was divided into the following
three sub-stages (Figure 6): (i) a low-pass filtering sub-stage; (i/) a downsampling sub-stage; and
(ii7) a splitting sub-stage.

Figure 6. Block diagram representing the three preprocessing sub-stages.
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In the first sub-stage, low-pass filtering took place. A digital IIR elliptic low-pass filter, with a
cutoff frequency of 200 Hz, was applied to the input signal. The vibration frequencies of interest,
which are the main harmonics of the components rotation speeds, are located within the range from 0
to 200 Hz. This filtering was performed in order to remove noise and unwanted interferences to
achieve a better performance.

Next, after filtering, the downsampling sub-stage took place. The input signal was decimated, in
order to reduce the sampling frequency by a factor of Ny;, where Ng5 € N is the decimation ratio. In
this article, a value of Nrg = 4 was chosen, taking into account the frequency range of interest.
Therefore, the effective sampling frequency was reduced after downsampling from 1706.5 Hz, the one
originally employed in the acquisition stage, to 426.625 Hz.

Finally, the splitting sub-stage was conducted. The downsampled signal, coming from the second
sub-stage, was then split into six epochs of about ten seconds, which was the frame size considered
sufficient for keeping meaningful information on the vibration signal for the posterior feature
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extraction steps and for ensuring good frequency resolution in the subsequent FFT analysis. In this
way, a total of 4130 samples per epoch were obtained.

All these preprocessing tasks were performed with MATLAB® program.
3.3. Feature Extraction and Selection Stage

This stage involves the dimensionality reduction of the input data-series coming from the previous
stage. It is divided into two sub-stages: feature extraction and feature selection.

Firstly, the preprocessed data from the previous stage were brought in the feature extraction
sub-stage, in order to achicve a simpler classificr. Then, the input signal for this stage, denoted as x[n],
wheren =1,2,...,N = 4130, was used to extract the following features:

(1) Average Power (P), defined as P =%Zﬁ:1x[n]2. This feature quantifies the overall

vibration intensity.

(2)  Sample Entropy (SampEnj), computed using the definition provided by Richman er al. [39].
This feature 1s a measurement of signal regularity that assigns higher values to more random
data; for instance when multiple vibration sources are superposed.

(3)  Spectral Entropy (SpecEn}, computed in the same way as by Hornero ef al. [33]. This feature
was employed because of its capabilily to quantify the flatness of the spectrum. The more
frequency peaks the signal has, the greater this feature becomes.

(4)  Mean Value (X}, calculated as X = %Zﬁﬂ x[n]. It reflects the amplitude of low frequency

background vibrations.

(5) Median frequency (MF), computed as the frequency which divides the power spectrum into
two halves, each of which contains the same energy. It was calculated in the same way as by
Homero ef al. [33].

(6) Standard Deviation (o ), calculated by using the mean value x that has previously
been defined, as the square root of the unbiased estimator of the variance, ie,

1

) N_,(x[n] — %)2. This fcaturc provides information on the width of the amplitude

g =

histogram distribution, supplying additional information on the shape of the vibration signal.

JAD  mih(xin]-%)?

N-2 5
( Iﬁle(x[nl—f)Z)

Skewness, which is a measure of histogram distribution asymmetry around its mean, can

(7)  Skewness ( sy ), calculated as the unbiascd cstimator sy =

reflect vibration asymmetries due to mechanical faults,
N-1

TS (N + Dk, —

(8) Kurtosis ( kg ), calculated as the unbiased estimator kg, =

1N _
ﬁZn:1(x[n]_x)4 . N N
—F——————. This fcaturc reflects the peakedness of the
(FZN=1xn]-9)%)

histogram, giving information on the distribution of the vibrations amplitude.

3(N — 1)) + 3, wherc ky =

(9)  Central Tendency Measurement (CTM). In the first place, the first-order differences scatter
plot is constructed, representing x[n + 1] — x[n] on the X axis against x[r + 2] — x[n + 1]
on the ¥ axis, The proportion of points lying inside a circle of a certain fixed radius is then
returned as a measurement of signal regularity. A radius of 0.05 g was selected in this study,
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which is an appropriate one for distinguishing the related classification classes. This feature
offers a measurement of the randomness of the vibration signal, where a low value of this
feature implies sharp changes in the vibration signal. Sharp changes in vibration signals may
be causcd both by high frequency vibrations or sudden transitions duc to mechanical faults.
(10) Correlation coefficient (v} from the first-order differences scatter plot. As with the previous
feature, the first-order differences scatter plot is constructed first, obtaining both X[n] and

Y[n] vectors. Then the Pearson's linear correlation coefficient between both vectors is
ENZE X [n]-X) (¥ [n]-T)

e = e

and Y [n], respectively. This feature offers a measurement of the unpredictability of the signal

computed as: r = , where X and ¥ are the mean values of X[n]

from the previous data; the higher the measure of |r| the more predictable the signal is.
(11) Lempel-Ziv Complexity (LZC), computed as by Hornero ef al. [33]. This feature offers a
notion of complexity in a statistical sense, It characterizes the average information quantity

within a signal and can therefore reflect the superposition of several vibration sources.
max]|x[n]|

(12) Crest Factor (C), calculated as C = 2=—=, where N is the number of samples of the
35y x[n]?
time-series x[n]. This feature reflects the spikiness of the signal with respect to its RMS
value and is therefore useful to assess the presence of mechanical faults,

All of the above algorithms were selected on the basis of the previous literalure on vibration
analysis [21,54-56] and by cxtrapolating ideas from studics in other ficlds [33,37,39].

Secondly, after having extracted these features from the preprocessed data-series, the most suitable
features from among them all were selected in the feature selection sub-stage. The feature selection
process was undertaken by using the Exhaustive Search method, which explores all of the possible
feature subsets. With each of the explored subsets, linear SVM leave-one-out cross-validation was
performed to assess the goodness of this subset. The feature subset with highest cross-validation
accuracy was selected. The value of parameter C, involved in the SVM classification problem, was
prefixed at 1 in all cases. Cross-validation accuracy was calculated for each classifier undertaking each
of the five classification problems, corresponding to the five rotating component states of the
agricultural harvester under consideration: (1) engine speed status (high speediiow speed); (2) threshing
cylinder operating status (om/off); (3) threshing cylinder balance status (balanced/unbalanced),
(4) straw chopper operating status (on/off), and (5} straw chopper balance status (halancediunbalanced).

The choice of the Exhaustive Search method was possible due to the relatively small number of
twelve features that were involved, as mentioned above, [f more features were to be explored, it would
be advisable to use Sequential Forward/Backward Floating Search for computational efficiency [29].

All the tasks of this stage were performed in the M4ATLAB® programming environment using the
LIBSVM library [57,38].

3.4. SVM-Based Classification Stage

The classification stage took place once the previous processing stages had been performed.
Among the huge variety of classifiers available, SVM classification was selected in this work because
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of its: (1) great generalization ability; (ii) low overtraining risk due to small datasets; and (iii) low
computational load.

A different SVM-based classifier was employed for each of the five related classification problems,
corresponding to the following five rotating component states of the agricultural harvester: (1) engine
speed status (high speed/low speed), (2) threshing cylinder operating status (en/off); (3) threshing
cylinder balance status (balancediunbalanced); (4) straw chopper operating status (o#/off); and
(5) straw chopper balance status (balancediunbalanced). The input of each classifier was the subset of
features that led to maximum cross-validation accuracy (Section 3.3). If more than one subset led to
the maximum value, only one of them was selected for the sake of simplicity. Each classifier provided
one of the two classes associated with the input feature vector as its output.

For each of the five classifiers, the linear kernel and the radial basis function (RBF), the sigmaidal,
and the third-order polynomial nonlinear kernels were employed, providing a comparison between
their accuracy. These SVM kernels were selected, because they are the most typical and widely used.
The C parameter, involved in the SVM classification formulation, and the y and ¢, parameters, involved
in the kernel, were optimized by conducting an exponential grid-search on these parameters [59]. The
parameters that led to the highest cross-validation accuracy were selected.

The LIBSVM toolbox [57,58], running in the MA4TL4B" programming environment, was oncc again
employed for classification tasks.

3.5, Classifier Performance Evaluation Stage

The leave-one-out cross-validation accuracy (Section 2.2), for each of the five individual
classification problems under consideration, was computed to asscss the goodness of the proposed
classifying system. These five cross-validation accuracies, as well as the overall mean cross-validation
accuracy, were used as a measurement of the accuracy of the SVM-based estimation method for each
of the five atorementioned harvester states.

4. Results

The experimental results of the feature selection and classifier performance evaluation stages are
presented in this section.

4.1. Feature Selection

The selection of the best features, following the methods explained in Section 3.3, led to the
best cross-validation accuracies and best particular chosen features shown in Table 1. It can be
appreciated that, in all cases, the required number of features is lower than or equal to seven and
that the mean cross-validation accuracy is above 85%, for all the three axes of the accelerometer.
The best cross-validation accuracies and the number of [eatures needed to achieve these are depicled

in Figure 7.
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Table 1. Feature selection results for each of the three axes acquired by the triaxial
accelerometer. The first row (number of features) shows the optimal number required to
achieve the best cross-validation accuracy. The second row (best feature subset) shows all
of the concrete feature subsets, giving the highest cross-validation accuracy as a list of
numbers the legend of which corresponds to the list provided in Section 3.3. The subset
employed for the subsequent classifier performance evaluation stage appears in bold.
Each column corresponds to each of the rotating component classification problem
under consideration.
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Classification Problem
. Thre.shmg Threshing Cylinder Straw Straw
Engine Speed | Cylinder Chopper Chopper
. Balance .
Operation Operation Balance
Number of features 1 2 5 2 1
TrangverseX |  Dettfeature 9 {10,113 (4,6,7.9,11) (285:(2,5) 5
X subset(s)
axis of the Cross-validation
accelerometer 100% 97.87% 68.29% 80.85% 80%
accuracy
Mean CVA 85.40%
Number of features 3 1 7 2 5
{6,7,10}; {1,2,7,8,9,11,12};
. Best feature 15,7,9}; {1,2,4,7.8,11,12};
I“(":fl':‘;?'t':‘e' subset(s) (5,6,10}; 5} (1.2,4,6,7,11,12}; @1y {1.3,5,7,12}
{1,6,10} £1,2,3,5,7.8,11}
accelerometer Cross-validation
100% 97.87% 87.49% 91.49% 90%
accuracy
Mean CVA 93.37%
Number of features 1 2 6 6 4
Vertical Z axis Bz:tbf;at::)r ¢ {9 211023} | 2356811} | {1,4578,10) | {1,2,7,10}
of the .
accelerometer | CTUFSvalidation 100% 100% 65.85% 82.98% 100%
accuracy
Mean CVA 89.77%

Figure 7. Number of features and cross-validation accuracy for each of the working
conditions under consideration—(£S) engine speed, (70) threshing cylinder operation,
(TB) threshing cylinder balance, (SCO) straw chopper operation, and (SCB) straw chopper
balance—using the accelerometer channel corresponding to (a) the transverse X axis;
(b) the longitudinal Y axis; and (c) the vertical Z axis.
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4.2. SVM Classifier Performance Evaluation

The results of the linear and nonlinear SVM classifier optimization, showing the best cross-validation
accuracies and the related optimal parameters, are shown in Table 2. The previously selected features,
highlighted in bold in Table 1, were used as input to the SVM classifier. Note that the nonlinear
kernels did not outperform the linear kernel in most cases. Even in those cases where the accuracy was
improved, only slight differences never over 10% were observed. It therefore appears that the use of
linear SVM classification is sufficient to solve the problem. A comparison of kernel cross-validation

accuracy is also provided in Figure 8.

Table 2. Performance results for each of the three axes acquired by the triaxial
accelerometer, comparing the different SVM kernels, and showing both the optimized
parameters (C, v, ¢y) and the best cross-validation accuracy (CVA). The best result for each
classification problem appears in bold.

Classification Problem
Engine Threshing Threshing Straw Chopper | Straw Chopper
Speed | Cylinder Operation | Cylinder Balance Operation Balance
) CVA 100% 97.87% 75.61% 80.85% 90.00%
Linear kernel
C 1 | 6 1 1.2
) CVA 100% 97.87% 82.93% 82.98% 90.00%
1:;'1;‘]‘";’];‘::1' SREE 32768 8192 2048 0.03
Kernel Y 8 0.125 0.125 32 8
Transverse co 0.03 0.03 0.5 0.5 0.03
X axis of the CVA 100% 97.87% 80.49% 85.10% 90.00%
accelerometer | RBF kernel C 0.125 512 32 32 0.5
i 2 0.125 2 8 2
CVA 100% 97.87% 80.49% 82.98% 90.00%
Sigmoidal C 2 2048 2048 8 2
kernel ¥ 0.5 0.125 0.125 8 2
co 0.03 0.03 0.03 0.5 0.03
. CVA 100% 97.87% 87.49% 91.49% 90.00%
Linear kernel
C 1 1 1 1 1
. CVA 100% 97.87% 80.49% 91.49% 90.00%
T";“""“,'el’ C 8192 0.03 8192 0.03 2043
B [ ¢ 0.125 8 0.002 8 0.125
Longitudinal € 0.03 0.03 8 0.03 0.03
¥ axis of the CVA 100% 97.87% 78.05% 91.49% 90.00%
accelerometer | RBF kernel C 0.5 0.5 2 2 2
y 8 3 0.5 2 2
CVA 100% 97.87% 78.05% 93.62% 90.00%
Sigmoidal C 2 32 512 8192 8
kernel Y 0.5 0.125 0.008 0.125 0.5
co 0.03 0.03 0.03 0.125 0.03
Linear kernel CVA 100% 100% 65.85% 85.10% 100%
C 1 1 1 430 1
) CVA 100% 100% 63.41% 89.36% 100%
T)'(')‘l;‘r‘"f':l':]’ C | 8192 512 2048 8192 0.03
Kernel ¥ 0.125 0.5 0.125 0.03 8
Vertical Z axis co 0.03 0.03 0.5 2 0.03
of the CVA 100% 100% 68.29% 87.23% 100%
accelerometer | RBF kernel C 0.125 32 2 8192 2
Y 2 0.5 32 0.03 0.5
CVA 100% 100% 63.41% 82.97% 100%
Sigmoidal C 2 128 512 32 8
kernel ¥ 0.5 0.125 0.5 0.125 0.5
co 0.03 0.03 0.125 0.03 0.03
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Figure 8. Cross-validation accuracy for each kernel under the following working
conditions—(ES) engine speed, (T0) threshing cylinder operation, (7B) threshing cylinder
balance, (SCO) straw chopper operation, and (SCB) straw chopper balance—using the
accelerometer channel corresponding to (a) the transverse X axis; (b) the longitudinal
Y axis; and (c) the vertical Z axis.
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5. Discussion

This article investigates a method of estimating the status of various rotating components in
agro-industrial machinery by processing vibration signals acquired from a single point of the machine
structure. It offers three major findings.

The first finding of this article is that it is possible to accurately estimate the status of some rotating
components in agro-industrial machinery by processing the vibration signal acquired from a single
point on the machine. Moreover, the accelerometer sensor does not need to be placed very close to the
rotating components, which makes the acquisition stage simple and non-intrusive. The results
presented above reveal the potential of this method to estimate the status of distant components by
processing vibration signals from a unique sensor located at a fixed position, midway along the
harvester chassis (Figure 5), because a mean cross-validation accuracy higher than 85% was obtained.
Previous work in the scientific literature has only analyzed isolated mechanical components, using one
accelerometer for each isolated component [19,21,56]. It is worth noting that, to the best of our
knowledge, no previous articles have approached the problem of estimating the status of various
mechanical components from a unique vibration signal.

The second finding of this article is that the vibration signal can be acquired with a uniaxial
accelerometer, the orientation of which has no significant effect on classification accuracy. The
comparison of the results of cross-validation accuracy along the three accelerometer axes (Table 2)
supports this conclusion. The higher differences observable in Table 2 for the threshing cylinder
balance status shows differences of around 20%. However, almost no differences in accuracy were
appreciated for the rest of the states, which were lower than 10% in all cases. Although vibrations are
usually generated in a specific direction, the results obtained here suggest that the machine structure
spreads them along all of the axes, making the use of an arbitrary axis for their detection possible.

The third finding of this article is that, when using an SVM classifier, an 85% mean cross-validation
accuracy can be reached, which only requires a maximum of seven features as its input, with no
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significant noticeable improvements from using nonlinear rather than linear kernels. Reviewing the
results, a mean cross-validation accuracy greater than 85% was achieved, irrespective of the selected
accelerometer axis. Analyzing the individual cross-validation accuracy obtained for each rotating
component, the suitability of the SVM c¢lassifier for cstimating cach scparatc machinery status is
evident. On the one hand, the rotating component status with the best cross-validation accuracy was
the engine speed, with a cross-validation accuracy of 100% in all cases (Table 2). On the other hand,
the worst cross-validation accuracy was obtained for threshing cylinder balance status, for which the
cross-validation accuracy was between 63.41% and 87.49% (Table 2). A visual analysis of the
vibration signal spectrum, revealed differences when the engine speed varied between high and low
speed, while there were no visible changes in the signal spectrum when the threshing cylinder was
either balanced or unbalanced. These results show that the proposed SVM classifier is able to classify
the status of rotating machinery to a high degree of accuracy when the difference between the
spectrum signals is noticeable, such as in the case of the engine speed status. They also show that it can
obtain an acceptable cross-validation accuracy for rotating components when there is no visible
difference between the spectrum signals, such as the threshing cylinder balance status. Comparing the
fault detection accuracy in the present article against the results of Samanta er al. [56], who proposed
an ANN-based classifier for the fault diagnostics of roller bearings based on data from scveral
vibration signals and extracting only five time-domain features, this study has reported poorer results.
Nevertheless, these differences can be justified by taking into account that in Samanta’s article five
vibration signals from different locations of a unique component were processed and because they
were clean, as they came from the isolated mechanical component under analysis. Nevertheless, only
one accelerometer sensor is employed in the present article to detect five states of three different
rotating components and, furthermore, the vibration signal that is processed contains the superposed
signals coming from the three components under analysis as well as from the other components of the
machine. As can easily be understood, the present article approaches a much harder problem.

The major strength of the system proposed in this article is the simplicity of the data acquisition
stage, employing only one sensor located at a single point on the machine for measuring the vibration
signals. 1t is worth highlighting an article from Sugumaran et af. [21], who proposed an SVM-based
classifier for the fault diagnostics of a unique roller bearing employing only one vibration gignal. Our
study, even though similar to Sugumaran’s, is wider in the sense of trying to assess several machinery
rotating components at once instead of just one. Furthermore, the present article contemplates the
detection of further machine states and not only fault diagnostics.

Another strength of this article is that the proposed estimation method only needs seven features,
at most, as the classifier input, vielding a simple SVM classifier with a low associated computational
load. Moreover, the results showed no great differences in relation to the SVM kernel that was
employed, which highlights thal a simpler linear SVM classifier is sufficient to achieve good
classification accuracy.

Nevertheless, there is a limitation to this work, which should be taken into account before
implementing the proposed estimation method. This limitation is related to the data acquisition process
performed in this article to validale the proposed SVM-based system. The vibration signals were
acquircd with the harvester wheels stopped to facilitate the acquisition procedure. If the proposed
estimation method were to be used when the monitored machine is in motion, low-frequency

60



Acrticle 1: Predictive maintenance monitoringArticle 1:

Sensors 2014, 14 20731

interference signals could appear. However, these signals are not expected to cause problems, because
the frequencies of interest in the rotating components of these machines will almost certainly be much
higher than the interference frequencies.

The main application ficlds of the proposed SVM-based system arc machinery monitoring and
predictive maintenance. In relation to machinery monitoring, this system could be used for detecting
the operating status of particular mechanical components, simplifying the wiring and reducing the
number of sensors that are required. In relation to predictive maintenance, the results suggest that
further progress may lead to fast and low-cost machinery inspections, thereby avoiding many mechanical
faults and replacing expensive, time-consuming inspections that are frequently required nowadays.

A mixture of both conventional vibration signal analysis features, such as frequency-
domain [4,6,19,21,27,34] and time-domain [54—56] based features, and other unconventional features,
such as nonlinear features [33,37,39], has been used in this article. The good classification accuracy
levels, obtained for example with the Central Tendency Measurement feature when estimating the
engine speed status (Table 1), highlights the usefulness of these unconventional features in the analysis
of vibration signals for predictive maintenance. Nevertheless, regarding the straw chopper unbalance
detection, the nonlinear features seem to be of little use. A future line for further research is opened by
employing other unconventional features in vibration analysis for predictive maintenance.

Furthermore, this article opens a new future line of research by extending the system that is
proposed in this paper to the use of more than one accelerometer located at different points on the
machine. It is expected that the processing of all those signals together could enable the estimation of
an even higher number of machine states and could also improve the accuracy of the estimation.

6. Conclusions

The results obtained in this study have provided evidence that (i) accurate estimation of the status of
various rotating components in agro-industrial machinery is possible by processing the vibration signal
acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a
uniaxial accelerometer, the orientation of which does not significantly affect the classification
accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be
reached, which only requires a maximum of seven features as its input, and no significant
improvements are noted between the use of either nonlinear or lingar kernels. Follow up research may
lead to a simplification of the wiring and a reduction in the number of sensors required in machinery

monitoring, as well as to fast and low cost machinery inspections in predictive maintenance.
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Accurate car positioning on the Earth’s surface is a requirement for many state-of-the-art automotive
applications, but current low-cost Global Navigation Satellite System (GNSS) receivers can suffer from
poor precision and transient unavailability in urban areas, In this article, a real-time data fusion system
of absolute and relative positioning data is proposed with the aim of increasing car positioning precision.
To achieve this goal, a system based on the Extended Kalman Filter (EKF) was employed to fuse absolute
positioning data coming from a low-cost GNSS receiver with data coming from four wheel speed sensors,
a lateral acceleration sensor, and a steering wheel angle sensor. The bicycle kinematic model and the
Ackerman steering geometry were employed to particularize the EKF. The proposed system was evaluated
through experimental tests. The results showed precision improvements of up to 50% in terms of the Root
Mean Square Error (RMSE), 50% in terms of the 95th-percentile of the distance error distribution, and 75%
in terms of the maximum distance error, with respect to using a stand-alone, low-cost GNSS receiver.
These results suggest that the proposed data fusion system for car vehicles can significantly reduce the
positioning error with respect to the positioning error of a low-cost GNSS receiver, The best precision
improvements of the system are expected to be achieved in urban areas, where tall buildings hinder the
effectiveness of GNSS systems. The main contribution of this work is the proposal of a novel system that
enables accurate car positioning during short GNSS signal outages. This advance could be integrated in
larger expert and intelligent systems such as autonomous cars, helping to make self-driving easier and
safer.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Security systems in modern vehicles, such as Anti-lock Brak-
ing System (ABS), Electronic Stability Control (ESC), Traction Con-

Positioning technologies for locating a vehicle on the Earth's
surface are recurrently employed by applications such as Advanced
Driver Assistance System (ADAS) (Pérez et al, 2015) and vehicle
navigation systems (Mintsis, Basbas, Papaioannou, Taxiltaris, & Tzi-
avos, 2004). Vehicle positioning can rely exclusively on Global Nav-
igation Satellite Systems (GNSSs) as the source of information to
provide position and velocity. This absolute positioning technology
can be accurate and highly available in environments with good
satellite visibility. However, GNSS positioning precision can be de-
graded in urban environments, such as streets surrounded by high
buildings, and the positioning can be canceled in environments
such as tunnels (Kaplan & Hegarty, 2005; French, 1996).

= Corresponding author.
E-mail addresses: cmelpas@ribera.tel.uva.es (C. Melendez-Pastor),
rruigon@ribera.tel.uva.es (R. Ruiz-Gonzalez), jgomez@tel.uva.es (J. Gomez-Gil).
1 These authors contributed equally to this work.

http://dx.doi.org/[10.1016/j.eswa.2017.03.018
0957-4174/© 2017 Elsevier Ltd. All rights reserved.

trol System (TCS), and Electronic Brakeforce Distribution (EBD), use
data from sensors located in different parts of the vehicle. Wheel
speeds, steering wheel angle, lateral and longitudinal accelerations,
vehicle rotation angular speed, and vehicle rotation angular ac-
celeration are parameters continuously acquired and monitored in
modern cars (Robert Bosch GmbH, 2007). The processing of these
parameters coming from on-vehicle sensors enables relative posi-
tioning (Lin, 1991; Titterton & Weston, 2004).

The Extended Kalman Filter (EKF) (Sorenson, 1985; Jazwinski,
2007) allows the statistically optimal data fusion of absolute posi-
tioning data coming from GNSSs with data for relative positioning
coming from on-vehicle sensors. Making use of the EKF, the posi-
tioning precision can be thus improved.

Among other applications, the Kalman filter has been widely
used in the literature to (i) fuse data from Global Positioning Sys-
tem (GPS) and Inertial Navigation System (INS) (Tin Leung, Whid-
borne, Purdy, & Dunoyer, 2011); (ii) fuse data from GPS, INS, and
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Fig. 1. (a) Overview of the building blocks in the proposed system. (b) Location of the sensors employed in the proposed system. In green, the absolute positioning sensor:
GNSS receiver. In blue, the on-vehicle sensors for relative positioning: wheel speed sensors (G44-G47), lateral acceleration sensor (G85), and steering wheel angle sensor
(G200). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Wheel Speed Sensors (WSS) (Leung, Whidborne, Purdy, & Barber,
2011); (iii) fuse data from GPS and positioning data obtained by
artificial vision (Schleicher, Bergasa, Ocafa, Barea, & Lépez, 2010);
and (iv) smooth the path followed by vehicles (Gomez-Gil, Ruiz-
Gonzalez, Alonso-Garcia, & Gomez-Gil, 2013), A line of research for
the data fusion of low-cost GPS and on-vehicle sensors in cars was
initiated in 1999 by Abbott and Powell (Abbott & Powell, 1999).
Since then, more articles have been published in this line of re-
search (Bonnifait, Bouron, Crubille, & Meizel, 2001; El Najjar &
Bonnifait, 2005; Gning & Bonnifait, 2005; Song, Li, Tang, Zhang,
& Li, 2014). The present article makes a new contribution to this
same line of research by proposing an alternative approach for ac-
complishing the data fusion, as well as by proposing a different
model for the car system’s state.

This article proposes and experimentally evaluates an EKF-
based data fusion system for improving car positioning precision.
This system combines data from a low-cost GNSS receiver with
data coming from six on-vehicle sensors: four wheel speed sen-
sors, a lateral acceleration sensor, and a steering wheel angle sen-
sor. As compared to the aforementioned articles in the related lit-
erature, the proposed system makes use of a different and mod-
ified model for the car system's state, not found in any previous
related article, so far as the authors are aware.

2. Description of the proposed system
2.1. Overview

The proposed data fusion system, whose main building blocks
(Fig. 1a) could be deployed in a microcontroller-based system,
takes as input GNSS data, along with data for relative position-
ing coming from other on-vehicle sensors (Fig. 1b). As far as this
article is concerned, just the four wheel speed sensors, a lateral
acceleration sensor, and a steering wheel angle sensor (Fig. 1b)
were employed for relative positioning, along with a GNSS receiver
for absolute positioning. Nevertheless, this does not preclude the
incorporation of other relative positioning sensors, e.g. longitudi-
nal accelerometers, which could be readily considered with few
straightforward changes in the system architecture and its process-
ing scheme.

The data supplied by the aforementioned sensors, following the
scheme depicted in Fig. 1a, is then preprocessed and, thereafter,
combined via the Extended Kalman Filter. By taking into account
all the redundant data, this system provides a more precise esti-
mation of the actual state of the vehicle.

‘ Rotrate  Ugnss

&

Banss
(Xanss:Yanss)

- @

Fig. 2. Preprocessed measured variables obtained by the system, to be later em-
ployed in the data fusion module. The schematic diagram represents, in blue, the
measurements obtained from the on-vehicle sensors for relative positioning and, in
green, the measurements provided by the GNSS receiver. The meaning of all the
represented variables is explained in Section 2.2.3. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

ACCat
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2.2. System building blocks

In this subsection, further details about the functioning of all
the building blocks of the proposed system (Fig. 1a) are provided.

2.2.1. Data acquisition

The data acquisition block addresses the extraction of the raw
data supplied by all the sensors from the system. Typically, RMC
NMEA 0183 (National Marine Electronics Association 0183) sen-
tences are acquired at a certain sampling rate from the GNSS re-
ceiver, and the raw data from the on-vehicle sensors for relative
positioning is also obtained. This raw data is fed into the subse-
quent preprocessing block.

2.2.2. Preprocessing

The raw data, coming from the aforementioned sensors, must
be preprocessed in order to obtain meaningful and comparable
data for the subsequent data fusion step. This preprocessing block
requires the performance of several actions, which can be concep-
tually encompassed in the following two steps: (1) The conversion
of the raw data and electric signals provided by the sensors into
the meaningful variables depicted in Fig. 2. This step includes the
conversion from GNSS geodetic coordinates to the Universal Trans-
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Fig. 3. Input (measured) variables for EKF-based data fusion and output (filtered)
system state variables. In green, the measurements provided by the GNSS receiver.
In blue, the measurements provided by the on-vehicle sensors. In black, the output
system state variables. The optimal covariance matrices (Q and R) are employed to
weight the reliability on each individual measurement. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 4. Car-system state variables, where all the variables needed to completely de-
fine the kinematic state of the car system are depicted.
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verse Mercator (UTM) planar projection as well as other basic con-
versions, such as converting every involved variable into SI units.
(2) The synchronization, resampling, and interpolation of the ac-
quired data so that all the digital samples from each sensor corre-
spond to the same temporal instant.

The output data from this preprocessing block is the set of mea-
sured variables represented in Fig. 2, which is fed into the subse-
quent data fusion block.

2.2.3. Data fusion

The output variables coming from the preprocessing block (Fig.
2) are fed as measurements into the Extended Kalman Filter (Fig.
3), which is responsible for performing the data fusion of all these
measurements in order to achieve, as its output, an optimal esti-
mation of the system state.

In this article, the Extended Kalman Filter was particularized
for the car vehicle system (Fig. 4) by introducing the Ackerman
steering geometry into the bicycle kinematic model for describing
car motion (Jazar, 2014). For completely specifying the car-system
state, with regard to its positioning, the bicycle model is here as-
sumed as an approximation. In this scenario, the five variables de-
picted in Fig. 4 are enough to describe the system's kinematic state
at a discrete instant k. Thus, the positioning-related state of the car
system can be fully determined by the set of five variables shown
in Eq. (1):

X = (X Vie O . 80)T (1

where x, denotes the UTM position in the X axis or Easting posi-
tion; y, denotes the UTM position in the Y axis or Northing posi-
tion; 8, denotes the vehicle heading direction with respect to the
positive X axis; uj, denotes the speed of the vehicle; and &) de-

turning point

Fig. 5. Ackerman steering model.

notes the angle formed by the virtual front wheel and the vehicle
heading angle.

In this article, the GNSS receiver and the on-vehicle sensors for
relative positioning (Fig. 2) provide the measured variables shown
in Eq. (2):

5 T
Zi, = (Xgnss- Yonss, Uonss. Ugnss. UL, UFR. URL. Ugg. Osw. ACCjqr, ROtrate)
(2)

where xgyss denotes the UTM easting position in the X axis sup-
plied by the GNSS receiver; ygyss denotes the UTM northing posi-
tion in the Y axis supplied by the GNSS receiver; 8 yss denotes the
heading direction supplied by the GNSS receiver; ugyss denotes the
speed of the vehicle supplied by the GNSS receiver; up denotes the
front-left wheel speed; ug; denotes the front-right wheel speed;
up; denotes the rear-left wheel speed; ug denotes the rear-right
wheel speed; &5y denotes the turning angle of the steering wheel
with respect to the equilibrium; Accy,, denotes the lateral or cen-
tripetal acceleration; and Rotyre denotes the rotation rate of the
vehicle, i.e. the rate of change of the heading angle.

The relationships between the system state variables (x;) and
the measurement variables (z,) were deduced by applying the Ack-
ermann steering geometry (Fig. 5) as a good approximation for
the car vehicle. A detailed derivation of these relationships can be
found in Appendix A.

Considering these state (x;) and measurement (z;) vectors, the
concrete particularization of the Extended Kalman Filter yielded
the following functions f and h for the state prediction and mea-
surement update, respectively, as shown in Eqs. (3) and (4):

= f(Xp 1) + Wy

X1 + AL - Up_q - €08 (Op_1)
Vi1 + AL Uy -sin (B )

=161 +At- Y. tan (8x_1)

: + Wy (3)
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where w;, ~ N(0, Q) is the process noise, following a Gaussian dis- Hps54 = i
tribution with zero vector mean and covariance matrix Q; v, ~
N(0, R) is the measurement noise, following a Gaussian distribution ofz wy? we\ o .
] . A ; . 1 § A2 5 L
with zero vector mean and covariance matrix R; L is the distance ( an ( ik 1)) o )tan "”‘ 1 o ) e
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tor that relates the angle to which the steering wheel is turned . 2 w, N 2
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must be computed numerically, on the fly, at each discrete instant,
but as far as this model is concerned, analytical derivations can
be straightforwardly obtained for both F, and H) by computing
the Jacobian matrix of the aforementioned f and h functions, re-
spectively. The results from such calculations are provided in Egs.
(5) and (6), respectively:
of
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Fig. 6. Car schematic outlining the materials setup throughout the experimental
tests: (A) a Trimble R4 accurate high-end GPS receiver with RTK corrections, (B) an
EverMore SA-320 low-cost GPS receiver, (C) an OBD-II VAG-COM 10.6 adapter, and (D)
an Asus K72Jk laptop computer.

2.2.4. Tuning

The tuning block is responsible for feeding the optimal noise
covariance matrices (Q and R) to the data fusion module so that it
can achieve the best possible results. So far, the proposed system
works with static matrices, which are tuned in advance and fixed
for every instant of time.

3. Experimental section for system performance evaluation

The real-time system proposed in Section 2 was assessed in
post-processing using the setup represented in Fig. 6 and follow-
ing the scheme depicted in Fig. 7.

3.1. Materials

The materials employed in the experimental tests of this article
were: a low-cost GPS receiver, an accurate high-end GPS receiver,
a laptop computer, and a car vehicle with embedded relative posi-
tioning sensors available through an OBD-II adapter. Fig. 6 shows,
schematically, the experimental setup for the tests.

The low-cost GPS receiver was an EverMore 5A-320 with a SiRF-
starlll chipset, and it was employed to acquire the GPS positions
at a 5Hz sampling rate. The accurate high-end GPS receiver, which
acquired GPS positions at a sampling rate of 1Hz, was a Trimble
R4 configured to use RTK (Real Time Kinematic) corrections, and it
was employed as a ground truth reference so as to assess the pre-
cision of the deployed system. The employed RTK corrections were
supplied by the Agro-Food Technological Institute of Castilla y Ledn
(ITACyL) ("Network of GNSS stations of Castilla y Leén", 2016). The
laptop employed in the tests was an Asus K72Jk, and it was used to
acquire and store the data from all the connected sensors. Further-
more, the laptop was also used for the subsequent post-processing
stages. The car vehicle was a Seat Ledn MK2, and it was employed,
together with all the sensors on board the car, to perform the tests
along real urban area roads in Valladolid, Spain.

The car sensors employed during the tests, as well as the mea-
surements obtained from each of them, were the same as depicted
in Fig. 1b: (i) the G85 sensor, measuring the steering wheel angle
(8sw); (ii) the G200 sensor, measuring both the lateral acceleration
(Accyq) as a direct measurement and the vehicle’s rotation rate or
angular speed (Rotyqe) as an indirect measurement; (iii) the G47
sensor, measuring the speed of the front left wheel (ug); (iv) the
G45 sensor, measuring the speed of the front right wheel (ug); (v)
the G46 sensor, measuring the speed of the rear left wheel (ug):
and (vi) the G44 sensor, measuring the speed of the rear right
wheel (ugg).

3.2, Methods

The stages involved in this article are summarized as: (i) data
acquisition stage, (ii) preprocessing stage, (iii) filter tuning stage,

(iv) data fusion particularization via Extended Kalman Filter, and
(v) positioning error evaluation. An overview of this whole process
is illustrated in Fig. 7.

3.2.1. Data acquisition stage

First, the data acquisition stage was performed. In this stage,
a typical urban path was followed by the vehicle equipped with
the aforementioned on-board sensors. RMC NMEA 0183 sentences
were acquired from both GPS receivers at a sampling rate of 1Hz
and 5 Hz for the high-end and low-cost one, respectively. The accu-
rate GPS receiver employed RTK corrections which were provided
by the Agro-Food Technological Institute of Castilla y Leon (ITACyL).
For its part, the low-cost GPS receiver did not employ any kind of
correction for positioning improvement. During all the recordings,
the presence of no outages was ensured in order to keep an ac-
curate reference from the high-end GNSS receiver. Simultaneously,
data was obtained from the several relative positioning sensors of
the car through the OBD-II standard by using a VAG-COM 10.6 con-
nector. The real experimental setup for the tests is shown in Fig.
6, and the measurements taken from both sources are depicted in
Fig. 2.

It is worth mentioning, at this stage, that the heading angle for
the EverMore SA-320 low-cost GPS receiver was obtained in this
case from the sixth field (Track angle in degrees with respect to the
True North) as provided in the RMC NMEA 0183 sentences. Since no
built-in compass was available inside the receiver, this value was
internally computed from consecutive positions along the followed
trajectory.

3.2.2. Preprocessing stage

Second, the preprocessing stage took place. It consisted of the
following sub-stages: (i) data conversion from geodetic to UTM co-
ordinates and conversion to SI units, (ii) resampling stage, (iii) syn-
chronization stage, (iv) positioning offset elimination. In order to
obtain the positions projected onto a 2D map, WGS84 to UTM con-
version was first applied together with units’ conversion into SL
After that, the sequence of data was interpolated using piecewise
cubic interpolation and resampled, since the data from the diverse
sensors was sampled at different rates and even at non-uniform
instants of time. In order to keep a high enough temporal resolu-
tion, one with the error bounded under 20 ms, a 50 Hz sampling
rate was chosen. This way, a new sequence with more samples
per second was obtained, making the subsequent synchronization
stage easier too. After this processing, the sequences coming from
different sensors were synchronized, since the clocks of the differ-
ent subsystems differed slightly. Last, since the absolute position-
ing error was left out of the evaluation, the positioning data com-
ing from the Trimble R4 was spatially aligned with the data from
the low-cost GPS receiver so as to focus solely on the relative po-
sitioning precision of the deployed system.

3.2.3. Filter tuning stage

Third, after having particularized the filter properly, the tuning
stage took place. This stage undertook the computation of opti-
mal Q and R noise covariance matrices for the EKF. The optimality
criterion employed in this article was the reduction of the error
throughout a sample training trajectory. In order to tune the co-
variance matrices, a hand-tuning approach was employed instead
of other feasible alternative tuning techniques (Abbeel, Coates,
Montemerlo, Ng, & Thrun, 2005), assuming non-correlation among
noise components. This approach was selected since neither re-
liable nor accurate ground truth reference for the whole system
state was available.

3.24. Data fusion particularization via extended Kalman filter
Fourth, the Extended Kalman Filter particularization derived in
Section 2.2.3 was applied to the preprocessed data. This data fu-
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Fig. 7. Block diagram summarizing the stages undertaken in the experimental tests for assessing the performance of the proposed system.

sion stage took as input the preprocessed measured variables from
the previous stage and produced an optimal estimation of the state
variables using the tuned covariance matrices.

3.2.5. Positioning error evaluation

Finally, in order to assess the improvements offered by the sys-
tem developed here, positioning distance error with respect to the
real path was computed for each point along the trajectory. A his-
togram of this error distribution was obtained before and after fus-
ing the data, from which the Root Mean Square Error (RMSE) value,
the 95th-percentile of the error distribution, and the maximum er-
ror value were calculated as statistical parameters.

4. Results

After having performed all the aforementioned stages (Section
3.2), the following results were obtained.

4.1. Tuning of Q and R covariance matrices

The optimal covariance matrices, obtained in the experimental
tests following the hand-tuning process explained in Section 3.2.3,
are shown in Eq. (7).

2
Q= diag(lO’S m?,107% m?, 107" rad?®, 10 T—z 50 radz)

R = diag(].lS m?, 1.75 m?, 0.1 rad?,

2 2 2 2
00125 % 045 ™ 045 T 045 T,
S 5 S 5
m s 5 m? s rad?
045 "2 10°% rad?, 0.01 Ty, 1057 7)

It is worth remarking that the units of measurement for each com-
ponent in Eq. (7) are those of the corresponding variable squared.
Since the optimal matrices are diagonal, i.e. noise non-correlation
between variables was assumed here, all non-zero elements in the
covariance matrices simply represent variances.

The optimal covariance matrix Q, shown in Eq. (7), evinces a
high confidence in the prediction for both X and Y positions as
well as for the heading angle. This seems to be reasonable, since
no sudden changes in heading are expected to happen at the rela-
tively high 50 Hz sampling rate. Therefore, in this case, the predic-
tion given by the bicycle kinematic model is a very precise approx-
imation. On the other hand, as shown by the high values of those
components in matrix Q, assuming constant speed and constant
steering angle does not lead to reliable hypotheses, since acceler-
ations and turnings are likely to occur in a normal trajectory de-
scribed by the car. Meanwhile, regarding the uncertainties for each
measurement provided in the optimal covariance matrix R, it is

worth highlighting the high accuracy of the steering wheel angle,
lateral acceleration, and rotation rate measurements obtained from
the on-vehicle sensors. On the other hand, the speedometer-based
measurements are less accurate than expected since the Electronic
Control Unit (ECU) in the car provided speeds with a resolution of
1 km/h. Moreover, an increment in uncertainty for those measure-
ments arose due to the imperfect matching between the expected
Ackermann steering geometry and the actual one from the real car.
It is also worth highlighting that the estimated variances for the
GNSS-supplied X and Y positions are lower than expected due to
three reasons: (i) the absolute positioning error being left out of
consideration in this study, by artificially removing it beforehand in
order to perform just the assessment in terms of relative position-
ing improvements, (ii) the non-Gaussianity of the actual position-
ing error distribution while assuming additive Gaussian noise for
the EKF, and (iii) the EKF tuning process underestimating the GNSS
positioning noise variances, since it is the only source of absolute
positioning, and thus avoiding the inherent drifting apart due to
an overconfidence in the remaining inertial sensors. Furthermore,
the discrepancy between variances for the X and Y positions is ex-
plained by considering the function of the UTM projection as well
as the particular geometric configuration of the GPS satellite con-
stellation, i.e. Geometric Dilution Of Precision (GDOP), when the
experiments were recorded.

4.2. Visual positioning improvements

The resulting trajectory after filtering, making use of the afore-
mentioned matrices (Section 4.1), is shown in Fig. 8. A greater,
qualitatively significant, similarity can be appreciated between the
trajectories after applying the data fusion (blue) as compared to
the one just based on the low-cost GNSS data (red) with respect
to the ground truth reference (green).

4.3. Positioning error reduction quantification

Fig. 9 presents the distance error histogram with respect to real
reference positions, before and after using the here-proposed sys-
tem. It is observed that, before applying the proposed data fusion
system, there are distance errors of up to 80 m (Fig. 9a) whereas,
after applying it, the distance errors do not go any higher than
21 m (Fig. 9b).

The RMS value, the 95th-percentile, and the maximum were
computed, on the basis of the statistical distribution of the distance
errors shown in Fig. 9. These measurements can be employed to
quantify the error improvement achieved by the proposed data fu-
sion system. Table 1 shows these statistical parameters obtained
from the distance error distribution, as well as the error reduction,
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Fig. 9. Histogram of distance errors: (a) before applying the proposed data fusion system, and (b) after applying the proposed data fusion system. The histogram has been
normalized so that it has a unitary area, representing an approximation to the probability density function (pdf) of the distance errors statistical random variable, Note that
the Y-axis is not linear since p-law companding algorithm, with a value of 1 equal to 511, has been used in order to better show differences before and after applying the

proposed data fusion system.

Table 1

Statistical parameters of the distribution of distance errors, before and after applying the
proposed data fusion system, in the trajectory used for real tests shown in Fig. 8.

Before After Error reduction
Distance Root-Mean Square Error (RMSE) (m)  11.6560 5.7427 50.73%
95th-percentile of distance error (m) 20.0 9.6 52%
Maximum distance error {(m) 78.5859 20.4732 73.95%

computed as in Eq. (8):

error_before — error_after

error_before x 100

Error reduction (%) = (8)
The maximum error was bounded below 21 m after applying the
proposed method, as compared to the previous 80 m bound. Sim-
ilarly, the RMSE and the 95th-percentile of distance error were
reduced by roughly 50%. This result poses strong evidence of the
quality of the data fusion system proposed by this study.

5. Discussion

The main finding of this study is that on-vehicle sensors data
can be employed through the proposed data fusion system for
improving the car positioning precision provided by a standalone
low-cost GNSS receiver. The positioning precision improvement can
reach up to 50% in terms of the RMSE, 50% in terms of the 95th-
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percentile of the distance error distribution, and 75% in terms of
the maximum distance error.

The aforementioned finding is supported by the results pre-
sented in Section 4, specifically by Figs. 8 and 9, and Table 1. Fig.
8 qualitatively shows the positioning precision improvements aris-
ing from the use of the proposed data fusion system. A signifi-
cantly closer trajectory to the real one can be obtained after ap-
plying this system. Fig. 9 depicts the histogram of the errors be-
fore and after performing data fusion. As can be seen in these his-
tograms (Fig. 9), the data fusion system achieves a shifting to the
left in the errors distribution, having no errors greater than 21 m
after performing data fusion (Fig. 9b); in contrast, the maximum
errors reached 80 m when the low-cost GPS receiver was used
on its own (Fig. 9a). Table 1 shows that, with respect to when
the GPS receiver was used on its own, the positioning error re-
ductions were 50.73%, 52%, and 73.95% in terms of the RMSE, the
95th-percentile of the distance error distribution, and the maxi-
mum distance error, respectively. These results provide evidence
of the feasibility of employing the proposed data fusion system to
improve car positioning precision when using low-cost GNSS re-
ceivers. Moreover, it is expected that the proposed system could
be of great value in the event of short-term GNSS signal outages,
which are prevalent in cities with tall buildings and skyscrapers.

The results of this article are in line with previous research re-
garding on-vehicle sensors and GNSS data fusion, despite the fact
that most of the reviewed articles use different data fusion ap-
proaches. The article written by Bonnifait et al. (2001) proposes
a multi-stage EKF-based system that first performs an odometry-
based path reconstruction and then fuses its results with the
GNSS-based path. In terms of positioning error reduction, signifi-
cant local improvements are found in this article, although they do
not seem to be consistent over time. El Najjar and Bonnifait's arti-
cle (EI Najjar & Bonnifait, 2005) proposes an EKF-based data fusion
system of DGPS (Differential GPS) and ABS sensor measurements,
which is complemented by a novel road-matching method based
on the belief theory. By also using a map-matching technique, this
data fusion approach is able to further reduce positioning errors,
making this approach viable and useful when no GNSS data is
available for long periods of time. In Gning and Bonnifait’s arti-
cle (Gning & Bonnifait, 2005), they propose a data fusion scheme
based on Forward and Backward Propagation constraints for GNSS,
two ABS rear wheel speed sensors, and gyroscope data. Their re-
sults show that EKF-based data fusion outperforms their novel pro-
posed technique. The article written by Song et al. (2014) proposes
a novel hybrid multi-sensor fusion strategy for positioning vehicles
in tunnels based on Radio Frequency Identification (RFID) tags and
on-vehicle sensors. Due to use of the short-range RFID technology,
great improvements in positioning precision are achieved by this
strategy. However, its huge associated cost of deployment, requir-
ing the presence of RFID tags every 6 m, makes this approach cur-
rently unfeasible for widespread use in real life applications other
than tunnels.

The system proposed in this article is a new contribution for
two main reasons. The first reason is that the model employed to
describe the state of car systems has not been previously used, so
far as the authors are aware. Other articles (Bonnifait et al, 2001;
El Najjar & Bonnifait, 2005; Gning & Bonnifait, 2005) have used
both the angle rotated by the vehicle between consecutive sam-
ples, ie. the change in the vehicle’s heading direction, and the
turning radius as intermediate variables, but the new proposed
model avoids using any intermediate variable. This way, data fu-
sion in this article is performed requiring less overall variables. It is
expected that this reduction in the necessary number of variables
will translate into a lower computational load associated with the
EKF-based data fusion. The second reason is that the proposed sys-
tem performs positioning data fusion as a single EKF-based stage

and is, thus, more flexible to the addition of new on-vehicle sen-
sors as input or measured data. It is also expected that this reduc-
tion in the number of EKF-based stages will imply, once again, less
computational load for the whole proposed system while not being
detrimental in terms of precision.

One strength of the proposed system is its low implementa-
tion cost for most modern car vehicles. Two reasons can be high-
lighted for this claimed low-cost design: (i) today, most cars have
all the necessary information to implement this system, with GNSS
receivers on-board and many on-vehicle sensors available through
the CAN bus of the vehicle; and (ii) modern car vehicles have an
embedded on-board computer (Powertrain Control Module, PCM),
so the software needed to combine all this information and esti-
mate the position can be deployed in the embedded PCM. Taking
these reasons into account, it will be possible to implement the
proposed system for improving the car positioning precision with-
out needing any additional hardware. Another strength of the pro-
posed system is that, by its design, it can be adapted to incorpo-
rate more sensors, such as longitudinal accelerometers and wheel
steering angle sensors, with greater ease.

The main weakness of this study lies in its not having con-
trasted the results with several low-cost GNSS receivers. Neverthe-
less, this weakness is not a significant issue since the low-cost GPS
receiver employed in this article can be considered as an archetyp-
ical low-cost GPS receiver, which is representative of the main al-
ternatives in the market. Moreover, the main performance ben-
efits of the proposed system are expected to be reached during
short-time GNSS signal outages, thus achieving significant preci-
sion improvements in those situations, even for high-end GNSS
receivers. Although more precise techniques have been developed
for enhancing the positioning provided by low-cost GNSS receivers,
e.g. single-frequency Precise Point Positioning (PPP) (Chen & Gao,
2005), in the event of outages the proposed system would still be
useful for improving vehicle's positioning. A second weakness is
the fact that all experimental tests were performed in the same
location (Valladolid, Spain). However, this weakness is also not a
significant issue since it is expected that the behavior will be sim-
ilar in other urban areas. Furthermore, the proposed system is ex-
pected to behave even better in urban environments with taller
buildings than the ones present in Valladolid (Spain). A third weak-
ness of this article is the way the real-time system was evaluated
in post-processing. Nonetheless, this weakness is also not a sig-
nificant issue. Other articles from the literature have also assessed
real-time systems in post-processing in a similar fashion (Bonnifait
et al., 2001; Gning & Bonnifait, 2005). Moreover, the alleged real-
time capabilities of the proposed system have been checked, re-
vealing that the real-time constraints can be guaranteed. In the
conducted tests, it took less than 8 seconds to execute 260 sec-
onds of data in a MATLAB® implementation running on an Asus
K72Jk laptop. This fact reveals that, were this system to be de-
ployed in a microprocessor-based device such as Raspberry Pi 3, it
would be perfectly able to work in real-time, performing all the
related processing in a bounded time before the subsequent data
samples are available. Another weakness of the proposed data fu-
sion system lies in the use of the not-perfectly-valid assumption,
inherent to the Extended Kalman Filter, that the underlying noise
is Gaussian. Other non-linear filtering techniques, such as the par-
ticle filter, could further improve the results of the proposed sys-
tem by avoiding this assumption. Nevertheless, due to their as-
sociated higher computational load, they were discarded so as to
meet the real-time constraints when executed in low-cost comput-
ing platforms.

Five main possible future lines, some of which the authors are
already working in, have been detected for extending this article’s
work. A first future line of research could undertake the inclusion
of map information into the model, by avoiding the fact that the
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position lies within prohibited locations such as buildings or side-
walks, to further improve the car positioning precision. A second
future line of research could consider the extension of the pro-
posed system to be able to function even when no GNSS data is
available for prolonged periods of time, also undertaking the pre-
cision and performance assessment of that future system during
both short-term and long-term GNSS signal outages. A third future
line of research could tackle the dynamic tuning of the covariance
matrices involved in the EKF for data fusion, by characterizing the
sensors accuracy and using the Dilution Of Precision (DOP) infor-
mation from the GNSS constellation, to further improve the car
positioning precision. A fourth future line of research could exe-
cute a fair performance comparison of the most remarkable state-
of-the-art data fusion systems for improving car positioning pre-
cision, thus providing insightful advantages and disadvantages of
each method, both theoretically and experimentally. A fifth future
line of research could focus on integrating the proposed data fu-
sion system into existing expert systems used in autonomous cars,
probably including additional sensors for relative and absolute po-
sitioning, evaluating its suitability for self-driving in an experimen-
tal environment.

6. Conclusions

The main contribution of this work is the proposal of a novel
system that enables keeping an accurate car positioning during
GNSS signal outages while being simpler and more flexible to the
incorporation of new sensors into it, as compared to other exist-
ing alternatives. The proposed data fusion system for car vehicles,
which fuses data from a low-cost GNSS receiver with data from
other on-vehicle sensors for relative positioning, can reduce the
positioning error with respect to the positioning error of the low-
cost GNSS receiver alone. This reduction can reach up to 50% in
terms of the RMSE, 50% in terms of the 95th-percentile of the dis-
tance error distribution, and 75% in terms of the maximum dis-
tance error. The best precision improvements are achieved in urban
areas, where tall buildings hinder the effectiveness of GNSS sys-
tems. Future work, tackling the dynamic tuning of the covariance
matrices or incorporating additional sensors and map information
into the model, among other possibilities, could further improve
the performance of the here-proposed system, enabling a more ac-
curate functioning even for prolonged periods of GNSS signal out-
ages.
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Appendix A. Derivation of relationships between state and
measured variables for a car vehicle

In this appendix, a formal derivation of the relationships be-
tween state and measured variables is provided.

Let us first introduce the notation and nomenclature employed
throughout this appendix. Let us denote with subscripts FL, FR,
RL, and RR, respectively, whenever we refer to the front left, front
right, rear left, and rear right wheels. Let us continue with some
definitions in Fig. A.1. L denotes the distance between the rear and
front axles of the car vehicle; W, denotes the length of the rear
axle of the car; Wy denotes the length of the front axle of the car;
R denotes the instantaneous turning radius of the central point in
the rear axle; ¢ denotes the angle turned between two consecu-
tive samples; § denotes the equivalent angle turned by the virtual
wheel used for the bicycle model; and d denotes the distance trav-
elled between two consecutive samples by the central point of the
rear axle of the car.,

After having introduced the notation, and before starting with
the derivations, a sign criterion for § must be defined. In this ar-
ticle, & is positive if clockwise and negative otherwise. Thus, in
clockwise or right turns, § is positive. In counter-clockwise or left
turns, 4 is negative.

Assuming the Ackerman steering geometry for the car vehicle,
all four wheels turn with respect to the same turning point (Fig.
A.1a). In turn, all the wheels move in such a way that they locally
describe a circular trajectory, turning the same angle with respect
to the turning point (Fig. A.1b).

Taking into account all the aforementioned considerations, we
can now proceed to the derivations.

From basic trigonometry on rectangle triangles in Fig. A.1, it be-
comes obvious that:

L

" tané
Assuming, in Fig. A.1b, constant speed for the car vehicle between
consecutive samples, the distance (d) travelled by the central point

of the rear axle of the car vehicle (marked as a red point in Fig.
Alb) is:

d=u-At=R-¢p (A.2)

where u denotes the car's speed, measured in the central point of
the rear axle, and At is the time lapse between two consecutive
samples.

Solving for u and % in Eq. (A.2), we get:

R-¢ u 14
At T RT At (A3)

From Fig. A.1b, analogously to the case of the central point of
the rear axle derived in Eq. (A.2), the distance travelled by each
wheel between two consecutive samples is given by:

(A1)

u=

dpp =Upp - At =Rpp- @ (A4)
dpp = Upg - AT =Rpg - @ (A.5)
dpp = Up - At =Rpr - ¢ (A6)
drp = Upg - At =Rpg - ¢ (A7)

Rearranging Eqs. (A.4)-(A.7), solving for the wheel speeds, and also
using Eqs. (A1) and (A.3), the speed of each wheel is given by:

_Re-g hu: RFL'tan(‘S)u

UL=—"Ar =% I (A8)
Rpp - R Rpg - tan(é

T %()u (A9)

uRL:RRL—.QO:&IJ:Mu (A]O)

At R L
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b

X Center of ‘ 5
| turning point

Fig. All. (a) Ackerman steering geometry, showing the relationship between the angle turned by each front wheel and the virtual central wheel used in the bicycle model.
The “i" and “o” subscripts denote, respectively, the inner and outer front wheels with respect the center of turning point. For clockwise turns, the inner and outer wheels
are, respectively, the front-right and front-left wheels, and vice versa for counter-clockwise turns. (b) Displacement between two consecutive samples, considering a time

lapse short enough to assume a circular movement.

tee = RER-© _ Rep RRR'tan(‘S)u
RR="At ~ R~ L

The turning radius for each wheel, ie. the distance from each
wheel to the center of turning point, can be computed from Fig.
A.l by using Pythagoras' theorem, as:

2
w L w
— |12 2rY g2 I
Ret \/L +(R+ 2) \/L +(tan5+ 2)

(A1)

(A12)
2 2
W, L W,
- Iz _Ar) 2 e _0r
W, L Wi
Rp =R+ 2 T tans + = (A.14)
_ wr L W
Ree=R-> =G5~ 2 (A15)
Introducing Egs. (A.12)-(A.15) in Eqs. (A.8)-(A.11), we get:
_ Rp-tan(d)  tan(d) [, L Wj
Up = I u=1u L [? + s + = (A.16)
2
_ Reg-tan(d)  tan(d) |, L Wy
Upg = T U=u— L? + tans 3 (A7)
_ Ry -tan@@)  tan(d)/ L W,
UgL = L U= u I (—tamS + 7) (A.lg)
_ Rep-tan(d)  tan(d)/ L W,
ke = L U=t (tanB - 7) (A19)

Operating further in Egs. (A.16)-(A.19), in order to avoid indeter-
minations caused by divisions by zero when § = 0, we finally get:

\/(tan 6 - L’ + (L+tan (8) - %)2

Upp = I - u (A.20)

\/(tan 8)-1)% + (L tan (8) - —L)
g — u (A21)
L
g = (1 4 We-tan (5)) (A22)
W, - tan (5
i = (17%()).11 (A.23)

Focusing now on the lateral acceleration, assuming that the speed
in the center of mass of the car and that the radius to the center
of turning point are approximately the same as in the central point
of the rear axle, it can be computed as:

(A.24)

2
AcCly = — = T tan (8)

u2
R
This previous approximation could be easily avoided and corrected
for each particular car vehicle model by identifying the exact loca-
tion of the center of mass for that specific car vehicle.

Additionally, the rotation rate of the car vehicle can be com-
puted as the quotient of the angle turned by the car vehicle in
the time lapse between two consecutive samples and this elapsed
time. Thus, by using this definition along with Eqs. (A.1) and (A.3),
we get:

Rotyoce = % -tan (§) (A25)

¢ u

At TR
The remaining relationship, between the steering wheel angle (8sw)
and the turning angle of the virtual wheel (§), is deduced by as-
suming a linear relationship between them. This assumption is
usually correct in modern vehicles, so the quotient relationship be-
tween them is given by the steering ratio Syq,. Thus, we have:

Ssw = Sratio + 8 (A.26)

To conclude this appendix, it is worth noting that all the deriva-
tions made in this section, though just derived while turning clock-
wise, are valid for both clockwise and counter-clockwise turns. The
criterion for the sign of § captures the information of the turn-
ing direction, adapting all the equations and making them valid in
both cases.
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The cost of current flow rate measurement devices is quite high compared to the cost of low-end micro-
phones. This circumstance, together with the fact that common agricultural sprayers have more than 50
nozzles, makes the use of current flow rate measurement devices cost-prohibitive. That considered, this
article examines, by proposing one particular method, the feasibility of using microphones as flowmeters
for nozzle tips in agricultural sprayers. The proposed method consists of the following stages: (i) acqui-
sition of the digital acoustic data sequence, (i) signal preprocessing, (iii) frequency domain transforma-

igrézﬂjj;a] sprayer nozzle tion using Fast Fourier Transform (FFT) analysis, (i) in-band power calculation, () power normalization,
Flowmeter and (vi) regression or curve fitting. This method was assessed in an in-lab sprayer test bench employing
Acoustic signal 11 commercial nozzle tips at several operating flow rates within or close to those recommended by the
Microphone manufacturers. The experimental results yielded, for all the tested nozzle tips, average absolute and rel-

ative Root Mean Square Error (RMSE) values always below 0.08 liters per minute (Ipm) and 5%, respec-
tively, while the overall mean absolute and relative RMSE values were lower than 0.05 Ipm and 2.5%.
Furthermore, for each tested nozzle tip, the Maximum Absolute Error (MAE) was always bounded below
0.3 Ipm, being the absolute error lower than 0.15 Ipm for 95% of the time. The accuracies when employing
a high-end microphone instead of a low-end one presented no statistically significant differences. These
results provide strong evidence of the feasibility of accurately estimating the nozzle tip flow rate in real
time based on acoustic signals. Moreover, no significant improvements are to be expected by using a
high-end microphone instead of a low-end one. However, there are still some issues that should be tack-
led in order to enable the application of this method in real agricultural settings.

© 2017 Elsevier B.V. All rights reserved.

Frequency analysis
Cost-effective solution

1. Introduction

In the last few decades, agricultural sprayer technology has
been continuously evolving toward the ability to accurately mea-
sure and control the flow rate of each individual nozzle on a spray
boom (Hughes and Frost, 1985; Mulla, 2013). The recognition has
been made that there can be significant variation between nozzles
on a boom, and that the effects of vehicle turning maneuvers can
be severely detrimental when trying to achieve a uniform chemical

Abbreviations: DAQ, Data AcQuisition; DFT, Discrete Fourier Transform; FFT, Fast
Fourier Transform; IIR, Infinite Impulse Response; Ipm, liters per minute; PSD,
Power Spectral Density; PWM, Pulse-Width Modulation; RMSE, Root Mean Square
Error; USB, Universal Serial Bus.
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E-mail addresses: rruigon@ribera.tel.uva.es (R. Ruiz-Gonzalez), tim.stombaugh@
uky.edu (T.S. Stombaugh), vmarmar@ribera.teluva.es (V. Martinez-Martinez),
Jjgomez@tel.uva.es (J. Gomez-Gil).

http://dx.doi.org/10.1016/j.compag.2017.08.003
0168-1699/@ 2017 Elsevier B.V. All rights reserved.

application. By being able to control the flow rate of each individ-
ual nozzle, both a higher uniformity in turns and a more consistent
application along straight paths can be achieved in the spread pat-
tern of chemicals (pesticides, insecticides, fertilizers, and herbi-
cides), which provides two distinct advantages. First, the
reduction in the waste of chemicals would allow farmers to reduce
the amount of chemicals used, thereby reducing production costs
(Loghavi and Behzadi Mackvandi, 2008). Second, in some applica-
tions the amount of chemicals to be dispatched is absolutely criti-
cal: when incorrect amounts are sprayed, either the chemicals will
lack effectiveness because of under-application, or soil and crops
will lose quality and yield, or they can be polluted and even irre-
versibly damaged, because of the over-application of chemicals
(GopalaPillai et al., 1999; Loghavi and Behzadi Mackvandi, 2008;
Michael et al., 1990; Nordmeyer et al., 1997).

To provide a finer resolution of control, solenoid-based elec-
tronic valves, controlled by Pulse-Width Modulation (PWM), have
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been employed in agriculture at the nozzle level (Gil et al., 2013;
Hui et al., 2014). The practical implementations of nozzle-level
PWM control have been limited to open-loop control, which
implicitly relies on uniformity and consistency of all the compo-
nents across the boom for control accuracy. Feedback control
would be much more accurate, but it would require reliable,
real-time flow measurements from each nozzle. There is no cur-
rently available flow metering technology that could provide suit-
able accuracy at reasonable cost and size for implementation at
each nozzle. The goal of this study is to develop an acoustic-
based flow measuring technology that would be appropriate for
implementation at the individual nozzle level to facilitate feedback
control.

Many published articles have addressed the sound generation
of nozzles and orifices (Cann and Leehey; Sheen, 2011; Zhang
et al., 2004). These studies have shown that the intensity and spec-
trum of the acoustic signal generated by nozzles and orifices
change when the flow rate changes. Testud et al. (2009), Testud
et al. (2007) investigated the sound generation by the presence
of single-hole and multi-hole orifice plates along the pipe, showing
that the characteristic whistling frequency of the emitted sound
signal depends on the flow rate. Howe (2004) showed that inner
cavities in the pipe generate a sound signal whose acoustic inten-
sity depends on the flow speed as a cubic function and whose cav-
ity resonant tone frequency also depends on the speed of the
stream flow. Druault et al. (2011) also found a dependence of the
acoustic signal spectrum on the flow rate due to the presence of
a cavity along the pipe. Kobayashi et al. (2009) studied, for an ocar-
ina musical instrument, the dependence of the acoustic signal on
the flow rate due to the presence of a cavity along the pipe.

Guided by the aforementioned research, the present study
relies on the working hypothesis that flow rate changes through
the sprayer nozzle tip will predictably change its generated acous-
tic signal both in intensity and frequency distribution. This hypoth-
esis has already been proven valid in previous studies for taps or
faucets (Jacobs et al,, 2015; Kakuta et al., 2012). So far as the
authors are aware, despite all the research advances, no prior pro-
gress has been made towards providing a relationship between the
generated acoustic signal and the flow rate for sprayer nozzles.
Thus, the proposal of this new acoustic flow rate estimation
method is intended to become a point of inception for further
research to gain more insight about flow rate estimation through
acoustic signal processing.

The main goal of this article is to provide evidence supporting
the viability of accurately estimating the flow rate of individual
sprayer nozzles based on the acoustic signal measured close to
the nozzle tip. To this end, four specific objectives can be high-
lighted: (i) the proposal of a new real-time flow rate estimation
method based on the acoustic signal acquired by a nearby micro-
phone, (ii) the assessment of this method’s performance, (iii) the
comparison of performance employing low-end versus high-end
microphones, and (i) the analysis of the influence of the nozzle-
to-microphone distance on flow rate estimation.

This article describes the aforementioned proposed flow rate
estimation method and presents the Materials and Methods
employed to undertake the research in this study (Section 2), pre-
sents the main results obtained from the assessment of this
method (Section 3), and presents a discussion of this study’s find-
ings and conclusions (Sections 4 and 5).

2. Materials and methods
All tests in this study were performed in a well-adapted labora-

tory belonging to the Department of Biosystems and Agricultural
Engineering at the University of Kentucky in Lexington, KY, USA.

2.1. Materials

The experimental setup used to conduct the experiments in this
study consisted of the following elements, where the item num-
bers in the list match the labels employed in Fig. 1:

1. A laboratory sprayer test bench equipped with a water tank, a
supply pump, hoses, pipes, a flowmeter, a flow controller, and
one nozzle mounting adapter.

2. A 200-liter water tank and a supply pump, which was com-
posed of a Dayton® 5K117BD industrial motor and an Oberdor-
fer™ 101BMO7MC gear pump.

3. An OMEGA Engineering Inc. FMG202-NPT low-flow magnetic
flowmeter, which was employed to measure flow rates during
the recording experiments to provide ground truth reference
for the evaluation of the proposed flow rate estimation method.

4. A LCR-5LPM-D-100PSIG5V liquid flow controller from Alicat Sci-
entific, Inc.,, which was employed to control the flow rate at
which water flowed through the nozzle tip. The accuracy spec-
ified by the manufacturer is 2% Full Scale (Technical Data for
Alicat LC & LCR Liquid Flow Controllers). The fact of this error
being given as relative to the full scale implies higher relative
errors for low flow rates.

5. A Wilger Combo-Rate Modular Nozzle Body that was used to
mount the nozzle tips.

6. A low-cost CUI CMC-5044PF-A electret microphone (CUI CMC-
5044PF-A electret microphone datasheet), plus preprocessing
electronics. A very simple electronic circuit (Fig. 2a), which
was specified by the manufacturer, was used for impedance
adaptation and high-pass filtering of the signal provided by
the microphone.

7. A high-end Knowles BL-2199-000 microphone (Knowles BL-
21994-000 microphone datasheet), plus preprocessing elec-
tronics, which was used to check the results provided by the
aforementioned low-end microphone. A very simple electronic
circuit (Fig. 2b) was used for powering this microphone and set-
ting its proper operating point.

8. A NI USB-4431 National Instruments (NI) data acquisition (DAQ)
module, which was used to digitize the signals provided by both
analog microphone sensors.

9. A Dell Latitude E6400 laptop computer, which was employed to
acquire and save the logged data coming from the data acquisi-
tion module. The connection between the laptop and the data
acquisition system was made through a USB cable. The laptop
was also employed to conduct the processing steps for the pro-
posed flow rate estimation method, as explained in Section 2.2.

Eleven different agricultural nozzle tips were used in the exper-
iments. These tips were chosen among the most commonly used tips
from two mainstream manufacturers: Teefet™ (TeeJet” nozzle tips
manufacturer webpage) and Wilger Industries Ltd (Wilger
Industries Ltd. nozzle tips manufacturer webpage). Specifically,
from Teefet”, the following set of nozzle tips was used: AITT110-03,
AIX110-03, TG-3, Turbo TTVP110-03, Twinfet 80-03, XRC80-04, and
XRC80-06. From Wilger Industries Ltd, the following COMBO-JET®
nozzle tips were used: ER80-03, MR80-04, MR80-06, and MR80-08.
The selected set of nozzle tips is considered representative enough,
covering most of the mainstream agricultural spraying applications,
since they all present features differing in spray pattern (flat fan,
twin flat, and cone spray), droplet size (fine, medium, and coarse),
spray fan angle (80° and 110°), and flow rate operating range.

2.2. Methods

The main processing stages performed in this study can be con-
ceptualized as follows (Fig. 3): (i) data acquisition (Section 2.2.1);
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Fig. 1. Schematic of the setup employed for conducting the experimental tests. The elements in the schematic are: (1) sprayer test bench, (2) water tank and supply pump, (3)
accurate reference flowmeter, (4) flow controller, (5) nozzle mounting adapter and nozzle tips, (6 & 7) low-end and high-end microphones, (8) data acquisition module, and

(9) laptop computer.

Schematic Diagram
C=0.1pF RL=2.2KQ
(a)

Fig. 2. Schematic of the preprocessing electronic circuits for the: (a) CUI CMC-5044PF-A microphone, and (b) Knowles BL-21994-000 microphone.

+Vs=1.5V

(ii) preprocessing (Section 2.2.2); (iii) Fast Fourier Transform (FFT)
analysis (Section 2.2.3); (i») in-band power calculation (Sec-
tion 2.2.4); (v) power normalization (Section 2.2.5); (vi) regression
or curve fitting (Section 2.2.6)); and (vii) evaluation (Section 2.2.7).
The first six stages correspond to actual stages of the proposed flow
rate estimation method, while the last one was aimed at assessing
the accuracy of this method. The whole processing, i.e. all stages
except data acquisition, was performed and run in MATLAB® pro-
gramming environment. Fig. 3 summarizes the main processing
stages and contains an overview of the methods, which are
explained in greater detail in the remainder of this subsection.

2.2.1. Data acquisition

Acoustic data were experimentally obtained from around the
nozzle by using the aforementioned sprayer test bench. Both the
low-end (CUI CMC-5044PF-A) and high-end (Knowles BL-21994-
000) microphones were used to measure the acoustic signal simulta-
neously. The location of the microphones used for these recordings
was as depicted in Fig. 4. After several trial and error tests, this loca-
tion was considered the best for optimizing the overall method per-
formance. Two analog input channels of the National Instruments

(b

DAQ system, one for each microphone, were employed using the
NI LabView software running on the aforementioned laptop.

The acquisition experiments involved setting up a constant flow
rate of water through the nozzle. Water was selected because of
economic and safety reasons, since it accurately represents the
typically used mixture of water with fertilizers, herbicides, and
pesticides. This mixture normally consists of around 99% of water,
thus the alleged resemblance. Once the flow rate had been stabi-
lized, 61-second-long recordings were simultaneously taken with
both microphones using a sampling frequency of 100 kHz. Eleven
different nozzle tips, previously mentioned in Section 2.1, were
tested. For each nozzle tip, several flow rates were used, all within
or close to the operating range recommended by the manufacturer
in the respective product datasheet. For each nozzle tip at each
tested flow rate, two recordings were taken: one for training pur-
poses and the other for testing purposes. The training data were
used to determine the parameters of the subsequent processing
stages of the estimation method. The testing data were used to
assess the performance of the method using these parameters.

A summary of the most important information related to the
data acquisition stage is shown in Table 1.

Data acquisition  Preprocessing FFT analysis '";:T:;:t?::r n or::::artl - g E
= — | Xo Y Performance
U ) SBon:

flowrate comparison: low-end

Splitting substage : vs. high-end

"/‘/\[\PJ\/‘M N ! > X4 Y1 -~ : > pe P-Pon_ ~ > microphones
Filtering and : PraxPmin s \ i
T - e
in-band power estimation method:

SUEEEED || “H\ accuracy

Fig. 3. Overall block diagram summarizing the main processing stages performed in this study.
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pipe
\ 6-18 cm
noﬁzgm F ‘gj CUI CMC-5044PF-A
microphones—-—.g 2emi Knowles BL-21994-000
Front view ‘ Left-side profile view ‘
(@) (b)
Fig. 4. Location of the microphones with respect to the nozzle tip: (a) front view, and (b) left-side profile view.
Table 1 where N denotes the length of the discrete signals x[n] and X[k].
Summary with the most relevant parameters for the data acquisition stage. After this step, the Power Spectral Density (PSD) was calculated
Parameter Value using Eq. (2):
Liquid flowing through the Water X[k - X'k
nozzles: PSD[k] -2, [jlf—fl] (2)
s

Number of acquisitions: One per each nozzle tip and tested flow

rate

Acquisition time/sample: 61s
Sampling frequency: 100 kHz
Microphone's location:
Vertical 2cm
Horizontal 6-18 cm

Microphones models:
Low-end microphone
High-end microphone

Model of data acquisition

module:

CUI CMC-5044 PF-A
Knowles BL-21994-000
NI USB-4431

2.2.2. Preprocessing

The preprocessing stage consisted of two substages: (i) the
splitting substage, and (ii) the filtering and downsampling
substage. This stage was applied to each of the aforementioned
61-second-long acquired signals, i.e., for all the recordings.

In the splitting substage, the complete 61-second-long
sequence was divided into 122 epochs of 0.5 s each. In order to
achieve a real-time flow rate estimation, this time was empirically
considered as the minimum epoch size able to prevent the loss of
meaningful information from the acoustic signal. Thus, the subse-
quent stages are still able to accurately compute flow rates from
this split signal.

In the filtering and downsampling substage, a digital IIR elliptic
low-pass filter with a cutoff frequency of 4 kHz was applied to the
split signal to avoid spectral aliasing in the subsequent downsam-
pling stage. This cutoff frequency was chosen since all frequencies
of interest for this method lie in a band below 2 kHz, as will be fur-
ther detailed in Section 2.2.4. After the filtering, the signal was also
downsampled by a factor of M = 10, to reduce its original length,
thus avoiding unnecessary processing overload in terms of compu-
tational complexity. In this way, every 0.5 s the subsequent FFT
analysis stage receives as input the preprocessed data from one
of these 0.5-second-long epochs, consisting of N = 5000 samples.
As a consequence, the whole flow rate estimation method is able
to update the provided measurement every half a second, i.e. twice
every second.

2.2.3. FFT analysis

In this stage the Discrete Fourier Transform (DFT) of each of the
epochs was calculated using the Fast Fourier Transform (FFT) algo-
rithm. Assuming that x[n], with n € z and n € [0,N — 1], denotes the
discrete-time signal associated with each epoch output from the
previous stage, its DFT transform, X[k], is computed using Eq. (1):

N1
X[k = x[n]-e72* "N fork=0,...,N-1

n=0

(N

where f; = 10000 Hz is the effective sampling frequency after the
downsampling by a factor of ten, and the asterisk symbol denotes
the complex conjugate of a complex number.

2.2.4. In-band power calculation

After having computed the PSD from the frequency spectrum
via the FFT transform, the in-band power contained between
1450 and 1950 Hz was calculated by using the trapezoidal integra-
tion rule (Eqg. (3)). This frequency band was chosen after being con-
sidered the most suitable for the subsequent flow rate estimation.
The process that led to this choice consisted of performing an
exhaustive search using bandwidths between 100 and 2000 Hz,
sweeping for each tested bandwidth along all possible the fre-
quency ranges from 0 to 50 kHz. This search looked for achieving
high flow rate estimation accuracy and high robustness against
noise at the same time. For this end, the frequency range with
the smallest possible bandwidth, while presenting less than a
10% difference with respect to the best accuracy obtained among
all tested ranges and bandwidths, was selected. This process was
performed only using a representative nozzle (Wilger COMBO-
JET®™ MR80-04). Therefore, the same frequency band was chosen
for all tested nozzles in the experiments. This trial and error
approach was constrained by the early observation of the fre-
quency spectrum of the acoustic signal coming from the nozzle tip.

Therefore, the unnormalized in-band power, P, can be calcu-
lated as shown in Eq. (3):

974

Py

k=725

-2Hz

PSD[K] + PSDIk + 1]
== 3)

In Eq. (3), k = 725 and k = 974 are, respectively, the indexes corre-
sponding to the 1450 and 1948 Hz frequencies, since the employed
frequential resolution was 2 Hz.

2.2.5. Power normalization

The output from the previous stage, namely the unnormalized
in-band power, became the input to this stage. The normalization
process consisted of applying a linear mapping so that the output
of this stage, Puom, i.e. the normalized in-band power, was a value
bounded between 0 and 1. The zero and one values correspond,
respectively, to the minimum and maximum tested flow rates of
the particular nozzle tip assessed. Additionally, during the training
phase in this stage, the values of Py, and P, were obtained, once
again individually for each assessed nozzle tip, as the mean in-
band power of the 122 epochs for the minimum flow rate and
for the maximum flow rate, respectively. The normalized power,
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Pyorm, Was calculated from the unnormalized power, P, using the
following linear mapping (Eq. (4)):

P*me‘n

Prom = 5——F5—
Pmax - Pmm

(4)

2.2.6. Regression or curve fitting

After computing the normalized in-band power, for the training
data for which the actual flow rate was known, the flow rate versus
the normalized in-band power was plotted. Using a sixth root func-
tion, as shown in Eq. (5), the parameters k; and k, were adjusted
for each assessed nozzle tip to better fit the empirical training data
points by means of a transformed linear regression using the least
squares approach. The fitted data curve was later used for flow rate
estimation with the new testing data so that the output of this
stage was an estimate of the volumetric flow rate measured in
liters per minute (Ipm).

The aforementioned sixth root function employed in this stage
was:

x = (ki + ks - Prorm) ' (5)

where x denotes the flow rate output, Py is the normalized in-
band power coming from the previous stage, and k; and k; are con-
stants determined during the curve fitting stage with the training
data set.

For calibration purposes, for each microphone independently
and whenever the nozzle tip or nozzle-to-microphone distance
changes, all the stages described between Section 2.2.1 and Sec-
tion 2.2.6 should be conducted again while the actual flow rate is
measured simultaneously with an accurate flowmeter. In this
way, a new different curve is fitted in order to be used for later
estimation.

2.2.7. Evaluation

After having undertaken all the previous stages, the perfor-
mance of the proposed method was assessed. For each nozzle tip,
after having performed the corresponding training phase (Sec-
tion 2.2.6), the method accuracy was evaluated for the testing data
set. The evaluation stage consisted of using as input new acoustic
signals and evaluating how accurate the method was in providing
an estimate of the actual flow rate, which was measured concur-
rently with the accurate flowmeter. The absolute and relative Root
Mean Square Error (RMSE), the maximum absolute error, and the
95% interpercentile range, as well as visual inspection, were used
as performance metrics for evaluation.

The absolute and relative RMSE, the maximum absolute error,
and the 95% interpercentile range values were calculated for all
the aforementioned testing data experiments, i.e. one for each
tested nozzle tip at several constant flow rates, as shown in Eqs.

(6)-(9):

AbsoluteRMSE = (6)
X 2
%Z (Xi — Xcr)
RelativeRMSE = 1 _ AbsoluteRMSE )
Xt Xcr
maximum absolute error = {na:ﬁ{\x,— — Xor|} (8)
<ig
95% interpercentile range = 97.5th percentile
— 2.5th percentile 9)

where ¥; is the estimated flow rate value obtained by the proposed
method at the i-th epoch, xcr is the ground truth reference value
provided by the accurate flowmeter, and N = 122 denotes the num-
ber of epochs for each experiment at a constant flow rate.

The assessment of the method, using the metrics previously
introduced, consisted of three main evaluation experiments: (i)
one for the accuracies of all tested nozzle tips, (ii) another for the
influence of the quality of the measuring microphone, and (iii) a
last one for the dependency on the location of the microphone.

In the first evaluation experiment, just the low-end microphone
(CUI CMC-5044PF-A) was employed and it was located 6 cm from
the nozzle tip (Fig. 4). In this experiment, all 11 nozzle tips were
tested and compared for several flow rates lying within or close
to their manufacturer recommended operating ranges.

In the second evaluation experiment, both the high-end
(Knowles BL-21994-000) and low-end (CUI CMC-5044PF-A) micro-
phones were used, once again placed 6 cm from the nozzle tip
(Fig. 4). In order to report simpler results, three representative
and commonly used nozzle tips were selected for comparison:
TeeJet® XRC80-04, Wilger COMBO-JET® MR80-04, and Teejet®
AIX110-03. In addition to the aforementioned performance metrics,
the correlation coefficients between the estimated flow rate
discrete-time sequences for both the high-end and low-end micro-
phones were computed. This value was used as a measurement of
the coherence between the estimates provided by both micro-
phones. Furthermore, for the same nozzle tip, a Welch's t-test
between the absolute RMSE errors from both microphones was
performed to detect the presence or absence of statistically signif-
icant differences by testing if both samples could come from the
same probability distribution.

In the third evaluation experiment, once again just the low-end
microphone (CUI CMC-5044PF-A) was employed, but several
recordings were taken varying the nozzle-to-microphone separa-
tion distances to 6, 12, and 18 cm. In order to report simpler
results, just one of the most commonly used nozzle tips was
selected for comparison: Wilger COMBO-JET® MRS0-04. The afore-
mentioned performance metrics were computed for the recordings
at these three separation distances in order to assess the influence
of the distance on the method accuracy.

3. Results

For the sake of clarity, the main results of this study are pre-
sented in three separate subsections corresponding to each of the
aforementioned evaluation experiments (Section 2.2.7). First, the
estimation accuracy for all the tested nozzle tips was assessed. Sec-
ond, the influence of the quality of the measuring microphone was
evaluated. Last, the dependency on the location of the microphone
was examined.

3.1. Accuracy results for different nozzle tips

In this subsection, the accuracy results obtained with the 11
aforementioned nozzle tips (Section 2.1) are reported while using
the low-end microphone (CUI CMC-5044PF-A).

Fig. 5 depicts the flow rate discrete-time sequences estimated
by the proposed method applied to four acquired, representative
acoustic signals for each of the 122 0.5-second-long epochs. It
can be seen that the proposed method makes real-time flow rate
estimation possible, since the flow rate can be updated every
0.5 s, thus allowing for quick updates as the flow rate changes.

Table 2 reports the accuracies for all 11 tested nozzle tips. It can
be seen that the average values for the absolute RMSE, the maxi-
mum absolute error, and the 95% interpercentile range of the error
are always below 0.08, 0.32 and 0.31 liters per minute (lpm),

87



I Articles in the compendium

260 R. Ruiz-Gonzalez et al./ Computers and Electronics in Agriculture 141 (2017) 255-266

Estimated flow rate at each 0.5-second-long epoch
(COMBO-JET MR80-04 nozzle tip)

22

!
——1.15 Ipm
1.25 Ipm
1.35 lpm
———1.45 pm
———1.55 lom
1.65 Ipm
——1.75 Ipm
——1.85 Ipm

N R W W PNATY
TN W W
V

| ——1.85Ipm

Flow rate (lpm)

o 20 40 60 80 100 120 140
Time epoch

(@

Estimated flow rate at each 0.5-second-long epoch
(TeeJet XRC80-04 nozzle tip)

24
——1.15 Ipm
1.35 Ipm
22[ 1.55 Ipm
——1.75Ipm
2F ) . 1.95 Ipm
v A 2.15lpm
= 18] Ars y A ,‘
a
o 16
E
E 14 ——./\\J-/\ Arsaf-p=try oy o ,\,\JW o -
[ r,\
u 7 Ay
/ 1 \ V W |U\f J” M NJ”WUHIV
081
0'60 20 40 60 80 100 120 140
Time epoch
()

Estimated flow rate at each 0.5-second-long epoch
(TeeJet AIX110-03 nozzle tip)

18 |

17 | r\nnA/Ul I M\M N Y NV 7152:%

A -‘U“VUV‘”V T VVVMWW (\JVW\J TV 155 lpm
——1.70 Ipm

16

M
Al "’IM\AIH f.“/\.m“ ,“.‘,‘“n‘ “m ”\,W fo
T y WYY v

Flow rate (Ipm)
-

l
WW | u‘w“\/\/w V\/W\“ V

‘ﬂ W'«
J

10 20 40 60 80 100 120 140

Time epoch
(b)

Estimated flow rate at each Q 5-second-long epoch
(TeeJet XRC80-06 nozzle tip)

3.2 T T : . T T )
——1.95 Ipm
3t ———2.15Ipm
2.35 Ipm
——2.55 Ipm
2.8 |——275Ipm
= i 2.95Ipm
—~ 2.86F N . i 1
g T Vv f
= 24+ <
2
e
2.2, " TR 1
3 ! N Ay ’ At vl
r ]
1.8 1
1.6 1
1.4
0 20 40 60 80 100 120 140
Time epoch
(d)

Fig. 5. Flow rate estimation results for each of the 122 0.5-second-long epochs while the flow rate was kept constant and the low-end microphone (CUI CMC-5044 PF-A) was
6 cm from the nozzle tip. (a) Wilger COMBO-JET* MR80-04 nozzle tip. (b) Teefet” AIX110-03 nozzle tip. (c) Teefet” XRC80-04 nozzle tip. (d) Teefet™ XRC80-06 nozzle tip.

respectively. Computing the relative RMSE, found by dividing the
absolute RMSE by the actual flowrate, an average error always
lower than 5% was obtained for every single nozzle. These facts
provide strong evidence of the usefulness of the proposed flow rate
estimation method, which led to high accuracies for all tested noz-
zle tips.

3.2. Accuracy comparison of high-end versus low-end microphones

In this subsection, a performance comparison between low-end
and high-end microphones is tackled for the proposed flow rate
estimation method. In order to simplify the comparison of the
results from the two different microphones, only three representa-
tive nozzle tips were selected: Teefet™ XRC80-04, Wilger COMBO-
JET® MR80-04, and TeeJet® AIX110-03. As previously noted, the
same experiments were simultaneously recorded with both micro-
phones for a more unbiased accuracy comparison between them.

Fig. 6 shows a comparison of the estimated flow rate discrete-
time sequences for all 122 0.5-second-long epochs with both
microphones for the Teefet® XRC80-04 nozzle tip. A very high sim-
ilarity is observed for the highest flow rates, while small discrepan-
cies appear for the lowest flow rates. This plot is a proof of the high

coherence between the measurements provided by both micro-
phones, which highlights the consistency of the proposed method
with almost no dependence on the employed microphone.

Tables 3-5 show the results obtained while using the high-end
microphone (Knowles BL-21994-000) together with those from the
low-end one (CUI CMC-5044PF-A). A comparison between the per-
formance for the Teefet® XRC80-04 nozzle tip in Table 3 reveals that
the high-end microphone does not outperform the low-end micro-
phone. In fact, the accuracies were slightly worse for the high-end
microphone. The same conclusion can be reached by comparing
the results for the Wilger COMBO-JET® MR80-04 and Teelet™
AIX110-03 nozzle tips in Tables 4 and 5, respectively. This fact
proves that highly accurate results can be achieved with a low-
end microphone, with no significant improvements expected when
using a high-end one. Another remarkable result is that moderate
(0.40-0.59) to very strong (0.80-1.00) correlations are observed
between the measurements provided by both microphones. This
fact clearly highlights the existence of a significant coherence
between the measurements provided by both devices. Moreover,
performing the Welch's t-test for the absolute RMSE errors
obtained with both microphones in Tables 3-5; p-values of
0.7290, 0.0048, and 0.1363 were obtained, respectively. These
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Table 2
Accuracy results of the proposed flow rate estimation method for the tested nozzle tips and flow rates using the low-end microphone (CUT CMC-5044PF-A).
Nozzle tip employed [operating flow rate range Actual flow rate  Absolute RMSE  Relative Maximum absolute 95% interpercentile
recommended by manulacturer] {Ipm) (Ipm) RMSE (%} errar (Ipm) range (lpm)
Wilger COMBO-JET " MR80-04 [1.10-2.00 Ipm] 1.15 0.0689 5.891 0.2065 0.2550
1.25 0.0487 3.896 0.1370 .22
1.35 0.0455 3.370 0.1291 0.1695
1.45 0.0462 3.186 0.1407 01626
1.55 0.0318 2052 0.0887 0.13523
1.65 0.0331 2.006 0.10238 0.1228
1.75 0.0280 1.600 0.0688 0.1053
1.85 0.0280 1.514 0.0925 0.1150
1.95 0.0262 1.344 0.0667 0.1010
Average 0.0396 2.773 0.1170 0.1541
Wilger COMBO-JET" MR80-06 [1.60-3.00 Ipm] 1.92 0.0821 4.797 0.3008 0.2914
212 0.0434 2047 0.1267 0.1699
231 0.0511 2212 01188 01804
2.49 0.04086 1.831 0.0935 0.1578
2.63 0.0413 1.541 01128 0.1594
2.87 0.0446 1.554 0.1043 0.1757
Average 0.043% 2.297 0.1205 0.1618
Wilger COMBO-JET" MRB0-08 [2.20-4.00 Ipm] 2.57 01221 4,751 04658 0.4277
2.77 0.0382 1.379 0.1207 0.1475
2.96 0.0339 1.821 0,1493 0.2271
3.16 0.0463 1.465 0.1297 0.1898
3.34 0.0483 1.446 0.1095 0.1699
3.53 0.0490 1.388 0.1474 0.2004
3.72 0.0451 1.212 01111 0.1818
3.92 0.0436 1.112 0.1233 0.1796
412 0.0575 1.396 01704 0.2148
Average 0.0560 1.775 0.1697 0.2154
Teejer™ AIX110-03 [0.70-1.70 Ipm] 1.15 0.0285 2.513 0.0726 0.1094
135 0.0263 1848 0.0733 0.0956
1.55 0.0220 1419 0.0602 0.0815
1.70 0.0253 1.500 0.0653 0.0931
Average 0.0257 1.845 0.0680 0.0949
Teejet ” Turbo TTVP110-03 [0.70-1.70 lpm] 1.15 0.0239 2.078 0.0634 0.0980
1.35 0.0316 2.340 0.0695 01232
1.55 0.0349 2.252 0.0937 0.1418
1.73 0.0545 3.150 0.1409 0.2231
Average 0.0362 2455 0.0919 0.1465
Teelet* AITT110-02 [0.80-1.70 Ipm] 1.55 0.1337 8.626 0.6491 0.5191
175 0.0568 3.246 01639 0.2324
1.95 0.0433 2.221 0.1195 0.1708
Average 0.0779 4.697 0.3108 03074
Teejet™ TG-3 [1.50-2.60 Ipm] 1.55 0.0750 4.839 0.1830 0.3041
1.75 0.0668 3.817 0.1664 0.2697
1.95 0.0598 3.067 01675 0.2411
215 0.0435 2023 0.132¢ 0.1603
235 0.0451 1919 0.1397 01862
Average 0.0580 3133 0.1577 0.2323
Teejet " Twinjet 80-03 [1.00-1.40 lpm] 115 0.0267 2.322 0.0806 0.1010
135 0.0277 2.052 0.0664 01033
Average 0.0272 2.187 0.0735 0.1022
Wilger COMBO-JET* ER80-03 [0.80-1.50 Ipm] 0.95 0.0651 6.853 0.2139 0.1990
113 0.0162 1.40¢ 0.0611 0.0586
1.35 0.0232 1.719 0.0623 0.0912
1.59 0.0621 4,006 0.2014 (.2357
Average 0.0416 3.497 0.1347 0.1461
Teelet * XRC30-06 [1.40-2.75 Ipm] 1.95 0.1168 3.890 0.4338 0.3296
215 0.0306 1.423 0.0789 0.1089
2.35 0.0252 1.072 0.0729 0.0969
255 002386 0925 0.0595 0.0851
2.75 0.0269 04978 0.0682 0.0978
295 0.0409 1.373 0.1158 0.1557
Average 0.0446 1.960 0.1427 0.1427
Teelet* XRC80-04 [0.90-1.85 Ipm] 1.15 0.1065 9.261 0.3709 0.3372
139 0.0254 1.881 0.0823 0.0924
1.55 0.0189 1.219 0.0557 0.0628
1.75 00163 0931 0.0439 0.0595
1.95 0.0257 1.318 0.0613 0.1018
215 0.0423 1.867 0.1063 0.1644
Average 0.0386 2.763 0.1228 0.1310

89



I Articles in the compendium

262 R. Ruiz-Gonzalez et al./ Computers and Electronics in Agriculture 141 (2017) 255-266

flow rate at each 0.5-second-long epoch (TeeJet XRC80-04 nozzle tip)
T T

24 T T T

T

115 Ipm
——1.35 Ipm
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Flow rate (Ipm)
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Fig. 6. Comparison of the flow rate estimation results for each of the 122 0.5-second-long epochs while the flow rate was kept constant and the microphones were 6 cm from
the Teefet™ XRC80-04 nozzle tip. The solid and dotted lines represent the results for the high-end microphone (Knowles BL-21994-000) and the low-end microphone (CUI CMC-

5044PF-A), respectively.

Table 3

Accuracy results of the proposed flow rate estimation method for the TeeJet® XRC80-04 nozzle tip. At the left side of the slash symbol (/), those results obtained employing the

high-end microphone (Knowles BL-21994-000). At the right side of the slash symbol (/), those results obtained employing the low-end microphone (CUI CMC-5044PF-A).

Actual flow rate (Ipm)

Absolute RMSE (Ipm)

Maximum absolute error (Ipm)

95% interpercentile range (Ipm)

Correlation coefficient

115 0.1467/0.1065 0.5696/0.3709 0.4300/0.3372 0.6065
135 0.0334/0.0254 0.0958/0.0823 0.1214/0.0924 0.6574
1.55 0.0223/0.0189 0.0920/0.0557 0.0779/0.0638 0.8284
175 0,0182/0.0163 0,0568/0.0439 0,0698/0.0595 0.8880
1.95 0.0254/0.0257 0.0579/0.0613 0.0926/0.1019 0.9531
215 0.0415/0.0423 0.1077/0.1063 0.1633/0.1644 0.9700
Average 0.0479/0.0386 0.1633/0.1228 0.1592/0.1310 0.8172
Table 4

Accuracy results of the proposed flow rate estimation method for the Wilger COMBO-JET® MR80-04 nozzle tip. At the left side of the slash symbaol (/), those results obtained
employing the high-end microphone (Knowles BL-21994-000). At the right side of the slash symbol (/), those results obtained employing the low-end microphene (CUI CMC-

5044PF-A).
Actual flow rate (Ipm) Absolute RMSE (lpm) Maximum absolute error (Ipm) 95% interpercentile range (Ipm) Correlation coefficient
115 0.1274/0.0689 0.2119/0.2065 0.3314/0.2550 0.4103
125 0.0786/0.0487 0.1821/0.1570 0.2429/0.2201 0.5084
135 0.0746/0.0455 0.1878/0.1291 0.2574/0.1695 0.4996
145 0.0842/0.0462 0.1941/0.1407 0.2522/0.1626 0.5489
1.55 0.0723/0.0318 0.1787/0.0887 0.2881/0.1353 0.6093
1.65 0.0645/0.0331 0.1799/0.1028 0.2373/0.1228 0.6910
1.75 0.0512/0.0280 0.1796/0.0688 0.2014/0.1053 0.6188
1.85 0.0442/0.0280 0.1308/0.0925 0.1796/0.1150 0.6114
195 0.0516/0.0262 0.1346/0.0667 0.2071/0.1010 0.6583
Average 0.0721/0.0396 0.1755/0.1170 0.2442/0.1541 0.5729

Table 5

Accuracy results of the proposed flow rate estimation method for the Teefet™ AIX110-03 nozzle tip. At the left side of the slash symbol (/), those results obtained employing the

high-end microphone (Knowles BL-21994-000). At the right side of the slash symbol (), those results obtained employing the low-end microphone (CUI CMC-5044PF-A).

Actual flow rate (Ipm)

Absolute RMSE (Ipm)

Maximum absolute error (Ipm)

95% interpercentile range (Ipm)

Correlation coefficient

115
1.35
1.55
1.70
Average

0.0439/0.0289
0.0311/0,0263
0.0290/0.0220
0.0282/0.0255
0.0331/0.0257

0.1179/0.0726
0.1038/0.0733
0.0785/0.0602
0.0687/0.0658
0.0922/0.0680

0.1887/0.1094
0.1178/0.0956
0.1030/0.0815
0.1154/0.0931
0.1312/0.0949

0.4996
0.5084
0.7467
0.8020
0.6392

90



Article 3: Flow rate monitoring

R. Ruiz-Gonzalez et al./Computers and Electronics in Agriculture 141 (2017) 255-266 263

results highlight the lack of statistically significant differences
between both microphones, at a significance level of o =0.05, for
the Teejet® XRC80-04 and Teejet™ AIX110-03 nozzle tips. Neverthe-
less, statistically significant differences do appear for the Wiiger
COMBO-JET® MR80-04 nozzle tip.

3.3. Accuracy comparison for different nozzle-to-microphone distances

In this subsection, an accuracy comparison of the proposed
method for different nozzle-to-microphone separation distances
is provided while using the low-end microphone (CUI CMC-
5044PF-A).

Table 6 shows the accuracies for the Wilger COMBO-JET® MR80-
04 nozzle tip at different distances: 6, 12, and 18 cm. Fig. 7 shows
the absolute RMSE of the estimation for different flow rates at the
three tested distances. In general, a gradual degradation of the
accuracy can be observed as distance is increased. This degradation
is higher for the lowest flow rates, probably due to the fact that the
generated signal has less intensity and the acoustic noise floor
masks the signal of interest. Nevertheless, this degradation is
almost negligible for the rest of the higher flow rates, as long as
the distances are kept close enough.

4. Discussion

This article investigates the feasibility of using microphones as
flowmeters for nozzle tips in agricultural sprayers. For this end, a
flow rate estimation method is proposed for each individual nozzle
tip by processing the generated acoustic signal acquired by a
microphone located near the nozzle. The main finding from this
article is that accurate real-time flow rate estimation for individual
nozzle tips can be achieved by employing acoustic signal
processing.

Table 6

Seven major findings can be highlighted from this study: (i) the
nozzle-generated acoustic signal contains enough information to
enable accurate flow rate estimation by applying signal processing
techniques; (ii) the proposed method can be used to estimate the
flow rate of individual nozzles in a low-cost way with a high accu-
racy in a laboratory environment; (iii) the flow rate estimation
becomes less accurate when operating outside the flow range rec-
ommended by the nozzle manufacturer; (iz) the proposed method
can be used to estimate the flow rate in real time with a demon-
strated update frequency of 2 Hz; (v) consistent results can be
obtained when using a low-end microphone instead of a more
expensive high-end microphone; (vi) the frequency band between
1450Hz and 1950 Hz provided the best results; and (vii) the
nozzle-to-microphone distance is not critical for the method to
work accurately, but specific calibrations are required for each
distance.

The first finding is that the nozzle-generated acoustic signal
contains enough information to enable accurate flow rate estima-
tion. This general conclusion can be derived from the particular
results achieved with the proposed method. It is evident that the
generated acoustic signal contains information related to the flow
rate through the nozzle tip, and many processing techniques can
be proposed for this end. Similar conclusions regarding this rela-
tionship have been found in previous studies. Jacobs et al. (2015)
already proved that the sound of water flowing through a tap
can be used to estimate the actual flow rate. Kakuta et al. (2012)
demonstrated that a condenser microphone can be used as a vibra-
tion sensor in pipelines in order to measure flow rates. Evans et al.
(2004) also employed flow-induced mechanical vibrations in the
pipe, acquired with an accelerometer, to estimate flow rates. Nev-
ertheless, the present article complements the aforementioned
studies by addressing sprayer nozzles where the flow is actually
exiting a closed system in a controlled manner.

The second finding is that the proposed method can be used to
estimate the flow rate of individual nozzles in a low-cost way with

Accuracy results for the Wilger COMBO-JET® MR80-04 nozzle tip using the low-end microphone (CUI CMC-5044PF-A) at different distances.

Distance from nozzle tip to microphone Actual flow rate (Ipm)

Absolute RMSE (Ipm)

Maximum absolute error (Ipm) 95% interpercentile range (Ipm)

6cm 1.15 0.0689
125 0.0487
135 0.0455
1.45 0.0462
1.55 0.0318
1.65 0.0331
1.75 0.0280
1.85 0.0280
1.95 0.0262
Average 0.0396
12cm 1.15 0.2674
1.25 0.0428
1.35 0.0724
145 0.0682
1.55 0.0489
1.65 0.0311
1.75 0.0337
1.85 0.0313
1.95 0.0372
Average 0.0703
18 cm 1.15 0.2755
1.25 0.0885
1.35 0.1081
145 0.1148
1.55 0.0503
1.65 0.0355
1.75 0.0463
1.85 0.0344
1.95 0.0325
Average 0.0873

0.2065 0.2550
0.1570 0.2201
0.1291 0.1695
0.1407 0.1626
0.0887 0.1353
0.1028 0.1228
0.0688 0.1053
0.0925 0.1150
0.0667 0.1010
0.1170 0.1541
0.6120 0.6815
0.1699 0.1382
0.1761 0.2682
0.1704 0.2696
0.1682 0.1617
0.1042 01278
0.1185 0.1302
0.0860 0.1127
0.1140 0.1543
0.1910 0.2271
0.5863 0.7789
0.3251 02738
0.2134 0.2964
02178 0.3070
0.2163 02206
0.1008 0.1369
0.1435 0.1704
0.0896 0.1359
0.1034 0.1435
0.2218 0.2737
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Absolute RMSE of the estimation for different distances (COMBO-JET® MR80-04 nozzle tip)
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Fig. 7. Comparison of the absolute RMSE estimation accuracy at several flow rates for different nozzle-to-microphone distances using the Wilger COMBO-JET* MR80-04 nozzle

tip and the low-end microphone (CUI CMC-5044PF-A).

a high accuracy in a laboratory environment. The results presented
in Section 3, mainly Table 2, support this finding, since for all the
tested nozzles the average absolute and relative RMSE values are
always below 0.08 Ipm and 5%, respectively. Moreover, for flow
rates lying within the manufacturer recommended operating
ranges, the absolute and relative RMSE values are even lower,
bounded below 0.05 Ipm and 2.5%, respectively. Comparing these
results with the ones obtained by Jacobs et al. (2015), significantly
better absolute accuracies and slightly better relative accuracies
are achieved with the proposed method. However, it is worth not-
ing that both studies are not quite comparable due to the use of
nozzle tips versus faucets or taps and also since flow rate ranges
are very different in both articles. The flow rate estimation accura-
cies obtained with the proposed acoustic method are close enough
to some of the traditionally used flowmeters, whose relative RMSE
errors can reach 4% (Kohlmann, 2004; Liquid Flowmeters — A Guide
for Selecting a Flowmeter for Pressurized Systems). It should be
noted that these studies were conducted in a relatively controlled
laboratory environment; thus, the reproducibility of these accura-
cies in real agricultural settings has yet to be verified.

The third finding is that the flow rate estimation becomes more
difficult, i.e. the errors increase, for either very low or very high
flow rates, when operating outside the flow range recommended
by the nozzle manufacturer. This behavior can be noticed in Table 2
for almost every single nozzle. One possible explanation for this
behavior is the fact that the spray deposition pattern and output
droplet size distribution of the nozzles changes appreciably outside
of the manufacturer recommended range, which will consequently
change the acoustic signature. The increased difficulty in estima-
tion could also be due to the acoustic signals being more similar
in these extreme cases. This effect is even more noticeable for
low flow rates due to the inherently lower intensity of the
nozzle-generated signal. This lower intensity leads to the acoustic
noise floor being relatively stronger with respect to the signal of
interest, thus making the estimation more difficult. Nevertheless,
it has been checked that, in the recommended operating flow rate
ranges given by the nozzle manufacturers, the proposed method
presents satisfactory accuracies. No similar findings about lower
estimation capabilities for extreme flow rates have been detected
in previous studies, to the best of the authors’ knowledge. Further

studies should be conducted to provide more insight regarding the
reasons behind this behavior.

The fourth finding is that the proposed method can work in real
time. This method, when executed in post-processing in MATLAB®,
requires less than five seconds to process the 61-second-long
recordings for 10 flow rates, where the reported times were
obtained in the aforementioned laptop (Dell Latitude E6400). This
execution time, less than 0.01 s for each single epoch, shows the
feasibility of performing all the necessary tasks between the acqui-
sitions of two consecutive epochs, which is 0.5s. It is worth
remarking that no explicit code optimization was done and the
computational efficiency of the method could be further improved
for real-time operation.

The fifth finding is that consistent results, with neither signifi-
cant improvements nor detriments, can be obtained when using
a high-end or a low-end microphone. The results presented in Sec-
tion 3.2 prove that the high-end microphone does not outperform
the low-end microphone. Furthermore, the measurements pro-
vided by both are coherent (Fig. 6), since moderate (0.40-0.59),
strong (0.60-0.79) or very strong (0.80-1.0) positive correlations
were found (Tables 3-5). Additionally, the reported p-values from
the Welch's t-test showed no statistically significant differences
between both microphones for two out of the three tested nozzles.
The fact that the proposed method is highly independent of micro-
phone quality makes it economically feasible to replicate flow sen-
sors across a large boom with many nozzles. Notwithstanding, this
finding should be checked more in detail in later studies, employ-
ing a wider variety of high-end and low-end microphones.

The sixth finding is that the frequency band between 1450 Hz
and 1950 Hz provided the best accuracies. Several bandwidths
were tested, and a bandwidth of 500 Hz was found to be the best
because it gave acceptable accuracies and was narrow enough to
avoid excessive wideband interferences. Looking over the frequen-
cies from 0 Hz to 50 kHz, the band from 1450 Hz to 1950 Hz con-
tained more information than any other related to the flow rate.

The seventh finding is that the method accuracy does not
depend too much on the nozzle-to-microphone distance. The
results in Fig. 7 and Table 6 show a tendency of a slow but progres-
sive accuracy degradation as distance is increased. Only distances
over 6 cm were tested in order to prevent the microphones from
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getting wet and thus being damaged. Moreover, since specific cal-
ibrations are required for each distance, it is worth noting that the
proposed method will require strict control of microphone location
while operating.

The major strength of the proposed method is the low-cost of
its design, requiring for its deployment only a low-end microphone
and a microcontroller-based computing platform. Another strength
of the proposed estimation method is that it can work in real time.
Another remarkable feature of the estimation method is the oscil-
latory behavior observed in Fig. 6, which highlights the possibility
of the integral errors in flow rate compensating over time. Thus, an
even lower error can be achieved in terms of the cumulative vol-
ume applied to the whole plot of land that is being sprayed.

Nevertheless, there are also some limitations to this work. Each
nozzle tip requires its own calibration since no singular curve
could be fitted accurately for all nozzle tips. Moreover, since the
flow rate estimation method is dependent on the nozzle-to-
microphone distance, as acoustic power decreases with distance,
a new calibration process is mandatory when this distance is var-
ied. However, a simple straightforward calibration can be used in
this case, requiring just the determination of the in-band power
for highest and lowest flow rates for the normalization stage.

The low-cost sensing method evaluated in this study will bring
tremendous benefits to the agricultural chemical application
industry. It will be economically feasible to replicate this sensor
at every nozzle along a large spray boom to facilitate monitoring
and closed-loop control of flow rate from each individual nozzle
tip. This will greatly increase the accuracy of placement of chemi-
cals in the field and will prevent much of the errors and inconsis-
tencies currently observed in field application equipment.

Future research related to this article could tackle the evalua-
tion, and almost certainly improvement, of this method in real
agricultural settings. More research on how to avoid acoustic inter-
ferences in real agricultural settings is needed as well. It is
expected that interferences in real agricultural settings, e.g. acous-
tic noise generated by machinery and wind, can affect the perfor-
mance of this method. The authors of this paper are currently
undertaking new studies in this line of research, investigating
about more advanced processing techniques as well as the use of
arrays of microphones to avoid the negative effects of unwanted
interferences.

Further studies are also required to gain more insight into
where the sound enabling flow rate estimation comes from. Five
possible sources for the generated acoustic signal have been iden-
tified while performing the experiments of this study: (i) turbu-
lences generated by cavities inside the pipe-nozzle interface, (ii)
droplet formation in the nozzle-air interface, (iii) acoustic radiation
generated by mechanical vibrations of the nozzle or the pipe, (iv)
residual elasticity of the nozzle tip outlet that makes its vibration
dependent on the flow rate, which acts as an excitation force, (v)
finite compressibility of the liquid, and (vi) cross section changes
and presence of orifice plates along pipes or the nozzle. This article
does not focus on identifying which of these sources have a pre-
dominant effect in the observed acoustic signature, but the authors
of this paper are working on a follow-up study investigating the
sound generation process for nozzle tips by using Computational
Fluids Dynamics (CFD) simulations.

5. Conclusions

The results from this study support the feasibility of accurately
estimating, in real time, the flow rate through agricultural sprayer
nozzles based on the acoustic signal recorded in close proximity to
them. While employing the proposed method, satisfactory accura-
cies with relative RMSE values below 5% are obtained under labo-

ratory conditions. Furthermore, the distance from the nozzle tip to
the microphone has not been shown to be overly influential, but
the shortest distance does generally provide the most accurate
results. In addition, the quality of the microphone device seems
to have little influence on the overall accuracy of this method. Nev-
ertheless, the results achieved in this article should be confirmed
through field tests in agricultural environments. Deeper theoretical
insight into acoustic signal generation in nozzle tips and its rela-
tionship with flow rate is also needed.
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