
Classical ladder functions for Rosen-Morse and curved

Kepler-Coulomb systems

L. Delisle-Doraya, V. Hussinb, Ş. Kuruc, J. Negrod
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Abstract

Ladder functions in classical mechanics are defined in a similar way as ladder op-
erators in the context of quantum mechanics. In the present paper, we develop a new
method for obtaining ladder functions of one dimensional systems by means of a prod-
uct of two ‘factor functions’. We apply this method to the curved Kepler-Coulomb
and Rosen-Morse II systems whose ladder functions were not found yet. The ladder
functions here obtained are applied to get the motion of the system.

PACS:

KEYWORDS:

1 Introduction

In quantum mechanics the knowledge of symmetry operators Ŝ that commute with the
Hamiltonian operator Ĥ of the system is very important. The set of symmetry operators
closes, under the composition operation, a ‘symmetry algebra’. This type of operators gives
useful information on the system, in particular they explain the degeneracy of the energy
levels and also they can supply the spectrum. A second type of interesting operators are
called ladder operators Â. They do not commute with the Hamiltonian, but satisfy simple
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commutation rules of conformal type: [Ĥ, Â] = α(Ĥ)Â, where α(Ĥ) designs a certain func-
tion of Ĥ. When such operators exist, they connect eigenspaces of different energies; the
paradigmatic case is given by the lowering and raising operators of the harmonic oscillator
a±. If we include both, symmetry and ladder operators, we get a ‘spectrum generating
algebra’ [1, 2, 3].

In the frame of the Hamiltonian formalism of classical mechanics, the symmetries are
generated by functions S(x, p) of the canonical variables such that the Poisson bracket with
the Hamiltonian function H(x, p) vanishes: {H,S} = 0. The surfaces defined by the values
of such functions, S(x, p) = s0, are made of trajectories of the system and any trajectory
must be included in one of such surfaces. Although much less known, one can also define
ladder functions A(x, p) for classical systems as those satisfying the corresponding Poisson
bracket with the Hamiltonian: {H,A} = i α(H)A. In the classical context, the ladder
functions supply information on the motion of the system.

The aim of this paper is to find the ladder functions of two families of one dimen-
sional systems known as Rosen-Morse II (RMII) [4, 5] and curved Kepler-Coulomb (KC)
[6, 7, 8, 9]. Ladder functions for other one dimensional systems have been computed in
previous works [10, 11], but they were still missing for the RMII and curved KC systems,
in particular. The ladder functions of these two systems are considerably more elaborate,
and the purpose of this work is to introduce a procedure to get them. In this way, we want
to complete the knowledge of this type of functions for the whole list of classical systems
corresponding to the quantum systems solved by means of the factorization method as
given by Infeld-Hull [4, 12].

The structure of the paper is as follows. In Section 2, we introduce the ladder functions
and some of their basic properties. Next, in Section 3, we show our method to compute
ladder functions as a product of two ‘factor functions’. Then, in Section 4 we apply this
method to the RMII and show that it includes the well known results for the Pöschl-
Teller system as a particular case. Next, in Section 5 we deal with the curved KC system.
Section 6 considers the limit from curved to flat KC systems and the case with zero angular
momentum in order to get the formulas obtained previously by other methods. Some
remarks will end the paper in the last section.

2 Basic theory

2.1 Definition of ladder functions

Let H be a one-dimensional Hamiltonian with canonical coordinates (x, p) defined as

H = p2 + V (x) . (2.1)

We want to find two complex functions A±(x, p) defined on (some part of) the phase space
(x, p), that together with the Hamiltonian H(x, p) satisfy the following Poisson bracket
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algebra [10, 11, 13]:
{H,A±} = ∓iα(H)A±, (2.2)

{A+, A−} = iβ(H), (2.3)

where, in principle, α(H) and β(H) are real functions which depend on H. We also may
assume that α(H) be positive. Such an algebra is a classical analog of the generalized
Heisenberg algebra (GHA), which is satisfied by ladder operators, with respect to commu-
tators, in quantum mechanics [14, 15]. Since (2.3) can be deduced from (2.2), and since
the ladder functions A± can in general be taken to be complex conjugate of each other,
A+ = (A−)∗ (at least for bound states), only one of the equations (2.2) will be relevant.
From (2.2) we can also deduce a type of factorization in the following form:

δ(H) = A+A−, (2.4)

where δ(H) is a certain function depending only on H. This is the reason why the lad-
der functions are also referred as the classical counterpart to the factorization method in
quantum mechanics. We will note however that (2.4) is actually weaker than its quantum
analog because of the commutativity of the product of phase-space functions. We will refer
to it as the factorization condition, satisfied by a much richer variety of couples of “factor
functions” than just the ladder functions. In fact, this condition will be quite useful to
construct the ladder functions.

In this paper, we assume that the potential V (x) has the form of a well, and we want
to describe the bounded motion of the system in that well. Then, the motion with energy
H = E will be periodic between two turning points x± determined by two solutions of
the equation E = V (x) (where p = 0). The value of the physical frequency ω(H) (and its
period T (H)) is given by

ω(H) ≡ 2π

T (H)
=

2π∫ x+
x−

dx′√
H−V (x′)

. (2.5)

Now, the ladder functions A± of this system, satisfying (2.2), will determine the constants
of motion Q± (depending explicitly on time) defined by [11]

Q±(x, p, t) = A±(x, p)e∓iα(H)t . (2.6)

This can be easily proved, since

dQ±

dt
= {Q±, H}+

∂Q±

∂t
= 0 .

The constant complex values of Q± will be denoted by qe±iθ0 . Then, the equations

A±(x, p)e∓iα(H)t = qe±iθ0 (2.7)
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will lead to the motion (x(t), p(t)) of the system in the phase space in an algebraic way.
As a consequence, the motion will have a frequency given by the exponent α(H), and
therefore it should be equal to the physical frequency, α(H) = ω(H) for ‘fundamental’
ladder functions A±. Other ladder functions, such as Ã± = (A±)n, n = 1, 2, . . . will
produce multiple frequencies α(H) = nω(H). The ladder operators (or functions) with
multiple frequencies n > 1 have applications in some problems, for instance in order to
find higher order symmetries of superintegrable systems [16, 17].

2.2 Ladder functions in the variables (x,H)

The object of this section is to change from the canonical variables (x, p) to another more
practical set (x,H) and to develop an integral formula for a ladder function satisfying (2.2).
This formula will not necessarily be useful to calculate an explicit (analytic) form for the
ladder functions, but it will supply us with some information about its behaviour in the
phase space.

If we introduce in the differential equation (2.2) the change of variables (x, p)→ (x,H)
with p(x,H) = ±

√
H − V (x) for each part of the half planes p > 0 and p < 0, then, using

the chain rule, the Poisson bracket (2.2) for the functions A±(x,H) becomes:

{H,A±(x,H)} = −2p
∂A±(x,H)

∂x
= ∓iα(H)A±(x,H) . (2.8)

Remark that this is not a change of canonical variables since (x,H) are not canonical.
Notice also that eq. (2.8) is only valid for each half-plane taken separately and not for
p = 0. This equation represents in fact two differential equations, one for each half-
plane. To make this a bit clearer we introduce an index variable η = ±1 defined by
p = η

√
H − V (x). Then, eq. (2.8) is rewritten as:

iα(H)A±(x,H, η) = ±2η
√
H − V (x)

∂A±(x,H, η)

∂x
, (2.9)

and its integration yields the formula (for each H, V (x) < H):

A±(x,H, η) = B(H, η) exp

(
±iηα(H)

2

∫ x

xm

dx′√
H − V (x′)

)
, (2.10)

where B(H, η) is an integration constant, and the definite integral runs from any position
xm ∈ (x−, x+) such that V (xm) < H. Thus, formula (2.10) represents any algebraic ladder
function A that satisfies (2.2) with respect to the function α(H) in these two regions.

The turning points x± are the ones for which p = 0, as mentioned above. In the
coordinates (x,H) they are given by x±(H) with H = V (x±), so that the points x± also
determine the value H(x±). The continuity of the ladder functions A±(x, p) implies that
A±(x,H, η), defined by (2.10), satisfy:

lim
(x,H)→(x±,H(x±))

A±(x,H,+) = lim
(x,H)→(x±,H(x±))

A±(x,H,−) .
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3 Construction of ladder functions as a product of factor
functions

3.1 Contribution of factor functions

As it was mentioned in the introduction, we want to combine ‘factor functions’ to obtain a
ladder function. To do this we need a way to keep track of the contribution of each factor
function. Let us take two factor functions f(x,H) and g(x,H), such that they verify the
factorization condition (2.4):

f∗f = δf (H), g∗g = δg(H) , (3.1)

for some functions δf (H) and δg(H) of H. Now, notice that since the Poisson bracket
satisfies the Leibniz’s rule,

{H, fg} = f{H, g}+ {H, f}g , (3.2)

dividing by fg, we have
{H, fg}
fg

=
{H, f}
f

+
{H, g}
g

. (3.3)

It is thus useful to introduce the following notation:

Λ(f) =
{H, f}
f

. (3.4)

This function Λ(f) will be called the ‘contribution’ of f and eq. (3.3) will be reformulated
as

Λ(fg) = Λ(f) + Λ(g). (3.5)

The ladder bracket (2.2) is now equivalent to

Λ(A±) = ∓iα(H). (3.6)

Hence, if after adding the contributions (3.5) of two factor functions, the sum is a function
depending only on H, then the product fg will constitute a good ladder function (at least
algebraically speaking).

The most useful ansatz for a factor function in the search of ladder functions, suggested
by the form of other simpler cases [10], is

f(x,H) = a(x,H) + i b(x,H)p , (3.7)

with a(x,H) and b(x,H) real functions depending on the variables x and H. For such a

function, using p2 = H − V (x) and p′ = −V ′(x)
2p , its contribution is given by:

Λ(f(x, p)) = i
2(H − V )(a′b− b′a) + V ′b a

δf (H)
, (3.8)
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where the derivative is taken with respect to x maintaining H constant.
Another useful fact about Λ is that we can handle exponents more easily. Let us assume

that we can define the exponent of a function f using a well chosen determination of the
complex logarithm fρ(H) = exp[ρ(H) log(f)], then it is easily seen from (3.2) and (3.4) that
we will have:

Λ(fρ(H)) = ρ(H)Λ(f). (3.9)

Some technicalities arising from the proper definition of exponent in the complex plane
will have to be addressed if necessary.

3.2 Signature

In this subsection we will introduce a necessary and sufficient condition for a ladder function
to be dynamically valid, i.e., α(H) = nω(H), n = 1, 2, . . . (under the standard assumption
of continuous differentiability). We start by assuming that we have the functions A±(x, p)
which satisfy (2.2) with a certain function α = α(H) in a symmetric simply connected
region R of the plane (including a segment of p = 0 as its axis of symmetry). We can
then introduce two corresponding functions A±(x,H, η) of (x,H) in each region p ≥ 0 and
0 ≤ p, using the index parameter η = ±1 defined in Sect. 2 (p = η

√
H − V (x)). Now, this

means that for the two half-regions p > 0 and p < 0, the representation (2.10) is valid.
Then, if α(H) = nω(H) with ω(H) defined by (2.5), we will have that

A±(x+, H, η) = (−1)nA±(x−, H, η). (3.10)

To see this, we just divide A±(x+, H, η) by A±(x−, H, η) and we expand the argument
of the exponential using the fact that

∫ xm
x−

+
∫ x+
xm

=
∫ x+
x−

. Taking into account (2.5), this

gives einπ = (−1)n. In the same way, it is easily shown that (3.10) implies α(H) = nω(H)
(sufficiency). We call condition (3.10) antiperiodic if n is odd (this contains the privileged
case n = 1, i.e. the ‘fundamental’ ladder functions) and periodic if n is even.

Now, we can define for any factor function f(x,H) its signature Γ(f) by

Γ(f) =
f(x+, H)

f(x−, H)
. (3.11)

Thus, Γ(f) = 1 corresponds to the periodic case and Γ(f) = −1 to the antiperiodic case.
The following simple property of the signature is really useful:

Γ(fg) = Γ(f)Γ(g). (3.12)

If A± = fg, this will allow us to calculate the signature of A± from that of each factor
function.

The behaviour of the signature with respect to exponentiation is subtler and has to be
examined more carefully. First, remark that in the case of a function of the form f given

6



-3 -2 -1 1 2 3
x

-4

-3

-2

-1

1

2

V(x)

Figure 1: Plot of the Rosen-Morse II potential for B = 2, C = 4. The dashed line corresponds to
E = −B.

by (3.7), the signature reduces to the calculation of the ratio:

Γ(f) =
a(x+, H)

a(x−, H)
. (3.13)

Therefore, if both a(x+, H) and a(x−, H) are positive, we will simply have:

Γ(fρ(H)) = Γ(f)ρ(H). (3.14)

Finally, the function f given by (3.7) that satisfies the factorization condition (2.4)
with its complex conjugate, leads to

a2 + b2p2 = δf (H). (3.15)

From this and (3.13), it is easy to see that Γ(f)2 = 1 so that Γ(f) = ±1 at p = 0. This
will allow us to determine the signature of the function by simple analytic arguments.

4 The Rosen-Morse II system

In this section we consider the RMII system [4, 18] defined by the Hamiltonian

H = p2 +B tanhx− C

cosh2 x
, x ∈ R , (4.1)

where B and C are real parameters. In order to have the shape of a well, we will assume
that C > 0. We will look for ladder functions of this system in the region of the phase-space
H(x, p) < −|B|, where the motion is bounded and periodic (see Fig. 1).
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4.1 Ladder functions

We will look for the fundamental ladder functions satisfying (2.2) and such that α(H)
is the frequency. The process is similar to the simplest cases as the harmonic oscillator,
Pöschl-Teller, etc. but in this case it is a bit more complex. We will need two sets of factor
functions that factorize the RMII Hamiltonian in the sense (2.4), such that they will be
the basic ingredients of the fundamental ladder functions.

The first set of factor functions fε, where ε = ±1, is given by

fε = aε + ib p, (4.2)

where

b(x) = coshx, aε(x,H) = b(x)

(
φε(H) tanhx+

B

2φε(H)

)
. (4.3)

Then, the factorization condition (3.1) is fulfilled with

δfε(H) = C − φε(H)2, (4.4)

where φε(H) is

φε(H) =

√
−H +B + ε

√
−H −B

2
, (4.5)

and

φε(H)2 =
−H + ε

√
H2 −B2

2
. (4.6)

The second set of factor functions gε is given by

gε = cε − idεp, (4.7)

where

dε(x) =
1

tanhx− ε
, cε(x,H) = dε(x)

(
(B + 2εC) tanhx+ εB − 2(H + C)

2
√
−H + εB

)
. (4.8)

The factorization condition (3.1) is satisfied with the function

δgε(H) =
B2 + 4C(C +H)

4(−H + εB)
. (4.9)

One may be surprised by the fact that there are essentially two simple forms of ladder
functions given by fε and gε. However, the origin of these solutions is easy to explain. The
first factorization comes after writing the Hamiltonian (4.1) in the form

C = (B tanhx−H) cosh2 x+ p2 cosh2 x = (aε + ibp)(aε − ibp) + φε(H)2 . (4.10)
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The second factorization comes if we rewrite (4.1) in terms of tanhx,

H + 2C = p2 + (B + ε2C) tanhx+ C(tanhx− ε)2 , x ∈ R , (4.11)

or

C =
p2

(tanhx− ε)2
+

(B + ε2C) tanhx− (H + 2C)

(tanhx− ε)2
, x ∈ R , (4.12)

whose immediate factorization leads to the second pair (4.7)-(4.8).
The calculations of the contribution and signature of each function are now straight-

forward. In the Appendix we give an analytic argument for the values of the signature.
The results are given in the following set of relations:

Λ(fε) = i(2φε(H) +
B

φε(H)
tanhx), Γ(fε) = −ε,

Λ(gε) = −2i
√
−H + εB (tanhx+ ε), Γ(gε) = −1 .

(4.13)

Our strategy is as follows: we form different products of two of these factor functions

such as f
γ(H)
ε1 g

σ(H)
ε2 , f

γ(H)
1 f

σ(H)
−1 , g

γ(H)
1 g

σ(H)
−1 and choose the exponents to make the tanhx

dependence in (4.13) cancel against each other and, at the same time, to satisfy the an-
tiperiodic condition. For all these products we have to carefully treat the exponents which
could take values in the complex plane in general. There are however products that we can
deal with without worrying too much about this issue. Indeed, as we have shown in the
derivation of the signature of f±1 (see Appendix), we have the useful result a−1(x,H) > 0.
This means that the image of f−1 = a−1 + ibp is confined to the half-plane Re(z) > 0 of the
complex plane. In this region, we can simply use the principal determination of the loga-
rithm (which is continuous everywhere except on the half-line {z : Re(z) ≤ 0, Im(z) = 0}
) to define the exponent f

γ(H)
−1 as a continuous function of (x, p) (in the region where

H < −B). Also this means that we can use (3.14) to calculate its signature: Γ(f
γ(H)
−1 ) = 1.

In order to get a ladder function, let us thus define the following products:

Aε = f
γε(H)
−1 gε (4.14)

with

γε(H) =
2φ−1(H)

√
−H + εB

B
. (4.15)

We use (3.5) and (3.9) to deduce the formula

Λ(Aε) = γε(H)Λ(f−1) + Λ(gε) = −iε 4
√
H2 −B2

√
−H +B +

√
−H −B

≡ −iεα(H) . (4.16)

Now, the properties of the signature (3.12) and (3.14) together with (4.13), applied
for the chosen factor functions in (4.14), allows us to check that Γ(Aε) = −1. Thus, we
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Figure 2: Plot of the motion x(t) in the Rosen-Morse II potential with B = 2, C = 4, and energy
values: E = −2.2 (left), E = −3 (center) E = −4 (right). The left and right vertical lines are
for the values x− and x+ bounding the motion. The motion in the graphic is restricted to two
oscillations.

conclude that we have an algebraically valid ladder function for the region H < −|B| with
the equality α(H) = nω(H), where n must be odd. In the next subsection we show that
n = 1 by considering the case B = 0. This means that we have found a set of fundamental
ladder functions given by A± = A±1. In fact, we have independently checked that the value
of the natural frequency is indeed given in (4.16) by a direct evaluation of the integral (2.5)
for the RMII potential:

ω(H) =
2π∫ x+

x−
dx′√

H−V (x′)

=
4
√
H2 −B2

√
−H +B +

√
−H −B

. (4.17)

As a consequence, according to the expression of the constant of motion (2.7) and
(4.14), the motion of a particle in the MRII potential (for B > 0 and ε = −1) is given by

γ−1(E) arctan

[
p(x,E)

φ−1(E) tanhx+ b/(2φ−1(E))

]
+

arctan

[
−2p(x,E)

√
−E −B

(B − 2C) tanhx−B − 2(E + C)

]
− ω(E)t = θ0 ,

(4.18)

where θ0 is a constant fixing the initial time. A plot of some examples of this motion for
some particular values of the energy E is shown in Fig. 2.

4.2 The Pöschl-Teller potential

The (hyperbolic) Pöschl-Teller (PT) potential is a particular case of the Rosen-Morse
potential when B = 0:

H = p2 − C

cosh2 x
, x ∈ R. (4.19)
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In this section, we want to check that the ladder functions of the RMII potentials in the
previous subsection, when taking the limit B → 0, agree with the known ladder functions of
PT [10, 19]. In this way, we will also prove the claim made at the end of the subsection that
we have fundamental ladder functions for our potentials (n = 1 in (4.16)). The realization
of the GHA of this system is considered at the quantum and classical levels in [19, 20]. We
quote the classical ladder functions obtained there:

A±PT (x, p) = ∓ip coshx+
√
−H sinhx . (4.20)

The value of the function α(H) obtained in that reference is

αPT (H) = ωPT (H) = 2
√
−H. (4.21)

In this case, the functions (4.20) constitute a system of fundamental ladder functions.
We now show that the expression given in the previous section for the ladder functions

A± ≡ A±1 = f
γ±1

−1 g±1

agrees with (4.20) in the limit B → 0.
Firstly, after some computations, we can write the expression for f±1 as follows

f±1 = φ∓1 coshx+ φ±1 sinhx+ ip coshx . (4.22)

We deduce from this and from (4.5) that for B = 0 (φ−1 = 0, φ+1 =
√
−H),

f−1(x,B = 0) = (
√
−H + ip) coshx . (4.23)

We then write the expression for gε for B = 0 from (4.7) as

gε(x,B = 0) =
εC√
−H

+

√
−H − ip

tanhx− ε
. (4.24)

The value of the exponent (4.15) is then seen to be

γε(B = 0) =

√
−H

φ+1(B = 0)
= 1 . (4.25)

So, finally the calculation of A± reduces to:

Aε = f−1(B = 0)gε(B = 0) = − C√
−H

(
√
−H sinhx− iεp coshx) . (4.26)

We conclude from this and (4.20) that indeed our expressions in the limit B = 0 corresponds
to the known results (4.20) up to a function of H:

A±(B = 0) = − C√
−H

A±PT . (4.27)
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Thus, we have
αRM (B = 0) = nω(B = 0) = ωPT = 2

√
−H. (4.28)

From this, we deduce that n = 1 for RMII. Remark that, in the simpler case of the PT
system, the ladder functions (4.20) can be obtained simply in the form f+1(x, p) = A−(x, p),
making use of one factor function (4.22).

5 The curved Kepler-Coulomb system

The Hamiltonian associated to the curved Kepler-Coulomb problem in the radial coordinate
r can be written as [6, 7, 9, 21, 22, 23] (sometimes this is also referred to as the Eckart [24]
or Hulthén [25, 26] potential):

Hκ = p2 + Vκ(r) = p2 − B
√
κ

tanh
√
κ r

+
`2κ

sinh2√κ r
, (5.1)

where ` is the angular momentum and κ is a curvature parameter. Depending on the sign
of κ this expression will include the KC problem on the sphere (κ < 0), the plane (κ = 0),
or hyperboloid (κ > 0). The corresponding formulas for the values κ = −1, κ = 0, κ = 1,
are respectively

H1 = p2 − B

tanh r
+

`2

sinh2 r
, 0 < r < +∞ ,

H0 = p2 − B

r
+
`2

r2
, 0 < r < +∞ ,

H−1 = p2 − B

tan r
+

`2

sin2 r
, 0 < r < π .

(5.2)

In Fig. 2 it is shown the form of the potentials for different values of κ. In order to have
the shape of a well for κ ≥ 0, we will assume that the potential is attractive (B > 0) and

2`2
√
κ < B, 0 ≤ κ .

Unless otherwise stated, we will restrict in this section to the case κ > 0. We also re-
mark that from the curved KC Hamiltonian H1 in (5.2) we can formally get the RMII
Hamiltonian HRM by means of a complex displacement:

HRM(p, x) = H1(p, x+ i
π

2
) . (5.3)

We computed directly the physical frequency ω(H) for arbitrary κ, and the explicit
formula is given by

ω(H) =
4
√
κ
√
H2 −B2κ√

−H +B
√
κ−

√
−H −B

√
κ
. (5.4)

12



0.5 1.0 1.5 2.0 2.5 3.0
x

-10

10

20

V(x)

Figure 3: Plot of the curved Kepler-Coulomb potential with the parameters B = 8, `2 = 1 for
κ = 1 (continuous), κ = 0 (dashed-dotted), κ = −1 (dotted). The dashed blue horizontal line
corresponds to E = −B.

Therefore, we would like to find ladder functions with associated bracket function α(H) =
ω(H) as given by (5.4). As before, following our procedure, we introduce the four factor
functions fε and gε with ε = ±1. The first factor function fε is defined as in (4.2), but
now

b(r) = sinh
√
κ r, aε(r,H) = b(r)

(
φ̃ε(H)

tanh
√
κ r
− B

√
κ

2φ̃ε(H)

)
, (5.5)

with

φ̃2ε =
−H + ε

√
H2 −B2κ

2
. (5.6)

The factor function gε is defined by the formula (4.7), where

dε(r) =
−1√

κ(coth
√
κ r + ε)

, (5.7)

cε(r,H) = dε(r)

(
−(B
√
κ+ ε2`2κ) coth

√
κ r + εB

√
κ− 2(H + `2κ)

2
√
−H + εB

√
κ

)
. (5.8)

In this case, the factorization condition (3.1) is satisfied, respectively, with

δfε(H) = −`2κ+ φ̃ε(H)2, (5.9)

and

δgε(H) =
B2κ+ 4l2(l2κ+H)

4(−H + εB
√
κ)

. (5.10)

At this point, we remark the similarity of the previous formulas of the factor functions for
KC for κ = 1, with those for the Rosen-Morse II systems, in agreement with the above
comment (5.3) on the relation between these Hamiltonians.
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The calculation of the contribution and signature proceed in exactly the same way as
in the previous section and we obtain:

Λ(fε) = i
√
κ(2φ̃ε(H)− B

√
κ

φ̃ε(H)
coth

√
κ r), Γ(fε) = ε,

Λ(gε) = 2i
√
κ
√
−H + εB

√
κ (ε− coth

√
κ r), Γ(gε) = −1 .

(5.11)

Notice the different sign in the signature of fε. This reflects the fact that all the analytic
properties of fε are reversed from the previous case, so that here we have a1(x,H) > 0.
We will then form the products:

Aε = f
γ̃ε(H)
1 gε, (5.12)

where

γ̃ε(H) = −2φ̃1(H)
√
−H + εB

√
κ

B
√
κ

. (5.13)

From this and the same computations as in the last section, we deduce that

Λ(Aε) = −iε 4
√
κ
√
H2 −B2κ√

−H +B
√
κ−

√
−H −B

√
κ
≡ −iεα(H), (5.14)

together with the signature
Γ(Aε) = −1 . (5.15)

Thus, here we have also obtained fundamental ladder functions (5.12) with ω(H) = α(H).
The motion (for B > 0 and ε = −1) is given by

γ̃−1(E) arctan

 p(x,E)
φ̃1(E)
tanhx −

B
2φ̃1(E)

+

arctan

[
2p(x,E)

√
−E −B

(−B + 2`2) cothx−B − 2(E + `2)

]
− ω(E)t = θ0 .

(5.16)

Some examples of motion in the curved KC potential for different values of the energy are
represented in Fig. 4.

6 The cases ` = 0 and κ→ 0

6.1 The limit `→ 0

We will start with the expression (5.12) and choose the parameter ε = −1 which corresponds
to the ladder function A−, according to the sign in (5.14). We will compare the limit `→ 0
with that found by the action-angle method [27], thus we start with the expression

A− ≡ f γ̃−1(H)
1 g−1, (6.1)
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Figure 4: Plot of the motion x(t) in the curved CK potential with B = 8, `2 = 1, and energy
values: E = −10 (left), E = −13 (center) E = −16 (right). The left and right vertical lines are
for the values x− and x+ bounding the motion. The motion in the graphic is limited to three
oscillations.

where

g−1 =
1√

κ(1− coth
√
κ r)

(
(−B
√
κ+ 2`2κ) coth

√
κ r −B

√
κ− 2(H + `2κ)

2
√
−H −B

√
κ

+ ip

)
(6.2)

and

f1 = sinh
√
κ r

(
φ̃1(H)

tanh
√
κ r
− B

√
κ

2φ̃1(H)
+ ip

)
, (6.3)

being the exponent

γ̃−1(H) = −2φ̃1(H)
√
−H −B

√
κ

B
√
κ

. (6.4)

After some computations and taking `→ 0, we find

g−1 = − B

2
√
−H −B

√
κ

(
1 + coth

√
κ r

1− coth
√
κ r

+
2H

B
√
κ (1− coth

√
κ r)

+ 2 i p

√
−H −B

√
κ

B
√
κ (1− coth

√
κ r)

)
.

(6.5)
If we write the other factor in expression (6.1) in the exponential form

f
γ̃−1(H)
1 = |f1|eiφ(r,p), (6.6)

we obtain the same expression of the ladder function A+ as in [27].

6.2 The limit κ→ 0

If we take the limit κ→ 0 of the ladder function A− defined in (6.1), we should obtain the
corresponding ladder function of the Kepler-Coulomb system in flat space:

H0 = p2 + V0(r) = p2 − B

r
+
`2

r2
, 0 < r < +∞ . (6.7)
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We can write eq. (6.1) in the following form

A+ ≡
(
|f1| e

i arctan
b1p
a1

)γ̃−1(H)

(c−1(r,H) + id−1(r) p) . (6.8)

After taking the limit κ→ 0 of this expression, we arrive to the final result

A± = F (H0)

(
− B

2
√
−H0

+
√
−H0 r ∓ i p r

)
e± i χ(r,p,H0) , (6.9)

where F (H0) is a function of H0 and

χ(r, p,H0) = −2
√
−H0

B
p r . (6.10)

The limit κ→ 0 the frequency (5.4) becomes

ω(H0) =
4

B
(−H0)

3/2 . (6.11)

The factorization κ→ 0 in terms of these ladder functions becomes

− `2 = A+A− + λ = r2 p2 −B r − r2H0 , λ =
B2

4H0
, (6.12)

where H0 = −e takes negative values. They satisfy the Poisson brackets

{A+, A−} =
i B√
−H0

, {H,A±} = ∓ i ω(H0)A
± . (6.13)

All these expressions are in full agreement with those published in [11].

7 Concluding remarks

In this paper, we have characterized the ladder functions corresponding to the one dimen-
sional systems known as Rosen-Morse II and curved Kepler-Coulomb. These two families
of one dimensional systems are the classical version of some of the factorizable solvable
systems in quantum mechanics [12]. In fact, they were the only ones for which ladder func-
tions were not yet computed (except the trigonometric counterparts which can be dealt
in the same way, their explicit solutions will be published elsewhere); therefore this work
constitutes de completion of a program on the motion and algebraic properties of classical
one dimensional systems. One important remark that should be mentioned is that there is
a close connection of ladder functions and action–angle variables [13].

The ladder functions here found are much more complicated than those of the systems
already known. This is reasonable since, for instance, the motion of the KC system in
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curved space is much more complicated to describe than that in flat space (which may be
found in standard textbooks [?]). Therefore, we had to introduce new methods in order
to obtain these new ladder functions. The main results of this paper are summarised in
(i) the general formulas (4.14) and (5.12) for the ladder functions and (ii) the implicit
equations for the motion (4.18) and (5.16) of these systems. We have checked that the
formulas here obtained are consistent with the previous ones known for the Pöschl-Teller
and flat Kepler-Coulomb potentials by means of appropriate limits.

There is one further comment concerning the freedom of the two possible choices ε = ±1
for the final ladder functions Aε, due to the factor functions gε. One way to make the right
choice (at least for RMII with B > 0 and KC with κ ≥ 0), is to pay attention to the
complex character of gε(x,H): this function should be complex for H < −B, such that if
gε = cε − idεp as given in (4.7), then its complex conjugate should be g∗ε = cε + idεp in
order to describe bounded motions. However, the unbounded motions for H > −B, are
described by factor functions which satisfy gε(x,H) = gε(x,H)∗ (up to a global sign) so
that they will essentially be real. This is what happens if ε = −1 for both cases RMII and
KC above mentioned. This change of character depending on the value of H for the ladder
functions was satisfied for all the other simpler cases discussed in [10]. In this respect, it
is also known that in quantum mechanics the character of the symmetry algebra depends
on the value of the Hamiltonian operator, hence this algebra may change from compact to
non compact when the energy values belong to the discrete or to the continuous spectrum.

The one dimensional systems, although not realistic in most physical problems, have
considerable interest. For instance, integrable systems can be separated into a set of one
dimensional problems. In particular, many superintegrable systems in higher dimensions
can be separated in some classes of one dimensional systems which have ladder functions.
In this case, the ladder functions together with the so called ‘shift functions’ allow to get
the symmetries and then, prove the superintegrability in a straightforward way [16, 17].

The ladder functions are the classical analog of the ladder operators in quantum me-
chanics. Such ladder operators are used in the construction of quantum coherent states,
while in the classical context the ladder functions allow to characterize the classical motion.
Therefore, the knowledge of such functions and operators constitute a natural approach to
connect classical and quantum systems [13, 19, 28]. The construction of ladder operators
for the quantum RMII and KC systems as well as their coherent states will be investigated
in the near future.
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Appendix: Signature of fε and gε for RMII)

We will determine the signature of the functions fε and gε defined by (4.2) and (4.7) with a

simple argument by taking into account the fact that Γ(fε) = aε(x+,H)
aε(x−,H) = ±1 and a similar

expression for Γ(gε) because of the factorization condition.
The point is to show that for ε = 1, a′1(x,H) is never equal to zero while for ε = −1

a−1(x,H) is never equal to zero, where ′ denotes the differentiation with respect to x.
Thus, in the case ε = 1, the function is strictly increasing or decreasing, which implies it
is one to one so that aε(x+,H)

aε(x−,H) 6= 1. In the case ε = −1, the function is always positive (or

negative), so that aε(x+,H)
aε(x−,H) 6= −1.

For ε = 1, we see from the definition (4.3) of aε that a′1(x,H) = 0 if and only if
φ1(H) coshx+ B

2φ1(H) sinhx = 0. This would imply that for a value of x we have tanhx =

−2φ21
B . But since −1 < tanh(x) < 1 this is only satisfied if:

2φ1(H)2

B
< 1. (7.1)

If we develop this equation using eq. (4.6) for φ1 we see that it cannot be satisfied and thus
a′1(x,H) does not cancel and Γ(f1) = −1.

For ε = −1, the condition for the cancelation of a−1(x,H) is the same: 2φ1(H)2

B < 1.
This can be seen from the fact that a−1(x,H) = a′1(x,H), which may be shown by using
the relation φ1φ−1 = 2B. We thus have Γ(f−1) = 1. Finaly, we obtain a−1(x,H) > 0 by
evaluating a−1(x,H) at x = 0.

For the function gε, the argument is simpler since c′ε(x,H) =
√
−H+εB(tanh2 x−1)

(tanhx−ε)2 = 0

implies tanh2 x = 1 or εB−H = 0 which is excluded. Thus because cε(x,H) is one to one,
Γ(gε) = −1.
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