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1. Introduction
Let N denote the set of nonnegative integers. A numerical semigroup is a submonoid of (N,+) with finite
complement in N . If S is a numerical semigroup, the set N \S is known as the set of gaps of S . Its cardinality
is the genus of S , denoted here by g(S) . The multiplicity of a numerical semigroup, m(S) , is the smallest
positive integer not belonging to its gap set. The largest integer not belonging to S is the Frobenius number
of S , denoted by F(S) .

Associated to S we can define the following order relation: for a, b ∈ Z , a ≤S b if b − a ∈ S . The set
of maximal elements of Z \ S with respect to ≤S is the set of pseudo-Frobenius numbers of S , PF(S) ; its
cardinality is the type of S , denoted by t(S) .

A numerical semigroup S is irreducible if it cannot be written as the intersection of two numerical
semigroups properly containing S . This is equivalent to say that S is maximal (with respect to set inclusion)
in the set of numerical semigroups having Frobenius number equal to F(S) . If F(S) is odd, this is equivalent to
g(S) = (F(S)+ 1)/2 (S is symmetric); while if F(S) is even, this is the same as to impose g(S) = (F(2)+ 2)/2

(S is pseudosymmetric, see for instance [14, Chapter 3], or [1] for the history behind the names of the invariants
defined above). For symmetric numerical semigroups the type is one (and this precisely characterizes them), and
for pseudosymmetric numerical semigroups the type is two (though this does not characterize this property).
Thus, for any irreducible numerical semigroup S , the equality g(S) = (F(S) + t(S))/2 holds. Then converse is
not true, but gives rise to a wider family of numerical semigroups: almost-symmetric numerical semigroups. A
numerical semigroup is said to be almost symmetric provided that g(S) = (F(S)+t(S))/2 . It is well known that
for any numerical semigroup g(S) ≥ (F(S)+t(S))/2 (see [13, Proposition 2.2]), so almost symmetric numerical
semigroups are those attaining the equality. Indeed, as shown in [13] almost symmetric numerical semigroups
have some symmetry properties.
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Almost symmetric numerical semigroups have attracted the attention of many researchers, not only
because they generalize the irreducible property in numerical semigroups, but also because they rise in a natural
way as a generalization of the Gorenstein property in one-dimensional rings (see [2]). Many papers deal with
the almost symmetric property and how to construct examples of these semigroups (see for instance [3, 4, 11]
and the references therein). Some manuscripts like [11, 12] and [15] deal with almost symmetric numerical
semigroups with small type and small embedding dimension, which is the cardinality of a minimal generating
set of the numerical semigroup. The semigroups considered in this manuscript have large type.

The original aim of this note was to clarify a computational evidence noticed by the second author when
using the algorithms given in [4] and implemented in the GAP [10] package NumericalSgps [7] (see [4, Remark
5.1] for further details). To this end, we present a one-to-one correspondence with numerical semigroups with
given genus g and almost symmetric numerical semigroups with Frobenius number F and type F −2g , for any
F ≥ 4g + 1 . This, in particular, provides an easy way to construct examples of almost symmetric numerical
semigroups and also presents a new way to restate Bras’ conjectures on the number of numerical semigroups
with genus g [5]; this number is usually denoted by ng (see Corollary 3.1 and the comment following it).

An important peculiarity of almost symmetric numerical semigroups with Frobenius number F and type
F − 2g , with F ≥ 4g + 1 (for some nonnegative integer g ), is that these semigroups are uniquely determined
by its sets of pseudo-Frobenius numbers (Corollary 3.2). This is in general far from being true [8], even for
almost symmetric numerical semigroups, and it allows us to develop a new and faster algorithm for determining
almost symmetric numerical semigroups with Frobenius number F and type F − 2g , with F ≥ 4g + 1 . Thus,
our approach can be potentially used to go further in the calculation of unknown elements of the sequence ng .

2. The correspondence

The definition of almost symmetric numerical semigroups can be stated as follows (see for instance [13]).

Definition 2.1 A numerical semigroup S is almost symmetric if for any integer a not in S , then F(S)− a ∈
S \ {0} or a ∈ PF(S) .

We will use the fact that the above definition is equivalent to

g(S) =
F(S) + t(S)

2
. (2.1)

Motivated by the notion of set of gaps of a numerical semigroup, in [9] the concept of gapset is introduced.

Definition 2.2 A gapset is a finite subset G ⊂ N \ {0} such that given a and b ∈ N \ {0} with a + b ∈ G ,
then either a ∈ G or b ∈ G .

Notice that if G is a gapset, then N\G is a numerical semigroup. We are going to give families of gapsets
that “produce” almost symmetric numerical semigroups.

Proposition 2.3 Let S be a numerical semigroup with genus g and let F be a positive integer greater than
2F(S) . The set

G = {1, . . . , F} \ {F − a | a ∈ N \ S}
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is the gapset of an almost symmetric numerical semigroup with Frobenius F , type F − 2g and multiplcity
F − F(S) . Moreover,

PF(N \G) ={a ∈ S | 0 < a ≤ F(S)}

∪ {F(S) + 1, . . . , F − F(S)− 1}

∪
{
F − a | a ∈ S ∩ {0, . . . ,F(S)}

}
.

Proof Set f = F(S) . First of all, we observe that

G = {1, . . . , F − f − 1} ∪
{
F − a | a ∈ S ∩ {0, . . . , f}

}
.

Let us see that G is actually a gapset. To do that we consider a and b ∈ N \ {0} with a+ b ∈ G ; in particular,
a+ b ≤ F . Now, if a ≤ F − f − 1 or b ≤ F − f − 1 , then we are done because this would imply a or b in G .
Thus, let us assume that a ≥ F − f and b ≥ F − f ; in this case, a+ b ≥ 2F − 2f = F + (F − 2f) and, since
(F − 2f) > 0 , we conclude that a+ b > F , which is incompatible with the condition a+ b ∈ G .

Let S′ be the numerical semigroup N \ G ; notice that F(S′) = F . Given a ∈ G , if F − a ∈ S′ ,
then F = a + (F − a) 6∈ S′ , that is to say, a 6∈ PF(S′) . Thus, to see that S′ is almost symmetric, we need
to prove that given a ∈ G with F − a ∈ S , then a ∈ PF(S′) . Thus, let a ∈ G such that F − a ∈ G .
First, we claim that a ∈ S; indeed, if F − a ≤ F − f − 1 , then a ≥ f + 1 ; therefore, a ∈ S . Otherwise,
F − a ∈ {F − f, . . . , F} ∩ {F − a | a ∈ S} and, clearly, a ∈ S . Now, let b ∈ S′ \ {0} and let us prove
that a + b ∈ S′ . If a + b > F , there is nothing to prove. Otherwise, a + b = F − c , for some c ∈ N . If
a + b 6∈ S′ , then F − c ∈ G . Arguing as above, we can prove that c ∈ S . Thus, since a + c ∈ S , we conclude
that b = F − (a+ c) ∈ G , in contradiction with b ∈ S′ .

Thus, we have that S′ = N \ G is an almost symmetric numerical semigroup. Moreover, since g(S′) =

#G = F − g and S′ is almost symmetric, we have that t(S′) = 2 g(S′)−F = F − 2g. We also observe that the
smallest positive integer not in G is F − f , so the multiplicity of S′ is F − f .

Finally, let us see that PF(S′) = {a ∈ S | 0 < a ≤ f}∪ {f+1, . . . , F−f−1}∪
{
F−a | a ∈ S∩{0, . . . , f}

}
.

First, we notice that the right-hand side has cardinality (f − g) + (F − 2f − 1) + (f + 1− g) = F − 2g . Thus,
it suffices to see that all the elements in the right-hand side are in PF(S′) . Notice that for every a in the
right-hand side, a 6∈ S′ , and also F −a 6∈ S′ ; thus, a ∈ PF(S′) by the definition of almost symmetric numerical
semigroup. 2

Definition 2.4 Let S be a numerical semigroup. A relative ideal I of S is a subset of Z such that

1. I + S ⊆ I ;

2. a+ I ⊆ S, for some a ∈ S .

If S is a numerical semigroup and s ∈ Z , then

KS(s) := {F(S) + s− z | z ∈ Z \ S}

is a relative ideal of S . This ideal is the s−shifted canonical ideal of S .
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Lemma 2.5 If S is a numerical semigroup and F is a positive integer greater than F(S) , then N \KS(F −
F(S)) = {0, 1, . . . , F} \ {F − a | a ∈ N \ S} .

Proof Since KS(F − F(S)) = {F − z | z ∈ Z \ S} = {F − a | a ∈ N \ S} ∪ {F + 1, . . .} , then
N \KS(F − F(S)) = {0, 1, . . . , F} \ {F − a | a ∈ N \ S} . 2

Theorem 2.6 Let F and g be positive integers such that F ≥ 4g − 1 . The correspondence

S 7→ {0} ∪KS(F − F(S))

is a bijection between the set of numerical semigroups with genus g and the set of almost symmetric numerical
semigroups with Frobenius number F and type F − 2g .

Proof Let S be a numerical semigroup with genus g . By Lemma 2.5, N\KS(F−F(S)) = {0, 1, . . . , F}\{F−a |
a ∈ N\S} . Moreover, since F(S) ≤ 2g−1 (see, for instance [14, Lemma 2.14]), then F > 4g−1 > 2F(S) . Thus,
by Proposition 2.3, our correspondence is a well-defined application between the set of numerical semigroups
with genus g and the set of almost symmetric numerical semigroups with Frobenius number F and type F−2g .
Moreover, since KS1

(F − F(S1)) = KS2
(F − F(S2)) if and only if S1 = S2 , we have that our application is

clearly injective.
In order to see that it is surjective, let us consider an almost symmetric numerical semigroup S′ with

Frobenius number F and type F − 2g , and set G′ := {x ∈ N \S′ | F −x ∈ S′} . We prove that G′ is a gapset.
Take a and b ∈ N \ {0} such that a+ b ∈ G′, that is, a+ b 6∈ S′ and F − (a+ b) ∈ S′ , and let us prove that
a ∈ G′ or b ∈ G′ . To this end, we distinguish two cases:

• If a ∈ S′ or b ∈ S′ . If a ∈ S′ , then F−b = (F−(a+b))+a ∈ S′ and b 6∈ S′; otherwise F = (F−b)+b ∈ S′ .
Thus, b ∈ G′ . By arguing analogously, if b ∈ S′ , we obtain a ∈ G′.

• If a and b 6∈ S′ ; in particular, we have that either F − b ∈ S′ or b ∈ PF(S′) , because S′ is almost
symmetric. In the first case, b ∈ G′ and, in the second case, F − a = b+ (F − (a+ b)) ∈ S, implies that
a ∈ G′ .

Thus, we have that T = N \ G′ is a numerical semigroup. Since S′ is almost symmetric, by (2.1), g(S′) =

(F + F − 2g)/2 = F − g , and from the definition of almost symmetric numerical semigroup, we have that
g(T ) = #G′ = g(S′)− t(S′) = (F − g)− (F − 2g) = g . Moreover,

{0} ∪KT (F − F(T )) = {F − a | a ∈ G′} ∪ {F + 1, . . .}.

From the definition of G′ , KT (F − F(T )) ⊆ S′ . For the other inclusion, take s ∈ S′ , with s < F . Then
F − s ∈ G′ , and s = F − (F − s) ∈ KT (F − F(T )) . 2

Observe that we can use Theorem 2.6 to produce almost symmetric numerical semigroups with high type.

Example 2.7 The numerical semigroup S generated by 21, 24, 25 , and 31 has genus g(S) = 55 and Frobenius
number F(S) = 89 . Let F = 4g(S)− 1 = 219 . In this case, KS(F − F(S)) is equal to

130, 134, 137, 141, 151, 154, 155, 158, 159, 160, 161, 162, 165, 166,
168, 172, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
189, 190, 191, 192, 193, 196, 197, 199, 200, 201, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220,
. . .

 .
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Then, by Theorem 2.6, {0}∪KS(F −F(S)) is an almost symmetric numerical semigroup with Frobenius number
219 and type 219− 2 · 55 = 109 .

The inverse map in Theorem 2.6 can be also explicitly described as we will see next. If S is a numerical
semigroup, we will write S∗ = S ∪ PF(S) . It is easy to see that S∗ is a relative ideal of S . The ideal
S∗ is called the dual of S \ {0} with respect to S . This term is justified by the fact that S∗ is equal to
{z ∈ Z | z + S \ {0} ⊆ S} .

Let us see that this star operation is the inverse of our application in Theorem 2.6.

Proposition 2.8 Let S be a numerical semigroup with genus g . If F is a positive integer greater than 2F(S) ,
then (

{0} ∪KS(F − F(S))
)∗

= S.

Proof By definition and the condition F > F(S) , KS(F − F(S)) ⊆ S . By Proposition 2.3 and the proof
of Theorem 2.6, and using once more that F > F(S) , we have that PF

(
{0} ∪ KS(F − F(S))

)
⊆ S . Thus,

KS(F −F(S))∗ ⊆ S . Now, #
(
N \

(
{0}∪KS(F −F(S))

)∗)
= g({0}∪KS(F −F(S)))− t({0}∪KS(F −F(S))) ,

and according to the proof of Theorem 2.6, this amount equals F − g(S)− (F − 2 g(S)) = g(S) . We conclude
that

(
{0} ∪KS(F − F(S))

)∗
= S . 2

Example 2.9 Consider, again, the numerical semigroup S generated by 21, 24, 25 , and 31 , and let T =

{0} ∪KS(F − F(S)) with F = 219 (see Example 2.7). The set of pseudo-Frobenius numbers of T is equal to

{21, 24, 25, 31, 42, 45, 46, 48, 49, 50, 52, 55, 56, 62, 63, 66, 67, 69, 70,
71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 131, 132, 133, 135, 136, 138, 139, 140, 142, 143,
144, 145, 146, 147, 148, 149, 150, 152, 153, 156, 157, 163, 164, 167, 169,

170, 171, 173, 174, 177, 188, 194, 195, 198, 219}.

Now, it is easy to check that T ∗ = S , as expected by Proposition 2.3.

Our correspondence provides a new characterization of almost symmetric numerical semigroups with high
type.

Corollary 2.10 Let T be a numerical semigroup with Frobenius number F and type t , with t ≥ (F − 1)/2

and F − t even. Then T is almost symmetric if and only if T ∗ is a numerical semigroup with genus (F − t)/2 .

Proof Necessity. If T is almost symmetric, as F − t is even, then F − t = 2g for some nonnegative integer
g , and t ≥ (F − 1)/2 yields F ≥ 4g − 1 . Thus, T = {0} ∪ KS(F − F(S)) for some numerical semigroup S

of genus g (Theorem 2.6). Notice that 2g − 1 ≥ F(S) , whence 2F(S) ≤ 4g − 2 < F . By Proposition 2.8, we
conclude that T ∗ = S , and we are done.
Sufficiency. Let S = T ∗ , and set g = (F −t)/2 , the genus of S . As S = T ∗ = T ∪PF(T ) , we have g = g(T )−t ,
and thus

g(T ) =
F − t

2
+ t =

F(T ) + t(T )

2
,

2503



GARCÍA SÁNCHEZ and OJEDA/Turk J Math

proving that T is almost symmetric. 2

The depth of a numerical semigroup has shown to play a special role in the study of Wilf’s conjecture
(see for instance [6, 9]). Let S be a numerical semigroup with Frobenius number F and multiplicity m , and
write F + 1 = qm− r for some integers q and r with 0 ≤ r < m . Then its depth is depth(S) = q .

Corollary 2.11 Let S be a numerical semigroup with genus g and let F be a positive integer greater than
2F(S) . The semigroup KS(F − F(S)) has depth equal to two.

Proof By Lemma 2.5, the multiplicity of KS(F −F(S)) is equal to F −F(S) . Write F +1 = 2(F −F(S))−
(F − F(S)− 1) . Then depth(S) = 2 . 2

Depth equal to two has a particular relevance, since Bras’ conjecture holds in the restricted class of
numerical semigroups having this depth [9].

3. The algorithm

Write A (F, t) for the set of almost symmetric numerical semigroups with Frobenius number F and type t ,
and let ng be the number of numerical semigroups with genus g . As an immediate consequence of Theorem
2.6 we obtain the following result.

Corollary 3.1 Let g ∈ N , and let F be a an integer greater than or equal to 4g−1 . Then number of numerical
semigroups with genus g is equal to the the number of almost symmetric numerical semigroups with Frobenius
number F and type F − 2g . That is,

F ≥ 4g − 1 implies #A (F, F − 2g) = ng.

With this corollary we can restate the weaker version of the conjecture appearing in [5], that is, that the
sequence ng is increasing. Notice that in order to prove that ng+1 > ng , one needs to show that

#A (F, F − 2(g + 1)) > #A (F, F − 2g),

for F large enough. This opens a new perspective to attack this conjecture.
We recall that the largest ng known so far appears in https://github.com/hivert/NumericMonoid.
As we mentioned in the introduction, almost symmetric numerical semigroups with high type are uniquely

determined by their sets of pseudo-Frobenius numbers.

Corollary 3.2 Let F ∈ N and let t ≥ (F −1)/2 . Every almost symmetric numerical semigroup with Frobenius
number F and type t is uniquely determined by its pseudo-Frobenius numbers.

Proof Let S′
1 and S′

2 be two almost symmetric numerical semigroups with Frobenius number F and type t

such that PF(S′
1) = PF(S′

2) . By (2.1), the genus of S′
1 and S′

2 , equals (F + t)/2 ; whence F − t = F + t− 2t is
even. Set 2g = F − t . Then 2F ≥ 4g+2t ≥ 4g+F −1 , which implies F ≥ 4g−1 . Thus, by Theorem 2.6, there
exist unique numerical semigroups S1 and S2 of genus g such that S′

i = KSi
(F − F(Si)) , i ∈ {1, 2} . Observe

that F ≥ 4g − 1 ≥ F(S1) + F(S2) + 1 , because, as we already mentioned above, F (Si) ≤ 2g − 1 , i ∈ {1, 2}
(see, for instance [14, Lemma 2.14]). Moreover, without loss of generality we may suppose that F(S1) ≤ F(S2) .
Thus, by the last part of Proposition 2.3, we have that {a ∈ S1 | 0 < a ≤ F(S1)} ∪ {F(S1) + 1, . . . ,F(S2)} ⊆
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{a ∈ S2 | 0 < a ≤ F(S2)} , which implies S1 ⊆ S2 or equivalently, N \ S2 ⊆ N \ S1 . Now, since both N \ S2 and
N \ S1 have cardinality g , we conclude that S1 = S2 , and consequently S′

1 = S′
2 . 2

Notice that in general a potential set of pseudo-Frobenius numbers does not uniquely determine a
numerical semigroup, [8], even under the almost symmetric condition. It may happen that several numerical
semigroups share the same set of pseudo-Frobenius numbers. Thus, the above result opens a new strategy to
determine almost symmetric numerical semigroups with large type with respect to the Frobenius number.

Example 3.3 There are 103 almost symmetric numerical semigroups with Frobenius number 20 , while when
computing their sets of psuedo-Frobenius numbers, we only get 62 different possible sets.

gap> l:=AlmostSymmetricNumericalSemigroupsWith
FrobeniusNumber(20);;

gap> Length(l);
103
gap> Length(Set(l,PseudoFrobenius));
62

For instance, there are 11 almost symmetric numerical semigroups with Frobenius number 20 and set of pseudo-
Frobenius numbers equal to {10, 20} . Also, the set of almost symmetric numerical semigroups with set of
pseudo-Frobenius numbers {8, 10, 12, 20} is

{〈7, 9, 15, 17, 19〉, 〈7, 11, 15, 16, 17, 19〉, 〈9, 13, 14, 15, 16, 17, 19, 21〉,
〈11, 13, 14, 15, 16, 17, 18, 19, 21, 23〉}.

In [4, Theorem 4.1], it is shown that each almost symmetric numerical semigroup of Frobenius F and type
t is obtained from an almost symmetric numerical semigroup of Frobenius F and type t + 2 . More precisely,
the following is proved.

Theorem 3.4 Let F ≥ 5 and t+2 ≤ F be a positive integer greater than 2 such that F + t is even. Then S′

is an almost symmetric numerical semigroup with Frobenius number F and type t if and only if there exist an
almost symmetric numerical semigroup S with Frobenius number F and type t+2 , and i ∈ {t+1, . . . ,m(S)−1}
such that

(a) S′ = {i} ∪ S ,

(b) −i+ N \ S′ ⊆ Z \ S′ , and

(c)
(
i+ (PF(S) \ {i, F − i})

)
⊆ S′ .

In this case, PF(S) = PF(S′) ∪ {i, F − i}.

Let us see that if t ≥ (F − 1)/2 , conditions (b) and (c) in Theorem 3.4 can be replaced by a simpler test.

Proposition 3.5 Let F ≥ 5 and let t ∈ [(F −1)/2, F −2] be an integer such that F + t is even. Then S′ is an
almost symmetric numerical semigroup with Frobenius number F and type t if and only if there exist an almost
symmetric numerical semigroup S with Frobenius number F and type t+2 , and i ∈ {t+1, . . . ,m(S)−1} such
that
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(a) S′ = {i} ∪ S , and

(b) (i+ (PF(S) \ {i, F − i})) ∩ (PF(S) \ {i, F − i}) = ∅ .

In this case, PF(S′) = PF(S) \ {i, F − i} and S′ is the unique almost symmetric numerical semigroup with set
of pseudo-Frobenius numbers equal to PF(S) \ {i, F − i} .

Proof Necessity follows from Theorem 3.4.
For the other implication, first observe that as S is almost symmetric, F − (t + 2) is even. Thus,

g = (F − (t + 2))/2 is a nonnegative integer. Moreover, F ≥ 4g − 1 , because t + 2 ≥ t ≥ (F − 1)/2 . Thus,
by Theorem 2.6, there exists a numerical semigroup T of genus g such that KT (F − F(T )) = S . Now, on the
one hand, by Proposition 2.3, we have that m(S) = F − F(T ) and, on the other hand, we have that, by [14,
Lemma 2.14], F(T ) ≤ 2g−1 ≤ (F −1)/2 ≤ t . Therefore, {t+1, . . . ,m(S)−1} ⊆ {F(T )+1, . . . , F −F(T )−1} ,
in particular, {t + 1, . . . ,m(S) − 1} ⊆ PF(S) in light of Proposition 2.3. Thus, both i and F − i are pseudo-
Frobenius numbers of S and PF(S) \ {i, F − i} has cardinality t .

Consider now S′ = S ∪ {i} and set PF ′ := PF(S) \ {i, F − i} . Since i ∈ PF(S) and 2i ∈ S because
2i ≥ 2t + 2 ≥ F . We have that S′ is a numerical semigroup and F(S′) = F , because i < F . Moreover,
PF ′ + a ∈ S ⊂ S′ , for every a ∈ S \ {0} , because PF ′ ⊂ PF(S) . Therefore, if PF ′ + i ⊂ S′ , then we have
PF ′ ⊆ PF(S′) .

Suppose that i + PF ′ 6⊂ S′ . Then there exists a ∈ PF ′ ⊂ PF(S) such that i + a 6∈ S′ . Thus,
a + i ∈ PF(S) . Finally, as i + a 6= i , because a 6= 0 , and i + a 6= F − i , because 2i > F , we conclude that
i+ a ∈ PF ′ ; in contradiction with condition (b).

Now we have PF ′ ⊆ PF(S′) , and we know that g(S′) ≥ (F(S′) + t(S′))/2 [13, Proposition 2.2].
Consequently, t ≤ t(S′) ≤ 2(g(S)− 1)− F(S) = t(S)− 2 = t . Whence t = t(S′) and by (2.1), we deduce that
S′ is almost symmetric.

The uniqueness of S′ follows from Corollary 3.2. 2

Example 3.6 Figure 1 illustrates how Proposition 3.5 can be used to compute the set of almost symmetric
numerical semigroups with high type for F = 15 .

If F = 15 , the only almost symmetric numerical semigroup with type F is {0, 16, . . .} . Then, by
Proposition 3.5, the only almost symmetric numerical semigroup with type F − 2 = 13 is S := {0, 14, 16, . . .} .
This is a general fact; with independence of the value of F , the almost symmetric numerical semigroup with
Frobenius number F and type F or F − 2 are {0, F + 1, . . .} or {0, F − 1, F + 1, . . .} , respectively.

Now, since S has multiplicity m(S) = 14 and type t(S) = 13 , we can adjoin to it either (t(S)−2)+1 = 12

or m(S) − 1 = 13 in order to produce possible almost symmetric numerical semigroups. In this case, both
operations yield almost symmetric numerical semigroups with Frobenius number F and type t(S)− 2 . Now, we
can repeat the same procedure with the new semigroups and so on.

Note that the possible candidates that can be added not always produce almost symmetric numerical
semigroups. For instance, the candidates that can be adjoined to the numerical semigroup S′ := {0, 12, 14, 16, . . .}
in the second column of Figure 1 are 9, 10 , or 11 . However, only the second one produces an almost symmetric
numerical semigroup which clearly has Frobenius number F (S′) = 15 and type 9 = t(S′)− 2 .

2506



GARCÍA SÁNCHEZ and OJEDA/Turk J Math

It is convenient to note that the tree depicted in Figure 1 is exactly the same as the tree of the numerical
semigroups with genus from 0 to 4 , as we already know by Theorem 2.6.

{0,10,13,14,16,...}

{0,10,11,13,14,16,...}

{0,8,11,13,14,16,...}
{0,11,13,14,16,...}

{0,11,12,13,14,16,...}

{0,10,12,13,14,16,...}

{0,9,12,13,14,16,...}

{0,8,12,13,14,16,...}

{0,12,13,14,16,...}

{0,13,14,16,...}

{0,8,10,12,14,16,...}
{0,10,12,14,16,...}

{0,12,14,16,...}

{0,14,16,...}
{0,16,...}

Figure 1. The tree of almost symmetric numerical semigroups with Frobenius number 15 and type t ∈ {15, 13, 11, 7, 9} .

We finally observe that we can continue the described procedure beyond type 7 . In fact, this is the
descending algorithm in [4]. Nevertheless, after type 9, almost symmetric numerical semigroups are not
determined by its pseudo-Frobenius elements. For instance, there are twelve almost symmetric numerical
semigroups with Frobenius number 15 and type 5 , but their set of families pseudo-Frobenius elements is

{
{2, 4, 11, 13, 15}, {3, 6, 9, 12, 15}, {4, 5, 10, 11, 15}, {4, 6, 9, 11, 15},

{4, 7, 8, 11, 15}, {5, 6, 9, 10, 15}, {5, 7, 8, 10, 15}, {6, 7, 8, 9, 15}
}

which has cardinality eight.

Let us see that the above results offer an alternative to compute ng .

Algorithm 3.7 The following GAP [10] code counts the number of almost symmetric numerical semigroups of
Frobenius number F = 4g − 1 and type F − 2j for each j ∈ {1, 2, . . . , d(F − 1)/4e} ; equivalently, by Corollary
3.1, the number of numerical semigroups with genus j, for each j ∈ {1, . . . , g} . The main function is nothing but
a recursive step that calls to the auxiliar function whose correctness relies in Proposition 3.5. We observe that
since the pseudo-Frobenius numbers uniquely determine a numerical semigroup by Corolary 3.2, we only need to
deal with pseudo-Frobenius sets. Moreover, by Corolary 3.2 again, in order to avoid unnecessary repetitions we
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can restrict the upper range of i in Proposition 3.5, the mentioned restriction is forced with the second argument
of the auxiliar function.

It is important to emphasize that our GAP code does not require to make calls to other libraries or
GAP packages. This makes our method more versatile and suitable to be implemented in other programming
languages.

auxiliar := function(PF,m,t,s)
local L,F,PF1,i,k,j;
L := []; F:=PF[t+2];
for i in [t+1 .. m-1] do
PF1:=Difference(PF,[i,F-i]);
k:=0;
for j in [1 .. s] do
if ((PF1[j]+i) in PF1) then
k:=1;
break;

fi;
od;
if k=0 then
Append(L,[[PF1,i]]);
fi;
od;
return L;

end;

counting_function := function(g)
local F,L,j,M,t,s,N;
F:=4*g-1;
L:=[[[1 .. F] ,F]];
for j in [1 .. g] do
M:=[];
t:=Length(L[1][1])-2;
s:=Int(t/2);
for N in L do
Append(M,auxiliar(N[1],N[2],t,s));
od;
L:=M;
Print("n", j, " = ", Length(L), "\n");
Unbind(M);GASMAN("collect"); #Cleaning Memory

od;
return Length(L);
end;

A quick comparison with the following GAP command (included in the GAP package numericalsgps
[7])

Length(NumericalSemigroupsWithGenus(g))
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evidences that our code is slightly faster for g ≥ 23 . For instance, if g = 26 our function, counting_function(26),
computes [n1, . . . , n26] in 17.335 seconds, while the above command takes 19.972 seconds to compute n26 . Both
computations have been performed running GAP in a Intel(R) Core(TM) i7-4770S CPU 3.10 GHz. This simple
evidence opens a door to more efficient and faster implementations.

Finally, we observe that, by Proposition 2.3 and Corollary 3.2, we can take advantage of the function
NumericalSemigroupByGaps included in the GAP package numericalsgps to recover the whole set semigroups
of genus g from our code. This can be done by just replacing return Length(L); with

return List(L, j->NumericalSemigroupByGaps(
Difference([1 .. (2*g-1)],j[1])));

With this modification, the computation of the whole set of numerical semigroups of genus g took 30.351

seconds.
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