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Coherent States in Quantum Optics: 1

An Oriented Overview 2

Jean-Pierre Gazeau 3

Abstract In this survey, various generalizations of Glauber–Sudarshan coherent 4

states are described in a unified way, with their statistical properties and their 5

possible role in non-standard quantizations of the classical electromagnetic field. 6

Some statistical photon-counting aspects of Perelomov SU(2) and SU(1, 1) coher- 7

ent states are emphasized. 8

Keywords Coherent states · Quantum optics · Quantization · Photon-counting 9

statistics · Group theoretical approaches 10

1 Introduction 11

The aim of this contribution is to give a restricted review on coherent states in 12

a wide sense (linear, non-linear, and various other types), and on their possible 13

relevance to quantum optics, where they are generically denoted by |α〉, for a 14

complex parameter α, with |α| < R, R ∈ (0,∞). Many important aspects of these 15

states, understood here in a wide sense, will not be considered, like photon-added, 16

intelligent, squeezed, dressed, “non-classical,” all those cat superpositions of any 17

type, involved into quantum entanglement and information, . . . . Of course, such a 18

variety of features can be found in existing articles or reviews. A few of them [1–6] 19

are included in the list of references in order to provide the reader with an extended 20

palette of various other references. 21

We have attempted to give a minimal framework for all various families of 22

|α〉’s which are described in the present review. Throughout the paper we put
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h̄ = 1 = c, except if we need to make precise physical units. In Sect. 2 we recall 23

the main characteristics of the Hilbertian framework (one-mode) Fock space with 24

the underlying Weyl–Heisenberg algebra of its lowering and raising operators, and 25

the basic statistical interpretation in terms of detection probability. In Sect. 3 we 26

introduce coherent states in Fock space as superpositions of number states with 27

coefficients depending on a complex number α. These “PHIN” states are requested 28

to obey two fundamental properties, normalization and resolution of the identity 29

in Fock space. The physical meaning of the parameter α is explained in terms of 30

the number of photons, and may or not be interpreted in terms of classical optics 31

quadratures. A first example is given in terms of holomorphic Hermite polynomials. 32

We then define an important subclass AN in PHIN. Section 4 is devoted to the 33

celebrated prototype of all CS in class AN, namely the Glauber–Sudarshan states. 34

Their multiple properties are recalled, and their fundamental role in quantum optics 35

is briefly described by following the seminal 1963 Glauber paper. We end the section 36

with a description of the CS issued from unitary displacement of an arbitrary number 37

eigenstate in place of the vacuum. The latter belong to the PHIN class, but not in 38

the AN class. The so-called non-linear CS in the AN class are presented in Sect. 5, 39

and an example of q-deformed CS illustrates this important extension of standard 40

CS. In Sect. 6 we adapt the Gilmore–Perelomov spin or SU(2) CS to the quantum 41

optics framework and we emphasize their statistical meaning in terms of photon 42

counting. We extend them also these CS to those issued from an arbitrary number 43

state. We follow a similar approach in Sect. 7 with Perelomov and Barut–Girardello 44

SU(1, 1) CS. Section 8 is devoted to another type of AN CS, named Susskind– 45

Glogower, which reveal to be quite attractive in the context of quantum optics. We 46

end in Sect. 9 this list of various CS with a new type of non-linear CS based on 47

deformed binomial distribution. In Sect. 10 we briefly review the statistical aspects 48

of CS in quantum optics by focusing on their potential statistical properties, like 49

sub- or super-Poissonian or just Poissonian. The content of Sect. 11 concerns the 50

role of all these generalizations of CS belonging to the AN class in the quantization 51

of classical solutions of the Maxwell equations and the corresponding quadrature 52

portraits. Some promising features of this CS quantization are discussed in Sect. 12. 53

2 Fock Space 54

In their number or Fock representation, the eigenstates of the harmonic oscillator 55

are simply denoted by kets |n〉, where n = 0, 1, . . . , stands for the number 56

of elementary quanta of energy, named photons when the model is applied to a 57

quantized monochromatic electromagnetic wave. These kets form an orthonormal 58

basis of the Fock Hilbert space H. The latter is actually a physical model for all 59

separable Hilbert spaces, namely the space �2(N) of square summable sequences. 60

For such a basis (actually for any Hilbertian basis {en , n = 0, 1, . . . }), the lowering 61

or annihilation operator a, and its adjoint a†, the raising or creation operator, are
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defined by 62

a|n〉 = √
n|n− 1〉 , a†|n〉 = √

n+ 1|n+ 1〉 , (2.1)

together with the action of a on the ground or “vacuum” state a|0〉 = 0. They obey 63

the so-called canonical commutation rule (ccr) [a, a†] = I . In this context, the 64

number operator N̂ = a†a is diagonal in the basis {|n〉, n ∈ N}, with spectrum N: 65

N̂ |n〉 = n|n〉. 66

3 General Setting for Coherent States in a Wide Sense 67

3.1 The PHIN Class 68

A large class of one-mode optical coherent states can be written as the following 69

normalized superposition of photon number states: 70

|α〉 =
∞∑
n=0

φn(α)|n〉 , (3.1)

where the complex parameter α lies in some bounded or unbounded subset S of C. 71

Its physical meaning will be discussed below in terms of detection probability. Note 72

that the adjective “coherent” is used in a generic sense and should not be understood 73

in the restrictive sense it was given originally by Glauber [7]. The complex-valued 74

functions α �→ φn(α), from which the name “PHIN class,” obey the two conditions 75

1 =
∞∑
n=0

|φn(α)|2 , α ∈ S , (normalisation) (3.2)

δnn′ =
ˆ
S
d2αw (α) φn(α) φn′(α) , (orthonormality) , (3.3)

wherew (α) is a weight function, with supportS in C. While Eq. (3.2) is necessary, 76

Eq. (3.3) might be optional, except if we request resolution of the identity in the 77

Fock Hilbert space spanned by the number states: 78

ˆ
S
d2αw (α) |α〉〈α| = I . (3.4)

A finite sum in (3.1) due to φn = 0 for all n larger than a certain nmax may be 79

considered in this study. 80
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If the orthonormality condition (3.3) is satisfied with a positive weight function, 81

it allows us to interpret the map 82

α �→ |φn(α)|2 ≡ �n(α) (3.5)

as a probability distribution, with parameter n, on the supportS ofw inC, equipped 83

with the measure w (α) d2α. 84

On the other hand, the normalization condition (3.2) allows to interpret the 85

discrete map 86

n �→ �n(α) (3.6)

as a probability distribution on N, with parameter α, precisely the probability to 87

detect n photons when the quantum light is in the coherent state |α〉. The average 88

value of the number operator 89

n̄ = n̄(α) := 〈α|N̂ |α〉 =
∞∑
n=0

n�n(α) (3.7)

can be viewed as the intensity (or energy up to a physical factor like h̄ω) of the state 90

|α〉 of the quantum monochromatic radiation under consideration. An optical phase 91

space associated with this radiation may be defined as the image of the map 92

S � α �→ ξα = √
n̄(α) ei argα ∈ C . (3.8)

A statistical interpretation of the original set S is made possible if one can invert 93

the map (3.8). Two examples of such an inverse map will be given in Sects. 6 and 94

7.1, respectively, with interesting statistical interpretations. 95

3.2 A First Example of PHIN CS with Holomorphic Hermite 96

Polynomials 97

These coherent states were introduced in [8]. Given a real number 0 < s < 1, the 98

functions φn;s are defined as 99

φn;s(α) := 1√
bn(s)Ns(α)

e−α2/2Hn(α) , α ∈ C . (3.9)

The non-holomorphic part lies in the expression of Ns 100

Ns(α) = s−1 − s

2π
e−s X2+s−1 Y 2 , α = X + iY .
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The constant bn(s) is given by 101

bn(s) = π
√
s

1− s

(
2
1+ s

1− s

)n
n! .

The function Hn(α) is the usual Hermite polynomial of degree n [9], considered 102

here as a holomorphic polynomial in the complex variable α. The corresponding 103

normalized coherent states 104

|α; s〉 =
∞∑
n=0

φn;s(α)|n〉 (3.10)

solve the identity inH, 105

s−1 − s

2π

ˆ
C

d2α |α; s〉〈α; s| = I . (3.11)

Thus, in the present case we have the constant weight w (α) = s−1−s
2π . This 106

resolution of the identity results from the orthogonality relations verified by the 107

holomorphic Hermite polynomials in the complex plane: 108

ˆ
C

dX dY Hn(X + iY )Hn′(X + iY ) exp
[

− (1− s)X2 −
(
1
s

− 1
)
Y 2
]

= bn(s)δnn′ .

(3.12)

Note that the map α �→ n̄(α) = ∑
n n

∣∣∣e−α2/2Hn(α)
∣∣∣2 is not rotationally invariant. 109

3.3 The AN Class 110

Particularly convenient to manage and mostly encountered are coherent states |α〉 111

for which the functions φn factorize as 112

φn(α) = αn hn(|α|2) ,
∞∑
n=0

|α|2n|hn(α)|2 = 1 , |α| < R , (3.13)

where R can be finite or infinite. All coherent states of the above type lie in the so- 113

called AN class (AN for “αn”). Then, due to Fourier angular integration in (3.3), the 114

orthonormality condition holds if there exists an isotropic weight function w such 115

that the hn’s solve the following kind of moment problem on the interval [0, R2]: 116

ˆ R2

0
duw(u) un|hn(u)|2 = 1 , n ∈ N . (3.14)
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This w is related to the above w through 117

w (α) = w(|α|2)
π

. (3.15)

Note that the probability (3.6) to detect n photons when the quantum light is in such 118

a AN coherent state |α〉 is expressed as a function of u = |α|2 only 119

n �→ �n(α) ≡ Pn (u) = un (hn(u))
2 . (3.16)

Hence, the map α �→ n̄ is here rotationally invariant: n̄ = n̄(u). On the other hand, 120

the probability distribution on the interval [0, R2], for a detected n, that CS |α〉 have 121

classical intensity u is given by 122

u �→ �n(α) ≡ Pn (u) . (3.17)

4 Glauber–Sudarshan CS 123

4.1 Definition and Properties 124

They are the most popular, of course, among the AN families, and historically the 125

first ones to appear in QED with Schwinger [10], and in quantum optics with the 126

1963 seminal papers by Glauber [7, 11, 12] and Sudarshan [13]. See also some key 127

papers like [14–16] for further developments in quantum optics and quantum field 128

theory. They were introduced in quantum mechanics by Schrödinger [17] and later 129

by Klauder [18–20]. They correspond to the Gaussian 130

hn(u) = e−u/2√
n! , (4.1)

and read 131

|α 〉 = e−|α|2/2
∞∑
n=0

αn√
n! |n〉. (4.2)

Here, the parameter, i.e., the amplitude, α = X + iY represents an element of 132

the optical phase space. Its Cartesian components X and Y in the Euclidean plane 133

are called quadratures. In complete analogy with the harmonic oscillator model, 134

the quantity u = |α|2 is considered as the classical intensity or energy of the 135

coherent state |α〉. The corresponding detection distribution is the familiar Poisson
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distribution 136

n �→ Pn(u) = e−u u
n

n! , (4.3)

and the average value of the number operator is just the intensity. 137

n̄(α) = |α|2 = u . (4.4)

Hence, the detection distribution is written in terms of this average value as 138

Pn(u) = e−n̄ n̄
n

n! . (4.5)

From now on the states (4.2) will be called standard coherent states. They are 139

called harmonic oscillator CS when we consider the |n〉’s as eigenstates of the 140

corresponding quantum Hamiltonian Hosc = (
P 2 +Q2) /2 = N̂ + 1/2 with 141

Q = a + a†√
2

and P = a − a†

i
√
2

. They are exceptional in the sense that they obey 142

the following long list of properties that give them, on their whole own, a strong 143

status of uniqueness. 144

P0 The map C � α → |α〉 ∈ H is continuous. 145

P1 |α〉 is eigenvector of annihilation operator: a|α〉 = α|α〉. 146

P2 The CS family resolves the unity:
´
C

d2α
π

|α〉〈α| = I . 147

P3 The CS saturate the Heisenberg inequality : ΔXΔY = ΔQΔP = 1/2. 148

P4 The CS family is temporally stable : e−iHosct |α〉 = e−it/2|e−it α〉. 149

P5 The mean value (or “lower symbol” ) of the Hamiltonian Hosc mimics the 150

classical relation energy-action: Ȟosc(α) := 〈α|Hosc|α〉 = |α|2 + 1
2 . 151

P6 The CS family is the orbit of the ground state under the action of the Weyl 152

displacement operator: |α〉 = e(αa
†−ᾱa)|0〉 ≡ D(α)|0〉. 153

P7 The unitary Weyl–Heisenberg covariance follows from the above: 154

U(s, ζ )|α〉 = ei(s+Im(ζ ᾱ))|α + ζ 〉, where U(s, ζ ) := eis D(ζ ). 155

P8 From P2 the coherent states provide a straightforward quantization scheme: 156

Function f (α) → Operator Af = ´
C

d2α
π
f (α) |α〉〈α| . 157

These properties cover a wide spectrum, starting from the “wave-packet” expres- 158

sion (4.2) together with Properties P3 and P4, through an algebraic side (P1), a 159

group representation side (P6 and P7), a functional analysis side (P2) to end with the 160

ubiquitous problematic of the relationship between classical and quantum models 161

(P5 and P8). Starting from this exceptional palette of properties, the game over the 162

past almost seven decades has been to build families of CS having some of these 163

properties, if not all of them, as it can be attested by the huge literature, articles, 164

proceedings, special issues, and author(s) or collective books, a few of them being 165

[21–32]. 166
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4.2 Why the Adjective Coherent? (Partially Extracted 167

from [30]) 168

Let us compare the two equations : 169

a|α〉 = α|α〉 , a|n〉 = √
n|n− 1〉 . (4.6)

Hence, an infinite superposition of number states |n〉, each of the latter describing a 170

determinate number of elementary quanta, describes a state which is left unmodified 171

(up to a factor) under the action of the operator annihilating an elementary 172

quantum. The factor is equal to the parameter α labeling the considered coherent 173

state. 174

More generally, we have f (a)|α〉 = f (α)|α〉 for an analytic function f . This 175

is precisely the idea developed by Glauber [7, 11, 12]. Indeed, an electromagnetic 176

field in a box can be assimilated to a countably infinite assembly of harmonic 177

oscillators. This results from a simple Fourier analysis of Maxwell equations. The 178

(canonical) quantization of these classical harmonic oscillators yields the Fock 179

space F spanned by all possible tensor products of number eigenstates
⊗

k |nk〉 ≡ 180

|n1, n2, . . . , nk, . . . 〉, where “k” is a shortening for labeling the mode (including the 181

photon polarization ) 182

k ≡
⎧⎨
⎩

k wave vector,
ωk = ‖k‖c frequency,
λ = 1, 2 helicity,

(4.7)

and nk is the number of photons in the mode “k.” The Fourier expansion of the 183

quantum vector potential reads as 184

−→
A (r, t) = c

∑
k

√
h̄

2ωk

(
akuk(r)e−iωkt + a

†
kuk(r)e

iωkt
)
. (4.8)

As an operator, it acts (up to a gauge) on the Fock space F via ak and a†k defined by 185

ak0

∏
k

|nk〉 = √
nk0 |nk0 − 1〉

∏
k 
=k0

|nk〉 , (4.9)

and obeying the canonical commutation rules 186

[ak, ak′ ] = 0 = [a†k , a†k′ ] , [ak, a†k′ ] = δkk′ I . (4.10)

187
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Let us now give more insights on the modes, observables, and Hamiltonian. On 188

the level of the mode functions uk the Maxwell equations read as 189

Δuk(r)+ ω2k
c2
uk(r) = 0 . (4.11)

When confined to a cubic box CL with size L, these functions form an orthonormal 190

basis 191ˆ
CL

uk(r) · ul (r) d3r = δkl ,

with obvious discretization constraints on “k.” By choosing the gauge ∇ ·uk(r) = 0, 192

their expression is 193

uk(r) = L−3/2ê(λ)eik·r , λ = 1 or 2 , k · ê(λ) = 0 , (4.12)

where the ê(λ)’s stand for polarization vectors. The respective expressions of the 194

electric and magnetic field operators are derived from the vector potential: 195

−→
E = −1

c

∂
−→
A

∂t
,

−→
B = −→∇ × −→

A .

Finally, the electromagnetic field Hamiltonian is given by 196

He.m. = 1
2

ˆ (
‖−→E ‖2 + ‖−→B ‖2

)
d3r = 1

2

∑
k

h̄ωk

(
a
†
kak + aka

†
k

)
.

Let us now decompose the electric field operator into positive and negative 197

frequencies 198

−→
E = −→

E (+) + −→
E (−), −→

E (−) = −→
E (+)† ,

−→
E (+)(r, t) = i

∑
k

√
h̄ωk

2
akuk(r)e−iωkt . (4.13)

We then consider the field described by the density (matrix) operator : 199

ρ =
∑
(nk)

c(nk)
∏
k

|nk〉〈nk| , c(nk) ≥ 0 , tr ρ = 1 , (4.14)

and the derived sequence of correlation functions G(n). The Euclidean tensor 200

components for the simplest one read as 201

G
(1)
ij (r, t; r′, t ′) = tr

{
ρE

(−)
i (r, t)E(+)j (r′, t ′)

}
, i, j = 1, 2, 3 . (4.15)
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They measure the correlation of the field state at different space-time points. A 202

coherent state or coherent radiation |c.r.〉 for the electromagnetic field is then 203

defined by 204

|c.r.〉 =
∏
k

|αk〉 , (4.16)

where |αk〉 is precisely the standard coherent state for the “k” mode : 205

|αk〉 = e−
|αk |2
2
∑
nk

(αk)
nk

√
nk! |nk〉 , ak|αk〉 = αk|αk〉 , (4.17)

with αk ∈ C. The particular status of the state |c.r.〉 is well understood through the 206

action of the positive frequency electric field operator 207

−→
E (+)(r, t)|c.r.〉 = −→E (+)(r, t)|c.r.〉 . (4.18)

The expression
−→E (+)(r, t) which shows up is precisely the classical field expres- 208

sion, solution to the Maxwell equations 209

−→E (+)(r, t) = i
∑
k

√
h̄ωk

2
αkuk(r)e−iωkt . (4.19)

Now, if the density operator is chosen as a pure coherent state, i.e., 210

ρ = |c.r.〉〈c.r.| , (4.20)

then the components (4.15) of the first order correlation function factorize into 211

independent terms : 212

G
(1)
ij (r, t; r′, t ′) = E (−)i (r, t)E (+)j (r′, t ′) . (4.21)

An electromagnetic field operator is said “fully coherent” in the Glauber sense 213

if all of its correlation functions factorize like in (4.21). Nevertheless, one should 214

notice that such a definition does not imply monochromaticity. 215

A last important point concerns the production of such states in quantum optics. 216

They can be manufactured by adiabatically coupling the e.m. field to a classical 217

source, for instance, a radiating current j(r, t). The coupling is described by the 218

Hamiltonian 219

Hcoupling = −1
c

ˆ
dr

−→
j (r, t) · −→

A (r, t) . (4.22)
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From the Schrödinger equation, the time evolution of a field state supposed to be 220

originally, say at t0, the state |vacuum〉(no photons) is given by 221

|t〉 = exp
[
i
h̄c

ˆ t

t0

dt ′
ˆ

dr
−→
j (r, t ′) · −→

A (r, t ′)+ iϕ(t)
]

|vacuum〉 , (4.23)

where ϕ(t) is some phase factor, which cancels if one deals with the density operator 222

|t〉〈t | and can be dropped. From the Fourier expansion (4.8) we easily express the 223

above evolution operator in terms of theWeyl displacement operators corresponding 224

to each mode 225

exp
[
i
h̄c

ˆ t

t0

dt ′
ˆ

dr
−→
j (r, t ′) · −→

A (r, t ′)
]

=
∏
k

D(αk(t)) , (4.24)

where the complex amplitudes are given by 226

αk(t) = i
h̄c

ˆ t

t0

dt ′
ˆ

dr
−→
j (r, t ′) · uk(r)eiωkt ′ . (4.25)

Hence, we obtain the time-dependent e.m. CS 227

|t〉 = ⊗k|αk(t)〉 . (4.26)

4.3 Weyl–Heisenberg CS with Laguerre Polynomials 228

The construction of the standard CS is minimal from the point of view of the action 229

of the Weyl unitary operatorD(α) on the vacuum |0〉 (Property P6). More elaborate 230

states are issued from the action of D(α) on other states |s〉, s = 1, 2, . . . , of the 231

Fock basis, which might be considered as initial states in the evolution described 232

by (4.23). Hence, let us define the family of CS 233

|α; s〉 = D(α)|s〉 =
∞∑
n=0

Dns(α)|n〉 . (4.27)

The coefficients in this Fock expansion are the matrix elements Dns = 〈n|D(α)|s〉 234

of the displacement operator. They are given in terms of the generalized Laguerre 235

polynomials [9] as 236

Dns(α) :=
√
s!
n! e

− |α|2
2 αn−s L(n−s)s

(
|α|2

)
for s ≤ n ,

=
√
n!
s! e

− |α|2
2 (−ᾱ)s−n L(s−n)n

(
|α|2

)
for s > n . (4.28)
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As matrix elements of a projective square-integrable UIR of the Weyl–Heisenberg 237

group they obey the orthogonality relations 238

ˆ
C

d2α
π
Dns(α)Dn′s′(α) = δnn′ δss′ . (4.29)

Like for the general case presented in (3.3)–(3.4) this property validates the 239

resolution of the identity 240

ˆ
C2

d2α
π

|α; s〉〈α; s| = I . (4.30)

The corresponding detection distribution is the “Laguerre weighted” Poisson distri- 241

bution 242

n �→ Pn(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−u us−n

(s − n)!

(
L
(s−n)
n (u)

)2
(
s
n

) n ≤ s

e−u un−s

(n− s)!

(
L
(n−s)
s (u)

)2
(
n
s

) n ≥ s

. (4.31)

Of course, the optical phase space made of the complex
√
n̄(α)ei argα is here less 243

immediate. 244

We notice that for s > 0, these CS |α; s〉 do not pertain to the AN class, since 245

we find in the expansion a finite number of terms in ᾱn besides an infinite number 246

of terms in αn. On the other hand, there exist families of coherent states in the AN 247

class (or their complex conjugate) which are related to the generalized Laguerre 248

polynomials in a quasi-identical way [33, 34]. 249

5 Non-linear CS 250

5.1 General 251

We define as non-linear CS those AN CS for which the functions hn(u) assume the 252

simple form 253

hn(u) = λn√
N (u)

, N (u) =
∞∑
n=0

|λn|2un . (5.1)

254
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5.2 Deformed Poissonian CS 255

They are particular cases of the above. All λn form a strictly decreasing sequence of 256

positive numbers tending to 0: 257

λ0 = 1 > λ1 > · · · λn > λn+1 > · · · , λn → 0 . (5.2)

We now introduce the strictly increasing sequence 258

xn =
(
λn−1
λn

)2
, x0 = 0 . (5.3)

It is straightforward to check that 259

λn = 1√
xn! , with xn! := x1x2 · · · xn . (5.4)

Then N (u) is the generalized exponential with convergence radius R2
260

N (u) =
∞∑
n=0

un

xn! , (5.5)

and the corresponding CS take the form extending to the non-linear case the familiar 261

Glauber–Sudarshan one 262

|α〉 = 1√
N (|α)|2)

∞∑
n=0

αn√
xn! |n〉 . (5.6)

The orthonormality condition (3.3) is completely fulfilled if there exists a weight 263

w(u) solving the moment problem for the sequence (xn!)n∈N 264

xn! =
ˆ R2

0
du

w(u)

N (u) u
n . (5.7)

The detection probability distribution is the deformed Poisson distribution: 265

n �→ Pn(u) = 1
N (u)

un

xn! . (5.8)

The average value of the number operator n̄ is given by 266

n̄
(
|α|2

)
) = 〈α|N̂ |α〉 = u

d logN (u)
du

∣∣∣∣
u=|α|2

. (5.9)
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5.3 Example with q Deformations of Integers 267

These coherent states have been studied by many authors, see [35], that we follow 268

here, and the references therein. They are built from the symmetric or bosonic q- 269

deformation of natural numbers: 270

xn = [s][n]q = qn − q−n

q − q−1 = [s][n]q−1 , q > 0 . (5.10)

271

|α〉q = 1√
Nq(|α|2)

∞∑
n=0

αn√
[s][n]q !

|n〉 , (5.11)

where its associated exponential is one of the so-called q exponentials [36] 272

Nq(u) = eq(u) ≡=
+∞∑
n=0

un

[s][n]q ! . (5.12)

This series defines the analytic entire function eq(z) in the complex plane for any 273

positive q. The CS |α〉q in the limit q → 1 goes to the standard CS |α〉. The solution 274

to the moment problem (3.14) for 0 < q < 1 is given by 275

ˆ ∞

0
duwq(u)

un

eq(u) [s][n]q ! = 1

with positive density 276

wq(t) = (q−1 − q)

∞∑
j=0

gq

(
t
q−1 − q

q2j

)
Eq

(
− q2j

q−1 − q

)
.

The function gq is given by 277

gq(u) = 1√
2π | ln q| exp

⎡
⎢⎣−

[
ln
(
u√
q

)]2

2| ln q|

⎤
⎥⎦ ,

and a second q-exponential [36] appears here 278

Eq(u) :=
∞∑
n=0

q
n(n+1)

2
un

[s][n]q ! .
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Its radius of convergence is ∞ for 0 < q ≤ 1 (it is equal to 1/(q − q−1) for q > 1). 279

There results the resolution of the identity 280

ˆ
C

d2αwq (α) |α〉qq〈α| = I , wq (α) = wq(|α|2)
π

. (5.13)

More exotic families of non-linear CS are, for instance, presented in [37]. 281

6 Spin CS as Optical CS 282

These states are an adaptation to the quantum optical context of the well-known 283

Gilmore or Perelomov SU(2)-CS, also called spin CS [22, 23]. The Fock space 284

reduces to the finite-dimensional subspace Hj , with dimension nj + 1 := 2j + 1, 285

for j positive integer or half-integer, consistently with the fact that the functions hn, 286

given here by 287

hn(u) =
√(

nj

n

)
(1+ u)−

nj
2 ,

(
nj

n

)
= nj !
n!(nj − n)! , (6.1)

cancel for n > nj . The corresponding spin CS read 288

|α; nj 〉 =
(
1+ |α|2

)− nj
2

nj∑
n=0

√(
nj

n

)
αn |n〉 . (6.2)

They resolve the unity inHnj in the following way: 289

nj + 1
π

ˆ
C

d2α
(1+ |α|2)2 |α; nj 〉〈α; nj | = I . (6.3)

The detection probability distribution is binomial: 290

n �→ Pn(u) = (1+ u)−nj
(
nj

n

)
un . (6.4)

There results the average value of the number operator 291

n̄(u) = nj
u

1+ u
⇔ u = n̄/nj

1− n̄/nj
. (6.5)

292
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Thus the probability (6.4) is expressed in terms of the ratio p := n̄/nj as 293

Pn(u) ≡ P̃n(p) =
(
nj

n

)
(1− p)nj−n pn , (6.6)

which allows to define the optical phase space as the open disk of radius √
nj , 294

D√
nj =

{
ξα =

√
n̄
(|α|2)ei argα , |ξα| < √

nj

}
. 295

The interpretation of Pn(u) together with the number nj in terms of photon 296

statistics (see Sect. 10 for more details) is luminous if we consider a beam of 297

perfectly coherent light with a constant intensity. If the beam is of finite length L 298

and is subdivided into nj segments of length L/nj , then P̃n(p) is the probability of 299

finding n subsegments containing one photon and (nj − n) containing no photons, 300

in any possible order [38]. A more general statistical interpretation of (6.4) or (6.6) 301

is discussed in [39]. 302

Note that the standard coherent states are obtained from the above CS at the limit 303

nj → ∞ through a contraction process. The latter is carried out through a scaling of 304

the complex variable α, namely α �→ √
nj α. Then the binomial distribution P̃n(p) 305

becomes the Poissonian (4.5), as expected. 306

Actually, these states are the simplest ones among a whole family issued from the 307

Perelomov construction [22, 30, 40], and based on spin spherical harmonics. For our 308

present purpose we modify their definition by including an extra phase factor and 309

delete the factor
√

2j+1
4π . For j ∈ N/2 and a given −j ≤ σ ≤ j , the spin spherical 310

harmonics are the following functions on the unit sphere S2: 311

σYjμ(Ω) := (−1)(j−μ)
√
(j − μ)!(j + μ)!
(j − σ)!(j + σ)!×

× 1
2μ
(1+ cos θ)

μ+σ
2 (1− cos θ)

μ−σ
2 P

(μ−σ,μ+σ)
j−μ (cos θ) e−i(j−μ)ϕ ,

(6.7)

where Ω = (θ, ϕ) (polar coordinates), −j ≤ μ ≤ j , and the P (a,b)n (x) are Jacobi 312

polynomials [9] with P (a,b)0 (x) = 1. Singularities of the factors at θ = 0 (resp. 313

θ = π ) for the power μ − σ < 0 (resp. μ + σ < 0) are just apparent. To remove 314

them it is necessary to use alternate expressions of the Jacobi polynomials based on 315

the relations: 316

P (−a,b)n (x) =
(
n+b
a

)
(
n
a

)
(
x − 1
2

)a
P
(a,b)
n−a (x) . (6.8)

317
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The functions (6.7) obey the two conditions required in the construction of coherent 318

states 319

2j + 1
4π

ˆ
S2
dΩ σYjμ(Ω) σYjμ′(Ω) = δμμ′ (orthogonality) (6.9)

j∑
μ=−j

|σYjμ(Ω)|2 = 1 (normalisation) . (6.10)

At j = l integer and σ = 0, μ = m we recover the spherical harmonics Ylm(Ω) (up 320

to the factor (−1)le−ijϕ
√

2l+1
4π ). We now consider the parameter α in (6.2) as issued 321

from the stereographic projection S2 � Ω �→ α ∈ C: 322

α = tan
θ

2
e−iϕ , with dΩ = sin θdθdϕ = 4d2α

(1+ |α|2)2 . (6.11)

In this regard, the probability p = n̄/nj is equal to sin θ/2, while ϕ = argα. With 323

the notations nj = 2j ∈ N, n = j − μ = 0, 1, 2, . . . , nj , 0 ≤ s = j − σ ≤ nj , 324

adapted to the content of the present paper, and from the expression of the Jacobi 325

polynomials, we get the functions (6.7) in terms of α ∈ C: 326

σYjμ(Ω) = αn hn;s
(
|α|2

)
, (6.12)

where 327

hn;s(u) =
√
n!(nj − n)!
s!(nj − s)! (1+ u)−

nj
2

min(n,s)∑
r=max(0,n+s−nj )

(
s

r

)(
nj − s

n− r

)
(−1)r us/2−r .

(6.13)

The corresponding “Jacobi” CS are in the AN class and read 328

|α; nj ; s〉 =
nj∑
n=0

αn hn;s
(
|α|2

)
|n〉 . (6.14)

They solve the identity as 329

nj + 1
π

ˆ
C

d2α
(1+ |α|2)2 |α; nj ; s〉〈α; nj ; s| = I. (6.15)

The states (6.2) are recovered for s = 0. Similarly to CS (4.27) states (6.14) can 330

be also viewed as displaced occupied states. Indeed, they can be written in the
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Perelomov way as 331

|α; nj ; s〉 = Dnj /2 (ζα) |s〉 , (6.16)

where ζα =
( (

1+ |α|2)−1/2 (
1+ |α|2)−1/2 α

− (1+ |α|2)−1/2 ᾱ (
1+ |α|2)−1/2

)
is the element of SU(2)which 332

brings 0 to α under the homographic action 333

α �→
(
a b

−b̄ ā
)

· α := aα + b

−b̄α + ā

of this group on the complex plane, and Dnj /2 is the corresponding nj + 1- 334

dimensional UIR of SU(2). Let us write Dnj /2 (ζα) as a displacement operator 335

similar to the Weyl–Heisenberg one (propriety P6) and involving the usual angular 336

momentum generators J± for the representation Dnj /2 337

Dnj /2 (ζα) = eςαJ+−ς̄αJ− ≡ Dnj (ςα) , ςα = − tan−1 |α| e−i argα . (6.17)

Note that we could have adopted here the historical approaches by Jordan, Holstein, 338

Primakoff, Schwinger [41–43] in transforming these angular momentum operators 339

in terms of “bosonic” a and a†. Nevertheless this QFT artificial flavor is not really 340

useful in the present context. 341

7 SU(1, 1)-CS as Optical CS 342

7.1 Perelomov CS 343

These states are also an adaptation to the quantum optical context of the Perelomov 344

SU(1, 1)-CS [22, 23, 30, 44]. They are yielded through a SU(1, 1) unitary action on a 345

number state. The Fock Hilbert space H is infinite-dimensional, while the complex 346

number α is restricted to the open unit disk D := {α ∈ C , |α| < 1}. Let � > 347

1/2 and s ∈ N. We then define the (�; s)-dependent CS family as the “SU(1, 1)- 348

displaced s-th state” 349

|α; �; s〉 = U�(p(ᾱ))|s〉 =
∞∑
n=0

U�ns(p(ᾱ))|n〉 ≡
∞∑
n=0

φn;�;s(α) |n〉 , (7.1)

where the U�ns(p(ᾱ))’s are matrix elements of the UIR U� of SU(1, 1) in its discrete 350

series and p(ᾱ) is the particular matrix 351

( (
1− |α|2)−1/2 (

1− |α|2)−1/2 ᾱ(
1− |α|2)−1/2 α (

1− |α|2)−1/2
)

∈ SU(1, 1) . (7.2)
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They are given in terms of Jacobi polynomials as 352

U�ns(p(ᾱ)) =
(
n<!Γ (2� + n>)

n>!Γ (2� + n<)

)1/2 (
1− |α|2

)�
(sgn(n− s))n−s ×

× P (n>−n< , 2�−1)
n<

(
1− 2|α|2

)
×
{
αn−s if n> = n

ᾱs−n if n> = s
(7.3)

with n>
<

=
{
max
min

(n, s) ≥ 0. The states (7.1) solve the identity: 353

2� − 1
π

ˆ
D

d2α(
1− |α|2)2

|α; �; s〉〈α; �; s| = I . (7.4)

The simplest case s = 0 pertains to the AN class 354

|α; �; 0〉 ≡ |α; �〉 =
∞∑
n=0

αn hn;�
(
|α|2

)
|n〉 , hn;�(u) :=

√(
2� − 1+ n

n

)
(1− u)� .

(7.5)

The corresponding detection probability distribution is negative binomial 355

n �→ Pn(u) = (1− u)2�
(
2� − 1+ n

n

)
un . (7.6)

The average value of the number operator reads as 356

n̄(u) = 2�
u

1− u
⇔ u = n̄/2�

1+ n̄/2�
. (7.7)

By introducing the “efficiency” η := 1/2� ∈ (0, 1) the probability (7.6) is expressed 357

in terms of the corrected average value N̄ := ηn̄ as 358

Pn(u) ≡ P̃n(N̄) = (1+ N̄)−1/η
(
1/η − 1+ n

n

) (
N̄

1+ N̄

)n
. (7.8)

It is remarkable that such a distribution reduces to the celebrated Bose–Einstein one 359

for the thermal light at the limit η = 1, i.e., at the lowest bound � = 1/2 of the 360

discrete series of SU(1, 1). For η < 1, the difference might be understood from 361

the fact that we consider the average photocount number N̄ instead of the mean 362

photon number n̄ impinging on the detector in the same interval [38]. For a related 363

interpretation within the framework of thermal equilibrium states of the oscillator 364

see [45]. 365
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Note that the above CS, built from the negative binomial distribution, were also 366

discussed in [39]. 367

Like for CS (4.27), the CS |α; �; s〉 in (7.1) do not pertain to the AN class for 368

s > 0. In their expansion there are s terms in ᾱs−n, s > n, besides an infinite 369

number of terms in αn−s , s ≤ n. Finally, like for the Weyl–Heisenberg and SU(2) 370

cases, the representation operator U�(p(ᾱ)) used in (7.1) to build the SU(1, 1) CS 371

can be given the following form of a displacement operator involving the generators 372

K± for the representation Uκ [23]: 373

Uκ(p(ᾱ)) = e�α K+−�̄α K− ≡ Dκ(�α) , �α = tanh−1 |α| ei argα . (7.9)

7.2 Barut–Girardello CS 374

These non-linear CS states [46, 47] pertain to the AN class. They are requested to 375

be eigenstates of the SU(1, 1) lowering operator in its discrete series representation 376

U� , � > 1/2. The Fock Hilbert spaceH is infinite-dimensional, while the complex 377

number α has no domain restriction in C. With the notations of (5.6) they read 378

|α; �〉BG = 1√
NBG(|α|2)

∞∑
n=0

αn√
xn! |n〉 , xn = n(2� + n− 1) , xn! = n!Γ (2� + n)

Γ (2�)
,

(7.10)

with 379

NBG(u) = Γ (2�)
∞∑
n=0

un

n!Γ (2� + n)
= Γ (2�) u−� I2�−1(2

√
u), (7.11)

where Iν is a modified Bessel function [9]. In the present case the moment 380

problem (3.14) is solved as 381

ˆ ∞

0
duwBG(u)

un

NBG(u) xn! = 1 , wBG(u) = NBG(u)
2

Γ (2�)
u�−1/2K2�−1(2

√
u) ,

(7.12)

where Kν is the second modified Bessel function. The resolution of the identity 382

follows: 383

ˆ
C

d2αwBG (α) |α; �〉BGBG〈α; �| = I , wBG(u) = wBG(u)

π
. (7.13)
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8 Adapted Susskind–Glogower CS 384

Let us examine the Susskind–Glogower CS [48] presented in [49]. These normal- 385

ized states read for real α ≡ x ∈ R 386

|x〉SG =
∞∑
n=0
(n+ 1)

Jn+1(2x)
x

|n〉 , (8.1)

where the Bessel function Jν is given by 387

Jν(z) =
( z
2

)ν ∞∑
m=0

(−1)m ( z2
)2m

m!Γ (ν +m+ 1)
. (8.2)

The normalization implies the interesting identity (E. Curado, private communica- 388

tion) 389

∞∑
n=1

n2 (Jn(2x))2 = x2 . (8.3)

The above expression allows us to extend the formula (8.1) in a non-analytic way to 390

complex α as 391

(n+ 1)
Jn+1(2x)

x
�→ αn (n+ 1)

∞∑
m=0

(−1)m|α|2m
m!Γ (n+m+ 2)

≡ αn hSGn (|α|2) , (8.4)

i.e., 392

hSGn (u) = (n+ 1)
1

u
n+1
2
Jn+1(2

√
u) , (8.5)

and thus 393

|α〉SG =
∞∑
n=0

αn hSGn (|α|2) |n〉 . (8.6)

The moment Eq. (3.14) reads here 394

ˆ ∞

0
du
w(u)

u

(
Jn(2

√
u)
)2 = 2

ˆ ∞

0
dt
w(t2)

t
(Jn(2t))2 = 1

n2
. (8.7)

395
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Let us examine the following integral formula for Bessel functions [9]: 396

ˆ ∞

0

dt
t
(Jn(2t))2 = 1

2n
. (8.8)

This leads us to replace the SG-CS of (8.1) by the modified 397

|α〉SGm =
∞∑
n=0

αn hSGmn (|α|2) |n〉 , hSGmn (u) =
√
n+ 1
N (u)

1

u
n+1
2
Jn+1(2

√
u) ,

(8.9)
with 398

N (u) = 1
u

∞∑
n=1

n
(
Jn(2

√
u)
)2
. (8.10)

Then the formula (8.8) allows us to prove that the resolution of the identity is 399

fulfilled by these |α〉SGm with w(u) = N (u). More details, particularly those 400

concerning statistical aspects, are given in [50]. 401

9 CS from Symmetric Deformed Binomial Distributions 402

(DFB) 403

In [51] (see also the related works [52–54]) was presented the following generaliza- 404

tion of the binomial distribution: 405

p
(n)
k (ξ) = xn!

xn−k!xk!qk(ξ)qn−k(1− ξ) , (9.1)

where the {xn}’s form a non-negative sequence and the qk(ξ) are polynomials of 406

degree k, while ξ is a running parameter on the interval [0, 1]. The p
(n)
k (ξ) are 407

constrained by 408

(a) the normalization 409

∀n ∈ N, ∀ξ ∈ [0, 1],
n∑
k=0

p
(n)
k (ξ) = 1, (9.2)

(b) the non-negativeness condition (requested by statistical interpretation) 410

∀n, k ∈ N, ∀ξ ∈ [0, 1], p
(n)
k (ξ) ≥ 0. (9.3)
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These conditions imply that q0(ξ) = ±1. With the choice q0(ξ) = 1 one 411

easily proves that the non-negativeness condition (9.3) is equivalent to the non- 412

negativeness of the polynomials qn on the interval [0, 1]. Hence the quantity p(n)k (ξ) 413

can be interpreted as the probability of having k wins and n− k losses in a sequence 414

of correlated n trials. Besides, as we recover the invariance under k → n − k and 415

ξ → 1−ξ of the binomial distribution, no bias (in the case ξ = 1/2) can exist favor- 416

ing either win or loss. The polynomials qn(ξ) are viewed here as deformations of 417

ξn. We now suppose that the generating function for the polynomials qn, defined as 418

F(ξ ; t) :=
∞∑
n=0

qn(ξ)

xn! t
n , (9.4)

can be expressed as 419

F(ξ ; t) = e
∑∞
n=1 antn with a1 = 1 , an = an(ξ) ≥ 0 ,

∞∑
n=1

an < ∞ . (9.5)

It is proved in [51] that conditions of normalization (a) and non-negativeness (b) on 420

p
(n)
k (ξ) are satisfied. We now define 421

fn =
ˆ ∞

0
qn(ξ) e

−ξ dξ and bm,n =
ˆ 1

0
qm(ξ) qn(1− ξ) dξ . (9.6)

The fn and bm,n are deformations of the usual factorial and beta function, 422

respectively, deduced from their usual integral definitions through the substitution 423

ξn �→ qn(ξ). The following properties are proven in [51]: 424

qn(ξ) ≥ 0 ∀ξ ∈ R
+ , xn! ≤ fn ,

∞∑
n=0

qn(ξ)

fn
< ∞ ∀ξ ∈ R

+ , and bm,n ≥ xm!xn!
(m+ n+ 1)! .

(9.7)

Then let us introduce the function N (z) defined on C as 425

∀z ∈ C N (z) =
∞∑
n=0

qn(z)

fn
. (9.8)

This definition makes sense since from Eq. (9.7) 426

∞∑
n=0

∣∣∣∣
qn(z)

fn

∣∣∣∣ ≤
∞∑
n=0

qn(|z|)
fn

< ∞. (9.9)

The above material allows us to present below two new generalizations of standard 427

and spin coherent states. 428
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9.1 DFB Coherent States on the Complex Plane 429

They are defined in the Fock space as 430

|α〉dfb = 1√
N (|α|2)

∞∑
n=0

1√
fn

√
qn(|α|2) ei n arg(α)|n〉 . (9.10)

These states verify the following resolution of the unity: 431

ˆ
C

d2α
π
e−|α|2N (|α|2) |α〉dfbdfb〈α| = I . (9.11)

They are a natural generalization of the standard coherent states that correspond 432

to the special polynomials qn(ξ) = ξn. The latter are associated to the generating 433

function F(t) = et that gives the usual binomial distribution. 434

9.2 DFB Spin Coherent States 435

These states can be considered as generalizing the spin coherent states (6.2) 436

|α; nj 〉dfb = 1√
N (|α|2)

nj∑
n=0

√√√√qn

(
1

1+|α|2
)
qnj−n

( |α|2
1+|α|2

)

bn,nj−n
ei arg(α)|n〉 , (9.12)

where the bm,n are defined in Eq. (9.6) and N (u) is given by 437

N (u) =
nj∑
n=0

qn

(
1

1+u
)
qnj−n

(
u

1+u
)

bn,nj−n
. (9.13)

The family of states (9.12) resolves the unity: 438

ˆ
C

d2αw (α) |α; nj 〉dfbdfb〈α; nj | = I , w (α) = N
(|α|2)

π
(
1+ |α|2)2

. (9.14)

10 Photon Counting: Basic Statistical Aspects 439

In this section, we mainly follow the inspiring chapter 5 of Ref. [38] (see also the 440

seminal papers [55–57] on the topic, the renowned [58], the pedagogical [59], and 441

the more recent [60–62]). In quantum optics one views a beam of light as a stream of 442

discrete energy packets named “photons” rather than a classical wave. With a photon 443
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counter the average count rate is determined by the intensity of the light beam, 444

but the actual count rate fluctuates from measurement to measurement. Whence, 445

one easily understands that two statistics are in competition here, on one hand the 446

statistical nature of the photodetection process, and on the other hand, the intrinsic 447

photon statistics of the light beam, e.g., the average n̄(α) for a CS |α〉. Photon- 448

counting detectors are specified by their quantum efficiency η, which is defined as 449

the ratio of the number of photocounts to the number of incident photons. For a 450

perfectly coherent monochromatic beam of angular frequency ω, constant intensity 451

I , and area A, and for a counting time T 452

η = N(T )

ΦT
, (10.1)

where the photon flux is Φ = IA

h̄ω
≡ P

h̄ω
, P being the power. Thus the 453

corresponding count rate is R = ηP

h̄ω
counts s−1. Due to a “dead time” of ∼ 1μs 454

for the detector reaction, the count rate cannot be larger than ∼ 106 counts s−1, and 455

due to weak values η ∼ 10% for standard detectors, photon counters are only useful 456

for analyzing properties of very faint beams with optical powers of ∼ 10−12W or 457

less. The detection of light beams with higher powers requires other methods. 458

Although the average photon flux can have a well-defined value, the photon 459

number on short time-scales fluctuates due to the discrete nature of the photons. 460

These fluctuations are described by the photon statistics of the light. 461

One proves that the photon statistics for a coherent light wave with constant 462

intensity (e.g., a light beam described by the electric field E(x, t) = E0 sin(kx − 463

ωt + φ) with constant angular frequency ω, phase φ, and intensity E0) is encoded 464

by the Poisson distribution 465

n �→ Pn(n̄) = e−n̄ (n̄)
n

n! , (10.2)

This randomness of the count rate of a photon-counting system detecting individual 466

photons from a light beam with constant intensity originates from chopping the 467

continuous beam into discrete energy packets with an equal probability of finding 468

the energy packet within any given time subinterval. 469

Let us introduce the variance as the quantity 470

Varn(n̄) ≡ (Δn)2 =
∞∑
n=0
(n− n̄)2Pn(n̄) .

Thus, for a Poissonian coherent beam, Δn = √
n̄. There results that three 471

different types of photon statistics can occur: Poissonian, super-Poissonian, and sub- 472

Poissonian. The two first ones are consistent as well with the classical theory of 473
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light, whereas sub-Poissonian statistics is not and constitutes direct confirmation of 474

the photon nature of light. More precisely 475

(i) if the Poissonian statistics holds, e.g., for a perfectly coherent light beam with 476

constant optical power P , we have 477

Δn = √
n̄ , (10.3)

(ii) if the super-Poissonian statistics, e.g., classical light beams with time-varying 478

light intensities, like thermal light from a black-body source, or like partially 479

coherent light from a discharge lamp, we have 480

Δn >
√
n̄ , (10.4)

(iii) finally, the sub-Poissonian statistics is featured by a narrower distribution than 481

the Poissonian case 482

Δn <
√
n̄ . (10.5)

This light is “quieter” than the perfectly coherent light. Since a perfectly 483

coherent beam is the most stable form of light that can be envisaged in classical 484

optics, sub-Poissonian light has no classical counterpart. 485

In this context popular useful parameters are introduced to account for CS statistical 486

properties, e.g., the Mandel parameterQ = (Δn)2/n̄− 1, where (Δn)2 = n2 − n̄2, 487

which is<0 (resp.>0,=0) for sub-Poissonian (resp. super-Poissonian, Poissonian), 488

the parameterQ/n̄+ 1 which is >1 for “bunching” CS and <1 for “anti-bunching” 489

CS, etc. 490

The aim of the quantum theory of photodetection is to relate the photocount 491

statistics observed in a particular experiment to those of the incoming photons, 492

more precisely the average photocount number N̄ to the mean photon number 493

n̄ incident on the detector in a same time interval. The quantum efficiency η of 494

the detector, defined as η = N̄/n̄ is the critical parameter that determines the 495

relationship between the photoelectron and photon statistics. Indeed, consider the 496

relation between variances (ΔN)2 = η2 (Δn)2 + η (1− η) n̄. 497

– If η = 1, we have ΔN = Δn: the photocount fluctuations faithfully reproduce 498

the fluctuations of the incident photon stream. 499

– If the incident light has Poissonian statistics Δn = √
n̄, then (ΔN)2 = η n̄ for 500

all values of η: photocount is Poisson. 501

– If η � 1, the photocount fluctuations tend to the Poissonian result with (ΔN)2 = 502

η n̄ = N̄ irrespective of the underlying photon statistics. 503

Observing sub-Poissonian statistics in the laboratory is a delicate matter since it 504

depends on the availability of single-photon detectors with high quantum efficien- 505

cies. 506
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11 AN CS Quantization 507

11.1 The Quantization Map and Its Complementary 508

If the resolution of the identity (3.4) is valid for a given family of AN CS determined 509

by the sequence of functions h := (hn(u)), it makes the quantization of functions 510

(or distributions) f (α) possible along the linear map 511

f (α) �→ Ahf =
ˆ

|α|<R
d2α
π
w(|α|2) f (α) |α〉〈α| , (11.1)

together with its complementary map, likely to provide a “semi-classical” optical 512

phase space portrait, or lower symbol, of Ahf through the map (3.8) 513

〈α|Ahf |α〉 =
ˆ

|β|<R
d2β
π

w(|β|2) f (β) |〈α|β〉|2 ≡ |f h(α) . (11.2)

Since for fixed α the map β �→ w(|β|2) |〈α|β〉|2 is a probability distribution on 514

the centered disk DR of radius R, the map f (α) �→ |f h(α) is a local, generally 515

regularizing, averaging, of the original f . 516

The quantization map (11.1) can be extended to cases comprising geometric 517

constraints in the optical phase portrait through the map (3.8), and encoded by 518

distributions like Dirac or Heaviside functions. 519

11.2 AN CS Quantization of Simple Functions 520

When applied to the simplest functions α and ᾱ weighted by a positive n
(|α|2), the 521

quantization map (11.1) yields lowering and raising operators 522

α �→ ah =
ˆ

|α|<R
d2α
π
w̃(|α|2) α |α〉〈α| =

∞∑
n=1

ahn−1n|n− 1〉〈n| , (11.3)

ᾱ �→
(
ah
)† =

∞∑
n=0

ahnn+1|n+ 1〉〈n| , (11.4)

where w̃(u) := n(u)w(u). Their matrix elements are given by the integrals 523

ahn−1n :=
ˆ R2

0
du w̃(u) un hn−1(u) hn(u) , (11.5)

and ah|0〉 = 0. 524
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The lower symbol of ah and its adjoint read, respectively: 525

|ah(α) = 〈α|ah|α〉 = α τ
(
|α|2

)
,

~
(
ah
)†
(α) = |ah(α) , (11.6)

in which the “weighting” factor is given by τ(u) = ∑
n≥0 ahnn+1 un hn(u) hn+1(u). 526

In the above, as it was mentioned in Sect. 3 and, as it occurred in the spin case, 527

the involved sums can be finite, and a finite number of matrix elements (11.5) are 528

not zero. As a generalization of the number operator we get in the present case 529

ah
(
ah
)† = Xh

N̂+I ,
(
ah
)†
a = Xh

N̂
,

[
ah,

(
ah
)†] = Xh

N̂+I − Xh
N̂
, (11.7)

with the notations 530

Xhn = |ahn−1n|2 , Xh0 = 0 , Xh
N̂

|n〉 = Xhn |n〉 , Xh
N̂+I |n〉 = Xhn+1|n〉 . (11.8)

When all the hn’s are real, the diagonal elements in (11.7) are given by the product 531

of integrals 532

Xhn+1 − Xhn =
[ˆ R2

0
du w̃(u) un hn(u) (uhn+1(u)− hn−1(u))

]

×
[ˆ R2

0
du w̃(u) un hn(u) (uhn+1(u)+ hn−1(u))

]
.

(11.9)

The quantum version of u = |α|2 and its lower symbol read as 533

Ahu =
∑
n

〈u〉n|n〉〈n| , 〈u〉n :=
ˆ R2

0
du w̃(u) un+1 hn(u)

〈α|Ahu |α〉 = 〈〈u〉n〉α (u) :=
∑
n

〈u〉n un |hn(u)|2 =
∑
n

〈u〉n Phn .
(11.10)

We notice here an interesting duality between classical (〈·〉n) and quantum (〈·〉α) 534

statistical averages. 535

11.3 AN CS as a-Eigenstates 536

One crucial property of the Glauber–Sudarshan CS is that they are eigenstates of 537

the lowering operator a. Imposing this property to AN CS leads to a supplementary
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condition on the functions hn. 538

ah|α〉 = α|α〉 ⇒ hn(u) = hn+1(u)
ˆ R2

0
dt w̃(t) tn+1 hn(t) hn+1(t) . (11.11)

Let us examine the particular case of non-linear CS of the deformed Poissonian 539

type (5.6). In this case, Xn = xn, and whence the construction formula 540

|α〉 = N (αah†)√
N (|α|2) |0〉 . (11.12)

Moreover (11.11) imposes that the sequence xn! derives from the following moment 541

problem: 542

xn! =
ˆ R2

0
du

w(u)

N (u) u
n . (11.13)

Now, instead of starting from a known sequence (xn), one can reverse the game 543

by choosing a suitable function f (u) = w(u)

N (u) to calculate the corresponding 544

xn! (from which we deduce the xn’s), the resulting generalized exponential N (u) 545

(and checking the finiteness of the convergence radius), and eventually the weight 546

function w(u) = f (u)N (u). There are an infinity of “manufactured” products in 547

this non-linear CS factory! 548

11.4 AN CS from Displacement Operator 549

One can attempt to build (other?) AN CS by following the standard procedure 550

involving the unitary “displacement” operator built from ah and ah† and acting 551

on the vacuum 552

|ᾰ〉disp := Dh(ᾰ) |0〉 =
∞∑
n=0

ᾰn h
disp
n (|ᾰ|2) |n〉 , Dh(ᾰ) := eᾰa

h†−ᾰah ,

(11.14)

where the notation ᾰ is used to make the distinction from the original α. Of 553

course, Dh
†(ᾰ) = Dh

−1(ᾰ) is not equal in general to Dh(−ᾰ). Besides the two 554

examples (6.17) and (7.9) encountered in the SU(2) and SU(1, 1) CS constructions, 555

for which the respective weights n(u) can be given explicitly, another recent 556

interesting example is given in [63]. 557

So an appealing program is to establish the relation between the original hn’s 558

and these (new?) hdispn ’s, through a suitable choice of the weight n(u), actually a 559
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big challenge in the general case! More interesting yet is the fact that these new 560

CS’s might be experimentally produced in the Glauber’s way (4.23), once we accept 561

that the ah and ah† appearing in the quantum version (4.8) of the classical e.m. 562

field are yielded by a CS quantization different from the historical Dirac (canonical) 563

one [64]. Hence one introduces a kind of duality between two families of coherent 564

states, the first one used in the quantization procedure f (α) �→ Ahf , producing 565

the operators n(u)α �→ ah and n(u)ᾱ �→ ah
†, and so the unitary displacement 566

Dh(ᾰ) := eᾰa
h†−ᾰah , while the other one uses this Dh(ᾰ) to build potentially 567

experimental CS yielded in the Glauber’s way. 568

12 Conclusion 569

We have presented in this paper a unifying approach to build coherent states in a 570

wide sense that are potentially relevant to quantum optics. Of course, for most of 571

them, their experimental observation or production comes close to being impossible 572

with the current experimental physics. Nevertheless, when one considers the way 573

quantum optics has emerged from the golden 1920s of quantum mechanics, nothing 574

prevents us to enlarge the Dirac quantization of the classical e.m. field in order 575

to include all these deformations (non-linear or others) by adopting the consistent 576

method exposed in the previous section. 577
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