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Abstract. A novel strategy for Automatic online Signature Verification
based on hidden Markov models (HMM) with user-dependent structure
is presented in this work. Under this approach, the number of states
and Gaussians giving the optimal prediction results are independently
selected for each user. With this simple strategy just three genuine sig-
natures could be used for training, with an EER under 2.5% obtained
for the basic set of raw signature parameters provided by the acquisition
device. This results increment by a factor of six the accuracy obtained
with the typical approach in which claim-independent structure is used
for the HMMs.

1 Introduction

Signature verification is of particular importance within the framework of bio-
metrics, because of its long standing tradition in many identity verification
scenarios[1]. In on-line Automatic Signature Verification (ASV) systems, the
signer uses special hardware to produce her signature, so that a time sequence
of parameters (position, inclination, pressure, . . . ) is generated by the device
and can be processed by a system in order to characterize spatial and temporal
features of the signature. These features are to be useful to build a model or
template which could be later used to verify the claimed identity of the same
signer with a minimum controlled risk that a forged signature could be taken
as genuine. This particular instance of a pattern recognition problem is heavily
influenced by intra and inter-user variability affecting the signing process, so
that proper selection of a good model for every signature is a key step of any
signature verification system.

Hidden Markov Models (HMM) is a widely used probabilistic framework when
modelling patterns of temporal sequences. It has been successfully applied to
speech recognition tasks [2], on-line handwriting [3] and on-line signature ver-
ification [4,5]. A HMM can be roughly described as a graph of interconnected
emitting states which topology is defined by means of a transition matrix, made
of probability values for every particular state-to-state transition, and where
the probability of emission of a given output value is usually modelled by a
superposition of Gaussian distributions.
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The number of states in the model and the number of Gaussian distributions
associated to each state constitute the structural parameters of the model. Fix-
ing these structural parameters is a highly specialized problem-dependent task
carried out by domain experts, since it is hard to find general efficient algorithms
to infer these parameters from the data being modelled.

Given the structure of the model, the classical Baum-Welch algorithm (see
[2]) can be successfully applied to estimate the values of the transition probabil-
ities and of the weights and statistical moments of the Gaussians which provide
the maximum expected likelihood for the observed time sequence. These values
represent what we call the statistical parameters of the model.

Table 1 provides a viewof the current state of the art inASVusing differentmod-
elling alternatives and sometimes combining local andglobal signatureparameters.
This gives a reference point of the expected accuracy of present and future systems.

Table 1. Some ASV systems, its error rates and employed techniques

Author Date Employed technique % Error

Nelson et al. [6] 1994 Distance based EER: 6

Yang et al. [5] 1995 HMM FR: 1.75, FA: 4.44

Kashi et al. [7] 1997 HMM EER: 2.5

Nalwa [8] 1997 Own algorithm EER: between 2 and 5

DiLeece et al. [9] 2000 Multiexpert system FR: 3.2, FA: 0.55

Jain et al. [10] 2002 String matching FR: 3.3, FA: 2.7

Igarza et al. [11] 2003 HMM EER: 9.25

Ortega et al. [12] 2003 HMM EER: 0.98

Hansheng et al. [13] 2004 Linear regression (ER2) EER: 0.2

Fierrez-Aguilar et al. [14] 2005 Local and Global fusion EER: 0.24

In this work we evaluate the influence of a claim-dependent selection of the
structural parameters of the HMM on the accuracy of the automatic ASV. In
section 2, a brief discussion of user dependent and user independent structure se-
lection is made. The signature database used in this work is described in section
3 and the set of experiments is presented in section 4. Results and discussion
section 5 will show that user dependent selection of the optimal model struc-
ture provides average EER below 2.5%, even for skilled forgeries. If we take into
account that these experiments were carried out using just 5 raw signature pa-
rameters and 3 training signatures per user, we find the final accuracy values
really promising and competitive with state of the art ASV systems.

2 User-Dependent Structure of HMMs

HMMs have been successfully applied to high-accuracy ASV systems for the
last decade [15,11,5]. Although these systems differ in several important aspects
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(e.g. signature pre-processing techniques, signature database characteristics, like-
lihood and score normalization techniques, . . . ), they always share a common
architectural strategy, since they are based on a global set of structural pa-
rameters which, in most cases, are experimentally evaluated using all possible
signatures of the database. The structure of the model which provides the best
overall performance over all signers is selected. This is what we refer as ASV
approach based on HMM with user-independent structure (HMM-UIS).

As an alternative to the HMM-UIS approach, the selection of the best struc-
tural parameters of the model could be carried out independently for each user,
exploiting specific characteristics of the signature. This is what we call ASV based
on HMM with user-dependent structure (HMM-UDS). Under this approach, the
model would be adapted to the user or, at least, to a given class of users shar-
ing a set of statistically similar features. Although some heuristics have been
evaluated to guide this selection, in the present paper we will concentrate in
an exhaustive search procedure of the optimal model structure. Although this
approach is not directly usable in practical systems, we can use the results as an
upper bound for the best accuracy which could be obtained when switching to
a UDS.

To further support our view of the importance of a user-dependent selection
of the structural parameters of the model, we include Figure 1 to illustrate
the correlation between form and structural parameters of the HMM in a given
fictitious stroke of a signature. The five subfigures illustrate five different ways of
covering a sample signature trace with states, each with the same fixed number
of Gaussians. The same number of degrees of freedom (NS × NG = 16 has
been used in all cases, starting with the coarse-grained solution of figure 1-b),
in which there is no dynamic modelling provided by state change, to the one in
figure 1-f), where 16 states are used to model the stroke dynamics. For a given
number of degrees of freedom, it should be expected that the model with lower
number of Gaussians would perform better when using raw features without
time derivatives, since it will better resemble time evolution of the stroke.

At the same time, the number of states will be highly influenced by the amount
of statistically different samples available to initialize the model. As a conse-
quence, the compromise between NS and NG is to be highly influenced both by
the geometric and temporal characteristics of the signature and by the observ-
able variability of features along it over the set of training samples. This is what
motivated the experimental study we will present in the following sections.

3 Data Acquisition and Pre-processing

All the experiments have been carried out using the MCYT signature database
[16], which contains on-line signatures acquired with a WACOM Intuos A6 USB
digital tablet. A total of 3331 different users contributed to the database, each of
them producing 25 genuine signatures across five time-spaced sessions in which
1 While the delivered and filtered version of MCYT database contains just 330 signa-

tures, the raw complete original version was used in this study.
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(a) Trace to model (b) 1 state, 16 Gaus-
sians by state

(c) 2 states, 8 Gaus-
sians by state

(d) 4 states, 4 Gaus-
sians by state

(e) 8 states, 2 Gaus-
sians by state

(f) 16 states, 1 Gaus-
sian by state

Fig. 1. Samples of how to model a signature’s stroke

each user also produced 25 ‘over-the-shoulder’ skilled forgeries of 5 different
users. With this procedure, a total of 333 × (25 + 25) = 16650 signatures were
produced, 8325 genuine and 8325 skilled forgeries. The input tablet provided a
series of 100 vector samples per second, each vector including the raw parameters
we used in this experiment: pen coordinates X and Y , pressure level P and pen
orientation in terms of azimuth and elevation (see [16] for further details).

Table 2. MCYT global statistics summary

Gen (For) Mean σ (%) Max. Min.

Length (cm) 23.98 (24.25) 18% (38%) 47.51 (71.28) 6.12 (3.44)

Duration (s) 5.79 (7.15) 41% (74%) 20.20 (53.06) 0.57 (0.50)

Speed (cm/s) 5.71 (4.59) 28% (56%) 19.46 (23.96) 1.29 (0.51)

The basic statistics of relevant global signature parameters for this database
are shown in Table 2, both for genuine instances and forgeries. The signature
length results to be the most stable feature and the easiest to reproduce, while
duration and speed show higher deviation both intra and, specially, inter-user.
A geometric normalization is performed to remove the absolute position offsets,
since a grid of cells was used during the acquisition process to capture several
signatures per sheet.

4 Experimental Setup

A single experiment can be defined as a function E(NU , NS , NG, IK) → EER
depending on the user identity NU , the number of states NS , the number of
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Gaussians per state NG, and the kind of forgery considered in the evaluation
phase IK (K = S, R, S:skilled, R:random). In each experiment the same three
multi-session signatures were used for training (the first ones from each of the 3
central sessions).

Two collections of experiments have been carried out in order to compare
HMM-UIS and HMM-UDS strategies. In both of them a Bakis Left-To-Right-
noskip topology was chosen for the HMMs and EER was used as the objective
function for the optimization in HMM-UDS strategy.

In the first collection of experiments, the HMM-UIS strategy was evaluated
using 49 MUIS = (NS , NG)7x7 different structure configurations, both NS and
NG ranging from 1 to 64 in steps of power of 2. The average EER obtained
with each model was calculated and also the number of users for whom a model
structure could be trained was annotated. This is a relevant parameter, since not
for every user is always possible to initialize a model with any number of states
and Gaussians. In these experiments, we evaluated EER using only random
forgeries.

In the second collection of experiments, we evaluated the influence of the
selection of optimal values for NS and NG independently for each user (HMM-
UDS). Here, the models were trained using the same experimental conditions
used in the first collection, to allow comparison between both approaches. A set
of 555 possible structures were evaluated for each user MUDS = (NS , NG)111x5,
the number of states ranging from 1 to 111 and the number of Gaussians from 1
to 5. From these models, the optimal model (Mopt) was selected as the one that
brought the lowest EER or the lower number of states for equal EER values. The
average EER over all the Mopt models was taken as the global average accuracy.
Evaluation was carried out using both random and skilled forgeries in this case.

5 Results and Discussion

Table 3 shows error rates using the 49 models of the MUIS test matrix. The
number in parenthesis in each cell represents the number of users NV U for whom
a valid model structure was trainable. As expected, NV U decreases as the number
of degrees of freedom NFD increases, since for some users there are not enough
initialization data. Six of these configurations (NFD = 1024, 2048 and 4096)
were not trainable for any user and are shown as empty cells in the table.

Since any ASV system should balance accuracy and good generalization ca-
pabilities, the model structure with lowest EER and for which all subjects in
the database can be trained is chosen: the configuration composed of 32 states
and one Gaussian by state. This HMM-UIS configuration produced an EER of
16.29% using just three training samples. Of course, better EER exist in the
table, but they come at the cost of smaller generalization capabilities, since the
number of valid trainable users is really small.

Table 4 shows error rates obtained using the HMM-UDS approach, which are
clearly lower than the ones in the HMM-UIS approach. The adaptation of the
number of states individually for each user drastically improved the accuracy of
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Table 3. Errors as %EER with HMM-UIS approach tested using random forgeries

NS \ NG 1 2 4 8 16 32 64

1 36.43(333) 35.19(333) 33.08(333) 31.88(333) 30.19(333) 28.64(333) 28.29(324)

2 35.55(333) 33.93(333) 31.77(332) 30.11(324) 28.21(306) 27.61(287) 29.92(260)

4 34.80(333) 32.40(327) 29.84(319) 27.88(310) 26.76(277) 29.53(210) 37.47(90)

8 31.11(333) 29.71(330) 26.80(312) 25.83(287) 27.28(241) 35.91(104) 42.59(7)

16 24.20(333) 23.74(321) 22.38(306) 22.90(254) 30.47(99) 55.88(9)

32 16.29(333) 16.27(309) 15.85(259) 16.36(107) 21.04(8)

64 11.82(324) 11.48(262) 8.94(107) 8.56(7)

Table 4. Results with HMM-UDS models

NG % EER (IK = R) % EER (IK = S)

1 3.83 3.29

2 3.46 3.29

3 4.08 3.42

4 4.63 3.71

5 4.96 3.59

NGopt. 2.33 2.06

the system, although the impact of the number of Gaussians by state was not
so relevant as the influence of the optimization of the number of states.

Average EER using both random and skilled forgeries is shown in this table
and, again, just 3 signatures were always used for training. The first five rows
at the table represent the error when NG was fixed and the optimum number of
states was selected. As expected, the best results arise for models with low NG

values (1 and 2). The last row shows the average error obtained when both the
number of states and the number of Gaussians by state are selected to optimize
EER. With this ‘two-dimension’ optimization the error rate is reduced by 33%
and 37% for random and skilled forgeries respectively.

Figure 2 shows the histograms of NS and NG for the experiments with random
(a,b)and skilled forgeries (c,d). From figures fig. 2-a and fig.2-c it can be seen that
the upper limit of 111 states per model can be increased in future works expecting
better results from it because many models reached their best performance with
the highest values of NS . With respect the number of Gaussians distributions it
seems that for random forgeries (fig. 2-b) a low number of Gaussians per state
performs better, however in the case of skilled forgeries (fig. 2-d) a higher number
of Gaussians discriminate better this kind of impostor.

To illustrate the relationship between signature complexity and number of
states, signatures with different visual complexities are plotted in figure 3 be-
sides their optimal number of states (one Gaussian per state was used in these
signatures).

After all these experiments, we came to the conclusion that a reliable ASV-
HMM system must be accurate for the majority of users, reporting a low mean
error rate, and also that is very important for the real application acceptance
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(a) NS (random forgeries) (b) NG (random forgeries)

(c) NS (skilled forgeries) (d) NG (skilled forgeries)

Fig. 2. NS and NG histograms for random forgeries (a,b) and skilled forgeries (c,d)
tests

(a) 12 states (b) 55 states (c) 93 states

Fig. 3. Samples of signatures modelled using the HMM user-dependent structure ap-
proach

that the system works properly for very different types of signatures, not being
desirable the existence of users getting high errors rates because their signatures
are simplistic or inconsistent.

The histogram in figure 4-a) illustrates the distribution of the number of users
sharing a same EER interval when random forgeries were used. We emphasize
the following three results: a) a high number of users yield no verification errors
(28% of the models give 0% EER); b) 86% of the models have an EER lower
than 5%; c) only three models report EER over 15%, 15.81% being the worst
EER result of our system.

Table 4 shows that no significant differences are found with respect to the
random case when skilled forgeries were used. In fact, only a slight improvement
can be depicted, which could be attributed to the fact that forged signatures
were produced without information on the signature dynamics, which is difficult
to infer for complex signatures. In spite of these similar average EER results, the
appearance of the EER histogram in figure 4-b) is completely different to the
one in random forgeries. Many of the genuine signatures of the users resulted
to be difficult to forge when a different optimal number of states and Gaussians
is chosen for each user, since the dynamics are hidden in these optimal number



1064 J.M. Pascual-Gaspar and V. Cardeñoso-Payo

(a) random forgeries (b) skilled forgeries

Fig. 4. EER histograms (in %)
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Fig. 5. Relevant global parameters in terms of optimal claim-dependent Ns and Ng

of degrees of freedom. A higher number of models with low EER show (230
producing 0% EER), although there also exists a group of users which produced
simplistic or non-consistent signatures easier to forge, leading to a final average
EER similar to the one found in random forgeries. This might have been clearly
improved with a higher control over the acquisition process.

Recent studies on the combination of local and global features for ASV have
provided reference rankings on the relevance of several global features [15]. The
total length of a signature and the number of strokes (or the basically equivalent
number of pen-ups) are shown to be the most relevant of these global parameters.

In order to test the correlation between the optimum number of degrees of
freedom (NS , NG) of the user dependent models and the value of these global
parameters for a given user, we have carried out a linear correlation analysis
shown in figure 5.

In these figures, we prove that there is a reasonably good linear correspondence
(r2 = 0.51) between the length of a signature and the number NS × NG, which
could provide a basic guideline on a more efficient model selection strategy.
As for the number of pen-ups, there is not such a clear correspondence. This
could be related to the fact that independent strokes could be better modelled
after separate HMM models and then the results merged, compared to a single
HMM based model as the one we are using here. Even less information can
be extracted about the correspondence between signature length and optimum
number of states. In any case, we conclude that further research is worthy on
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the correspondence between global signature parameters and optimum structural
parameters of the models.

6 Conclusions

In this work, we provided experimental evidences of the fact that data driven user
dependent structure optimization of the HMM models could bring lower EER in
ASV systems. The influence of two relevant structural parameters, the number
of states NS in the model and the number of Gaussians by state NG, was evalu-
ated and NS was the parameter which provided better observable improvement.
HMM-UDS strategies lead to more accurate and reliable ASV systems using a
smaller number of training signatures, which always represents an advantage for
practical use cases. User adaptation shows to cope well with intra-user variability
while providing good inter-user discrimination.

An EER of 2.33% for random forgeries and 2.06% for skilled forgeries has
been obtained. This represents a factor of 6 gain over the HMM-UIS strat-
egy for the random forgery scenario within the same experimental conditions.
Since optimization was carried out using an exhaustive search, it might not be
useful in practical systems. Nevertheless, the results provide an lower bound
for the best obtainable EER which encourages for further experimentation on
data driven model selection strategies. Also, a better parameterization including
time-dependent features will of course provide an overall increase of accuracy,
according to the results found in other works [15].
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