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Introduction (English)

This thesis has been developed at the University of Valladolid and IMUVA within the
framework of the project Sampling, trimming, and probabilistic metric techniques. Statis-
tical applications whose main researchers are Carlos Matrán Bea and Eustasio del Barrio
Tellado. Among the lines of research associated with the project are: model validation,
Wasserstein distances and robust cluster analysis. It is precisely the work carried out in
these fields that gives rise to chapters 1,2 and 4 of this report.

The work done in the field of fair learning with Professor Jean-Michel Loubes, frequent
collaborator with Valladolid’s team, during the international stay at the Paul Sabatier
University of Toulouse, is the basis of Chapter 3 of this report.

Therefore, this thesis is an exposition of the problems and results obtained in the
different fields previously mentioned. Due to the diversity of topics, we have decided to
base chapters on the works published or submitted to the present date, and therefore
each chapter has a structure relatively independent of the others. In this way Chapter 1
is based on the works [del Barrio et al., 2019e,del Barrio et al., 2019d], Chapter 2 is based
on the work [del Barrio et al., 2019c], Chapter 3 on the work [del Barrio et al., 2019b]
and Chapter 4 shows results of a work in progress.

In this introduction our objective is to present the main challenges we have faced, as
well as to briefly present our most relevant results. On the other hand, each chapter will
have its own introduction where we will delve into the topics discussed below. With this
in mind, our intention is that the reader will have a general idea of what he or she will
find in each chapter and in this way will have the necessary information to face the more
technical discussions that will be found there.

Due to the diversity of topics dealt with in this report, we propose a non-linear reading.
We suggest that the reader, after reading a section of the Introduction, moves to the
corresponding chapter. In this way the reader will have the relevant information more
at hand and will be able to follow better the exposition in each chapter. If on the other
hand there is a sequential reading of the document, we apologize in advance for some
repetitions and reiterations, which nevertheless seem to us to contribute positively to the
understanding of this work.

Approximate validation of models

It is a well-known fact that classic goodness-of-fit tests are excessively rigid for large
samples. This means that very often the model will be rejected for large datasets, although
most subsamples with sizes smaller than a certain size would not result in rejection. The
poor behaviour of these procedures has been interpreted by some authors as an indicator
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2 Introduction

of model falsity, to the point of stating, as in [Liu and Lindsay, 2009], that for any data
generating mechanism there is a sample size from which model failure is obvious. This
difficulty has been approached by different authors, coinciding in the consideration of
relaxations of the null hypothesis, considering extended but equally useful models that
also tend to involve a gain in robustness [Hodges and Lehmann, 1954,Munk and Czado,
1998, Álvarez-Esteban et al., 2012].

From a different but somewhat complementary point of view, we have Box’s famous
phrase “all models are false, but some are useful”, which even under the model’s falsehood
paradigm leads us to consider some measure of to what extent the model would be useful
or preferable to others. The works [Davies, 1995, Davies, 2018] address these questions
from the perspective that a model is useful as long as it is capable of generating samples
similar to the data at hand.

Over the course of successive projects, the proposals within this quasi-validation or ap-
proximate model validation scheme can be found in [Álvarez-Esteban et al., 2008,Álvarez-
Esteban et al., 2012]. The approach starts from a contamination model, in which two
probabilities, P1 and P2, would be similar at level α if they admitted a simultaneous
decomposition:

P1 = (1− α)P0 + αQ1, P2 = (1− α)P0 + αQ2 (1)

where P0, Q1 and Q2 are arbitrary probabilities. For small values of α, this would guaran-
tee that the samples obtained from these probabilities would be practically homogeneous,
since most of the data would come from the same P0.

The similarity model (1) can be characterized in terms of total variation distance,
where P1 and P2 are defined in the σ-algebra A over Ω, as

dV T (P1, P2) = sup
A∈A
|P1(A)− P2(A)| ≤ α,

but, as is well known, this distance is only appropriate in statistical problems with dis-
crete support. A more general characterization needs some extra tools like generalized
trimmings and contamination neighbourhoods.

Generalized trimmings of a probability were introduced in [Gordaliza, 1991]. A prob-
ability P̃ ∈ R is a trimming of level α ∈ [0, 1) of P when there is a function w such
that 0 ≤ w ≤ 1 and P̃ (B) = 1

1−α

∫
B
w(x)P (dx) for all B ∈ β. Equivalently, it must be

absolutely continuous with respect to P and with Radon-Nykodim derivative bounded by
1

1−α . We will denote the set of α-trimmings of a probability distribution P as Rα(P ):

Rα(P ) =
{
P̃ ∈ P : P̃ � P, dP̃

dP
≤ 1

1−α P -a.s.
}
. (2)

In his seminal work [Huber, 1964], Huber introduced the contamination neighbour-
hoods of a probability, making them one of the pillars of robust statistics. An (α-) contam-
ination neighbourhood of a probability distribution P0 is the following set of probability
distributions

Vα(P0) = {(1− α)P0 + αQ : Q ∈ P}, (3)

where P is the set of all probability distributions in the space. Although it can be defined
in a completely general way, in the first chapter P will be the set of probabilities defined
in the (Borel) sets, β, of the real line R. If F and F0 are distribution functions, we will use
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Rα(F ) and Vα(F0), with the same meanings as before, but defined in terms of distribution
functions.

Thus, given an “ideal” model P0, the neighbourhood includes those probability distri-
butions that are a product of a distortion by bulge or rounding errors: given a value α ∈
[0, 1), a probability P of Vα(P0) would generate samples with approximately (1−α)×100
percent of the data coming from P0. Alternatively, such a sample could be conveniently
“trimmed” to get an authentic sample of the model. In fact, even P0 could be obtained
from an appropriate trimming of P .

A fundamental fact is that contamination neighbourhoods are related to trimmings
(see [Álvarez-Esteban et al., 2011]) through

P ∈ Vα(P0)⇐⇒ P0 ∈ Rα(P ). (4)

In this way, model (1) can be expressed as P1, P2 ∈ Vα(P0) or equivalently for an appro-
priate distance in the space of probabilities

0 ≤ d(Rα(P1), Rα(P2)) = inf
P̃∈Rα(P1),Q̃∈Rα(P2)

d(P̃ , Q̃) ≤ d(P0, P0) = 0.

A particular case is when we want to check whether P ∈ Vα(P0), i.e. to see that
d(P0, Rα(P )) = 0.

The problem with these characterizations is that we do not know either α or the
actual contaminated distribution P . In reality we usually have an approximation P̂ to P ;
normally P̂ is the empirical distribution, and our goal is to look for statistical evidence,
based on P̂ , for or against the hypothesis P ∈ Vα(P0). For this task we use a metric, d,
in the space P and consider d(P0, Rα(P̂ )) as an estimator of d(P0, Rα(P )).

The L2 Wasserstein distance

W2
2 (P1, P2) = inf

π∈Π(P1,P2)

∫
‖x− y‖2dπ(x, y) = inf

{
E‖X − Y ‖2,L(X) = P1,L(Y ) = P2

}
,

where Π(P1, P2) is the set of probabilities in Ω × Ω with first marginal P1 and second
marginal P2 and L(X) is the law of X, is the choice of metric used in [Álvarez-Esteban
et al., 2011].

Our proposal is based on the same principles, but using the Kolmogorov (or L∞)
distance between the distribution functions, explicitly,

dK(F,G) = sup
x∈R
|F (x)−G(x)|, (5)

(We will use the notation ‖F −G‖ and dK(F,G) interchangeably). After all, the Kolmo-
gorov-Smirnov test is probably the best-known and most widely used of the goodness-of-fit
contrasts, so it is a privileged framework for developing these ideas.

In particular we have studied the properties of the plug-in estimator dk(F0, Rα(Fn)),
where Fn is the empirical distribution function based on a sample of n independent random
variables with common distribution F (Proposition 1.2). We have also developed an
algorithm for the efficient computation of the estimator (Theorem 1.4). We have developed
a test with exponentially small error probabilities, based on the previous statistic, to
contrast H0 : dk(F0, Rα(F )) = 0 against the alternative dk(F0, Rα(F )) > ρ (Theorem
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1.6). As a main contribution we highlight Theorem 1.9, a central limit theorem where we
show that

√
n (dK(F0, Rα(Fn))− dK(F0, Rα(F )) converges to the supreme of a Gaussian

process.
As an application of our theoretical results it is worth noting our estimator of α∗ =

min{α : F ∈ Vα(F0)}, the minimum level of contamination that would allow the underly-
ing distribution to be included in the original model, which is more general than the one
introduced in [Rudas et al., 1994] since it is not restricted to the multinomial case. We
also provide confidence bounds for the size of the sub-samples that would be compatible
with the model, generalizing the point-wise estimate given in [Lindsay and Liu, 2009].

Optimal-transport approach to flow cytometry

Recent advances on the optimal transport problem have resulted in relevant applications
in the analysis of clustering procedures. These seek to divide a series of data into clusters
(groups), thus producing what is known as partitions or clusterings. Analysis procedures
compare different clusterings (cluster validation) and attempt to produce summary par-
titions that in some optimal way represent a set of partitions (consensus clustering). In
particular our interest is going to focus on procedures based on optimal transport, so we
briefly present some fundamental results that we will use later.

Following [Villani, 2009], let P(Ω), be a probability space in Ω. For µ, ν ∈ P(Ω), let
Π(µ, ν) be the set of probabilities π in Ω× Ω with first marginal µ and second marginal
ν. The optimal transport cost between the two measures is defined as

C(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y) (6)

where c(x, y) is the cost of transporting a unit of mass from x to y. A probability π
that reaches the minimum in (6) is called an optimal pairing, and has an associated
random variable (X, Y ) with a joint distribution π. When µ and ν are discrete, that is,
µ =

∑n
k=1 pkδxk and ν =

∑m
l=1 qlδyl , with xk, yl ∈ Ω, the optimal transport problem can be

posed as the following linear programming problem (see [Bertsimas and Tsitsiklis, 1997])

C(µ, ν) =
n∑
k=1

m∑
l=1

w∗klc(xk, yl), (7)

where (w∗kl) are the solutions to the optimal-transport linear program

minimize
∑n

k=1

∑m
l=1 wklc(xk, yl)

subject to wkl ≥ 0, 1 ≤ k ≤ n, 1 ≤ l ≤ m∑m
l=1wkl = pk, 1 ≤ k ≤ n∑n
k=1wkl = ql, 1 ≤ l ≤ m∑n
k=1

∑m
l=1 wkl = 1.

For (Ω, d) a Polish metric space and p ∈ [1,∞), the p−Wasserstein distance between
µ and ν is defined as

Wp
p (µ, ν) = inf

π∈Π(µ,ν)

∫
dp(x, y)dπ(x, y) = inf {Edp(X, Y ),L(X) = µ,L(Y ) = ν} , (8)
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where L(X) is the law of X.
We will make use of the Wassserstein distance in an important task such as the com-

parison of different clusterings or partitions. Let us say we have N datasets X i =
{X i

j}
ni
j=1 ⊂ Rd, where for each dataset we have a respective partition Ci = {Cik}

ki
k=1

with Cik ⊂ X i and Cik ∩ Cil = ∅. We would like to know how similar are the parti-
tions Ci. One way to do this is the proposal in [Coen et al., 2010]. In this case we take
Ω = {xC1

1
, . . . , xC1

k1
, . . . , xCN1 , . . . , xCNkN

} as the space formed by the abstract points xCij
which just serve the purpose of referring to the associated cluster Cij. To each partition
Ci there are also associated weights pi = {pi1, . . . , piki}. For example, these weights can
correspond to the proportion of points in the cluster Cik with respect to the total num-
ber of points in Ci. Therefore each clustering Ci has an associated discrete distribution
µi =

∑ki
k=1 p

i
kδxCi

k

.

On the one hand the following distance is defined

dOT (Ci, Cj) = C(µi, µj) =

ki∑
k=1

kj∑
l=1

w∗klc(xCik , xCjl
) =

ki∑
k=1

kj∑
l=1

w∗kld(Cik, C
j
l ), (9)

where (w∗kl) is defined as in (7). That is, we are solving a discrete optimal transport
problem in which the cost between the points associated to the clusters, c(xCik , xCjl

), is

defined as, d(Cik, C
j
l ), the distance that exists between the respective clusters for a certain

metric d. Another auxiliary distance called näıf is defined as

dNT (Ci, Cj) =

ki∑
k=1

kj∑
l=1

pikp
j
l c(xCik , xCjl

) =

ki∑
k=1

kj∑
l=1

pikp
j
l d(Cik, C

j
l ). (10)

The similarity distance is defined as the quotient

dS(Ci, Cj) =
dOT (Ci, Cj)
dNT (Ci, Cj)

. (11)

It is important to note that 0 ≤ dS ≤ 1, where dS = 0 means that the partitions Ci, Cj
are represented by the same clusters with the same weights and dS = 1 means that each
cluster in Ci is transported proportionally to each of the clusters of Cj. Therefore, values
of dS close to zero indicate a high similarity between the partitions involved and values
close to 1 indicate very different partitions.

The similarity distance dS, with an appropriate definition of distance between clusters,
d, will be one of the fundamental tools we will use.

The other fundamental tool are the (2-)Wasserstein k-barycenters. Let us denote by
P2(Rd) the set of probability measures in Rd with second finite moment and let us take in
p = 2 in (8) and d2(x, y) = ‖x− y‖2 for x, y ∈ Rd, where ‖x− y‖ refers to the Euclidean
distance. In [del Barrio et al., 2019a] the notion of k-barycenter and trimmed k-barycenter
were introduced, building on the Wasserstein barycenter concept introduced in [Agueh
and Carlier, 2011, Boissard et al., 2015, Gouic and Loubes, 2017]. The k-barycenter of
probabilities {µ1, . . . , µn} in P2(Rd), with weights λ1, . . . , λn is any k-set {µ̄1, . . . , µ̄k} in
P2(Rd) such that for any {νi, . . . , νk} ⊂ P2(Rd) we have

n∑
i=1

λi min
j∈{1,...,k}

W2
2 (µi, µ̄j) ≤

n∑
i=1

λi min
j∈{1,...,k}

W2
2 (µi, νj). (12)
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An α-trimmed k-barycenter for {µ1, . . . , µn} with weights as before is any k-set {µ̄1, . . . , µ̄k}
with weights λ̄ = (λ̄1, . . . , λ̄n) ∈ Λα(λ) such that

n∑
i=1

λ̄i min
j∈{1,...,k}

W2
2 (µi, µ̄j) = min

{ν1,...,νk}⊂P2(Rd),λ∗∈Λα(λ)

n∑
i=1

λ∗i min
j∈{1,...,k}

W2
2 (µi, νj), (13)

where Λα(λ) = {λ∗ = (λ∗1, . . . , λ
∗
n) : 0 ≤ λ∗i ≤ λi/(1− α),

∑n
i=1 λ

∗
i = 1}.

In a way k-barycentres can be understood as an extension of k-means to the abstract
space of probabilities with second finite moment, since we can rewrite (12) as follows

min
S

k∑
j=1

∑
µi∈Sj

λiW2
2 (µi, µ̄j) (14)

where S = {S1, . . . ,Sk} is a partition of {µ1, . . . , µn} and µ̄j is the barycentre of the
elements in Sj. Also, trimmed k-barycenters can be considered an extension of trimmed k-
means. As mentioned in [del Barrio et al., 2019a], for families of location-scale absolutely
continuous distributions in P2(Rd) efficient calculations can be performed. A notable
example is the family of Gaussian multivariate distributions.

Another important task in the world of clustering, and which will be relevant in our
work, is that of consensus clustering or metaclustering, that is, the search for a partition
that optimally summarizes a set of different partitions. A popular way of doing cluster
analysis is based on models of mixtures, usually multivariate Gaussians, which essentially
assigns to each cluster a distribution that characterizes it. Therefore we are going to be
interested in consensus clustering with clustering results based on mixture models.

Suppose, in particular, that we are interested in clustering based on mixture mod-
els where distributions are absolutely continuous in P2(Rd) and form a location-scale
family . This means that a set of partitions C1, . . . , CN can be characterized as Ci =
{µij}

ki
j=1 ⊂ P2(Rd) for i = 1, . . . , N . In these circumstances a way of doing consen-

sus clustering was proposed in [del Barrio et al., 2019a] based on k-barycenters. In
particular, we pool together all distributions that characterize the partitions obtaining
C = {µ1

1, . . . , µ
1
k1
, . . . , µN1 , . . . , µ

N
kN
} = {µi}n=k1+···+kN

i=1 . We set k, the number of clusters
for the consensus (summary) partition and then the k-baycenter gives us C̄ = {µ̄1, . . . , µ̄k}.
Precisely C̄ is what we consider to be the consensus partition.

We propose an alternative but related way of consensus clustering. The main advan-
tage is that we do not need to specify, k, the number of groups we want for the summary
partition as this assignment is done automatically. The idea is simple, based on C, we build
a distances matrix Wi,j = W2(µi, µj), i, j = 1, . . . , n. Once we have the distances matrix
we can use hierarchical clustering to get a partition for C given by S = {S1, . . . ,Sk}.
Now, taking the (1-)barycentre of the elements in each Si we get C̄ = {µ̄1, . . . , µ̄k}, which
we consider to be the summary partition. There are popular and robust ways of hierar-
chical clustering where the number of clusters is determined automatically. In particular,
we are going to use density-based hierarchical clustering methods through as DBSCAN
(see [Ester et al., 1996]) and HDBSCAN (see [Campello et al., 2013]).

Once the basic tools have been presented, we will talk briefly about the methodology
we introduce and its application to the world of immunology through flow cytometry.
Flow cytometry is based on ‘quantitative measurements with a large number of variables
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obtained from the study of light scattering and fluorescence properties of hundreds of
thousands of individual cells in each analyzed sample’ (see [Aghaeepour et al., 2013]).
These quantitative measurements allow the analysis and classification of individual cells
providing various applications. For example, as mentioned in [Saeys et al., 2016], flow cy-
tometry is used to identify and quantify immune cell populations allowing the monitoring
of the immune status of patients or the detection of relevant biomarkers by comparing
cytometrics from different groups.

Flow cytometry data have high technical and biological variability. Biological variabil-
ity is due to intrinsic differences between individuals such as health status, age, gender,
etc. Technical variability appears through the use of different experimental adjustments,
variation of conditions during experiments or the use of different measuring devices (flow
cytometers).

One of the main components of flow cytometry is gating, i.e. the assignment of in-
dividual cells (an entry in the measurements) to well-established cell types. Among the
most commonly used proposals for automatic gating is supervised classification. However,
the high variability present in the data obtained by means of flow cytometers makes the
effective application of supervised techniques not an easy task.

Note that a classified cytometry, i.e. one that has been subjected to a gating proce-
dure, is equivalent to having a partition in the sense used above. Bearing this in mind, we
propose the following methodology for performing supervised classification in flow cytom-
etry. First, we will obtain, through the use of dS, a partition of a database of classified
cytometries C = {C1, . . . , CN}, which we will denote by T = {T1, . . . ,Ts} where Ti ⊆ C.
For each Ti we want to get a prototype (or summary partition) T i that optimally repre-
sents the clusterings in Ti. We will do this using the consensus clustering tools introduced
above. Through some unsupervised procedure we will get a partition Cu for a new cytom-
etry that we want to classify. We will assign Cu to the prototype T ∗ closer to dS. Finally,
we will use the prototype T ∗ or the partitions in T∗ to do supervised classification on the
cytometry of interest.

The idea behind the procedure is the following: as the intrinsic variability of the
data is high it should be apparent in the database. Therefore it is desirable to group
the database into groups whose elements are more homogeneous, resulting in T. As the
partitions within Ti would be similar to each other, a consensus of these partitions, given
by T i, should be a good representative to learn from. Again, given the natural variability
of flow cytometry, a new cytometry might not resemble some of the prototypes in T , so it
is natural to assign this cytometry to the most similar prototype or group of most similar
cytometries and only use these for later supervised learning. In case the new cytometry
does not resemble any of the prototypes it would not be advisable to use supervised
learning. In that case exploratory techniques would be more recommendable.

Precisely the most detailed presentation and practical implementation of this method-
ology, as well as experiments in real data and comparisons with other state of the art
methods is what we propose as the second chapter of this work. In particular, we present
the main functionalities of optimalFlow , an R package that we have developed to facilitate
the use of our methods. We have also made a package, optimalFlowData, with the data
used for our experiments. Both are available as free software in gitHub and have been
submitted to BioConductor.

https://github.com/HristoInouzhe/optimalFlow
https://github.com/HristoInouzhe/optimalFlowData
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Attraction-Repulsion clustering

As mentioned previously, cluster analysis or clustering is the task of dividing a set of
objects in such a way that elements in the same group or cluster are more similar, ac-
cording to some dissimilarity measure, than elements in different groups. To achieve this
task there are two main types of algorithms: partitioning algorithms, which try to split
the data into k groups that usually minimize some optimality criteria, or agglomerative
algorithms, which start with single observations and merge them into clusters according
to some dissimilarity measure. Such methods have been investigated in a large amount of
literature, hence we refer to [Hennig et al., 2015] and references therein for an overview.

Supervised and unsupervised classification procedures are increasingly more influen-
tial in people’s life since they are used in credit scoring, article recommendation, risk
assessment, spam filtering or sentencing recommendations in courts of law, among others.
Hence controlling the outcome of such procedures, in particular ensuring that some vari-
ables, which should not be taken into account due to moral or legal issues, are not playing
a role in the classification of the observations, has become an important field of research
known as fair learning. We refer to [Lum and Johndrow, 2016,Chouldechova, 2017,Besse
et al., 2018] or [Friedler et al., 2018] for an overview of such legal issues and mathematical
solutions to address them. The main concern is to detect whether decision rules, learnt
from variables X, are biased with respect to a subcategory of the population driven by
some variables called protected or sensitive variables. Such variables induce a bias in the
observations, and are correlated to other observations. Hence avoiding this effect cannot
be achieved by the naive solution of ignoring such protected attributes. Indeed, if the
the data at hand reflects a real world bias, machine learning algorithms can pick on this
behaviour and emulate it.

Recently, concerns about fairness have received an increasing attention, resulting into
two main strategies to address it in the field of classification. One course of action is to
transform the data in order to avoid correlation between the set of sensitive attributes
and the rest of the data [Feldman et al., 2015,del Barrio et al., 2018]. Another way is to
modify the objective functions of the algorithms in a way that eliminates or reduces the
unfairness [Zafar et al., 2017,Kehrenberg et al., 2018].

In this work we consider the problem of fair clustering. Suppose we observe data
that includes information about attributes that we know or suspect that are biased with
respect to the protected class. If the biased variables are dominant enough, a standard
clustering on the unprotected data will result in some biased clusters, therefore, if we
take some actions based on this partition, we will incur in biased decisions. Ideally, a fair
clustering would be the situation in which, in the partition of the data, the proportions of
the protected attributes are the same in each cluster (hence, the same as the proportions
in the whole dataset). This notion of fairness is close to the disparate impact doctrine
( [Feldman et al., 2015]) adapted to the clustering setting. The idea is to guarantee
that a decision taken with respect to a particular cluster in the partition will not affect
disproportionately some group of the population (codified by the protected class), since
every group is represented in every cluster according to its proportion in the whole data.
With our approach to fair clustering we try to avoid or mitigate these situations by
reducing homogeneity with respect to the sensitive classes of the groups, but without
imposing too hard fairness constraints such as group proportions that may result in an
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excessive reduction of the information conveyed by the data.

A possible approach for fair clustering was presented in [Chierichetti et al., 2017]
based on the idea of constrained k-center and k-median clustering. The authors proposed
a model where data are partitioned into two groups, codified by red and blue, where
disparate impact is avoided by maintaining balance between the proportion of points in
the two categories. Their goal is to achieve a partition of the data where the respective
objective function is minimized while balance in each cluster is maintained over a given
treshold. Their approach initially designed for data with two different protected classes
has led to the following extensions. The k-center problem was tackled in [Rösner and
Schmidt, 2018,Bercea et al., 2018], the k-median in [Backurs et al., 2019] while k-means
is further studied in [Bercea et al., 2018, Bera et al., 2019, Schmidt et al., 2018]. These
extensions impose constraints related to some minimum and/or maximum value for the
proportions of the protected classes in each cluster. Yet, the constraints may result in
an excessive modification of the clustering problem with a subsequent loss of geometrical
information contained in the data.

In Chapter 3, we propose an alternative to the constrained clustering approach for ob-
taining fair partitions by incorporating some perturbations in the original dissimilarities
of the data in order to favour heterogeneity with respect to the protected variable. For
this, we present a new methodology inspired by particle physics and based on attraction-
repulsion dissimilarities. These new dissimilarities aim at increasing the separation be-
tween points with the same values of the protected class and/or decreasing the separation
between points with different values of the protected class. Hence they favour the forma-
tion of clusters that are more heterogeneous in the protected variable since they reduce
the distance between points with different class values, and increase the distance between
points with the same class values, leading to a gain in fairness.

Note that we do not need to find fairlets ( [Chierichetti et al., 2017]), partitions of the
data into small fair clusters, or core-sets ( [Schmidt et al., 2018]), small subsets of the data
for which solving the fair clustering problem gives a reasonable approximation to the fair
clustering problem in the whole dataset. Our method is more flexible than previous ones
and enables to control better the trade-off between fairness and geometrical information
of the data. The proposed dissimilarities depend on parameters that the practitioner can
control and therefore he or she can impose bigger tendency to fairness. Guidance in the
task of choosing the parameters is presented in Section 3.5 and discussed through some
synthetic examples in Section 3.6.1. Moreover, attraction-repulsion dissimilarities can be
combined with some common clustering techniques via an embedding, in particular, with
multidimensional scaling (Section 3.2). Agglomerative hierarchical clustering is well suited
for the use of dissimilarities, hence, in Section 3.3, we show how to adapt our proposals in a
computationally efficient way when using this type of clustering. The proposed attraction-
repulsion dissimilarities can also be adapted to the kernel-trick extension, applied to the
unprotected variables X, leading to non linear separation in X with a penalization for
heterogeneity w.r.t. S as shown in Section 3.4 and 3.6.1.
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A stability heuristic for selecting the number of clus-

ters

An essential problem in clustering (cluster analysis) is the determination of the “right” or
optimal number of clusters present in the analysed data. This is, and probably will remain,
an open problem that has received many different approaches. Among the difficulties we
can highlight: the definition of what optimal means, the presence of a huge amount of
different clustering procedures, the granularity (zoom in or zoom out) with which we want
to analyse the data, etc...

Since determining the number of clusters is crucial, different approaches have been
proposed. Extensive discussion can be found in [Hennig et al., 2015] and [Xu et al., 2016].
For example, when using the popular k-means algorithm, the usual procedure for finding
the optimal number of cluster is to repeat the k-means procedure for different values
of k, the number of clusters. Then, some criteria for selecting the appropriate value of
k is used. On the other hand, a fairly simple and used heuristic is to plot intra-cluster
variability against the number of clusters k, and select as an appropriate value the “elbow”
where making bigger k does not reduce significantly the intra-cluster variability. Some
recent interesting proposals when using model-based clustering are given in [Fritz et al.,
2013,Cerioli et al.,2018].

An atractive alternative is based on stability. As stated in the Conclusion of Chapter
28 in [Hennig et al., 2015] “over the last decade, a number of resampling schemes have
been proposed to detect the correct number of clusters for a given data set or assess
the stability of complete partitions or single clusters. For a long time, these methods
were computationally too expensive to be used by practitioners on a regular basis in
everyday work. With the advent of multicore computers as standard desktops or laptops,
cluster model diagnostics by resampling is feasible in acceptable computing time even on
standard hardware.” Usually, stability is understood as how similar, given a particular
similarity criteria, are clusterings of different subsamplings or bootstrapings of the data.
In this way a number of clusters that produces stable (similar) partitions is considered to
capture relevant structure in the data, and hence, can be considered as the correct or at
least more informative number of clusters.

We will be interested precisely in a notion of stability for a clustering methodology
known as classification maximum likelihood (cml) (see [Scott and Symons, 1978,McLach-
lan, 1982]). In particular we will be interested in the restricted version of cml where all
clusters are considered to have the same weight. Given a data set {x1, . . . , xn} ∈ Rd , cml
looks to maximize

k∑
i=1

∑
x∈Ci

logϕ(x;mi, Si) (15)

over a partition of the data {C1, . . . , Ck} and the parameters mi, Si of the multivariate
normal density ϕ. Clustering based on cml is part of the family of mixture model based
clustering procedures, and in particular we will be interested in mixtures of multivariate
gaussian distributions. As stated in [Celeux and Govaert, 1993], “loosely speaking, the
[well known] mixture approach is aimed to maximize the likelihood over the mixture
parameters, whereas the classification approach is aimed to maximize the likelihood over
the mixture parameters and over the identifying labels of the mixture component origin
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for each point.” From another point of view, restricted cml clustering can be viewed as a
generalization of k-means for clusters with arbitrary elliptical shape.

An efficient algorithm for doing cml is given by tclust introduced in [Garćıa-Escudero
et al., 2008] (see also equation (2.3)). Using tclust with equal weights for all clusters, with
no restrictions for the covariance matrices and with no trimming gives a local maximum
for the (restricted) cml objective function (15).

Our interest in doing clustering in the cml setting is due to a surprising pattern we
have noticed during numerical experiments. It seems that there is a quantifiable instability
that appears when using cml for dividing a single dense cluster into k disjoint clusters. In
fact, we think that we have captured the behaviour of this instability in Conjecture 4.1.
This kind of instability does not appear in a comparable method as k-means as is shown
in [Tarpey et al., 1995].

Precisely this unstable behaviour inspires a heuristic for selecting the optimal number
of clusters for model based clustering procedures based on the stability of appropriate
Wasserstein k-barycenters (see (14) above). We also make use of other well established
stability criteria for comparison. In particular, this leads us to suggest that from the point
of view of stability it is advisable not to use k-means. The above mentioned heuristic and
experiments supporting the previous conjecture are given in Section 4.4 of Chapter 4.
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Introducción (Castellano)

Esta tesis ha sido desarrollada en la Universidad de Valladolid y el IMUVA en el marco
del proyecto Técnicas de remuestreo, de recorte, y métricas probabiĺısticas. Aplicaciones
estad́ısticas que tiene como investigadores principales a Carlos Matrán Bea y a Eustasio
del Barrio Tellado. Entre las ĺıneas de investigación asociadas al proyecto cabe destacar:
la validación de modelos, las Distancias de Wasserstein y el Análisis Cluster Robusto.
Precisamente el trabajo realizado en estos campos es el que da lugar a los caṕıtulos 1,2 y
4 de esta exposición.

El trabajo realizado en el campo del aprendizaje justo (fair learning) junto al profesor
Jean-Michel Loubes, frecuente colaborador con el equipo de Valladolid, durante la estancia
internacional en la universidad Paul Sabatier de Toulouse, es la base del Caṕıtulo 3 de
esta memoria.

Por lo tanto, esta tesis es una exposición de los problemas y resultados obtenidos
en los distintos campos previamente mencionados. Debido a la diversidad de los temas,
hemos decidido basar los caṕıtulos en los trabajos publicados o sometidos a fecha de hoy,
de manera que cada caṕıtulo cuenta con una estructura relativamente independiente de
los demás. De esta manera el Capitulo 1 está basado en los trabajos [del Barrio et al.,
2019e, del Barrio et al., 2019d], el Caṕıtulo 2 en el trabajo [del Barrio et al., 2019c], el
Caṕıtulo 3 en el trabajo [del Barrio et al., 2019b] y el Caṕıtulo 4 muestra los resultados
de un trabajo en progreso.

En esta introducción nuestro objetivo es presentar los principales retos a los que nos
hemos enfrentado, aśı como exponer brevemente nuestros resultados más relevantes. Por
otro lado, cada caṕıtulo contará con su propia introducción donde se profundizará en
los temas tratados más abajo. Con esto nuestra intención es que el lector tenga una
idea general de lo que va a encontrar en cada caṕıtulo y de esta manera cuente con la
información necesaria para afrontar las discusiones más técnicas que se encontrará ah́ı.

Debido a la diversidad de temas tratados en esta memoria proponemos una lectura
no lineal. Su- gerimos al lector que tras leer una sección de la Introducción se pase a
la lectura del correspondiente caṕıtulo. De esta manera el lector tendrá la información
relevante más a mano y podrá seguir mejor la exposición en cada caṕıtulo. Si por otro lado
se realiza una lectura secuencial del documento, nos disculpamos de antemano por algunas
repeticiones y reiteraciones, que no obstante nos parece que contribuyen positivamente a
la comprensión de este trabajo.

13
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Validación aproximada de modelos

Es un hecho bien conocido que los procedimientos clásicos de contraste de bondad de
ajuste son excesivamente ŕıgidos para muestras grandes. Esto significa que muy a menudo
el modelo será rechazado para conjuntos grandes de datos, aunque la mayoŕıa de las sub-
muestras con tamaños inferiores a cierto tamaño no daŕıan lugar a rechazo. El compor-
tamiento pobre de estos procedimientos ha sido interpretado por algunos autores como
un indicador de falsedad de los modelos, hasta el punto de plantear, como en [Liu and
Lindsay, 2009], que para cualquier mecanismo generador de datos existe un tamaño mues-
tral a partir del cual el fallo del modelo resulta obvio. Esta dificultad se ha abordado por
diferentes autores, coincidiendo en la consideración de la relajación de la hipótesis nula,
considerando modelos ampliados, pero igualmente útiles que además suelen comportar
una ganancia en robustez [Hodges and Lehmann, 1954, Munk and Czado, 1998, Álvarez-
Esteban et al., 2012].

Desde un punto de vista diferente, pero en cierto modo complementario, tenemos la
célebre frase de Box “todos los modelos son falsos, pero algunos son muy útiles”, que
incluso bajo el paradigma de falsedad del modelo nos lleva al interés de considerar alguna
medida de hasta qué punto el modelo seŕıa útil o de preferencia respecto a otros. Los
trabajos [Davies, 1995, Davies, 2018] inciden en estas cuestiones desde la perspectiva de
que un modelo es útil en tanto en cuanto sea capaz de generar muestras similares a los
datos obtenidos.

A lo largo de sucesivos proyectos, las propuestas dentro de este esquema de casi-
validación o validación aproximada de modelos se encuentran en [Álvarez-Esteban et al.,
2008, Álvarez-Esteban et al., 2012]. El enfoque parte de un modelo de contaminación, en
el que dos probabilidades, P1 y P2, seŕıan similares al nivel α si admitieran una descom-
posición simultánea:

P1 = (1− α)P0 + αQ1, P2 = (1− α)P0 + αQ2 (1)

donde P0, Q1 y Q2 son probabilidades arbitrarias. Para valores pequeños de α, esto
garantizaŕıa que las muestras obtenidas de estas probabilidades seŕıan prácticamente ho-
mogéneas, puesto que la mayor parte de los datos provendŕıan de la misma P0.

El modelo de similaridad (1) puede caracterizarse en términos de la distancia en
variación total, donde P1 y P2 están definidas en la σ-álgebra A sobre Ω, como

dV T (P1, P2) = sup
A∈A
|P1(A)− P2(A)| ≤ α,

pero, como es bien conocido, esta distancia sólo es apropiada en problemas estad́ısticos
con soporte discreto. Una caracterización más general necesita de algunas herramientas
extra como los recortes generalizados y los entornos de contaminación.

Los recortes generalizados de una probabilidad fueron introducidos en [Gordaliza,
1991]. Una probabilidad P̃ ∈ R es un recorte de nivel α ∈ [0, 1) de P cuando existe
una función w tal que 0 ≤ w ≤ 1 y P̃ (B) = 1

1−α

∫
B
w(x)P (dx) para todo conjunto B ∈ β.

De manera equivalente, tiene que ser absolutamente continua con respecto a P y con
derivada de Radon-Nykodim acotada por 1

1−α . Denotaremos el conjunto de α-recortes de
una distribución de probabilidad P como Rα(P ):

Rα(P ) =
{
P̃ ∈ P : P̃ � P, dP̃

dP
≤ 1

1−α P -a.s.
}
. (2)
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En su trabajo seminal [Huber, 1964], Huber introdujo los entornos de contaminación
de una probabilidad, convirtiéndolos en uno de los pilares de la Estad́ıstica Robusta.
Un (α-) entorno de contaminación de una distribución de probabilidad P0 es el siguiente
conjunto de distribuciones de probabilidad

Vα(P0) = {(1− α)P0 + αQ : Q ∈ P}, (3)

donde P es el conjunto de todas las distribuciones de probabilidad en el espacio. Aunque se
pueda definir de manera completamente general, en el primer caṕıtulo P será el conjunto
de probabilidades definidas en los conjuntos (de Borel), β, de la recta real R. Si F y F0

son funciones de distribución, usaremos Rα(F ) y Vα(F0), con los mismos significados que
antes, pero definidos en termino de las funciones de distribución.

De esta manera, dado un modelo “ideal” P0, el entorno incluye aquellas distribuciones
de probabilidad que son producto de una distorsión por errores de bulto o de redondeo:
dado un valor α ∈ [0, 1), una probabilidad P de Vα(P0) generaŕıa muestras con aproxi-
madamente (1−α)×100 porciento de los datos provenientes de P0. Alternativamente, una
muestra aśı podŕıa ser convenientemente “recortada” para obtener una autentica muestra
del modelo. De hecho, incluso P0 se podŕıa obtener a partir de un recorte adecuado de P .

Un hecho fundamental es que los entornos de contaminación se relacionan con los
recortes (ver [Álvarez-Esteban et al., 2011]) mediante

P ∈ Vα(P0)⇐⇒ P0 ∈ Rα(P ). (4)

De esta manera, el modelo (1) se puede expresar como P1, P2 ∈ Vα(P0) o de manera
equivalente para una distancia apropiada en el espacio de probabilidades

0 ≤ d(Rα(P1), Rα(P2)) = inf
P̃∈Rα(P1),Q̃∈Rα(P2)

d(P̃ , Q̃) ≤ d(P0, P0) = 0.

Un caso particular se da cuando queremos comprobar si P ∈ Vα(P0) o de manera equi-
valente ver que d(P0, Rα(P )) = 0.

El problema con estas caracterizaciones es que desconocemos tanto α como la ver-
dadera distribución contaminada P . En la realidad se suele disponer de una aproximación
P̂ a P ; normalmente P̂ es la distribución emṕırica, y nuestro objetivo es buscar eviden-
cia estad́ıstica, basada en P̂ a favor o en contra de la hipótesis P ∈ Vα(P0). Para esta
tarea recurrimos a la métrica, d, en el espacio P y consideramos d(P0, Rα(P̂ )) como un
estimador de d(P0, Rα(P )).

La distancia L2 de Wasserstein

W2
2 (P1, P2) = inf

π∈Π(P1,P2)

∫
‖x− y‖2dπ(x, y) = inf

{
E‖X − Y ‖2,L(X) = P1,L(Y ) = P2

}
,

donde Π(P1, P2) es el conjunto de probabilidades en Ω × Ω con primera marginal P1 y
segunda marginal P2, es la elección de métrica usada en [Álvarez-Esteban et al., 2011].

Nuestra propuesta parte de los mismos principios, pero recurriendo ahora a la distancia
de Kolmogorov (o L∞) entre las funciones de distribución, de manera explicita,

dK(F,G) = sup
x∈R
|F (x)−G(x)|, (5)
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(usaremos de manera intercambiable la notación ‖F −G‖ y dK(F,G)). Al fin y al cabo,
el test de Kolmogorov-Smirnov es probablemente el más conocido y utilizado entre los
contrastes de bondad de ajuste, por lo que supone un marco privilegiado para desarrollar
estas ideas.

En particular hemos estudiado las propiedades del estimador plug-in dk(F0, Rα(Fn)),
donde Fn es la función de distribución emṕırica basada en una muestra de n variable
aleatorias independientes con distribución común F (Proposición 1.2) . Además hemos
desarrollado un algoritmo para el computo eficiente del estimador (Teorema 1.4). Hemos
desarrollado un test con probabilidades de error exponencialmente pequeñas, basado en
el estad́ıstico anterior, para contrastar H0 : dk(F0, Rα(F )) = 0 contra la alternativa
dk(F0, Rα(F )) > ρ (Teorema 1.6). Como contribución principal destacamos el Teo-
rema 1.9, un teorema central del ĺımite donde demostramos que

√
n(dK(F0, Rα(Fn))−

dK(F0, Rα(F )) converge al supremo de un proceso Gaussiano.
Como aplicación de nuestros resultados teóricos cabe destacar nuestro estimador para

α∗ = min{α : F ∈ Vα(F0)}, el mı́nimo nivel de contaminación que permitiŕıa incluir la dis-
tribución subyacente en el modelo original, que es mas general que el estimador propuesto
en [Rudas et al., 1994] ya que no se limita a modelos multinomiales. Asimismo, ofrecemos
intervalos de confianza para el tamaño de las submuestras que seŕıan compatibles con
el modelo, extendiendo resultados de aproximación puntual presentados en [Lindsay and
Liu, 2009].

Transporte óptimo aplicado a la citometŕıa de flujo

Recientes avances en torno al problema de transporte óptimo han resultado en aplica-
ciones relevantes en el análisis de resultados de procedimientos cluster o de agrupación.
Los procedimientos cluster buscan dividir una serie de datos en grupos disjuntos (clus-
ters) produciendo aśı lo que se denomina como partición o clustering de los datos. Los
procedimientos de análisis se encargan de comparar distintas particiones y de intentar
producir particiones resumen que de alguna manera óptima representen a un conjunto de
particiones (consensus clustering). En particular nuestro interés se va a centrar en pro-
cedimientos basados en transporte óptimo, por lo que presentamos brevemente algunos
de los resultados fundamentales que usaremos más adelante.

Siguiendo [Villani, 2009], sea P(Ω), el espacio de probabilidades en Ω. Para µ, ν en
P(Ω), sea Π(µ, ν) el conjunto de probabilidades π en Ω × Ω con primera marginal µ y
segunda marginal ν. El coste de transporte óptimo entre las dos medidas se define como

C(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y) (6)

donde c(x, y) es el coste de transportar una unidad de masa desde x a y. Una probabilidad
π que alcanza el mı́nimo en (6) se denomina emparejamiento óptimo, y tiene asociada
una variable aleatoria (X, Y ) con distribución conjunta π. Cuando µ y ν son discretas, es
decir, µ =

∑n
k=1 pkδxk y ν =

∑m
l=1 qlδyl , con xk, yl ∈ Ω, el problema de transporte óptimo

se puede plantear como el sigueinte problema de programación lineal (vease [Bertsimas
and Tsitsiklis, 1997])

C(µ, ν) =
n∑
k=1

m∑
l=1

w∗klc(xk, yl), (7)
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donde (w∗kl) son las soluciones al programa lineal de transporte óptimo

minimizar
∑n

k=1

∑m
l=1wklc(xk, yl)

sujeto a wkl ≥ 0, 1 ≤ k ≤ n, 1 ≤ l ≤ m∑m
l=1 wkl = pk, 1 ≤ k ≤ n∑n
k=1wkl = ql, 1 ≤ l ≤ m∑n
k=1

∑m
l=1wkl = 1.

Para (Ω, d) un espacio métrico polaco y p ∈ [1,∞), la distancia p−Wasserstein entre
µ y ν se define como

Wp
p (µ, ν) = inf

π∈Π(µ,ν)

∫
dp(x, y)dπ(x, y) = inf {Edp(X, Y ),L(X) = µ,L(Y ) = ν} , (8)

donde L(X) es la ley de X.
Haremos uso de la distancia de Wassserstein en una tarea importante en el análisis

cluster como la comparación de distintos clusterings o particiones. Digamos que tenemos
N conjuntos de datos X i = {X i

j}
ni
j=1 ⊂ Rd, donde para cada conjunto de datos tenemos

la respectiva partición Ci = {Cik}
ki
k=1 con Cik ⊂ X i y Cik ∩ Cil = ∅. Nos gustaŕıa saber

como de parecidas son las particiones Ci. Una manera de hacerlo es la propuesta en [Coen
et al., 2010]. En este caso tomamos Ω = {xC1

1
, . . . , xC1

k1
, . . . , xCN1 , . . . , xCNkN

} formado por los

puntos abstractos xCij que sirven para referirnos al cluster Cij. Además, a cada partición, Ci

se le asocian unos pesos pi = {pi1, . . . , piki}. Por ejemplo, estos pesos pueden corresponderse
con la proporción de puntos en el cluter Cik con respecto al número de puntos totales en Ci.
De esta manera a cada partición (clustering) Ci le corresponde una distribución discreta
µi =

∑ki
k=1 p

i
kδxCi

k

.

Por un lado se define la distancia

dOT (Ci, Cj) = C(µi, µj) =

ki∑
k=1

kj∑
l=1

w∗klc(xCik , xCjl
) =

ki∑
k=1

kj∑
l=1

w∗kld(Cik, C
j
l ), (9)

donde (w∗kl) se define como en (7). Es decir estamos resolviendo un problema de transporte
óptimo discreto en el cual el coste entre los puntos asociados a los clusters, c(xCik , xCjl

),

se define como, d(Cik, C
j
l ), la distancia que existe entre los respectivos clusters para cierta

métrica d. Otra distancia auxiliar denominada näıf se define como

dNT (Ci, Cj) =

ki∑
k=1

kj∑
l=1

pikp
j
l c(xCik , xCjl

) =

ki∑
k=1

kj∑
l=1

pikp
j
l d(Cik, C

j
l ). (10)

La distancia de similaridad se define como el cociente

dS(Ci, Cj) =
dOT (Ci, Cj)
dNT (Ci, Cj)

. (11)

Es importante notar que 0 ≤ dS ≤ 1, donde dS = 0 quiere decir que las particiones Ci, Cj
están re-presentadas por los mismos clusters con los mismos pesos y dS = 1 quiere decir
que cada cluster en Ci es transportado de manera proporcional a cada uno de los clusters
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de Cj. Por lo tanto, valores de dS cercanos a cero indican una alta similaridad entre las
particiones involucradas y valores cercanos a 1 indican particiones muy diferentes.

La distancia de similaridad dS, con una definición de distancia entre clusters, d, apro-
piada, será una de las herramientas fundamentales que usaremos.

La otra herramienta fundamental son los k-baricentros de Wasserstein. Vamos a de-
notar por P2(Rd) el conjunto de medidas de probabilidad en Rd con segundo momento
finito y tomaremos p = 2 en (8) y d2(x, y) = ‖x − y‖2 para x, y ∈ Rd y ‖x − y‖ la dis-
tancia Euclidea. En [del Barrio et al., 2019a] la noción de k-baricentro y de k-baricentro
recortado fueron introducidas, construyendo sobre el concepto de baricentro de Wasser-
stein introducido en [Agueh and Carlier, 2011, Boissard et al., 2015, Gouic and Loubes,
2017]. El k-baricentro de las probabilidades {µ1, . . . , µn} en P2(Rd) con pesos λ1, . . . , λn es
cualquier k-conjunto {µ̄1, . . . , µ̄k} en P2(Rd) tal que para cualquier {νi, . . . , νk} ⊂ P2(Rd)
tenemos que

n∑
i=1

λi min
j∈{1,...,k}

W2
2 (µi, µ̄j) ≤

n∑
i=1

λi min
j∈{1,...,k}

W2
2 (µi, νj). (12)

Un k-baricentro α-recortado de {µ1, . . . , µn} con pesos como antes es cualquier k-conjunto
{µ̄1, . . . , µ̄k} con pesos λ̄ = (λ̄1, . . . , λ̄n) ∈ Λα(λ) tal que

n∑
i=1

λ̄i min
j∈{1,...,k}

W2
2 (µi, µ̄j) = min

{ν1,...,νk}⊂P2(Rd),λ∗∈Λα(λ)

n∑
i=1

λ∗i min
j∈{1,...,k}

W2
2 (µi, νj), (13)

donde Λα(λ) = {λ∗ = (λ∗1, . . . , λ
∗
n) : 0 ≤ λ∗i ≤ λi/(1− α),

∑n
i=1 λ

∗
i = 1}.

En cierta manera los k-baricentros se puede entender como una extensión de las k-
medias al espacio abstracto de las probabilidades con segundo momento finito, ya que
podemos reescribir (12) como

min
S

k∑
j=1

∑
µi∈Sj

λiW2
2 (µi, µ̄j) (14)

donde S = {S1, . . . ,Sk} es una partición de {µ1, . . . , µn} y µ̄j es el baricentro de los
elementos en Sj. Asimismo, los k-barycenters recortados se pueden considerar una ex-
tension de las k-medias recortadas. Como se menciona en [del Barrio et al., 2019a], para
familias de localización-escala de distribuciones absolutamente continuas en P2(Rd) se
pueden realizar cálculos eficientes. Como ejemplo notable cabe destacar a la familia de
distribuciones multivariantes Gaussianas.

Otra tarea importante en el mundo del clustering, y que será relevante en nuestro
trabajo, es la del consensus clustering o metaclustering, es decir, la búsqueda de una
partición que resume de manera óptima un conjunto de particiones diferentes. Una forma
popular de hacer análisis cluster es la basada en modelos de mezclas, habitualmente
multivariantes Gaussianas, que esencialmente asigna a cada cluster una distribución que
lo caracteriza. Por lo tanto vamos a estar interesados en hacer consensus clustering con
resultados de clustering basado en modelo de mezclas.

Supongamos, en particular, que estamos interesados en el clustering basado en modelo
de mezclas donde las distribuciones son una familia de localización-escala absolutamente
continuas en P2(Rd). Esto quiere decir que un conjunto de particiones C1, . . . , CN se puede
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caracterizar como Ci = {µij}
ki
j=1 ⊂ P2(Rd) para i = 1, . . . , N . En estas circunstancias una

manera de hacer consensus clustering fue propuesta en [del Barrio et al., 2019a] basada
en el k-baricentro. En particular, agregamos todas las distribuciones que caracterizan
las particiones obteniendo C = {µ1

1, . . . , µ
1
k1
, . . . , µN1 , . . . , µ

N
kN
} = {µi}n=k1+···+kN

i=1 . Fijamos
k, el número de clusters que que queremos que tenga la partición consenso (resumen) y
entonces el k-baricentro nos da C̄ = {µ̄1, . . . , µ̄k}. Precisamente C̄ es lo que consideramos
como la partición de consenso.

Nosotros proponemos una manera alternativa pero relacionada de hacer consensus
clustering. La principal ventaja es que no necesitamos especificar el numero k de grupos
que queremos que tenga la partición resumen ya que esta asignación se hace de forma
automática. La idea es sencilla, basándonos en C, construimos una matriz de distancias
Wi,j = W2(µi, µj), i, j = 1, . . . , n. Una vez que tenemos la matriz de distancia podemos
usar clustering jerárquico para obtener una partición S = {S1, . . . ,Sk} de C. Ahora,
tomando el (1-)baricentro de los elementos en cada Si obtenemos C̄ = {µ̄1, . . . , µ̄k}, que
consideramos como la partición resumen. Hay maneras populares y robustas de hacer
clustering jerárquico donde el número de clusters se determina de forma automática. En
particular, vamos a usar métodos de clustering jerárquico basado en densidades a través
de DBSCAN (ver [Ester et al., 1996]) y HDBSCAN (ver [Campello et al., 2013]).

Una vez presentadas las herramientas básicas, vamos a hablar brevemente de la metodo-
loǵıa que introducimos y de su aplicación al mundo de la inmunoloǵıa a través de la ci-
tometŕıa de flujo. La citometŕıa de flujo se basa en ‘medidas cuantitativas con un gran
número de variables provenientes del estudio de la dispersión de luz y de propiedades
de fluorescencia de cientos de miles de células individuales en cada muestra analizada’
(vease [Aghaeepour et al., 2013]). Estas medidas cuantitativas permiten el análisis y
clasificación de células individuales proporcionando diversas aplicaciones. Por ejemplo,
como se menciona en [Saeys et al., 2016], la citometŕıa de flujo se usa para identificar y
cuantificar poblaciones de células inmunes lo que permite monitorizar el estado inmune
de los pacientes o la detección de biomarcadores relevantes mediante la comparación de
citometŕıas de diferentes grupos.

Los datos procedentes de la citometŕıa de flujo tienen una alta variabilidad técnica y
biológica. La variabilidad biológica se debe a las diferencias intŕınsecas entre individuos
como el estado de salud, la edad, el género, etc...La variabilidad técnica aparece por el
uso de distintos ajustes experimentales, por la variación de las condiciones durante los
experimentos o por el uso de distintos aparatos de medición (citómetros de flujo).

Uno de los componentes principales de la citometŕıa de flujo es el gating, es decir la
asignación de células individuales (una entrada en las mediciones) a tipos de células bien
establecidos. Entre las propuestas más usadas para realizar gating de manera automática
se encuentra la clasificación supervisada. Sin embargo la alta variabilidad presente en los
datos obtenidos mediante los citometros de flujo hace que la aplicación eficaz de técnicas
supervisadas no sea una tarea sencilla.

Nótese que una citometŕıa clasificada, es decir que ha sido sometida a un proceso de
gating, es equivalente a tener una partición en el sentido usado más arriba. Teniendo en
cuenta esto, proponemos la siguiente metodoloǵıa para realizar clasificación supervisada
en citometŕıas de flujo. Primero, obtendremos, mediante el uso de dS, una partición de
una base de datos de citometŕıas clasificadas C = {C1, . . . , CN}, que denotaremos por
T = {T1, . . . ,Ts} donde Ti ⊆ C. Para cada Ti queremos obtener un prototipo (o par-
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tición resumen) T i que represente de manera óptima los clusterings en Ti. Haremos esto
usando las herramientas de consensus clustering introducidas más arriba. Mediante algún
procedimiento no supervisado obtendremos una partición Cu de una nueva citometŕıa a
la que queremos clasificar. Asignaremos Cu al prototipo T ∗ mas cercano con respecto a
dS. Por último, usaremos el prototipo T ∗ o las particiones en T∗ para hacer clasificación
supervisada sobre la citometŕıa de interés.

La idea detrás del procedimiento es la siguiente: como la variabilidad intŕınseca de
los datos es elevada esto se debeŕıa notar en la base de datos. Por lo tanto es deseable
agrupar la base de datos en grupos cuyos elementos sean más homogéneos, dando lugar
a T. Como las particiones dentro de Ti seŕıan parecidas entre si, un consenso de estas
particiones, dado por T i, debeŕıa ser buen represente para aprender sobre él. Otra vez,
dada la variabilidad natural de las citometŕıas de flujo, una nueva citometŕıa podŕıa no
parecerse a algunos de los prototipos de T , por lo que es natural asignar esta citometŕıa al
prototipo más similar o al grupo de citometŕıas más similares y usar solamente estos para
el posterior aprendizaje supervisado. En caso de que la nueva citometŕıa no se pareciera
a ninguno de los prototipos no seŕıa recomendable usar aprendizaje supervisado. En ese
caso técnicas exploratorias seŕıan más recomendables.

Precisamente la presentación más detallada y la implementación práctica de esta
metodoloǵıa, aśı como experimentos en datos reales y comparaciones con otros métodos
de última generación es lo que proponemos como segundo caṕıtulo de este trabajo. En
particular, presentamos las principales funcionalidades de optimalFlow , un paquete de R
que hemos desarrollado para facilitar el uso de nuestros métodos. Asimismo, hemos hecho
un paquete, optimalFlowData, con los datos usados para nuestros experimentos. Ambos
están disponibles como software libre en gitHub y han sido sometidos a BioConductor.

Clustering de atracción-repulsión

Como se mencionó anteriormente, el análisis cluster o clustering es la tarea de dividir un
conjunto de objetos de tal manera que los elementos en el mismo grupo o cluster son más
similares, de acuerdo con alguna medida de disimilaridad, que los elementos en diferentes
grupos. Esto se puede conseguir principalmente mediante dos tipos de algoritmos: los
algoritmos de partición, que tratan de dividir los datos en k grupos que habitualmente
minimizan algunos criterios de optimización, o los algoritmos aglomerativos, que comien-
zan con observaciones individuales y las fusionan en clusters de acuerdo con alguna medida
de disimilitud. Estos métodos han sido investigados ampliamente en la literatura, por lo
que nos referimos a [Hennig et al., 2015] y sus referencias para una visión general.

Los procedimientos de clasificación supervisada y no supervisada son cada vez más
influyentes en la vida cotidiana, ya que se utilizan en el scoring crediticio, la recomen-
dación de art́ıculos, la evaluación de riesgos, el filtrado de spam o las recomendaciones de
sentencia en los tribunales de justicia, entre otros. Por lo tanto, el control del resultado de
estos procedimientos, en particular asegurar que algunas variables, que no deben tenerse
en cuenta debido a cuestiones morales o juŕıdicas, no desempeñan un papel en la clasi-
ficación de las observaciones, se ha convertido en un importante campo de investigación
conocido como fair learning. Nos referimos a [Lum and Johndrow, 2016, Chouldechova,
2017, Besse et al., 2018] o [Friedler et al., 2018] para obtener una visión general de los

https://github.com/HristoInouzhe/optimalFlow
https://github.com/HristoInouzhe/optimalFlowData
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problemas legales y de las soluciones matemáticas para resolverlos. La tarea fundamental
es detectar si las reglas de decisión, aprendidas de las variables X, están sesgadas con
respecto a una subcategoŕıa de la población impulsada por algunas variables llamadas
variables protegidas o sensibles. Tales variables inducen un sesgo en las observaciones y
están correlacionadas con otras observaciones. Por lo tanto, evitar este efecto no puede
lograrse con la solución näıf de ignorar tales atributos protegidos. De hecho, si los datos
en cuestión reflejan un sesgo del mundo real, los algoritmos de aprendizaje automático
pueden captar este comportamiento y emularlo.

Recientemente, la preocupación por la equidad o justićıa ha recibido una atención
cada vez mayor, lo que ha dado lugar a dos estrategias principales para abordarla en el
ámbito de la clasificación. Una manera es transformar los datos para evitar la correlación
entre el conjunto de atributos sensibles y el resto de los datos [Feldman et al., 2015, del
Barrio et al., 2018]. Otra forma es modificar las funciones objetivo de los algoritmos de
manera que se elimine o reduzca la injusticia [Zafar et al., 2017,Kehrenberg et al., 2018].

En este trabajo consideramos el problema del clustering justo. Supongamos que ob-
servamos datos que incluyen información sobre atributos que conocemos o sospechamos
que están sesgados con respecto a la clase protegida. Si las variables sesgadas son lo
suficientemente dominantes, una agrupación (clustering) estándar en los datos desprote-
gidos resultará en algunos clusters (grupos) sesgadas, por lo tanto, si tomamos acciones
basadas en esta partición, incurriremos en decisiones sesgadas. Idealmente, un clustering
justo seŕıa aquel en el que, en la partición de los datos, las proporciones de los atributos
protegidos fueran las mismas en cada cluster (por lo tanto, las mismas que las propor-
ciones en todo el conjunto de datos). Esta noción de equidad se acerca a la doctrina del
impacto dispar ( [Feldman et al., 2015]) adaptada al problema de clustering. La idea es
garantizar que una decisión tomada con respecto a un determinado cluster en la partición
no afecte desproporcionadamente a algún grupo de la población (codificado por la clase
protegida), ya que cada grupo está representado en cada cluster según su proporción en el
conjunto total de los datos. Con nuestro enfoque de agrupación justa tratamos de evitar
o mitigar estas situaciones reduciendo la homogeneidad con respecto a las clases sensi-
bles de los grupos, pero sin imponer restricciones de equidad demasiado fuertes, como
en las proporciones de los grupos, que pueden resultar en una reducción excesiva de la
información transmitida por los datos.

En [Chierichetti et al., 2017] se presentó un posible enfoque al clustering justo basado
en la idea de clustering restringido basado en k-centros y k-medianas. Los autores pro-
pusieron un modelo en el que los datos se dividen en dos grupos, codificados en rojo y
azul, y en el que se evita el impacto desigual manteniendo un balance entre la proporción
de puntos en las dos categoŕıas. Su objetivo es lograr una partición de los datos en la
que se minimice la función objetivo respectiva mientras se mantiene el balance en cada
cluster por debajo de un umbral determinado. Su enfoque inicialmente diseñado para
datos con dos clases protegidas diferentes ha llevado a las siguientes extensiones. El pro-
blema del k-centro se abordó en [Rösner and Schmidt, 2018, Bercea et al., 2018], el de
la k-mediana en [Backurs et al., 2019] mientras que las k-medias se estudia más a fondo
en [Bercea et al., 2018,Bera et al., 2019,Schmidt et al., 2018]. Estas extensiones imponen
restricciones relacionadas con algún valor mı́nimo y/o máximo para las proporciones de
las clases protegidas en cada cluster. Sin embargo, las restricciones pueden dar lugar a
una modificación excesiva del problema de agrupamiento con la consiguiente pérdida de
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información geométrica contenida en los datos.
A continuación, proponemos una alternativa al enfoque de clustering restringido para

la obtención de particiones justas, incorporando algunas perturbaciones en las disimilari-
dades originales de los datos para favorecer la heterogeneidad respecto a la variable pro-
tegida. Para ello, presentamos una nueva metodoloǵıa inspirada en la f́ısica de part́ıculas
y basada en disimilaridades de atracción-repulsión. Estas nuevas disimilaridades tienen
como objetivo aumentar la separación entre puntos con los mismos valores de la clase
protegida y/o disminuir la separación entre puntos con diferentes valores de la clase pro-
tegida. Por lo tanto, favorecen la formación de conglomerados más heterogéneos en la
variable protegida, ya que reducen la distancia entre puntos con diferentes valores de clase
y aumentan la distancia entre puntos con los mismos valores de clase, lo que conduce a
un aumento de la justicia.

Es importante notar que con nuestros procedimientos no necesitamos encontrar fairlets
( [Chierichetti et al., 2017]), particiones de los datos en pequeños clusters justos, o core-
sets ( [Schmidt et al., 2018]), pequeños subconjuntos de datos para los cuales la resolución
del problema de clustering justo da una aproximación razonable al problema de clustering
justo en todo el conjunto de datos. Nuestro método es más flexible que los anteriores y
permite controlar mejor el equilibrio entre la equidad y la información geométrica de los
datos. Las disimilaridades propuestas dependen de parámetros que el usuario puede con-
trolar y por lo tanto puede imponer una mayor tendencia a la equidad. Indicaciones sobre
como elegir los parámetros libres se dan en la Sección 3.5 y se discuten a través de algunos
ejemplos sintéticos en la Sección 3.6.1. Además, las disimilaridades de atracción-repulsión
pueden combinarse con algunas técnicas comunes de clustering a través de un embedding,
en particular, con un escalado multidimensional (Sección 3.2). El clustering jerárquico
es adecuada para el uso de disimilaridades, por lo tanto, en la Sección 3.3, mostramos
cómo adaptar nuestras propuestas de una manera computacionalmente eficiente cuando
se utiliza este tipo de agrupación. Las disimilaridades de atracción-repulsión también
pueden adaptarse a la extensión kernel-trick, aplicada a las variables desprotegidas X, lo
que lleva a una separación no lineal en X con una penalización por heterogeneidad con
respecto a S como se muestra en la Sección 3.4 y 3.6.1.

Heuŕıstica basada en estabilidad para la selección del

número de clusters

Un problema esencial en el clustering (análisis cluster) es la determinación del número
“correcto” u óptimo de clusters (grupos) presentes en los datos analizados. Este es, y
probablemente seguirá siendo, un problema abierto que ha recibido muchos enfoques difer-
entes. Entre las dificultades podemos destacar: la definición de lo que significa óptimo, la
presencia de una gran cantidad de procedimientos de clustering diferentes, la granularidad
(zoom in o zoom out) con la que queremos analizar los datos, etc...

Debido a que la determinación del número de clusters es crucial se han propuesto
diferentes enfoques para resolver el problema. Se puede encontrar una extensa discusión
en [Hennig et al., 2015] y [Xu et al., 2016]. Por ejemplo, cuando se utiliza el popular
algoritmo de k-medias, la técnica habitual para encontrar el número óptimo de clusters
es repetir el procedimiento de k-medias para diferentes valores de k, el número de clus-
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ters. Posteriormente se utilizan algunos criterios para seleccionar el valor apropiado de k.
Por otro lado, una heuŕıstica simple y bastante usada es representar gráficamente la vari-
abilidad intra-cluster contra el número de clusters k, y seleccionar como valor apropiado
el “codo” donde hacer más grande k no reduce significativamente la variabilidad intra-
cluster. Algunas propuestas interesantes y recientes sobre el usando clustering basada en
modelos se presentan en [Fritz et al., 2013,Cerioli et al.,2018].

Una alternativa atractiva se basa en la estabilidad. Como se indica en la Conclusión
del Caṕıtulo 28 en [Hennig et al., 2015] “durante la última década, se han propuesto
varios esquemas de remuestreo para detectar el número correcto de clusters para un con-
junto de datos dado o para evaluar la estabilidad de particiones completas o clusters
individuales. Durante mucho tiempo, estos métodos fueron computacionalmente dema-
siado costosos para ser utilizados de forma regular en el trabajo diario. Con la llegada de
los ordenadores multinúcleo como los ordenadores de sobremesa o los portátiles estándar,
el diagnóstico de procedimientos de agrupación mediante remuestreo es factible en un
tiempo de cálculo aceptable, incluso en hardware estándar”. Por lo general, la estabilidad
se entiende como lo similares que son, dado un criterio particular de similitud, los agru-
pamientos de diferentes submuestras o bootstrapings de los datos. De esta manera, se
considera que un número de clústeres que produce particiones estables (similares) captura
la estructura relevante en los datos, y por lo tanto, puede ser considerado como el número
correcto o al menos más informativo de clústeres.

Nos interesará precisamente una noción de estabilidad para una metodoloǵıa de clus-
tering conocida como clasificación de máxima verosimilitud (cml de su siglas en inglés)
(ver [Scott and Symons, 1978,McLachlan, 1982]). En particular, nos interesará la versión
restringida de cml, en la que se considera que todos los clusters tienen el mismo peso.
Dada una colección de datos, el cml trata de maximizar la función

k∑
i=1

∑
x∈Ci

logϕ(x;mi, Si) (15)

sobre la partición de los datos {C1, . . . , Ck} y los parámetros mi, Si de la densidad normal
multivariante ϕ. El clustering basado en cml forma parte de la familia de procedimientos
de clustering basados en modelos de mezclas y, en particular, nos interesarán las mezclas
de distribuciones Gaussianas multivariantes. Como se indica en [Celeux and Govaert,
1993], “en términos generales, el enfoque de mezclas [bien conocido] tiene por objeto
maximizar la probabilidad sobre los parámetros de la mezcla, mientras que el enfoque de
clasificación tiene por objeto maximizar la probabilidad sobre los parámetros de la mezcla
y sobre las etiquetas de identificación del origen del componente de la mezcla para cada
punto”. Desde otro punto de vista, el clustering cml restringido puede ser entendido como
una generalización del k-medias para clusters con forma eĺıptica arbitraria.

Un algoritmo eficiente para hacer clustering cml está dado por tclust introducido
en [Garćıa-Escudero et al., 2008] (ver también ecuación (2.3)). Usando tclust con pesos
iguales para todos los clusters, sin restricciones para las matrices de covarianza y sin
recorte, obtenemos un máximo local para la función objetivo cml (restringida) (15).

Nuestro interés por hacer clustering basado en cml se debe a un patrón sorprendente
que hemos observado durante los experimentos numéricos que hemos realizado. Parece
ser que hay una inestabilidad cuantificable que aparece cuando se usa cml para dividir
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un solo cluster denso en k clusters disjuntos. De hecho, pensamos que hemos capturado
el comportamiento de esta inestabilidad en la Conjetura 4.1. Este tipo de inestabilidad
no aparece en un método comparable como es el k-medias como se muestra en [Tarpey
et al., 1995].

Precisamente este comportamiento inestable inspira una heuŕıstica para seleccionar
el número óptimo de clusters para los procedimientos de clustering basados en modelos
que se sustenta en la estabilidad de k-baricentros de Wasserstein apropiados (ver (14)
más arriba). Para comparar usaremos otros criterios de estabilidad bien establecidos.
En particular, esto nos lleva a sugerir que desde el punto de vista de la estabilidad es
aconsejable no utilizar k-medias. La heuŕıstica y los experimentos que apoyan la conjetura
anterior, arriba mencionados, se dan en la Sección 4.4 del Caṕıtulo 4.



1
A Kolmogorov approach to
approximate validation of models

1.1 Introduction

Often, some feature of a predominant population is clearly different from that of another
minority population, simply because of its different eating or cultural habits. In either
of these situations, a data sample of that feature taken from the general population
will include data that do not come from and do not look like those arising from the
predominant one. Consequently, the statistical inference on the main population should
be made taking into account the presence of atypical data. As a first ingredient, to
address this goal, we resort to a suggestive model introduced in [Huber, 1964], becoming
one of the very basis of Robust Statistics, recall the (α-)contamination neighbourhood
(CN) of a probability distribution P0 defined in (3). We must note the use of particular
contamination models in different statistical problems, stressing its role on the False-
Discovery-Rate (FDR) setting (as considered e.g. in [Genovese and Wasserman, 2004]).
We briefly comment on the relation of our approach with that in Section 1.5.

Of course, if an ‘outlying label’ were available for the data coming from the contami-
nating distribution, Q, removing the labeled data would produce a legitimate sample from
P0. The relevant fact is that CN’s are related to trimmings (4). This relation allows us
to work with trimmings, instead of CN’s, taking advantage of the underlying meaning of
trimming and its mathematical properties. If F and F0 are distribution functions (d.f.’s
in the sequel), we will also use Rα(F ) and Vα(F0), with the same meanings as before, but
defined in terms of d.f.’s.

The natural absence of an outlying label has been traditionally substituted by more
or less orthodox trimming criteria, including the oldest consisting in trimming just the
extreme values, carrying out the analysis with the remaining data. Recently, mainly
in conection with two-sample problems (see e.g. [Álvarez-Esteban et al., 2008, Álvarez-
Esteban et al., 2011, Álvarez-Esteban et al., 2012, Álvarez-Esteban et al., 2016]), optimal
trimmings have been introduced as the nearest ones to the original model, according to
some probability distance or dissimilarity measure. This role will be played here by the
Kolmogorov (or L∞-) distance between d.f.’s on the real line defined in (5). Recall that
we will use the notation ‖F −G‖∞, ‖F −G‖ and dK(F,G) indistinguishably trough this
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chapter.
In this chapter, we develop a robust hypothesis testing procedure based on the previous

considerations. Moreover, under the paradigm of a false-model world, we use the elements
involved in the procedure to suggest some tools for comparing models or for determining
the usefulness of particular models.

The use of CN’s, through their connection with trimmings, leads to consider Vα(F0) to
be the ‘reasonable’ model. Notice that (see Example 1.1), this approach differs from that
based just on dK-neighbourhoods of F0, which would have a different meaning (see [Owen,
1995] for this and other classic approaches). As relation (1.5) shows, (4) is also equivalent
to dK(F0, Rα(F )) = 0, giving to the ‘trimmed Kolmogorov distance’ functional

dK(F0, Rα(F )) := min
F̃∈Rα(F )

dK(F0, F̃ ), (1.1)

and to the plug-in estimator dK(F0, Rα(Fn)), a main role into our analysis. (Here Fn is
the empirical d.f. based on a sample of n independent random variables with common d.f.
F ). In particular, we address the possibilities of testing H0 : dK(F0, Rα(F )) = 0 vs. H1 :
dK(F0, Rα(F )) > 0, where ‘reasonable’ is controlled by the trimming level α. Related
null hypotheses have already been considered making use of different probability metrics
or different neighbourhoods. In [Álvarez-Esteban et al., 2011, Álvarez-Esteban et al.,
2012], the L2-Wasserstein distance is used in a two-sample version. Previous approaches
based on particular trimming procedures were considered in [Munk and Czado, 1998]
and [Álvarez-Esteban et al., 2008]. The Kolmogorov-Smirnov test is probably the most
widely used goodness of fit test, therefore the dK-metric provides a privileged setting
to develop our approach. Notice that we provide existence and characterization of (a
particular) minimizer, and even a result on directional differentiability.

As shown in [Barron, 1989], for any distance d dominating the total variation dis-
tance, testing the null hypothesis P = P0 vs. the alternative d(P, P0) ≥ ρ (> 0),
makes generally unachievable to get exponential bounds for the involved errors. The
test provided in Section 3 has exponentially small error probabilities for testing the
null H0 : dK(F0, Rα(F )) = 0 (equivalently, H0 : F ∈ Vα(P0)) against the alternative
dK(F0, Rα(F )) > ρ. The test is uniformly consistent (type I and type II error prob-
abilities tend to 0 uniformly) for detecting alternatives dK(F0, Rα(F )) > ηn/

√
n with

ηn/
√
n→ 0 if ηn →∞.

Also, in Section 1.4.1, we provide asymptotic theory for dK(F0, Rα(Fn)) for inferential
purposes. It includes an extension of Theorem 2 in [Raghavachari, 1995] for flexible null
hypotheses.

The second main goal in this chapter is to provide tools to compare different mod-
els when the null hypothesis is rejected. Under the model falseness paradigm, [Davies,
1995,Davies, 2018] introduce the idea of adequacy region (for a data set) as the set of prob-
abilities in a model whose samples would typically look like the actual data. Also [Rudas
et al., 1994] proposes the very natural concept of index of fit, namely, the contamination
level necessary to make the random generator of the data a contaminated member of
the model. The proposal in [Rudas et al., 1994], as well as its modification in [Liu and
Lindsay, 2009], deal with multinomial models. In our setup we consider the trimmed
Kolmogorov (tK) index of fit, α∗, defined by

α∗ = min{α : dK(F0, Rα(F )) = 0} = min{α : F ∈ Vα(F0)}. (1.2)
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This is the minimum contamination level α for which F is a contaminated version of F0.
This works in a very general setup, since we impose no constraints on F and F0. This is
in contrast with the methodology involved in the control of FDR, which takes advantage
of the dominated contamination model. With the methodology developed here, it is
fairly easy to calculate the empirical version of α∗ for a particular data set. Using our
asymptotic theory for dK(F0, Rα(Fn)) we propose a consistent estimator for α∗ in Section
4. We also provide comparisons with some methodologies developed in the FDR setting
(as considered in [Meinshausen and Rice, 2006]) for estimating the proportion of false null
hypotheses.

A related approach for comparing the quality of different models to describe the data is
based on credibility indices, as introduced in [Lindsay and Liu, 2009]. Given a goodness
of fit procedure, the credibility index allows comparison between models based on the
minimal sample size n∗ for which subsamples of size n∗ of the original data (of size n) reject
the null hypothesis 50% of times. The idea behind this index is that for large samples,
goodness of fit tests will very likely reject the null hypothesis, while often for smaller
sub-samples the null would not be rejected. Of course, these credibility indices have to be
estimated from the data. The proposal in [Lindsay and Liu, 2009] is to use subsampling
to perform this estimation. However, the accuracy of the subsampling approximation is
limited to small (as compared to the complete sample) subsample sizes. Here we show
how our asymptotic theory for dK(F0, Rα(Fn)) can provide further information about the
credibility indices.

Summarizing, this chapter addresses the analysis and applications of dK(F0, Rα(F )),
the ‘trimmed Kolmogorov distance’. Section 1.2 is devoted to collect the mathematical
bases and provide a fast algorithm for computation on sample data. The analysis of the
proposed testing procedure is carried in Section 1.3. In Section 1.4 we show how to apply
this test to credibility analysis and develop some results about the tK-index of fit and
the related acceptance regions. The basis for that approach relies on the CLT for the
trimmed Kolmogorov distance (see Theorem 1.9). Section 1.5 includes some relations
with the FDR setting and comparisons between several estimators of the contamination
index α. In Section 1.6 we illustrate the previous techniques to compare descriptive models
over simulated and real data examples. In the last section we briefly discuss the results.
Finally, the proofs of the main results are given in Section 1.7.

For convenience of the reader and clarity of exposition we provide a guideline of the
main results. Proposition 1.1 gives some nice properties of the set of trimmings in the
topology induced by the Kolmogorov distance. Proposition 1.2 shows consistency of the
trimmed Kolmogorov distance. Lemma 1.3 provides a characterization of the trimmed
Kolmogorov distance using quantile functions and is essential in the prove of Theorem
1.4. Theorem 1.4 is one of the main results of the chapter and it shows the existence
of a trimming that achieves the trimmed Kolmogorov Distance and hence provides tools
for theoretical and numerical computation. Proposition 1.5 shows how to build an Uni-
formly Exponentially Consistent and flexible test of goodness of fit using the trimmed
Kolmogorov distance and Theorem 1.6 is a convenient consequence. Theorem 1.7 and
Proposition 1.8 are concerned with the rate of convergence of the trimmed Kolmogorov
distance. The main result of the chapter is given in Theorem 1.9 which describes the con-
vergence of

√
n (dK(F0, Rα(Fn))− dK(F0, Rα(F )) to the supreme of a Gaussian process.

Theorem 1.4 plays an important role in the obtention of our CLT result.
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1.2 Trimming and Kolmogorov distance

We keep the notation used in the Introduction and notice that the set Rα(F ) can be also
characterized, as showed in [Álvarez-Esteban et al., 2008] (Proposition 2.2 in [Álvarez-
Esteban et al., 2011] gives a more general result), in terms of the set of α-trimmed versions
of the uniform law U(0, 1). Let Cα be the set of absolutely continuous functions h : [0, 1] 7→
[0, 1], such that h(0) = 0, h(1) = 1, with derivative h′ verifying 0 ≤ h′ ≤ 1

1−α a.e.. Then,
the composition of the functions h and F : Fh = h ◦ F gives the useful parameterization

Rα(F ) = {Fh : h ∈ Cα}. (1.3)

The set Rα(F ) is convex and also well behaved w.r.t. weak convergence of probabilities
and widely employed probability metrics (see Section 2 in [Álvarez-Esteban et al., 2011]).
We show that Rα(F ) keeps several nice properties under dK .

Proposition 1.1. For α ∈ [0, 1), if F , G with or without suffixes are d.f.’s:

(a) Rα(F ) is compact w.r.t. dK.

(b) dK(F0, Rα(F )) = minF̃∈Rα(F ) ‖F̃ − F0‖ = minh∈Cα ‖h ◦ F − F0‖.

(c) |dK(G1, Rα(F1))− dK(G2, Rα(F2))| ≤ dK(G1, G2) + 1
1−αdK(F1, F2).

(d) If dK(Fn, F )→ 0, then:

(d1) for every F̃ ∈ Rα(F ), there exist F̃n ∈ Rα(Fn), n ∈ N such that dK(F̃n, F̃ )→ 0.

(d2) if F̃n ∈ Rα(Fn), n ≥ 1, then there exists some dK-convergent subsequence {F̃nk}. If
F̃ is the limit of such a subsequence, necessarily F̃ ∈ Rα(F ).

(d3) if, additionally, {Gn} is any sequence of d.f.’s such that dK(Gn, G)→ 0, then dK(Gn,
Rα(Fm))→ dK(G,Rα(F )) as n,m→∞.

Proposition 1.1 guarantees the existence of optimal L∞-approximations to every dis-
tribution function F0 by α-trimmed versions of F :

There exists F̃ ∈ Rα(F ) such that ‖F0 − F̃‖ = dK(F0, Rα(F )). (1.4)

It also shows, through (4), that for α ∈ [0, 1)

F ∈ Vα(F0) if and only if dK(F0, Rα(F )) = 0. (1.5)

Moreover, by convexity of Rα(F ), the set of optimally trimmed versions of F associated
to problem (1.4) is also convex. However, guarantying uniqueness of the minimizer (as it
holds w.r.t. L2- Wasserstein metric by Corollary 2.10 in [Álvarez-Esteban et al., 2011])
is not possible here. An additional consequence of Proposition 1.1 is the continuity of
dK(F0, Rα(F )) in F0 and F .

By Polya’s uniform convergence theorem, if F and G are continuous and {Fn}, {Gn}
are sequences of d.f.’s which, respectively, weakly converge to F,G, then they also converge
in the dK-sense, therefore dK(Gn, Rα(Fm))→ dK(G,Rα(F )) holds. Mention apart, by its
statistical interest, merits the the following consistency result, which is straightforward
from Glivenko-Cantelli theorem and item (d3) above.
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Proposition 1.2 (Consistency of trimmed Kolmogorov distance). Let α ∈ [0, 1) and
{Fn} be the sequence of empirical d.f.’s based on a sequence {Xn} of independent random
variables with distribution function F . If {Gn} is any sequence of distribution functions
dK-approximating the d.f. G (i.e. dK(Gn, G)→ 0), then:

dK(Gn, Rα(Fm))→ dK(G,Rα(F )), as n,m→∞, with probability one.

While in other contexts the roles played by discarding contamination (by trimming)
and the distance under consideration seem to be clear, here the nature of Kolmogorov
distance can lead to a distorted picture. To give some light on these roles, we include a very
simple example based on uniform laws that allows explicit computations. We also must
note that (as commented in [Álvarez-Esteban et al., 2012]) contamination neighbourhoods
have been extended in several ways; notably Rieder’s neighborhoods of a probability
comprise contamination as well as total variation norm neighborhoods.

Example 1.1. Contamination vs dK-based neighbourhoods. Let us fix F0 to be the
U(0, 1) d.f. and consider the following scenarios for F

i) F the d.f. of an U(0, 1 + ε) or an U(−ε, 1) law. Then dK(F0, F ) = ε
1+ε

and

dK(F0, Rα(F )) = ε−α
1+(ε−α)

if 0 ≤ α ≤ ε (and 0 if α ≥ ε).

ii) F the d.f. of a U(0, 1 − ε) law. Then dK(F0, F ) = ε and dK(F0, Rα(F )) = ε for
every 0 ≤ α < 1.

In fact, the first situation involves a contamination of exact size ε of F0, because F =
(1− ε)F0 + εF ′ where F ′ is the d.f. of an U(1, 1 + ε) or an U(−ε, 0) law. In contrast, the
second one does not fit in the contamination model at all. The following scenario includes
inner contamination at the support of F0, adding some complexity to the analysis:

iii) F = (1− ε)F0 + εF ′, where F ′ is the d.f. of a U(a, b) law with 0 < a < b < 1. Then
dK(F0, F ) = ε sup{a, 1− b}, and for 0 ≤ α ≤ ε: dK(F0, Rα(F )) = (ε−α) sup{a, 1−
b}, if 0 < a < b ≤ 1/2 else 1/2 ≤ a < b < 1. If 0 < a ≤ 1/2 < b < 1, then for

0 < α < ε0 := ε |a+b−1|
b−a , we would have dK(F0, Rα(F )) = (ε− α) sup{a, 1− b}, while

for ε0 ≤ α ≤ ε, defining γ = |1/2− sup{a, 1− b}|, we would have dK(F0, Rα(F )) =
[1/2− γ(ε− α)/(ε− ε0)](ε− α).

The analysis above shows that the effect of optimal trimming according to the dK-distance
strongly depends on several factors. Notably, they include the presence or not of a con-
taminating part, but also its spread and relative position. �

Throughout this chapter we make frequent use of the quantile function. Given a d.f. F ,
we write F−1 for the associated quantile function. Recall that it is just the left-continuous
inverse of the d.f. F , namely, F−1(t) := inf{x | t ≤ F (x)}. It allows a useful representation
of the corresponding distribution because, if U is a uniformly distributed U(0, 1) random
variable, F−1(U) has d.f. F . Moreover, if X has a continuous d.f. F , F0◦F−1 is easily seen
to be the quantile function associated to the r.v. Y = F0(X). As we show next, under
some regularity assumptions dK(F0, Rα(F )) can be expressed in terms of the function
F0 ◦ F−1. This fact allows the practical computation of dK(F0, Rα(Fn)) when Fn is an
empirical d.f. based on a data sample x1, . . . , xn, and even that of dK(F0, Rα(F )) for
theoretical distributions (see Example 1.2). Recall that then Fn(x) := 1

n

∑n
i=1 I(−∞,x](xi).
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Lemma 1.3. If F, F0 are continuous d.f.’s and F is additionally strictly increasing then

dK(F0, Rα(F )) = min
h∈Cα
‖h− F0 ◦ F−1‖ and dK(F0, Rα(Fn)) = min

h∈Cα
‖h− F0 ◦ F−1

n ‖.

We include below a fundamental tool for our goals. It gives an explicit characterization
of a solution of the corresponding optimization problem.

Theorem 1.4. Assume Γ : [0, 1]→ [0, 1] is a continuous nondecreasing function. Define
G(t) = Γ(t)− t

1−α , U(t) = supt≤s≤1G(s), L(t) = inf0≤s≤tG(s) and

h̃α(t) = max
(

min
(
U(t)+L(t)

2
, 0
)
, −α

1−α

)
.

Then hα := h̃α + ·
1−α is an element of Cα, and

min
h∈Cα
‖h− Γ‖ = ‖hα − Γ‖ = ‖h̃α −G‖.

Note that the assumption on Γ is always verified when Γ = F0 ◦ F−1, and that taking
right and left limits at 0 and 1, respectively, we can assume that F0◦F−1 is a nondecreasing
(and left continuous) function from [0, 1] to [0, 1].

A key aspect in Theorem 1.4 is that, although not necessarily unique, hα is an op-
timal trimming function in the sense described above. However, from the point of view
of asymptotic theory, Theorem 1.4 is the key to our Theorem 1.9 in Section 1.4. More-
over, from a practical point of view, it yields a simple algorithm for the computation of
dK(F0, Rα(Fn)), as follows.

Assume X1, . . . , Xn are i.i.d. observations from the continuous and strictly increasing
d.f. F and assume that F0 is continuous. From Lemma 1.3 and Theorem 1.4 we know
that dK(F0, Rα(Fn)) = ‖h̃α,n − Gn‖, where Gn(t) = H−1

n (t) − t
1−α , H−1

n is the empirical
quantile function of the transformed data, Yi = F0(Xi), Un(t) = supt≤s≤1Gn(s), Ln(t) =
min0≤s≤tGn(s) and

h̃α,n(t) = max

(
min

(
Un(t) + Ln(t)

2
, 0

)
,
−α

1− α

)
.

To gain some intuition we have plotted an example of h̃α,n in Figure 1.1. Denote by
Y(1) ≤ · · · ≤ Y(n) the ordered (transformed) sample. Note that Gn(t) = Y(i) − t

1−α if

t ∈ ( i−1
n
, i
n
], while h̃α,n is a non-increasing function and this implies that

‖h̃α,n −Gn‖ = max
1≤i≤n

(
max(Gn( i−1

n
+)− h̃α,n( i−1

n
), h̃α,n( i

n
)−Gn( i

n
))
)
,

with Gn( i−1
n

+) = Y(i) − i−1
n(1−α)

, Gn( i
n
) = Y(i) − i

n(1−α)
. In Figure 1.1 we see that the

maximum L∞ distance between h̃α,n and Gn is achieved around 0.7 and around 0.76.
For the computation of h̃α,n( i

n
) we note that Un( i

n
) = maxi≤j≤n−1Gn( j

n
+) and Ln( i

n
) =

min1≤j≤iGn( j
n
) for i = 1, . . . , n − 1. Summarizing, we see that dK(F0, Rα(Fn)) can be

computed through the following algorithm.
Beyond this algorithm for the empirical case, Theorem 1.4 provides a simple way for

the computation of theoretical trimmed Kolmorogov distances. We analyze the problem
for the Gaussian model.
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Figure 1.1: Representation of h̃α,n in red for α = 0.1 and n = 400 when we take Y =
F0(X) ∼ U(0, 1). In black we have Gn, in dashed blue we have Un and Ln. Black dashed
lines represent the box constraints 0 and −α/(1− α).
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Algorithm 1 Computation of dK(F0, Rα(Fn))

Input:X1, . . . , Xn, α

1: for 1 ≤ i ≤ n do
2: Yi ← F0(Xi)
3: end for
4: Y ← {Y1, . . . , Yn}; Y ← sort Y
5: for 0 ≤ i ≤ n− 1 do
6: gi+ ← Y(i+1) − i

n(1−α)

7: end for
8: for 1 ≤ i ≤ n do
9: gi− ← Y(i) − i

n(1−α)

10: end for
11: for 1 ≤ i ≤ n− 1 do
12: ui ← maxi≤j≤n−1 gj+
13: li ← min1≤j≤i gj−
14: end for
15: h0 ← 0; hn ← − α

1−α
16: for 1 ≤ i ≤ n− 1 do
17: hi ← max(min(0, ui+li

2
),− α

1−α)
18: end for
19: dK(F0, Rα(Fn))← max1≤i≤n

(
max(g(i−1)+ − hi−1, hi − gi−)

)
Output:dK(F0, Rα(Fn))

Example 1.2 (Trimmed Kolmogorov distances in the Gaussian model.). Consider the
case F0 = Φ, F = Φ((· − µ)/σ), where Φ denotes the standard normal d.f., µ ∈ R
and σ > 0. Here we have H−1(t) := F0 ◦ F−1(t) = Φ(µ + σΦ−1(t)). We note that
w(t) := (H−1)′(t) ≤ 1/(1− α) if and only if p(Φ−1(t)) ≥ 0, where

p(x) = (σ2 − 1)x2 + 2µσx+ µ2 − 2 log((1− α)σ).

To avoid cumbersome computations we focus on the cases σ = 1, µ 6= 0 and µ = 0, σ 6= 1.

If σ = 1 and µ > 0 then p is linear with positive slope and we see that w(t) ≤ 1/(1−α)
if and only if t ≥ t0 = Φ

(
− µ

2
+ 1

µ
log(1−α)

)
. This means that G(s) = H−1(s)−s/(1−α)

is increasing in [0, t0] and decreasing in [t0, 1]. Since, H−1(0) = G(0) = 0, we have that,
h̃α(t) = 0 for t ∈ [0, t1], where t1 ∈ (t0, 1) is (the unique) solution to G(t1) = 0, and
h̃α(t) = G(t) for t ∈ [t1, 1]. We conclude that dK(Rα(N(µ, 1)), N(0, 1)) = G(t0). The
case µ < 0 can be handled similarly to obtain

dK(Rα(N(µ, 1)), N(0, 1)) = Φ
( |µ|

2
+ 1
|µ| log(1− α)

)
− 1

1−αΦ
(
− |µ|

2
+ 1
|µ| log(1− α)

)
, µ 6= 0.

We focus now on the case µ = 0. If σ2 < 1, p is a parabola with negative leading
coefficient and discriminant ∆2 = 8(σ2 − 1) log(σ(1 − α)) > 0. Hence, p(x) is positive
for x ∈ (xa, xb) with xa = − ∆

2(1−σ2)
, xb = ∆

2(1−σ2)
. Equivalently, w(t) ≤ 1/(1 − α) if

and only if ta := Φ(xa) ≤ t ≤ tb := Φ(xb). This means that G is increasing in [0, ta),
decreasing in [ta, tb], increasing in (tb, 1], G(0) = 0 and G(1) = −α/(1 − α). Arguing
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as above, we have h̃α(t) = min(G(t), 0) for 0 ≤ t ≤ 1
2
, h̃α(t) = max(G(t),− α

1−α) for
1
2
≤ t ≤ 1, h̃α(ta) = 0 and h̃α(tb) = −α

1−α . We conclude that dK(Rα(N(µ, σ2)), N(0, 1)) =

G(ta)− h̃α(ta) = h̃α(tb)−G(tb). Hence,

dK(Rα(N(0, σ2)), N(0, 1)) = Φ
(
−σ∆

2

1−σ2

)
− 1

1−αΦ
(
−∆

2

1−σ2

)
, if σ < 1.

If 1 ≤ σ ≤ 1/(1−α) then we have that w(t) ≤ 1/(1−α) for all t and h0 = H−1 ∈ Cα.
In particular, dK(Rα(N(0, σ2)), N(0, 1)) = 0.

Finally, we consider the case σ > 1/(1− α). In this case p is positive for x /∈ [xa, xb]
with xa = − ∆

2(σ2−1)
, xb = ∆

2(σ2−1)
. This means that (H−1)′(t) > 1

1−α for t ∈ (ta, tb) with

ta = Φ(xa), tb = Φ(xb). Therefore, G is decreasing in [0, ta), increasing in [ta, tb], decreas-

ing in (tb, 1], G(0) = 0 and G(1) = −α/(1 − α). Hence, h̃α(t) = max(G(t), G(t)+G(tb)
2

),

0 ≤ t ≤ ta, h̃α(t) = G(ta)+G(tb)
2

, ta ≤ t ≤ tb, h̃α(t) = min(G(t), G(ta)+G(t)
2

), tb ≤ t ≤ 1. In

particular, dK(Rα(N(0, σ2)), N(0, 1)) = h̃α(ta)−G(ta) = G(tb)−h̃α(tb) = 1
2
(G(tb)−G(ta)),

that is,

dK(Rα(N(0, σ2)), N(0, 1)) = Φ
(

σ∆
2

σ2−1

)
−

Φ

(
∆
2

σ2−1

)
−α

2

1−α , if σ > 1
1−α .

To summarize, we have:
If σ = 1 and µ 6= 0 then

dK(Rα(N(µ, 1)), N(0, 1)) = Φ
( |µ|

2
+ 1
|µ| log(1− α)

)
− 1

1−αΦ
(
− |µ|

2
+ 1
|µ| log(1− α)

)
.

(1.6)

In the case µ = 0:

dK(Rα(N(0, σ2)), N(0, 1)) =


Φ
(
−σ∆

2

1−σ2

)
− 1

1−αΦ
(
−∆

2

1−σ2

)
, if σ < 1

0, if 1 ≤ σ ≤ 1/(1− α)

Φ
(

σ∆
2

σ2−1

)
−

Φ

(
∆
2

σ2−1

)
−α

2

1−α , if σ > 1/(1− α)

�

Relations (1.4) and (1.5) state the link between CN’s and trimming, opening ways to
approximately validating a model making use of trimming through the Kolmogorov dis-
tance. We end this section showing how CN’s and approximate validation in a parametric
model setting can be related. For that task we focus on what are the parameters in the
model leading to distributions in Vα(F0). As pointed out in [Davies, 1995], we should
just consider models able to generate data similar to our sample. Moreover, distributions
in a CN have an intuitive appeal and, if α is small, we can expect to be handling rea-
sonable models. For instance, if F0 ∼ N(0, 1) then we can calculate the tolerance region
given by the subset of normal distributions belonging to Vα(F0) in an elementary fashion.
This provides an approximate picture of the kind of distributions present in the CN of
F0. These tolerance regions for α = 0.05 and α = 0.1 are shown in Figure 1.2. Every
combination of (µ̃, σ̃) inside the green border is a normal distribution that belongs to
V0.1(N(0, 1)). The same is true for the red border and V0.05(N(0, 1)).
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Figure 1.2: Plot of regions containing the parameters compatible with α-contamination
neighbourhoods of F0 ∼ N(0, 1) for α = 0.05 (red) and α = 0.1 (green).

1.3 Hypothesis testing

To develop our approach for a testing procedure, throughout, X1, . . . , Xn will be indepen-
dent random variables with common d.f. F , and Fn will be the corresponding empirical
d.f. The main result, following the principles in [Barron, 1989], concerns control of error
probabilities: a test is uniformly consistent (UC) if both type I and type II error prob-
abilities (EI and EII in the sequel) converge uniformly to 0 as the sample size, n → ∞,
and it is uniformly exponentially consistent (UEC) if the error probabilities are uniformly
bounded by e−rn for large n and some r > 0. To stress on the necessity of consider-
ing some separating zone between the null and the alternative, we include this previous
slightly more general result.

Proposition 1.5. Given 0 ≤ ρ1 < ρ2, for testing H0 : dK(F0, Rα(F )) ≤ ρ1 vs. H1 :
dK(F0, Rα(F )) > ρ2, for every 0 < λ < 1 rejecting the null hypothesis when dK(F0, Rα(Fn)) >
(1− λ)ρ1 + λρ2 is an uniformly exponentially consistent (UEC) test.

Proof. From Proposition 1.1 (c), we have the inequality |dK(F0, Rα(F1))−dK(F0, Rα(F2))| ≤
1

1−α‖F1 − F2‖, thus for EI:

PF

(
dK(F0, Rα(Fn)) > (1− λ)ρ1 + λρ2

)
≤ P

(
dK(F0, Rα(Fn))− dK(F0, Rα(F )) > λρ2 − λρ1

)
≤ P

( 1

1− α
sup
x
|Fn(x)− F (x)| > λ(ρ2 − ρ1)

)
= P

(
sup
x

√
n|Fn(x)− F (x)| >

√
n(1− α)λ(ρ2 − ρ1)

)
≤ 2e−2λ2n(1−α)2(ρ2−ρ1)2

. (1.7)
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Note that the last bound follows from the [Massart, 1990] version of the Dvoretsky-Kiefer-
Wolfowitz inequality.

To handle EII (thus if dK(F0, Rα(F )) > ρ2), we have

PF

(
dK(F0, Rα(Fn)) ≤ (1− λ)ρ1 + λρ2

)
= PF

(
ρ2 − dK(F0, Rα(Fn)) ≥ ρ2 − ((1− λ)ρ1 + λρ2)

)
≤ P

(
dK(F0, Rα(F ))− dK(F0, Rα(Fn)) > (1− λ)(ρ2 − ρ1)

)
≤ P

(
sup
x

√
n|Fn(x)− F (x)| >

√
n(1− α)(1− λ)(ρ2 − ρ1)

)
≤ 2e−2(1−λ)2n(1−α)2(ρ2−ρ1)2

. (1.8)

�

As an easy consequence, taking ρ1 = 0 and ρ = ρ2, we get:

Theorem 1.6. Given ρ > 0, for testing

H0 : dK(F0, Rα(F )) = 0 vs. H1 : dK(F0, Rα(F )) > ρ, (1.9)

for every 0 < λ < 1 the critical region dK(F0, Rα(Fn)) > λρ defines an uniformly expo-
nentially consistent (UEC) test.

Since the null hypothesis includes all the contamination versions (of α-level) of F0,
rejection means that the generator of the sample is far enough of any such a contaminated
version. Theorem 1.6 guarantees that alternatives will be quickly detected when farness
is measured through the dK-distance.

In statistical practice, it could be wiser to change the alternative hypothesis and make
it sample size dependent. That leads to consider tests of the form

H0,n : dK(F0, Rα(F )) = 0 vs. H1,n : dK(F0, Rα(F )) > ρn, (1.10)

for ρn = ρ(n) > 0, and rejection when dK(F0, Rα(Fn)) > λρn. For instance, taking ρn =
ηn/
√
n → 0, and ηn → ∞ results in an uniformly consistent test. Uniform consistency

is weaker than uniform exponential consistency, but it allows to detect, for example,
alternatives at a distance log(n)/

√
n. Also, we can consider λ as a tuning parameter which

can help if we have some additional information or if we want more or less conservative
tests with respect to EI and EII probabilities (of course, when ρ = 0, ρ1 = ρ2 or λ = 0
or λ = 1, some bounds are meaningless and we can not assure uniform consistency with
the previous procedure). Alternatively, we may look for the smallest possible values for
ρn, while still controlling EI and EII. From (1.7) and (1.8) note that if ρn is o(n−1/2) we
would lose the control of the errors, since nρ2

n → 0 as n→∞. This leads us to choose ρn
as O(n−1/2), or, fixing some ρ > 0:

ρn =
ρ√
n

(1.11)

Now, if we fix 0 < ε1, ε2 < 1, looking for a rejection threshold, λρn, for which

EI ≤ ε1 and EII ≤ ε2,
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we get 2e−2λ2(1−α)2ρ2
= ε1 and ε1e

4λ−2 = ε2. With a bit of algebra we get

ρ =
1

(1− α)λ

√
1

2
log

2

ε1
, λ =

1

2
+

1

4
log

ε2
ε1
, (1.12)

imposing ε1e
−2 < ε2 < ε1e

2, which gives the optimal boundary level

ρn =
ρ√
n

=
1

(1− α)λ

√
1

2n
log

2

ε1
. (1.13)

Relations (1.12) and (1.13) summarize the balance among the different elements. Ideally,
we look for small ρn, ε1 and ε2 but, paying the price for our demands, ρn grows as ε1 gets
smaller and as ε2 gets more similar to ε1. Therefore, we need to make sensible choices for
ε1 and ε2. In Table 1.1 we show some examples of the mentioned behaviour. For instance,
fixing ε1 = 0.01 and ε2 = 0.05 seems a sensible choice, giving a fairly low ρ1000 while
keeping low error probabilities.

Table 1.1: Values associated to error bounds for α = 0.1 and N = 1000.

EI EII λ ρ1000 EI EII λ ρ1000 EI EII λ ρ1000

0.1 0.5 0.90 0.048 0.05 0.25 0.90 0.053 0.01 0.05 0.90 0.063

0.1 0.1 0.50 0.086 0.05 0.05 0.50 0.095 0.01 0.01 0.50 0.114

0.1 0.02 0.10 0.440 0.05 0.01 0.10 0.489 0.01 0.002 0.10 0.586

An appealing goal would be to detect the ‘true’ contamination level, that is, the
minimal level of trimming for which the postulated model would not be rejected. In
this way we could, also, detect possible contaminations in the generating mechanism. To
address this objective, we resort to the following result obtained in greater generality
in [del Barrio and Matrán, 2013].

Theorem 1.7. If α ∈ (0, 1) and ν > 1, then

dK(F,Rα(Fn)) = oP

((log n)ν

n

)
. (1.14)

Therefore, if F = (1 − α0)F0 + α0G0 and we test for α > α0, as n → ∞, trimming
α from Fn will eliminate the part of the sample coming from G0, but also will affect the
part of the sample coming from F0. This fact and Proposition 1.2 lead to the following
statement.

Proposition 1.8. Let ρn = O(n−1/2) and ρ−1
n = O(n1/2), and α > α0. Then:

dK(F0, Rα(Fn))

ρn
→

{
∞ almost surely, if dK(F0, Rα(F )) > 0

0 in probability, if F0 ∈ Rα0(F ).
(1.15)

This means that, for big enough samples, our testing procedure will be able to detect
the overtrimming boundary, that is, the trimming level beyond which the trimmed sample
is closer to the model than true random samples from that model. In Figure 1.3 we are
able to appreciate this behaviour (see the caption for details). The frequency of rejecting
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Figure 1.3: Round green (blue, red) dots represent the frequency of rejection (y label)
for 150 independent samples of a generating mechanism F1 ∼ 0.9N(0, 1) + 0.1N(3, 1) for
sample sizes 2000 (4000, 6000) and a model F0 ∼ N(0, 1), as we vary the trimming level
α (x label). Diamond yellow (cyan, orange) dots represent the rejection frequency for
a generator F2 ∼ 0.9N(0, 1) + 0.1N(0, 0.12) for sample sizes 12500 (25000, 50000). The
black dashed line represents the true contamination level which is 0.1, since F0 ∈ R0.1(F1)
and F0 ∈ R0.1(F2). The error probabilities are fixed to ε1 = ε2 = 0.05.

the null, for both models, after trimming 0.11 or more is almost zero, the theoretical
contamination being 0.1. We see that around 0.1 the models start dropping abruptly the
rejection level, but that for the model contaminated with a N(3, 1) we need much less
points to attain the expected behaviour than we need for the model contaminated with a
N(0, 0.12). In other words, the presence of a meaningful outlier contamination, even when
trimming is allowed, disturbs more heavily the Kolmogorov distance than the presence of
equally meaningful inlier contamination. In any case, these results suggest that it may be
possible to find an estimator for the ‘true’ contamination level. We elaborate a little bit
more about this in the next section.

1.4 A central limit theorem with applications

We divide this section in two subsections, respectively devoted to the presentation of
results and to some of their applications. In particular, we stress on the extension of some
of the applications that [Lindsay and Liu, 2009] and [Liu and Lindsay, 2009] explored just
on multinomial models.
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1.4.1 A central limit result

What follows is our main theoretical result which describes the asymptotic behaviour of
the normalized difference between the empirical estimator and the theoretical trimmed
Kolmogorov distance under some regularity assumptions. We recall from Section 2 that
dK(F0, Rα(F )) can be expressed in terms of H−1 := F0 ◦ F−1. We need to introduce the
following sets, with G, U , L and h̃α standing for the same objects as in Theorem 1.4 in
Section 2,

T1 =
{
t ∈ [0, 1] : G(t) = ‖h̃α −G‖, 12 (U(t) + L(t)) ≥ 0

}
, (1.16)

T2 =
{
t ∈ [0, 1] : − α

1−α −G(t) = ‖h̃α −G‖, 12 (U(t) + L(t)) ≤ −α
1−α

}
, (1.17)

T3 =
{

(s, t) : 0 ≤ s ≤ t ≤ 1, 1
2 (G(t)−G(s)) = ‖h̃α −G‖, 12 (G(t) +G(s)) ∈ [− α

1−α , 0]
}
. (1.18)

A look at Section 1.7.3 shows that T1 ∪ T2 ∪ T3 6= ∅ provided H−1 is continuous. We
further denote T ∗1 = {t ∈ T1 : 1

2
(U(t)+L(t)) = 0}, T ∗2 = {t ∈ T2 : 1

2
(U(t)+L(t)) = − α

1−α}
and T ∗3 = {(s, t) ∈ T3 : 1

2
(G(t) +G(s)) ∈ {− α

1−α , 0}}. To avoid pathological examples we
will assume that

T ∗1 = ∅, T ∗2 = ∅, T ∗3 = ∅. (1.19)

Our last regularity assumptions concern H, the d.f. of the random variable F0(X),
where X ∼ F . They allow the use of the strong approximation of the quantile process in
the proof of the theorem (developed in the Appendix). We assume that H has a density,
h supported in [a, b] (note that, necessarily, [a, b] ⊂ [0, 1]) and either one of

h is positive and continuous on [a, b], (1.20)

h is positive and continuous on (a, b); for some ε > 0, T1, T2 ⊂ [ε, 1− ε], T3 ⊂ [ε, 1− ε]2.
(1.21)

Theorem 1.9. Assume that F0 and F are continuous d.f.’s, that F is strictly increasing
and that the d.f. H associated to H−1 = F0 ◦ F−1 satisfies (1.19) and either (1.20) or
(1.21). Then,

√
n (dK(F0, Rα(Fn))− dK(F0, Rα(F )))

→
w

1
1−α max

(
max
t∈T1

B(t),max
t∈T2

(−B(t)), max
(s,t)∈T3

1
2
(B(t)−B(s))

)
,

where B is a Brownian bridge on [0, 1].

The limit distribution in this result corresponds to the supremum of a Gaussian pro-
cess. In fact, the index set for this process is often rather simple, consisting of only one
or two points as we show in our next example.

Example 1.10. Trimmed Kolmogorov distances in the Gaussian model (cont.) We revisit
the cases studied in Example 1.2. Recall that F0 = Φ, F = Φ((· − µ)/σ) and H−1(t) =

Φ(µ+ σΦ−1(t)). Hence H(x) = Φ
(

Φ−1(x)−µ
σ

)
, 0 ≤ x ≤ 1, which is supported in [0, 1] and

has a density which is positive and continuous on (0, 1).
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In the case σ = 1 and µ > 0 the computations in Example 1.2 yield that T1 = {t0},
T2 = ∅, T3 = ∅, with t0 = Φ

(
− µ

2
+ 1

µ
log(1− α)

)
. Applying Theorem 1.9 we obtain that

√
n
(
dK(Rα(Fn), N(0, 1)))− dK(Rα(N(µ, 1)), N(0, 1)))→

w
N
(
0, t0(1−t0)

(1−α)2

)
.

When µ = 0 and σ2 < 1, writing xa = − ∆
2(1−σ2)

, xb = ∆
2(1−σ2)

(with ∆ = (8(σ2 −
1) log(σ(1− α)))1/2), ta = Φ(xa) and tb = Φ(xb) we get T1 = {ta} = {1− tb}, T2 = {tb},
T3 = ∅ and Theorem 1.9 yields

√
n
(
dK(Rα(Fn), N(0, 1)))− dK(Rα(N(0, σ2)), N(0, 1)))→

w

1
1−α max

(
B(1− tb),−B(tb)

)
,

with B a Brownian bridge.

Finally, if µ = 0 and σ > 1/(1 − α) then T1 = T2 = ∅, while T3 = {(ta, tb)}, with
ta = Φ(xa), tb = Φ(xb), xa = − ∆

2(σ2−1)
and xb = ∆

2(σ2−1)
and we obtain

√
n
(
dK(Rα(Fn), N(0, 1)))− dK(Rα(N(0, σ2)), N(0, 1)))→

w
N
(
0,

(1−tb)(tb− 1
2

)

(1−α)2

)
.

�

The asymptotics showed in the previous example would allow to build asymptotic
upper and lower confidence bounds for the Kolmogorov distance between the random
generator of the data and the set of α-trimmings of the postulated normal model. In
general, we would not be able to describe the sets Ti involved in the limit law, but Theorem
1.9 can be used to obtain conservative confidence bounds. Let β ∈ (0, 1

2
) be given and write

Zα(F, F0) for the limiting random variable in Theorem 1.9. Recall that for a Brownian
bridge and 0 ≤ s ≤ t ≤ 1 we have Var(B(t)) = t(1 − t) and Var(1

2
(B(t) − B(s))) =

1
4
(t−s)(1−(t−s)). The β-quantile of Zα(F, F0) must be lower bounded by the β-quantile of

the centered Gaussian r.v.’s 1
1−αB(t), t ∈ T1, 1

1−α(−B(t)), t ∈ T2 and 1
2(1−α)

(B(t)−B(s)),

(s, t) ∈ T3 (recall that at least one of T1, T2, T3 must be nonempty). From the last
variance computation we see that any of these centered Gaussian r.v.’s has variance at

most 1
4(1−α)2 , hence, a β-quantile lower bound is given by Φ−1(β)

2(1−α)
= −Φ−1(1−β)

2(1−α)
. Combining

this with Theorem 1.9 we see that

lim inf P
(√

n
(
dK(F0, Rα(Fn))− dK(F0, Rα(F ))

)
≥ −Φ−1(1−β)

2(1−α)

)
≥ 1− β.

Hence,

dK(F0, Rα(Fn)) +
Φ−1(1− β)

2
√
n(1− α)

(1.22)

is an upper confidence bound with asymptotic confidence level at least 1−β for dK(F0, Rα(F )).

In order to get a simple and manageable lower bound for the Kolmogorov distance
we need to pay attention to the worst cases inside the maximum of the limiting random
variable in Theorem 1.9. This means that we have to study the cases T1 = [0, a], T2 = [b, 1],
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T3 = [a, b] where 0 ≤ a ≤ b ≤ 1. We have the following inequalities

Zα(F0, F ) = 1
1−α max

(
max
t∈[0,a]

B(t), max
t∈[b,1]

(−B(t)), max
s∈[a,b],t∈[s,b]

1
2
(B(t)−B(s))

)
≤ 1

1−α max

(
max
t∈[0,a]

|B(t)|, max
t∈[b,1]

| −B(t)|, 1
2

(
max
t∈[a,b]

B(t) + max
s∈[a,b]

−B(s)

))
≤ 1

1−α max

(
max
t∈[0,a]

|B(t)|, max
t∈[b,1]

| −B(t)|,max

(
max
t∈[a,b]

B(t), max
s∈[a,b]

−B(s)

))
= 1

1−α max
t∈[0,1]

|B(t)|.

Now, denoting Ψ(x) = P
(
maxt∈[0,1] |B(t)| ≤ x

)
the d.f. of Kolmogorov’s distribution, we

have

lim supP
(√

n
(
dK(F0, Rα(Fn))− dK(F0, Rα(F ))

)
≤ Ψ−1(1−β)

(1−α)

)
≥ 1− β.

Hence,

dK(F0, Rα(Fn))− Ψ−1(1− β)√
n(1− α)

(1.23)

is a lower confidence bound with asymptotic confidence level at least 1 − β for dK(F0,
Rα(F )).

In the following example we will show that the, arguably conservative, confidence
bounds just obtained can be precise in practice. Of course, an efficient estimation of the
sets Ti could improve the precision of the coverage bands, but our simulations show that
the rate of convergence can make highly unstable the estimation. In fact, Theorem 3.1
in [Álvarez-Esteban et al., 2016] addressed a simpler but similar problem involving the
supremum of the difference of two independent Brownian bridges on the set where two
d.f.’s attain their greatest distance.

Example 1.11. Coverage rates for extreme cases. The bounds (1.22) and (1.23) are con-
servative. Nontheless, there are extreme cases for which the bounds are (almost) optimal.
We present several examples of such cases in Table 1.2. For different combinations of
F0, F and α, we give the observed coverage frequency of the confidence bounds (1.23) and
(1.22). Figure 1.4 shows the he d.f.’s of some of these examples to get a better notion of
the functions of interest. For simplicity in all the considered cases we fix F ∼ U(0, 1).
Then we consider instances of F0 for which, approximately, T1 ∪ T2 ∪ T3 equals [0, 1]. For
this, we fix 0 ≤ a ≤ b ≤ 1 and define the piecewise linear function

F a,b
0 (t) =



t/(1− α) + dα t ∈ [−(1− α)dα, t0]

a t ∈ [t0, t1]

(t− (1 + q)α)/(1− α) t ∈ [t1, (a+ b)/2]

(t+ qα)/(1− α) t ∈ [(a+ b)/2, t2]

b t ∈ [t2, t3]

(t− α)/(1− α)− dα t ∈ [t3, 1 + (1− α)dα]

where we take q ∈ (0, 1) such that dα = (2+q)α
2(1−α)

< 1 and define t0 = (1 − α)(a − dα), t1 =

(1 − α)a + (1 + q)α, t2 = (1 − α)b − qα, t3 = (1 − α)(b + dα) + α (Figure 1.4 depicts



1.4. A CENTRAL LIMIT THEOREM WITH APPLICATIONS 41

F 0.01,0.99
0 and F

1/3,2/3
0 for q = 0.1 and α = 0.05) . It is straightforward to check that

dK(F a,b
0 , Rα(F )) = dα, and that T1 = [0, t0], T2 = [t3, 1] and T3 = [t1, t2]. We note that T1

becomes close to [0, a], T2 to [b, 1] and T3 to [a, b] as α→ 0.

For different extreme behaviour we take F0 to be the d.f. of a Beta(1, β0) distribution
with β0 such that f0(1/2) = 1/(1 − α) (this is possible for α < 0.06148). We obtain
dK(F0, Rα(F )) = P (Beta(1, β0) ≤ 1/2) − (1/2)/(1 − α), T1 = {1/2} and T2 = T3 = ∅.
Figure 1.4 includes the d.f. of Beta(1, 1.637464) (corresponding to α = 0.05). Finally,
another extreme case follows by fixing dα ∈ (0, 1) and defining

F 0.5
0 (t) =

{
(1/(1− α) + 2dα)t t ∈ [0, 1/2]

((1− 2α)/(1− α)− 2dα)t+ (α/(1− α) + 2dα) t ∈ [1/2, 1].

It is immediate that dK(F 0.5
0 , Rα(F )) = dα, T1 = {1/2} and T2 = T3 = ∅. In Figure 1.4

we included the case for dα = 0.1.

Remark 1.12. Notice that F a,b
0 is not continuous in (a + b)/2 and is not differentiable

in t0, t1, t2 and t3, also, F 0.5
0 is not differentiable in 1/2. However, it is possible to modify

these functions in such a way that from the point of view of simulation their behaviour
becomes indistinguishable. This is why we keep the simple versions that give a better
intuitive idea of what is happening.

Figure 1.4: In green Beta(1, 1637464); in red F 0.5
0 with dα = 0.1; in dashed blue F

1/3,2/3
0 ;

in dashed purple F 0.01,0.99
0 ; in black the maximum and minimum (in the usual stochastic

order sense) of the trimmings of U(0, 1). We fix α = 0.05 and q = 0.1.
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Table 1.2: For the first two examples we fix α = 0.05 and get β0 = 1.637464. For F 0.5
0

we take dα = 0.1. For all the other examples α = 0.01 and q = 0.01, where the first row
indicates the values (a, b) for F a,b

0 . For each example, we generate M = 1200 samples of
size N from F ∼ U(0, 1).

Beta(1, β0) F
1/2
0 (0.01, 0.99) (0.49, 0.51) (1/3, 4/3) (0.01, 0.5) (0.6, 0.8)

N = 100
0.985 0.993 0.957 0.955 0.947 0.949 0.942

0.998 1.000 1.000 1.000 1.000 1.000 1.000

N = 1000
0.988 0.989 0.981 0.958 0.968 0.970 0.968

0.992 0.976 1.000 1.000 1.000 1.000 1.000

N = 5000
0.993 0.996 0.998 0.960 0.973 0.970 0.958

0.980 0.963 1.000 1.000 1.000 1.000 1.000

1.4.2 Applications to credibility analysis

As already noted, for large enough sample sizes a classical goodness-of-fit test would
reject the null hypothesis in (1.10) and yet we could be interested in knowing how well F0

describes the generating mechanism behind the data. More about this idea of resemblance,
understood as similarity between generated samples and the data can be found in [Davies,
1995]. In a similar spirit, a model credibility index was introduced in [Lindsay and Liu,
2009]. In short, for a fixed δ ∈ (0, 1), and a given test of fit to a model, the δ-credibility
index is the sample size for which (for samples coming from the same random generator
as the data) the model is rejected with probability δ. In the setting of the testing problem
(1.10) with rejection rule dK(F0, Rα(Fn)) > λρn, the credibility index is the sample size
Nδ (note the dependence of α) for which

P
(
dK(F0, Rα(FNδ)) > λρNδ

)
= P

(
dK(F0, Rα(FNδ)) >

λρ√
Nδ

)
= δ. (1.24)

Since the underlying random generator is unknown, Nδ cannot be computed. Sub-
sampling techniques were proposed in [Lindsay and Liu, 2009], considering the estimator
Nδ,subs as the sample size such that when we take M subsamples of that size the rejection
frequency of the null is δ. Drawbacks of this procedure include that it is accurate only
when Nδ is small compared to the original sample size, that Nδ,subs can never be bigger
than that sample size and that the procedure is computationally demanding. We will
try to address these shortcomings, while still maintaining the nice intuitive interpretation
associated to the credibility index.

We start by writing

P
(
dK(F0, Rα(FNδ)) > λρNδ

)
= P

(√
Nδ

(
dK(F0, Rα(FNδ))− dK(F0, Rα(F ))

)
>
√
Nδ

(
λρNδ − dK(F0, Rα(F ))

))
= P

(√
Nδ

(
dK(F0, Rα(FNδ))− dK(F0, Rα(F ))

)
> λρ−

√
NδdK(F0, Rα(F ))

)
.(1.25)
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Using Theorem 1.9, asymptotically we can look for

P
(

max
(

max
t∈T1

B̃(t),max
t∈T2

−B̃(t), 1
2

max
(s,t)∈T3

(B̃(t)− B̃(s))
)
> λρ−

√
NδdK(F0, Rα(F ))

))
,

(1.26)

where we keep using Nδ for our approximation in the asymptotic regime of the original
Nδ.

Next, we define a lower and an upper estimate for Nδ using the probability bounds
for Zα(F0, F ) in Subsection 1.4.1. Thus, we define Lδ from

P

(
1

1− α
max
t∈[0,1]

|B(t)| > λρ−
√
LδdK(F0, Rα(F ))

)
= δ

and, similarly, Uδ from

P

(
N

(
0,

1

4(1− α)2

)
> λρ−

√
UδdK(F0, Rα(F ))

)
= δ.

Equivalently,

Lδ =
(λρ−Ψ−1(δ)/(1− α)

dK(F0, Rα(F ))

)2

, Uδ =
(λρ− Φ−1(δ)/(2(1− α))

dK(F0, Rα(F ))

)2

. (1.27)

and it follows easily that Nδ ∈ [Lδ, Uδ]. We see also that the empirical estimators Lδ,n and
Uδ,n, built replacing F by Fn in (1.27), are consistent estimators of Lδ and Uδ, respectively.

We end this section discussing on the practical use of the tK-index of fit, α∗, introduced
in (1.2). A consistent estimator α∗n would provide an intuitive measure of proximity of the
model to the data, assessing to what extent the data can be considered a contaminated
sample from the model F0. Recalling the setting of the testing problem (1.10) and the
subsequent discussion, we would reject the null hypothesis if dK(F0, Rα(Fn)) > λρn. This
suggests to consider α∗n as the smallest of the solutions of the equation√

1

2n
log

2

ε1
= (1− α)dK (F0, Rα(Fn)) if

√
1

2n
log

2

ε1
< dK (F0, Fn) , (1.28)

and α∗n = 0 whenever
√

1
2n

log 2
ε1
≥ dK (F0, Fn). This goal is feasible by numerical meth-

ods, allowing the use of α∗n in practice. Moreover, from (1.28) and Proposition 1.2, α∗n is
almost surely consistent. The carried simulations show that α∗n converges rather slowly
to the theoretical value. In fact, there are connections between this estimator and those
considered in the FDR setting (see [Genovese and Wasserman, 2004]), that justify this
slow convergence rate even in the DCN case. Since a lower bound for α∗ is a main goal
in FDR analysis, we will deserve some comparisons in Section 1.5.

1.5 Relations with the FDR setting

To our effects, the False Discovery Rate model essentially assumes a dominated con-
tamination model (DCN) like (3) in the Introduction, F = (1− α)F0 + αF ′, where F ′
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(so F ) must be stochastically dominated by F0. Recall that the stochastic order F ′ ≤st F0

is defined by the relation F ′(x) ≥ F0(x) for all x ∈ R. The DCN assumption notably sim-
plifies the FDR theory (which can be based on one-sided statistics), but the methodology
developed in this chapter can be useful for applications in FDR in which, as often hap-
pens, the DCN can be hardly justified. To appreciate the differences between the general
framework of CN’s and DCN’s, it seems worthwhile to take advantage of the analyses in
Examples 1.1 and 1.2.

Example 1.13. Dominated contamination neighbourhoods. In the scenarios considered
in Example 1.1, only the second case of i) presents a dominated contamination F =
(1 − ε)F0 + εF ′, with F ′ ≤st F0. In fact, between the d.f.’s F ′ of U(a, b) laws, only
those verifying a ≤ inf{0, b} and b ≤ 1 are stochastically dominated by F0. Therefore,
considering

R−α (F, F0) := {F} ∪ {F ′ ∈ Rα(F ) : F ′ ≤st F0}, (1.29)

it holds dK(F0, R
−
α (F, F0)) = ε − α if F is the d.f. of the U(−ε, 1) law and 0 ≤ α ≤ ε;

R−α (F, F0) = {F} for 0 ≤ α < 1 under ii), while under iii): R−α (F, F0) = {F} for
0 ≤ α < ε and R−α (F, F0) = {F0} for ε ≤ α < 1. This shows that, in presence of non-
dominated contamination, trimming under the restricting domination scheme does not
necessarily improve the approximation (measured under any metric).

In the Gaussian model, stochastic dominance N(µ1, σ
2
1) ≤st N(µ2, σ

2
2) is equivalent to

µ1 ≤ µ2 and σ1 = σ2. Thus only normal distributions with σ = 1 and µ ≤ 0 are dominated
by a N(0, 1) law. For fixed α, solving the relation (1.6)= 0 would give the set of normal
distributions that are dominated contamination versions of the N(0, 1) law. Therefore the
only normal law in a DCN of a normal law is the same Gaussian. In particular, in the
examples considered in Figure 1.2, only the point (1, 0) belongs to the DCN. Of course,
non-normal distributions like the mixtures (1−α)N(0, 1)+αN(µ, 1) for any µ < 0, would
belong to such a DCN. �

Regarding the hypothesis testing problem and Theorem 1.6, note the very different
nature of the problems of interest in the FDR setup: the control of the false discovery rate
through a confidence lower bound and the detection of the particular false hypotheses.
Resorting to a simplified version, the problem would be described through the DCN as
F = (1−α)F0 +αF ′, where F0 is the f.d. of the U(0, 1) law and F ′ is a d.f. with support
on (0, 1) and F ′(x) ≥ x for every x ∈ (0, 1). The null would be α = 0, and the alternative
would be α > α0. Acceptance of the null hypothesis with our testing procedure, for a given
α, under the DCN setting would indicate that a lower proportion than α false hypotheses
are compatible with our data.

In the FDR setting, estimation and confidence intervals for the contamination level are
main objectives. In fact, there are connections between the estimator defined in (1.28)
and those considered in the FDR setting (see [Genovese and Wasserman, 2004]), that
justify the slow convergence rate even in the DCN case. Since a lower bound for α∗ is a
main goal in FDR analysis, some comparison is in order, but previously we will introduce
a new estimate.

It is easy to see that, (4) is also equivalent to P (B) ≥ (1− α)P0(B) for any Borel set
B ⊂ R and to P (B) ≤ (1 − α)P0(B) + α for any such set. Moreover, the Borel sets in
R can be arbitrarily well approximated by finite unions of disjoint intervals. From these
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considerations, we could use of the bound

α ≥ α(P, P0) := 1− inf

{
P (J)

P0(J)
, J intervals in R

}
, (1.30)

noting that α(P, P0) is a semicontinuous statistical functional in the sense of [Donoho,
1988], allowing the obtention of nontrivial lower confidence bounds for α. This suggests
that the combination of CN with the distance of Kuiper, dKuiper(P,Q) := sup{|P (J) −
Q(J)|, J interval in R}, could be more natural that the dK distance. That goal deserves
future work, but now we devote some attention to another, novel (Bonferroni type) lower
confidence bound for α(P, P0), thus for α∗:

α̂k = 1−min
(i,j)

β−1
j−i,n+1−j+i(1− γ/Mn)

P0(
[
X(i), X(j)

]
)

. (1.31)

Here 1 − γ is the confidence level, β−1
k,l denotes the quantile function of the Beta(k, l)

distribution, and the minimum is taken over all Mn = n(n + 3)/2 index pairs (i, j) such
that 0 ≤ i < j ≤ n+ 1, j − i ≤ n.

Although not implemented here, we should mention that the bound could be refined
in two ways: Replace the Bonferroni quantiles

β−1
j−i,n+1−j+i(1− γ/Mn) = 1− β−1

n+1−j+i,j−i(γ/Mn)

with
β−1
j−i,n+1−j+i(1− γn) = 1− β−1

n+1−j+i,j−i(γn),

where γn is the exact γ-quantile of the distribution of

1− max
0≤i<j≤n+1:j−i≤n

β−1
j−i,n+1−j+i(U(j) − U(i))

= min
0≤i<j≤n+1:j−i≤n

β−1
n+1−j+i,j−i(1− U(j) + U(i))

with the order statistics 0 = U(0) < U(1) < · · · < U(n) < U(n+1) = 1 of a random
sample from the U([0, 1]) distribution. Furthermore, since the small intervals are more
important than the large ones, one could restrict attention to all pairs (i, j) of indices
0 ≤ i < j ≤ n + 1 such that j − i ≤ dn, with dn = bn/2c, say. This means, one would
consider Mn = ((2n+ 3)dn − d2

n)/2 pairs (i, j).

Example 1.14. Some comparisons between estimates of α∗. In Figure 1.5 we compare
the behaviour of our estimate α∗n (based on ε1 = 0.05) of α∗ with some confidence lower
bounds, associated to bounding functions, as described in [Meinshausen and Rice, 2006].
We denote by α̂c to the lower bound with confidence level 0.95, i.e., P (α̂c ≤ α) ≥ 0.95,
associated to the constant bounding function δ(t) = 1; α̂l is the one associated to the
linear bounding function δ(t) = t; α̂s is obtained with the standard deviation-proportional
bounding function δ(t) =

√
t(1− t). The legend in the figure explains the way in which

the corresponding samples have been obtained. Let X0 be a random variable with a N(0, 1)
law and recall that Φ denotes its d.f.. In the graphics of the first row, we take X1 = Φ(X0)
and Y1 = Φ(X0 + 4); in those of the second row, X2 = Φ(X0), Y2 = Φ (3X0 + 4). In the
third row, we consider X3 with a U(0, 1) law and Y3 with a Beta(5, 1) law.
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Figure 1.5: In the graphics on the left (resp. right) column we use α∗ = 0.05 (resp.
α∗ = 0.2). Every graphic is based on 100 samples of size 1000 obtained joining independent
samples, one of size 1000(1 − α∗) of a random variable Xi and other of size 1000α∗ of
another Yi for respective rows i = 1, 2, 3 . The estimates α∗n, α̂c, α̂l, α̂s, α̂k and laws of Xi

and Yi are described in Example 1.14

The first row is a very favourable case for the procedures shown in Section 4 in [Mein-
shausen and Rice, 2006]. The second is a perturbation of that, allowing greater dispersion
on the contamination, thus breaking the domination. In the lower row, we present a case
where the procedures described in [Meinshausen and Rice, 2006] do not give meaningful
bounds, while our procedure gives sensible results. We note that [Meinshausen and Rice,
2006] seemingly do not use the DCM assumption but, as it is apparent from the pic-
tures in Figure 1.5, in fact their proposals are not meaningful when that condition fails.
We may conclude that our estimate is competitive when we are under the assumptions
of [Meinshausen and Rice, 2006], but also works when these assumptions fail. �
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1.6 Simulations and a real data example

1.6.1 A toy example

Let us explore the practical use of our tools to evaluate the quality of a given model on
the basis of the sample. We fix the model F0 ∼ N(0, 1) and consider three different large
samples (n = 20000) simulated from three different distributions. The first sample comes
from F1 ∼ Logistic(0,

√
3/π), with the same mean (=0) and variance (=1) as F0. We

notice that this model distribution has been reported in [Lindsay and Liu, 2009] as gener-
ating datasets very close to ‘normality’. The other two samples come from contaminated
normal distributions F2 ∼ 0.867N(0, 1) + 0.133N(0, 42) and F3 ∼ 0.9N(0, 1) + 0.1N(3, 1)
(we will refer to these samples as contaminated by ‘inliers’ and ‘outliers’, respectively).

Our first step is to assess whether these samples can be assumed as coming from
a contamination of level at most α = 0.05 of the model F0. We fix ε2 = 0.05 and
ε1 = 0.05/(0.999e2). We note (recall the discussion about the testing problem (1.10))
that this choice of ε1 is very close to the minimal admissible value for the validity of
(1.12) and (1.13), that is, we are taking a very conservative approach, rejecting the null
only if we have very strong evidence against it. From (1.12) and (1.13) we see that
this amounts to fixing λ = 0.9997 and ρ2×104 = 0.012555, the null being rejected if
dK(F0, R0.05(Fi,2×104)) > λρ2×104 = 0.012552. The first column in Table 1.3 reports the
observed values of dK(F0, R0.05(Fi,2×104)), i = 1, 2, 3. Despite the very conservative ap-
proach taken, the null is rejected for the three samples, that is, we should not consider
them as (0.05) contaminated samples from our model F0.

Table 1.3: For F0 ∼ N(0, 1), F1 ∼ Logistic(0,
√

3/π), F2 ∼ 0.867N(0, 1) + 0.133N(0, 42)
and F3 ∼ 0.9N(0, 1) + 0.1N(3, 1), the table shows the results obtained from samples of
size n = 20000. We denote dK,n = dK (F0, R0.05(Fi,n)), dK,95% are the 95% lower (top)
and upper (bottom) confidence bounds for dK (F0, R0.05(Fi)).

dK,n dK,95% N0.5,indep L0.5,n U0.5,n N0.5,subs α∗n

F1 0.0140
0.0000

12370 4170 16079 15670 0.054
0.0262

F2 0.0200
0.0000

7610 2045 7886 6840 0.069
0.0322

F3 0.0477
0.0275

1135 359 1386 1020 0.089
0.0599

Next, we try to assess the quality of the rejected model as a good description of
the underlying distributions of the samples. The simplest approach could be to use the
estimated dK distance. Looking back at the first column of Table 1.3 we see that F1 is
closer to the rejection boundary than F2, and the later is closer than F3. This estimate is
complemented by the 95% lower (top cell) and upper (bottom cell) confidence bounds for
dK(F0, R0.05(Fi)), included in the second column of the table. We see, for instance, that
the generator of the first sample is (with 95% confidence) at small dK distance (0.0262)
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from an α-contamination of the standard normal distribution.
Alternatively, we could consider credibility indices, looking for the sample sizes from

the generators that will be suitably represented by the model plus the corresponding CN
(we keep our choice of α = 0.05). The estimators L0.5,n and U0.5,n are reported in the
fourth and fifth column of Table 1.3, we expect the credibility index to be in the interval
[359, 1386] for F3, in [2045, 7886] for F2 and in [4170, 16079] for F1. Once more F1 is the
closest to the model in this sense, followed by F2 and then F3. We also see that, from a
conservative point of view, F1 can generate samples of size up to 4170 while rejecting the
null less than 50% of the time. Therefore, at least in this sample size range F0 can be
considered as a useful model for the data (allowing 5% contamination).

In this controlled setup we can use our knowledge of the underlying distributions of
the samples to estimate the true credibility index, N0.5. The index N0.5,indep denotes the
sample size for which 5000 independent samples of that size from the true generator, give
a rejection frequency of 50%. N0.5,subs is the subsampling approximation to the credibility
index described in Section 1.4.2. We see in Table 1.3 that the interval [L0.5,n, U0.5,n] in all
three cases contains N0.5,indep and N0.5,subs, as expected.

A last way of comparison is given by α∗n. As before, F1 is closest to the model (α∗n =
0.054), then comes F2 (α∗n = 0.069), and last F3 (α∗n = 0.089). This suggests that the
random generators of the samples are not too far from the model, F0. On the other hand,
F0 ∈ R0.1(F2) and F0 ∈ R0.1(F3) and in both cases we have α∗ = 0.1. Note, in this respect,
the slow convergence of α∗n showed in the last column of Table 1.3.

To summarize, up to some ‘small’ contamination (0.05), the logistic generated sample
is the closest one to normality. It is closer to normality than samples coming from 0.1-
contaminations of the normal model. Also, scale contaminations with the same mean (F2),
generate samples that ‘look’ more normal than location contaminations, when allowing
some (0.05) trimming.

1.6.2 Trying a real data example

Here we analyse the heights of 52402 individuals with ages between 2 and 84. The data
has been obtained from NHANES ( https://www.cdc.gov/nchs/nhanes/) and consists of
height measurements (in centimeters) of 26625 females and 25777 males. The dataset
analysed here is available at

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SHBF2G

We consider three age groups, which are related to human body development. The first
group includes kids before puberty (ages between 2 and 10). The second group, puberty
period, includes individuals aged between 11 and 18, with adults (over 18) making the
third group. We start analysing the adult group (30284 individuals). The data consists
of height measurements on 15679 females and 14605 males.

Notice that in our analysis we will use the population estimates of the mean and
variance. This is very usual in the goodness of fit setting based on procedures designed
for testing simple hypothesis and, in particular in the FDR setting. There, the U(0, 1)
law, considered as the hypothesis, arises from the integral, or p-value transformation, but
it depends on the (unknown) true distribution. In our framework, that license is even
more permisible because we are interested in getting a useful description of the data.
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Figure 1.6: QQ-plots of the measured heights of 15679 females (left), 14605 males (right),
and of the combined joint sample (below) against a Normal distribution with the same
mean and variance as the corresponding data set.

We analyse first the sample by gender group. In Figure 1.6 we see qq-plots from
normal distributions with the same mean and variance as the female’s and male’s heights
data. The pictures suggest that the normal model could provide a reasonable description
of the data. Also, a Kolmogorov-Smirnov test of normality yields a p-value of 0.5385 for
the male group and of 0.2997 for the female group, thus we do not get enough evidence
to reject that the data sets come from normal random generators.

Next we take a look at the combined data set. The previous analysis suggests the
model F0 ∼ 0.52N(161.0, 7.12) + 0.48N(174.6, 7.92). If, however, we perform a gender-
blind analysis and take a look at the qq-plot in the third graphic in Figure 1.6 for the
combined sample, we may be tempted to say that the normal distribution is not a bad
model for the data (nevertheless, the K-S normality test yields a p-value smaller than
10−16). After the discussion in the previous sections, we could yet stick to the normal
model and consider F ∗0 ∼ N(167.6, 10.12) hoping a useful description of the random
generator of the data.

Figure 1.7 shows the empirical d.f. together with the models F0 and F ∗0 . While the
gender-blind model, which is in disadvantage (since it is blinded to relevant information),
is further away from the data than F0 we may wonder how bad is F ∗0 as a model. If trim-
ming is allowed, we would need a 6% trimming to avoid rejection of the null hypothesis,
i.e., dK(F ∗0 , R0.06(F )) = 0 would not be rejected, thus α∗n = 0.06, and our data are com-
patible with a generation from F ∗0 with a proportion of until 6% wrong data. Actually,
F0 is still a better model, since dK(F0, R0.06(Fn)) = 0.00231 with 95% confidence interval
for dK(F0, R0.06(F )) of [0, 0.01468], while dK(F ∗0 , R0.06(Fn)) = 0.01026 with a confidence
interval for dK(F ∗0 , R0.06(F )) of [0, 0.02264]. We could even look for other normal distri-
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Figure 1.7: Comparison of data and models. Solid lines correspond to the empirical
d.f.’s: black for the joint samples, and blue (resp. green) for females (resp. males). F0 is
represented in dashed red and F ∗0 in dotted cyan.

butions inside the tolerance region, shown in green in Figure 1.8, and choose one as a
sensible model. Alternatively, if we find this trimming level unacceptable, we may try to
use smaller CN’s and asses model adequacy using credibility analysis.

Table 1.4: dK,α,n = dK (F ∗0 , Rα(Fn)), where F ∗0 ∼ N(167.6, 10.12) and F is the true
generating mechanism. N0.5,subs is obtained taking 1000 sub-samples of the heights data.
N0.5,indep is obtained taking 1000 independent samples from F = F0.

α dK,α,n dK,α,95% N0.5,indep L0.5,n U0.5,n L0.5,95% U0.5,95% N0.5,subs

0.015 0.0184
0.0000

8350 2239 8631
832 3206

7225
0.0302 ∞ ∞

0.035 0.0143
0.0000

17250 3888 14993
1143 4407

13280
0.0263 ∞ ∞

0.055 0.0110
0.0000

37300 6851 26417
1523 5872

25810
0.0233 ∞ ∞

The output of this type of analysis is reported in Table 1.4. We have fixed ε1 =
0.01 (recall the discussion leading to (1.13)) and considered three different trimming
levels (α = 0.015, 0.035 and 0.055, leading to optimal rejection boundaries λρ30284 =
0.0098, 0.0100 and 0.0103, respectively). Testing for these contamination levels results in
rejection of the null hypothesis, since the values in the first column of Table 1.4 are above
the respective rejection boundaries. But we see how the empirical trimmed Kolmogorov
distance approaches the rejection boundary as the trimming level increases. Further
informative values are provided by the intervals [L0.5,n, U0.5,n]. With the available data,
since we expect Nδ to be in [L0.5,n, U0.5,n], we see how reasonably the gender-blind model,
F ∗0 , represents the data. With a conservative point of view, after trimming only 0.055,
samples of the true generator of size 6851 will not be rejected as coming from F ∗0 (more
than 50% of the time). If we take an optimistic point of view, we can say the same thing
but for a sample size of 26417. As in our toy example, we see that N0.5,subs ∈ [L0.5,n, U0.5,n],
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therefore our estimated interval for the credibility index contains the estimation proposed
in [Lindsay and Liu, 2009]. If, on the other hand, we admit that the data comes from
F0 and calculate the estimate N0.5,indep, we see that N0.5,subs is far from N0.5,indep and our
upper bounds U0.5,n get closer to N0.5,indep. Furthermore, we could plug-in our upper and
lower confidence bounds (1.22) and (1.23) into (1.27) to get upper and lower confidence
bounds for L0.5 and U0.5. These are reported in the columns labeled L0.5,95% and U0.5,95%.
We can assure with more than 95% confidence that N0.5 ≥ 1143 for α = 0.035 and,
similarly, that N0.5 ≥ 1523 for α = 0.055.

Finally, we study the normality of the data for grouping ages. Using the same mean
and variance as the data, we propose F1 ∼ N(116.9, 18.22) for the age group under 11,
F2 ∼ N(163.1, 10.92) for the ages 11 and 18, and F3(= F ∗0 ) ∼ N(167.6, 10.12) for ages over
18. The tK-index of fit allows us to compare how normal is the data in each age group.
We obtain the following indices: α∗1,n = 0.3665, α∗2,n = 0.0057 and, as before, α∗3,n = 0.06.
This gives a clear ‘normality’ ranking. Somewhat surprisingly the data from the puberty
group (ages 11 to 18) is almost normal. The adult group is close to normality and the
children group is very far from normality. We emphasize that normality is rejected for
each data set by a K-S test. To gain some intuition of what is really happening, we plot
in Figure 1.8 the tolerance region for the normal family inside each respective CN for α∗2,n
and α∗3,n. The plot shows remarkably well how much closer to being normally distributed
is the data of the teenagers compared to the adult group.

Figure 1.8: Tolerance regions for the normal family based on F2 and F3 in Section 1.6.2.
In red the tolerance region that is inside V0.0057(N(163.1, 10.92)), in green the one that is
inside V0.06(N(167.6, 10.12)).
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1.7 Proofs

In this section we will provide the proofs of the main results of the chapter. In particular
we will prove Lemma 1.3 which is a fundamental characterization as a variational problem
of the trimmed Kolmogorov distance. For readability we restate here that result. By
taking Γ = F0(F−1), F0 and F being the distribution functions of P0 and P , with great
generality, the following identity holds:

dK(P0, Rα(P )) = min{‖h− Γ‖, h ∈ Cα}, (1.32)

where Cα := {h : [0, 1]→ [0, 1] with h(0) = 0, h(1) = 1, and ‖h‖Lip ≤ 1/1− α}.(1.33)

Here, as will be used throughout this section, for any real valued mapping f : ℵ → R
defined on a metric space (ℵ, d), with ‖f‖ and ‖f‖L we will denote the L∞ and the
Lipschitz norms:

‖f‖ = sup
x∈ℵ
|f(x)|, ‖f‖Lip = sup

x,y∈ℵ

|f(x)− f(y)|
d(x, y)

.

The representation in (1.32) translates the problem of best trimmed approximation in
Kolmogorov distance into finding a useful expression for a best L∞-approximation to a
monotone function by monotone, Lipschitz-continuous functions verifying the boundary
conditions h(0) = 0, h(1) = 1.

In Section 1.7.1 we give the proof of Proposition 1.1 which provides the topological
properties of trimmings in the L∞ setting. We also provide a proof of the variational
representation (Lemma 1.3).

In section 1.7.2 we provide the solution to the variational problem of obtaining the
trimmed Kolmogorov distance, hence prooving Theorem 1.4. We do this by showing how
the Pasch-Hausdorff envelopes (see [Rockafellar and Wets, 2009]) of a monotone function
preserve monotonicity and provide the basis to build a best L∞-approximation verifying
the boundary constraints. We will also relate this process with the alternative way of
obtaining the Ubhaya’s monotone L∞-best approximation (see [Ubhaya, 1974a, Ubhaya,
1974b]) to the Lipschitz regularization of the objective function.

In section 1.7.3 we provide the proof of our central limit theorem given in Theorem
1.9. The proof essentially follows from a result on directional differentiability of the L∞-
distance to the regularized version given in Theorem 1.21.

1.7.1 The set of trimmings in the L∞-topological setting

For the sake of the reader we recall that the set of α-trimmings of F can be characterized
as

Rα(F ) = {Fh = h ◦ F : h ∈ Cα}.

We also recall that the trimmed Kolmogorov distance from F to F0 is

dK(F0, Rα(F )) := inf
F̃∈Rα(F )

‖F̃ − F0‖ = inf
h∈Cα
‖h ◦ F − F0‖.

Proof of Proposition 1.1. By the Ascoli-Arzelà Theorem, Cα is a compact subset of
the space of continuous functions on [0, 1] endowed with the uniform norm. Hence, from



1.7. PROOFS 53

any sequence of elements in Rα(F ), say {hn ◦ F}, we can extract a uniformly convergent
subsequence hnj → h0 ∈ Cα. But then, obviously, hnj ◦ F → h0 ◦ F in dK , which proves
(a). Since, on the other hand,∣∣‖h1 ◦ F − F0‖ − ‖h2 ◦ F − F0‖

∣∣ ≤ ‖h1 ◦ F − h2 ◦ F‖ ≤ ‖h1 − h2‖,

we see that the map h 7→ ‖h ◦ F − F0‖ is continuous and, consequently, it attains its
minimum in Rα(F ), as claimed in (b). Finally, to check (c) we note that∣∣dK(G1, Rα(F1))− dK(G1, Rα(F2))

∣∣ ≤ sup
h∈Cα

∣∣‖G1 − h ◦ F1‖ − ‖G1 − h ◦ F2‖
∣∣ (1.34)

≤ sup
h∈Cα
‖h ◦ F1 − h ◦ F2‖ ≤ 1

1−α‖F1 − F2‖

and∣∣dK(G1, Rα(F2))− dK(G2, Rα(F2))
∣∣ ≤ sup

h∈Cα

∣∣‖G1 − h ◦ F2‖ − ‖G2 − h ◦ F2‖
∣∣ ≤ ‖G1 −G2‖. (1.35)

Now, (1.34) and (1.35) yield (c).
To prove (d1), since F̃ = h◦F , with h ∈ Cα, it suffices to consider F̃n := h◦Fn ∈ Rα(Fn)

and recall that h is Lipschitz. For (d2), we write F̃n = hn ◦Fn and argue as in (a) to get a
dK-convergent subsequence hnk → h ∈ Cα from which we easily get dK(hnk ◦Fnk , h◦F )→
0. Finally (d3) is a direct consequence of (c). �

Proof of Lemma 1.3. For the first identity observe that

‖h ◦ F − F0‖ = sup
x∈R |h(F (x))− F0(x)| = supF (x)∈[0,1] |h(F (x))− F0(F−1(F (x)))|

= supt∈[0,1] |h(t)− F0(F−1(t))| = ‖h− F0(F−1)‖.

On the other hand, if x(i), i = 1, . . . , n, denote the ordered sample associated to x1, . . . , xn
(the same set of values but ordered in nondecreasing sense) and

t0 = 0, ti =
i

n
, hi = h(Fn(x(i))) = h(ti), and F0,i = F0(x(i)), 1 ≤ i ≤ n.

Taking into account that h(Fn) and F0(F−1
n ) are piecewise constant while F0 and h are

non decreasing and continuous, we obtain

‖h(Fn)− F0‖ = max
1≤i≤n

max
(
F0,i − hi−1, hi − F0,i

)
= ‖h− F0(F−1

n )‖,

and the other identity follows from Proposition 1.1, part (b). �

1.7.2 Best L∞-approximations by Lipschitz-continuous functions
with box constraints

The proof of Theorem 1.4 will be developed in this section. We start with a refreshed
notation. The role of 1/(1−α) will be played now by a generic Lipschitz constant L; our
Γ will be substituted by a bounded function f : ℵ → R, where (ℵ, d) is (at least at the
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beginning) a general metric space, while we maintain [0, 1] as the range of values. We
will also use the notation x ∨ y (resp. x ∧ y) for the maximum (resp. minimum) of both
numbers (or functions). Regarding the Lipschitz norm, recall the trivial inequalities

‖f ∧ g‖Lip, ‖f ∨ g‖Lip ≤ ‖f‖Lip ∨ ‖g‖Lip. (1.36)

The first lemma collects some basic properties on the role of the Pasch-Hausdorff
envelopes of a function to obtain a Lipschitz-continuous best L∞-approximation with
constrained Lipschitz constant. For the sake of completeness, we will also include a
simple proof.

Lemma 1.15. For a function f : ℵ → [0, 1], given a constant L ≥ 0, let us consider

fL,1(x) := inf
y∈ℵ

(f(y) + Ld(x, y)), fL,2(x) := sup
y∈ℵ

(f(y)− Ld(x, y)).

(i) This defines functions fL,1, fL,2 : ℵ → R such that 0 ≤ fL,1 ≤ fL,2 ≤ 1.

(ii) fL,1 is the pointwise largest function g : ℵ → R satisfying g ≤ f and ‖g‖Lip ≤ L.
Likewise fL,2 is the pointwise smallest function g : ℵ → R satisfying g ≥ f and
‖g‖Lip ≤ L.

(iii) The average fL := (fL,1 + fL,2)/2 satisfies ‖fL‖Lip ≤ L and

‖g − f‖ ≥ ‖fL − f‖ = ‖fL,2 − fL,1‖

for any function g : ℵ → R such that ‖g‖Lip ≤ L.

Proof. Part (i) follows directly from the definitions of fL,1 and fL,2, because, for every
x ∈ ℵ:

inf
y∈ℵ

f(y) ≤ fL,1(x) ≤ f(x) + Ld(x, x) = f(x) = f(x)− Ld(x, x) ≤ fL,2(x) ≤ sup
y∈ℵ

f(y).

To address part (ii) observe that, for arbitrary x1, x2, y ∈ ℵ, the triangle inequality for
the distance implies |Ld(x1, y)− Ld(x2, y)| ≤ Ld(x1, x2), leading to the inequalities

|fL,j(x2)− fL,j(x1)| ≤ Ld(x1, x2) for j = 1, 2,

thus to ‖fL,j‖Lip ≤ L, j = 1, 2. Now, if g : ℵ → R satisfies g ≤ f and ‖g‖Lip ≤ L, then for
x, y ∈ ℵ: g(x) ≤ g(y) + Ld(x, y) with equality if x = y. Hence

g(x) = inf
y∈ℵ

(g(y) + Ld(x, y)) ≤ inf
y∈ℵ

(f(y) + Ld(x, y)) = fL,1(x).

Analogously, it follows from g ≥ f and ‖g‖Lip ≤ L that g ≥ fL,2, proving (ii).
As to part (iii), let ε := ‖g − f‖. Then ‖g ± ε‖Lip = ‖g‖Lip and g − ε ≤ f ≤ g + ε.

Consequently, by part (ii),

g − ε ≤ fL,1 ≤ f ≤ fL,2 ≤ g + ε
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This implies that

|fL − f | = (f − fL) ∨ (fL − f) ≤ (fL,2 − fL) ∨ (fL − fL,1) =
fL,2 − fL,1

2
≤ ε,

whence

‖fL − f‖ ≤
‖fL,2 − fL,1‖

2
≤ ‖g − f‖.

Since ‖fL‖Lip ≤ ‖fL,1‖Lip/2+‖fL,2‖Lip/2 ≤ L, taking g = fL gives the announced equality
‖fL − f‖ = ‖fL,2 − fL,1‖/2. �

When ℵ is a real interval and f is non-decreasing, the functions fL,1 and fL,2 in
Lemma 1.15 share also that property and can be alternatively expressed in terms of the
the Ubhaya’s monotone envelopes of the function f(x) − Lx. This is the content of the
following lemma.

Lemma 1.16. Let ℵ be a real interval, equipped with the usual distance d(x, y) = |x− y|.
If f : ℵ → [0, 1] is non-decreasing, then the functions fL,1, fL,2 in Lemma 1.15 are non-
decreasing too, and for arbitrary x ∈ ℵ and j = 1, 2,

fL,j(x) = γL,j(x) + Lx,

where γL,j, j = 1, 2 are the non-increasing functions

γL,1(x) := inf
y∈ℵ:y≤x

(f(y)− Ly) and γL,2(x) := sup
y∈ℵ:y≥x

(f(y)− Ly).

In particular,

‖fL,2 − fL,1‖ = ‖γL,2 − γL,1‖ = sup
y,x∈ℵ:y≤x

(f(x)− f(y)− L(x− y)). (1.37)

Proof. The representations of fL,1 and fL,2 in terms of γL,1 and γL,2 follow from the fact
that for arbitrary x, y ∈ ℵ,

f(y) + Ld(x, y)

{
= f(y) + L(x− y) = f(y)− Ly + Lx if y ≤ x

≥ f(x) = f(x)− Lx+ Lx if y ≥ x,

f(y)− Ld(x, y)

{
= f(y)− L(y − x) = f(y)− Ly + Lx if y ≥ x

≤ f(x) = f(x)− Lx+ Lx if y ≤ x,

where the inequalities follow from f being non-decreasing. Note that both functions γL,1
and γL,2 are non-increasing, but adding the term Lx to them leads to non-decreasing
functions: For x1, x2 ∈ ℵ with x1 < x2, isotonicity of f implies that

fL,2(x1) = sup
y≥x2

(f(y)− Ly + Lx1) ∨ sup
x1≤y≤x2

(f(y)− Ly + Lx1)

≤ (fL,2(x2)− Lx2 + Lx1) ∨ f(x2)

≤ fL,2(x2),
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and

fL,1(x2) = inf
y≤x1

(f(y)− Ly + Lx2) ∧ sup
x1≤y≤x2

(f(y)− Ly + Lx2)

≥ (fL,1(x2) + Lx2 − Lx1) ∧ f(x1)

≥ fL,1(x1),

because fL,1 ≤ f ≤ fL,2. �

Finally, let us include in the problem the boundary restrictions. Notice that Theorem
1.17 is just a rephrasing of Theorem 1.4. A look at that Theorem shows that hα = h̃α+ ·

1−α
is an element of Cα such that ‖hα−Γ‖ = minh∈Cα ‖h−Γ‖, that is, hα is an optimal trimming
function in the sense described above. We recall that we do not claim uniqueness of this
minimizer, but this particular choice allows to compute dK(F0, Rα(Fn)) for sample d.f.’s.

Theorem 1.17. Let f : [0, 1]→ [0, 1] be non-decreasing. For L ≥ 1 consider the function

f̃L(x) := (fL(x) ∨ (1− L+ Lx)) ∧ Lx
= ((γL(x) ∨ (1− L)) ∧ 0) + Lx,

where γL := (γL,1+γL,2)/2, and fL, γL,1, γL,2 are defined as in Lemmas 1.15 and 1.16. Then
f̃L : [0, 1] → R is non-decreasing and verifies f̃L(0) = 0 and f̃L(1) = 1 and ‖f̃L‖Lip ≤ L,
and for arbitrary functions g : [0, 1]→ R with g(0) = 0 and g(1) = 1 and ‖g‖Lip ≤ L,

‖g − f‖ ≥ ‖f̃L − f‖

= max
{
fL,2(0), 1− fL,1(1), sup

0≤y≤x≤1
(f(x)− f(y)− L(x− y))/2

}
(1.38)

Proof of Theorem 1.4 and 1.17. Let us begin noting that both expressions for f̃L are
trivially equivalent from the relations between γL,j and fL,j.

That f̃L verifies the required properties easily follows from the preceding lemmas (recall
also inequalities (1.36)). Let then g : [0, 1] → R with ‖g‖Lip ≤ L. Also by the precedent
lemmas,

‖g − f‖ ≥ ‖fL − f‖ = sup
0≤y≤x≤1

(f(x)− f(y)− L(x− y))/2.

Under the additional constraint that g(0) = 0, for arbitrary x ∈ [0, 1],

f(x)− g(x) = f(x)− (g(x)− g(0)) ≥ f(x)− Lx,

whence
‖g − f‖ ≥ sup

0≤x≤1
(f(x)− Lx) = fL,2(0).

Analogously, the additional constraint g(1) = 1 implies that

f(x)− g(x) = f(x) + (g(1)− g(x))− 1 ≤ f(x) + L(1− x)− 1,

whence
−‖g − f‖ ≤ inf

0≤x≤1
(f(x) + L(1− x))− 1 = fL,1(1)− 1.
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These considerations show that for any function g : [0, 1] → R verifying the conditions
g(0) = 0, g(1) = 1 and ‖g‖Lip ≤ L,

‖g − f‖ ≥ ‖fL − f‖ ∨ fL,2(0) ∨ (1− fL,1(1)).

The function f̃L satisfies the previous constraints on g, too, so

‖f̃L − f‖ ≥ ‖fL − f‖ ∨ fL,2(0) ∨ (1− fL,1(1)).

It remains to prove the reverse inequality. For x ∈ [0, 1], we have to distinguish three
cases: If 1− L+ Lx ≤ fL(x) ≤ Lx, then f̃L(x) = fL(x), so |f̃L(x)− f(x)| ≤ ‖fL − f‖. If
fL(x) > Lx, then f̃L(x) = Lx, and

f(x)− f̃L(x)

{
= f(x)− Lx ≤ fL,2(0),

> f(x)− fL(x) ≥ −‖fL − f‖.

Similarly, if fL(x) < 1− L+ Lx, then f̃L(x) = Lx, and

f(x)− f̃L(x)

{
= f(x) + L(1− x)− 1 ≥ fL,1(1)− 1,

< f(x)− fL(x) ≤ ‖fL − f‖.

�

In the case, considered in Theorem 1.17, of a non-decreasing function f , since the
functions fL,j are absolutely continuous and the relations γL,j = fL,j − Lx hold, all the
functions fL, γL, γL,j are absolutely continuous so {γL ≤ 1−L}, {γL ≥ 0}, {γL ∈ [1−L, 0]}
are compact sets and continuous functions attain their maximum values on these sets.
This allows to get alternative expressions for (1.38) as given in the following theorem. We
note that here and throughout we use the convention that the max over an empty set
equals −∞.

Theorem 1.18. Let f : [0, 1] → [0, 1] be non-decreasing and continuous and assume the
notation in Theorem 1.17. Then the following alternative expressions for (1.38) hold:

‖f − f̃L‖ = max

(
max
x∈T1

(f(x)− Lx) , max
x∈T2

(1− L+ Lx− f(x)) ,
1

2
max

1−L≤γL(x)≤0

(
γL,2(x)− γL,1(x)

))
(1.39)

= max

(
max
x∈T1

(f(x)− Lx) , max
x∈T2

(1− L+ Lx− f(x)) ,
1

2
max

(y,x)∈T3
(f(x)− f(y)− L(x− y))

)
. (1.40)

Here, we used the notation T1 = {x ∈ [0, 1] : γL(x) ≥ 0}, T2 = {x ∈ [0, 1] : γL(x) ≤ 1−L},
T3 = {(y, x) : 0 ≤ y ≤ x ≤ 1, 1− L ≤ 1

2
(f(y) + f(x)− L(y + x)) ≤ 0}.

Once we know Theorem 1.17, a proof of this result would take advantage of the fact
that the right-hand side in (1.39) is upper bounded by the same expression with the
unrestricted maxima, which, by (1.37) is just the right-hand side in (1.38) when f is
continuous. However, with some additional effort we can obtain a more general result
that does not requires the monotonicity assumption on the objective function and opens
a way to address the directional differentiability of the functional f → ‖f − f̃L‖. Both
goals will be carried through the following section.
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1.7.3 Best L∞-approximations by monotone functions with box
constraints

The following theorem gives appropriate characterizations of the best approximation of
a bounded function (in uniform norm) by monotone functions with a box constraint.
Without this constraint, best approximation by monotone functions in the L∞-norm has
been considered in [Ubhaya, 1974a,Ubhaya, 1974b], with results that cover the case A =
−∞, B = ∞ in Theorem 1.19 below. Notice that this theorem, based on Ubhaya’s
envelopes, would also provide an (arguably more involved) alternative proof for Theorem
1.17. Notice that the function G plays the role of the transformed function, f(x) − Lx
(the difference of two non-decreasing functions) in the previous section, while the scope
here is general.

Theorem 1.19. Assume G : [0, 1] → R is a bounded function and −∞ ≤ A ≤ B ≤ ∞.
Define U(x) = supx≤y≤1G(y), L(x) = inf0≤y≤xG(y), Ḡ(x) = (L(x) + U(x))/2 and

ḠA,B(x) = max(min(Ḡ(x), B), A).

Then U,L, Ḡ and ḠA,B are non-increasing, L(x) ≤ G(x) ≤ U(x) and for every non-
increasing h : [0, 1]→ [A,B] we have

‖G− ḠA,B‖ ≤ ‖G− h‖. (1.41)

Furthermore, if G is continuous then U,L, Ḡ and ḠA,B are also continuous and

‖G− ḠA,B‖ = max

(
max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x)), 1
2

max
A≤Ḡ(x)≤B

(U(x)− L(x))

)
= max

(
max
x∈T1

(G(x)−B),max
x∈T2

(A−G(x)), 1
2

max
(y,x)∈T3

(G(x)−G(y))

)
,(1.42)

where T1 = {x ∈ [0, 1] : Ḡ(x) ≥ B}, T2 = {x ∈ [0, 1] : Ḡ(x) ≤ A} and T3 = {(y, x) : 0 ≤
y ≤ x ≤ 1, A ≤ 1

2
(G(y) +G(x)) ≤ B}.

Proof. The bounds L(x) ≤ G(x) ≤ U(x) are obvious, and also the fact that U and L are
non-increasing (hence, also Ḡ and ḠA,B).
• Next, consider some non-increasing h : [0, 1] → [A,B] and x ∈ [0, 1]. Since L(x) ≤
G(x) ≤ U(x), we have that G(x) = Ḡ(x) whenever U(x) = L(x). Hence, if U(x) =
L(x) ∈ [A,B] we have ḠA,B(x) = G(x) and, consequently,

0 = |ḠA,B(x)−G(x)| ≤ ‖h−G‖.

• Obviously, ḠA,B(x) = B if U(x) = L(x) > B and we still have that

|ḠA,B(x)−G(x)| ≤ |h(x)−G(x)| ≤ ‖h−G‖

and similarly for the case U(x) = L(x) < A.
• It remains to deal with the case U(x) > L(x). For every ε > 0 there exist xa ∈ [0, x],
xb ∈ [x, 1] such that G(xa) < L(x) + ε and G(xb) > U(x) − ε. If Ḡ(x) > B then
ḠA,B(x) = B. Using again that L(x) ≤ G(x) ≤ U(x) we see that |ḠA,B(x) − G(x)| ≤
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U(x) − B < G(xb) − B + ε ≤ |G(xb) − h(xb)| + ε for small enough ε, showing that
|ḠA,B(x)−G(x)| ≤ ‖h−G‖.

Similarly, if Ḡ(x) < A we conclude that |ḠA,B(x)−G(x)| ≤ ‖h−G‖.
Finally, assume that U(x) > L(x) and Ḡ(x) ∈ [A,B]. Since h is non-increasing we

have that h(xa) ≥ h(xb) and, consequently,

‖h−G‖ ≥ max(|h(xa)−G(xa)|, |h(xb)−G(xb)|) ≥
G(xb)−G(xa)

2
≥ |ḠA,B(x)−G(x)|−2ε

for ε small enough. This completes the proof of (1.41).

To check continuity of U note that for 0 ≤ y < x ≤ 1 U(y) = max(U(x),maxy≤z≤xG(z)).
Now, given ε > 0 we can fix δ > 0 such that |G(x) − G(y)| ≤ ε whenever |y − x| ≤ δ.
But then |U(y) − U(x)| ≤ ε if |y − x| ≤ δ, proving continuity of U . L can be handled
similarly. As a consequence we see that Ḡ and ḠA,B are also continuous.

Now, to prove the first equality in the statement we take x ∈ [0, 1] and consider first
the case x ∈ T1. Note that, necessarily, U(x) ≥ B, U(x)−B ≥ B−L(x) and ḠA,B(x) = B.
• If G(x) ≥ B then |G(t)− ḠA,B(x)| = G(x)−B.
• Assume, on the contrary, that G(x) < B. Set x+ = inf{y ≤ x : G(y) = U(x)}. By
continuity, G(x+) = U(x) = U(x+). Recall that if x+ = ∅, it means that there is an
y+ > x such that G(y+) = U(x) and that sup0≤y≤x ‖G(y) − ḠA,B(y)‖ ≤ G(y+) − B ≤
|G(y+)− ḠA,B(y+)|. Hence, y+ ∈ Ti for some i = 1, 2, 3.

Now, if Ḡ(x+) ≥ B then G(x+) − B = U(x) − B ≥ B − L(x) ≥ B − G(x) =
|G(x) − ḠA,B(x)|. If, on the contrary, Ḡ(x+) < B, then there exists x′ ∈ [x, x+] such
that Ḡ(x′) ∈ (A,B). But we must have U(x′) = U(x) = U(x+) and L(x′) < L(x) and,
consequently, we have that

|G(x)− ḠA,B(x)| = B −G(x) ≤ B − L(x) ≤ U(x)− L(x)

2
<
U(x′)− L(x′)

2
.

Summarizing, we see that

max
Ḡ(x)≥B

|G(x)− ḠA,B(x)| ≤ max

(
max
Ḡ(x)≥B

(G(x)−B), 1
2

max
A≤Ḡ(x)≤B

(U(x)− L(x))

)
. (1.43)

Similarly,

max
Ḡ(x)≤A

|G(x)− ḠA,B(x)| ≤ max

(
max
Ḡ(x)≤A

(A−G(x)), 1
2

max
A≤Ḡ(x)≤B

(U(x)− L(x))

)
(1.44)

and, obviously, if Ḡ(x) ∈ [A,B] then ḠA,B(x) = Ḡ(x) and |G(x)− ḠA,B(x)| ≤ 1
2
(U(x)−

L(x)), which implies that

max
A≤Ḡ(x)≤B

|G(x)− ḠA,B(t)| ≤ 1
2

max
A≤Ḡ(x)≤B

(U(x)− L(x)). (1.45)

Now combining (1.43), (1.44) and (1.45) we see that

‖G− ḠA,B‖ ≤ max

(
max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x)), 1
2

max
A≤Ḡ(x)≤B

(U(x)− L(x))

)
.
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Assume now that x0 is such that Ḡ(x0) ≥ B. Then ḠA,B(x0) = B and G(x0) − B ≤
|G(x0)− ḠA,B(x0)|. This implies maxḠ(x)≥B(G(x)−B) ≤ ‖G− ḠA,B‖.

Similarly, maxḠ(t)≤A(A−G(x)) ≤ ‖G− ḠA,B‖.

Finally, suppose x0 is such that Ḡ(x0) ∈ [A,B] and

U(x0)− L(x0) = max
Ḡ(x)∈[1,B]

(U(x)− L(x)) ≥ max

(
max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x))

)
.

• If U(x0) = L(x0) then

‖G−ḠA,B‖ = max

(
max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x)), 1
2

max
A≤Ḡ(x)≤B

(U(x)− L(x))

)
= 0.

• If U(x0) > L(x0) then we set x+ = inf{y ∈ [x0, 1] : G(y) = U(x0)}. Then U(y) =
U(x0) for y ∈ [x0, x+] and

G(x+) = U(x+) = U(x0).

Set x+ = sup{y ∈ [0, x0] : G(y) = L(x0)}. We have L(y) = L(x0) = G(x−) for y ∈
[x−, x0]. We claim that

L(y) = L(x0) for y ∈ [x0, x+]. (1.46)

To check (1.46) note that, if Ḡ(x0) > A and (1.46) fails then we could find y ∈ [x0, x+]
with L(y) < L(x0), Ḡ(y) ∈ (A,B] and U(y)− L(y) > U(x0)− L(x0), while if Ḡ(x0) = A
and (1.46) fails then G(y) < L(x0) for some y ∈ (x0, x+), Ḡ(y) < A and A − L(y) >
A− L(x0) = 1

2
(U(x0 − L(x0), against the assumption on x0.

Hence, from (1.46) we conclude that Ḡ(x+) = Ḡ(x0) ∈ [A,B] and |G(x+)−ḠA,B(x+)| =
1
2
(U(x0)− L(x0)), showing that 1

2
(U(x0)− L(x0)) ≤ ‖G− ḠA,B‖. Combining the last es-

timates we see that the first equality in (1.42) holds.

For the second identity we note that arguing as above we see that U(x0) − L(x0) =
G(x) − G(y) for some (y, x) ∈ T3 if Ḡ(x0) ∈ [A,B]. Assume, on the other hand, that
(y0, x0) ∈ T3 satisfies

1

2
(G(x0)−G(y0)) ≥ max

(
max
Ḡ(x)≥B

(G(x)−B), max
Ḡ(x)≤A

(A−G(x))

)
.

• We consider first the case 1
2
(G(y0) +G(x0)) ∈ (A,B).

We claim that U(x0) = G(x0) since, otherwise, there exists x′ > x0 such that 1
2
(G(y0)+

G(x′)) ∈ (A,B) and G(x′) > G(x0) and this would imply G(x′)−G(y0) > G(x0)−G(y0),
against the assumption.

Similarly, we see that G(y0) = L(x0).
Furthermore, L(x) = L(y0) for x ∈ [y0, x0]. If G(x0) < U(x0) then there exists x′ > x0

such that 1
2
(G(y0) + G(x′)) ∈ (A,B) and G(x′) > G(x0), but then G(x′) − G(y0) >

G(x0)−G(y0), contradicting maximality of (y0, x0). Similarly we see that G(y0) = L(y0)
and also that L(x) = L(y0) for x ∈ [y0, x0]. Hence, G(x0) − G(y0) = U(x0) − L(x0) and
Ḡ(x0) ∈ (A,B).
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• In the case 1
2
(G(y0) + G(x0)) = B we have that necessarily G(x0) ≥ B and, arguing

as above, we see that G(y0) = L(y) for all y ∈ [y0, x0]. This implies that Ḡ(x0) ≥ B and
1
2
(G(x0)−G(y0)) = G(x0)−B.
• Arguing similarly for the case 1

2
(G(y0) + G(x0)) = A we conclude that the second

equality in (1.42) holds. �

Remark 1.20. The sets of optimizers within T1, T2 and T3 in Lemma 1.19 play an im-
portant role in the next results. For convenience, we denote T1 = {x0 ∈ T1 : G(x0)−B =
‖G − ḠA,B‖}, T2 = {x0 ∈ T2 : A − G(x0) = ‖G − ḠA,B‖} and T3 = {(y0, x0) ∈ T3 :
1
2
(G(x0) − G(y0)) = ‖G − ḠA,B‖}. A look at the proof of Lemma 1.19 shows that if
x0 ∈ T1 then G has a local maximum at x0 and a local minimum if x0 ∈ T2. Also, if
(y0, x0) ∈ T3 then G has a local maximum at x0 and a local minimum at y0.

Our next result addresses the directional differentiability of the functional G→ ‖G−
ḠA,B‖ that appeared in the last theorem. This kind of result typically allows to obtain
efficiency and asymptotic distributional behaviour of functionals in the statistical setting
(see e.g. [Cárcamo et al., 2019]).

Theorem 1.21. Assume G, J : [0, 1] → R are continuous bounded functions and rn > 0
is a sequence of real numbers such that rn → ∞. Define Gn = G + J

rn
and consider

Ḡ, ḠA,B as in Theorem 1.19 and ḠA,B,n built in the same way as GA,B but from Gn.
Assume further that T1, T2 and T3 are as in Remark 1.20 and that there is no x ∈ T1 with
Ḡ(x) = B, no x ∈ T2 with Ḡ(x) = A and no (y, x) ∈ T3 with 1

2
(G(x) + G(y)) ∈ {A,B}.

Then

rn(‖Gn−ḠA,B,n‖−‖G−ḠA,B‖)→ max

(
max
x∈T1

J(x),max
t∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)
.

Proof. We use the notation U,L from Theorem 1.19 and write Un, Ln, Ḡn, Tn,i for the
corresponding objects coming from Gn. Observe that ‖Un − U‖ ≤ ‖J‖/rn → 0 and,
similarly, ‖Ḡn − Ḡ‖ → 0. Assume that x ∈ T1. By assumption and the last convergence
we have that Ḡn(x) > B for large enough n and, therefore, ‖Gn− ḠA,B,n‖ ≥ (Gn(t)−B).
But this implies

rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) ≥ rn((Gn(x)−B)− (G(x)−B)) = J(x).

Arguing similarly for T2 and T3 we conclude that

lim inf rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) (1.47)

≥ max

(
max
x∈T1

J(x),max
x∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)
.

For the upper bound assume xn ∈ Tn,1 (that is, xn ∈ Tn,1 such that Gn(xn) − B =
‖Gn − ḠA,B,n‖). By compactness, taking subsequences if necessary, we can assume that
xn → x0 for some x0 ∈ [0, 1] with Ḡ(x0) ≥ B and G(x0) − B = ‖G − ḠA,B‖. But this
means that x0 ∈ T1. Hence, by assumption G(x0) > B and, consequently, G(xn) > B for
large enough n. In this case ‖G− ḠA,B‖ ≥ (G(xn)−B), which implies that

rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) ≤ rn((Gn(xn)−B)− (G(xn)−B)) = J(xn)→ J(x0).
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With the same argument applied to T2 and T3 we conclude that

lim sup rn(‖Gn − ḠA,B,n‖ − ‖G− ḠA,B‖) (1.48)

≤ max

(
max
x∈T1

J(x),max
x∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)
and complete the proof. �

Specializing the last results for G(x) = f(x) − Lx, where f is non-decreasing, L ≥
1 a constant, and A = 1 − L,B = 0, we can obtain a first result on the directional
differentiability of the functional f → ‖f − f̃L‖ considered in Section 1.7.2. Note that
now, recovering the notation in that section, the relevant sets are T1, T2 and T3 as defined
in Theorem 1.18, and T1 = {x0 ∈ T1 : f(x0)− Lx0 = ‖f − f̃L‖}, T2 = {x0 ∈ T2 : 1− L+
Lx0−f(x0) = ‖f−f̃L‖} and T3 = {(y0, x0) ∈ T3 : 1

2
(f(x0)−f(y0)−L(x0−y0)) = ‖f−f̃L‖}.

Theorem 1.21 translates then to the following immediate corollary.

Corollary 1.22 (Directional differentiability.). Let f, fn : [0, 1] → R be non-decreasing
bounded functions, rn > 0 a sequence of real numbers such that rn →∞ and rn(fn−f)→
J point-wise, where J : [0, 1]→ R is a continuous bounded function. Assume further that
f is continuous, that T1, T2 and T3 are as above and that there is no x ∈ T1 with γL(x) = 0,
no x ∈ T2 with γL(x) = 1−L and no (y, x) ∈ T3 with 1

2
(f(x)+f(y)−L(x+y)) ∈ {1−L, 0}.

Let f̃n,L, f̃L respectively denote the best L∞-approximations to fn and f by Lipschitz-
continuous functions h : [0, 1] → R with ‖h‖Lip ≤ L and verifying h(0) = 0, h(1) = 1, as
in Theorem 1.17. Then

rn(‖fn − f̃L,n‖ − ‖f − f̃L‖)→ max

(
max
x∈T1

J(x),max
x∈T2

(−J(x)),
1

2
max

(y,x)∈T3

(J(x)− J(y))

)
.

Proof of Theorem 1.9. As in Theorem 1.4 for Γ, we write G(t) = H−1(t) − t
1−α ,

Gn(t) = H−1
n (t) − t

1−α , keep the notation for h̃α and write h̃α,n for the corresponding
object defined from Gn. With this notation we will show weak convergence of

An =
√
n
(
‖h̃α,n −Gn‖ − ‖h̃α −G‖

)
to complete the proof. With this goal we consider the quantile process

Qn(t) =
√
n(H−1

n (t)−H−1(t)), 0 ≤ t ≤ 1.

Assumption (1.20) allows us to apply Theorem 18.1.1, p. 640 and Example 18.1.2, p.641,
in [Shorack and Wellner, 1986] to conclude that we can choose a version of Qn and a
Brownian brigde, B, such that if w = (H−1)′ and B̃ = wB then

‖Qn − B̃‖ → 0 (1.49)

in probability. If (1.21), instead of (1.20), holds then we can still find versions of Qn and
B̃ such that maxε≤t≤1−ε |Qn(t) − B̃(t)| → 0 in probability. It is easy to see that (1.21)
implies that

‖h̃α −G‖ = max
ε≤t≤1−ε

|h̃α(t)−G(t)|
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and also that, in a probability one set, eventually

‖h̃α,n −Gn‖ = max
ε≤t≤1−ε

|h̃α,n(t)−Gn(t)|.

From this point we assume that (1.20) (hence, also (1.49)) holds. Our last comments,
however, show that our proof can be trivially adapted to cover the case when (1.21) holds.
We omit further details.

Next, we note that w is a continuous function and, as a consequence, B̃ has, with
probability one, continuous trajectories. We note that Gn(t) = G(t)+ Qn(t)√

n
and introduce

Ḡn(t) = G(t) + B̃(t)√
n

and the related functions Ūn, L̄n and h̄α,n related to Ḡn as Un, Ln

and h̃α,n are related to Gn. We consider

Cn =
√
n
(
‖h̄α,n − Ḡn‖ − ‖h̃α −G‖

)
and observe that |An − Cn| ≤

√
n‖h̃α,n − h̄α,n‖ +

√
n‖Gn − Ḡn‖ = oP (1) by (1.49) (we

are using that
√
n‖Ūn − Un‖ ≤ ‖Qn − B̃‖, with a similar bound for the lower envelopes).

Consequently, if suffices to prove convergence of Cn. Noticing that h̃α = Ḡ −α
1−α ,0

and

h̃α,n = Ḡ −α
1−α ,0,n

, from Theorem 1.21, we conclude that

Cn →
w

max
(

max
t∈T1

B̃(t),max
t∈T2

(−B̃(t)), max
(s,t)∈T3

1
2
(B̃(t)− B̃(s))

)
.

The conclusion follows upon noting that (see Remark 1.20) in the sets Ti, the function G
has local maxima: if t0 ∈ T1 then G has a local maximum at t0 and a local minimum if
t0 ∈ T2, also, if (s0, t0) ∈ T3 then G has a local maximum at t0 and a local minimum at
s0. Therefore, G′(t0) = 0 and G′(s0) = 0 for every t0 ∈ T1, T2 or (s0, t0) ∈ T3 and this
entails w(t0) = w(s0) = 1

1−α for these points. �
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2
Optimal-transport approach to flow
cytometry

In this chapter we show how to apply the optimal-transport techniques mentioned in the
Introduction to the field of Flow Cytometry. The theoretical motivation comes from the
good properties of the Wasserstein barycenters as consensus representatives. The practical
motivation is due to a collaboration with the clinical research team, lead by Dr. Alberto
Orfao, of the Cancer Research Center in Salamanca. We are extremely grateful for their
insights and help, as well as for all the data they have kindly allowed us to use in this
work.

2.1 Introduction

We begin with a concise description of what Flow Cytometry (FC) is as stated in [Goetz
et al., 2018]. “FC is the measure or quantification of cells suspended in a fluid phase.
The cells are labeled with fluorochrome-coupled antibodies specific for a cellular marker
of interest. The fluidics chamber ensures that cells pass single file through a laser beam,
which excites the fluorochrome. The emitted light is picked up by a detector (photomul-
tiplier [PMT]), and the signal is translated electronically to a computer for analysis”. A
schematic depiction of this process can be seen in Figure 2.1.

The same authors give the following commentary on the practical interest of FC. “Be-
cause of its single-cell nature, flow cytometry allows for the analysis of protein expression
on a per cell basis, making it quantifiable with results expressed as a count or number
of events. The technique allows researchers to evaluate and quantitate specific cell types
within a heterogeneous population enabling the analysis of small numbers of cells or rare
subsets in a mixed population. It also allows for multiprotein analysis within a single cell
when using multiple antibodies conjugated to different fluorescent dyes. This makes flow
cytometry a prevalent technique that today is used in nearly every aspect of cell biology
research and clinical patient cell analysis” (our emphasis).

A main component for analysis in FC is gating, the assignment of individual cells (data
records) into discrete cell types. Manual gating, i.e., an expert assigning cell types (labels)
to individual cells, using a set of rules on one or two-dimensional projections, has been

65
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Figure 2.1: Progression from antibody stained cells to flow cytometry data plots. Taken
from [Goetz et al., 2018].

 

the prevalent option (see Figure 2.2 for an example). However, this manual approach
has some shortcomings. First, it is subjective since it depends on the expertise of the
user, on the sequence of markers (measured variables) used to do the projections and on
the locations of the gates on those projections. Second, it can be very time consuming
because it is ‘roughly quadratic in the number of markers’ (see [Li et al., 2017]). Third,
the recent increase in the number of markers and number of cells per cytometry makes
human error a relevant factor.

In order to avoid some of the difficulties related to manual gating there have been
different approaches to automated gating. Some are unsupervised, therefore, there is no
use of previously gated cytometries. Hence, gating is done through a clustering procedure.
We present a small selection of such unsupervised automated gating procedures. FLOCK
[Qian et al., 2010], which performs grid-based density estimation (with merging) and
then k-means; FLAME [Pyne et al., 2009], which does skew t model based clustering and
flowClust [Lo et al., 2008,Lo et al., 2009], which performs robust based clustering through
t mixture models with Box-Cox transformation. Other related clustering procedures are:
flowPeaks [Ge and Sealfon, 2012] does Gaussian mixture model based clustering (with
modified covariances) and merging and flowMeans [Aghaeepour et al., 2011] performs
k-means with initialization via mode detection through kernel density based estimation.
More information about state of the art methods can be found in [Aghaeepour et al.,
2013,Saeys et al., 2016].

Accuracy of cell type assignation can be improved using supervised machine learning
where historical information is contained in previously gated cytometries (manually or
otherwise). Recently, some methods have been produced addressing this problem. In [Li
et al., 2017], DeepCyTOF was introduced, essentially combining de-noising, deep-learning
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Figure 2.2: An example of manual gating. Taken from [Saeys et al., 2016].

 

algorithms and domain adaptation. In [Lux et al., 2018], flowLearn was introduced, com-
bining density features of the data, manually selected gating thresholds and derivative-
based density alignments. We stress that other more classical approaches for supervised
learning are also available. For example, random forest algorithms, support vector ma-
chines or quadratic discriminant analysis can be used when learning from some previously
gated cytometry. Supervised machine learning is a well documented topic and for more
detailed explanations we refer to [Alpaydin, 2014].

There are two main set-ups for using supervised learning in the FC context. First, the
classical one, where there is an available data base of historical information. This means
that a collection of gated flow cytometries is available and we want to use this information
in order to gate a new cytometry. Second, an alternative one, where we have a collection
of ungated cytometries and it is required to gate manually a minimal amount of them and
use these gated cytometries to classify the rest of the cytometries in the collection. In
both set-ups there is a fundamental problem intrinsic to FC. That is, flow cytometry data
has considerable technical and biological variability, as we mentioned in the Introduction.

In this chapter we provide novel methods for grouping (clustering) gated cytometries.
By clustering a set of cytometries we are producing groups (clusters) of cytometries that
have lower variability than the whole collection. This in turn allows to improve greatly
the performance of any supervised learning procedure. We provide evidence of this below.
Once we have a partition (clustering) of a collection of cytometries, we provide several
methods for obtaining an artificial cytometry (prototype, template) that represents in
some optimal way the cytometries in each respective group. These prototypes can be
used, among other things, for matching populations between different cytometries as
suggested in [Azad et al., 2012,Hsiao et al., 2016]. Even more, a procedure able to group
similar cytometries could help to detect individuals with a common particular condition,
i.e, a particular sickness (see Section 2.3.3).

optimalFlowTemplates is our procedure for clustering cytometries and obtaining tem-
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plates. It is based on recent developments in the field of optimal transport such as a
similarity distance between clusterings, recall (11), introduced in [Coen et al., 2010], and
a barycenter (Frechet mean, see [Gouic and Loubes, 2017, Boissard et al., 2015]) and k-
barycenters (see [Álvarez Esteban et al., 2016, del Barrio et al., 2019a, Álvarez Esteban
et al., 2018]) of probability distributions, recall (14).

We introduce optimalFlowClassification, a supervised classification tool for the case
when a database of gated cytometries is available. The procedure uses the prototypes
obtained by optimalFlowTemplates on the database. These are used to initialise tclust,
a robust extension of k-means that allows for non-spherical shapes, for gating a new
cytometry (see [Garćıa-Escudero et al., 2008], not to be confused with TCLUST, [Dost
et al., 2011]). By using a similarity distance between the best clustering obtained by tclust
and the artificial cytometries provided by optimalFlowTemplates we can assign the new
cytometry to the most similar template (and the respective group of cytometries). We
provide several options of how to assign cell types to the new cytometry using the most
relevant information, represented by the assigned template and the respective cluster of
cytometries.

2.2 Methods

We start with the mathematical treatment of flow cytometry data. We can view a gated
flow cytometry, say X i, as a collection of ni multidimensional points with their associated
labels (cell types or group labels) forming a set Li = {Lik}

ki
k=1 of ki different labels.

Hence, a gated cytometry can be described as X i = {(X i
j, Y

i
j )}nij=1 where X i

j ∈ Rd and
Y i
j ∈ Li. Alternatively we could describe it as a partition (clustering) of all X i

j into

groups (clusters) formed by points sharing the same labels. That is, Ci = {(Cik, pik)}
ki
k=1

where Cik = {X i
j : 1 ≤ j ≤ ni, Y

i
j = Lik} is a cluster and pik is a weight associated with

label Lik. A third useful description is to view a gated cytometry as a clustering but
coming from a mixture of location-scatter multivariate distributions. With some abuse of
notation Ci = {(mi

k, S
i
k, p

i
k)}

ki
k=1 where mi

k, S
i
k are the multivariate mean and covariance

of the points in cluster Cik.
We provide an example of the different descriptions in Figure 2.3. We have five

cell types, hence L1 = {Basophils (black), CD4 + CD8 − (red), Eosinophils (green),
Monocytes (blue), Neutrophils (Cyan)}. We have a three dimensional projection on to
three different markers. We can interpret the image on the left as a plot of the coordinates
of every cell with its label, but also as the plot of the group of cells labelled as Basophils
(black group), and so on... On the other hand, the plot on the right is a representation of
the ellipsoid containing 95% of the probability when we see each cluster as a multicvariate
normal distribution with mean and covariance corresponding to the empirical mean and
covariance. As we see from the plots, all of the above descriptions seem to represent well
the data at hand and therefore all of them could be useful for different applications.

2.2.1 optimalFlowTemplates

Due to the the high variability in flow cytometry data we should expect that learning
form different elements in the database should produce significantly different results on
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Figure 2.3: Five cell types viewed in a three dimensional projection: left as points with
labels and right as 95% ellipsoids of multivariate normal distributions.

the classification of a new cytometry XT = {XT
1 , . . . , X

T
nT
} ⊂ Rd. Our approach is to

search for clusters of existing cytometries in the database. In this way we pursuit for a
notable reduction of variability thus allowing a good representation of the cytometries in
each of these groups through prototypic cytometries. Therefore, using a prototype of a
group for learning should produce a similar result for classifying XT to the one obtained
using any other cytometry in the same group.

Clustering cytometries

Since gated cytometries can be viewed as partitions (clusterings) and we want to clusterize
cytometries in order to reduce variability, we want to do clustering of clusterings, also
known as metaclustering. The methodology we will develop in this chapter is to use some
meaningful distance between partitions and then apply hierarchical clustering methods.
As a distance between clusterings we propose to use the similarity distance introduced
in [Coen et al., 2010] and that we have writen down in (11). We use hierarchical clustering
since it does not rely on a particular distance and therefore it is well suited for handling
the similarity distance. This is not the case in many other usual clustering procedures.

Recall that, dOT , defined in (9), measures the cost of the optimal way of transforming
one partition into the other. On the other hand, the naive transport distance, dNT , defined
in (10), measures the cost of naively transforming one partition into the other.

In order to completely define dS, we need to specify a distance between clusters. Our
choice is to use the well known Wasserstein distance (see Introduction) so

d(Cik, C
j
l ) =W2(N(mi

k, S
i
k), N(mj

l , S
j
l )). (2.1)

In essence, we are treating clusters as multivariate normal distributions, N(mi
k, S

i
k) and



70 CHAPTER 2. OPTIMAL-TRANSPORT APPROACH TO FLOW CYTOMETRY

Algorithm 2 optimalFlowTemplates

Input: X1, . . . , XN , equal.weights

1: for i ≤ N do
2: while k ≤ ki and |Cik| enough for covariance estimation do
3: mi

k ← mean Cik; Sik ← cov Cik
4: if equal.weights = True then
5: pik ← 1/ki
6: else
7: pik ← |Cik|/

∑ki
k=1 |Cik|

8: end if
9: Cik ← (mi

k, S
i
k, p

i
k)

10: end while
11: end for
12: for i ≤ N do
13: for i < j ≤ N do
14: Sij ← dS(Ci, Cj)
15: end for
16: end for
17: T← hierarchical clustering with S
18: for i ≤ |T| do
19: T i ← template obtention on cytometries in Ti
20: end for
21: T = {T i, . . . , T |T|}
Output: T, T
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N(mj
l , S

j
l ), with means and covariances calculated from the clusters. Our choice of the

Wasserstein distance is based on the desire to account for the spatial shapes of the clusters
and to obtain templates for the groups of cytometries. We stress that all results in this
chapter are also valid when understanding clusters as members of a location-scatter family.

Another interesting measure for cluster difference is, Wγ(Cik, C
j
l ), the (entropy) reg-

ularized Wasserstein distance, where clusters are understood as empirical distributions.
We recall that the entropy regularized Wasserstein distance is strictly convex and there
are efficient solutions based on the Sinkhorn algorithm (see [Cuturi and Doucet, 2014]).
For a fixed γ > 0 the regularized Wasserstein distance is defined as

Wγ(µ, ν) =
n∑
i=1

m∑
j=1

w∗ij‖xi − yj‖2 + γ

n∑
i=1

m∑
j=1

w∗ij logw∗ij,

where (w∗ij) are the solutions of the optimal transport linear program

minimize
∑n

i=1

∑m
j=1wij‖xi − yj‖2 + γ

∑m
i=1

∑m
j=1wij logwij

subject to wij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m∑m
j=1wij = pi, 1 ≤ i ≤ n∑n
i=1wij = qj, 1 ≤ j ≤ m∑n
i=1

∑m
j=1wij = 1.

However, any other dissimilarity measure can be used, for example the symmetric
Kullback-Leibler was used in [Azad et al., 2012] where

dKL(Cik, C
j
l ) =

1

2

(
KL(N(mi

k, S
i
k)‖N(mj

l , S
j
l )) +KL(N(mj

l , S
j
l )‖N(mi

k, S
i
k))
)

(2.2)

or Friedman-Rafsky test statistic was used in [Hsiao et al., 2016], in the context of cluster
comparison in flow cytometry.

When we see clusters as collections of points, and we have different clusterings of the
same data, the Adjusted Rand Index, the Jaccard distance or other similar can be used,
at the expense of loosing spatial information.

The clustering of cytometries is presented in lines 1-17 in Algorithm 2, resulting in a
partition, T = {T1, . . . ,T|T|}, of the input cytometries. Lines 12-16 are concerned with the
obtention of a distances matrix S that in line 17 is used to perform hierarchical clustering.
Classical agglomerative algorithms can be used, but also density based algorithms as
DBSCAN and HDBSCAN.

Template obtention through consensus clustering

Once we have a partition, T, of the collection of cytometries {Cj}Nj=1, we want to obtain a
prototype cytometry, T i, for every group of cytometries, i, in the partition T (lines 18-21 in
Algorithm 2). To address this goal we resort to k-barycenters using Wasserstein distance,
which provide a suitable tool for consensus on probability distributions (see Introduction).
We propose three different methods on how to obtain a template cytometry from a group
of cytometries, that is, on how to do consensus (ensemble) clustering on flow cytometries.

The intuition behind pooling (Algorithm 3), is to take advantage of the fact that
we have groups of similar cytometries and that cell types are known. A prototype of a
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Algorithm 3 Pooling. Only possible when {Li}Ni=1 ⊂ L = {L1, . . . , LK}. This is the case
for a set of gated cytometries with identified cell populations.

Input: C1, . . . , CN , T

1: for j ≤ K do
2: Cij ← set of all clusters associated with label Lj for the cytometries in group Ti.
3: if |Cij| > 0 then
4: T ij ← take 1-barycenter of the clusters in Cij viewed as multivariate normals.
5: else
6: T ij is empty
7: end if
8: end for
9: T i ← {T i1 , . . . , T iK}

Output: T i

Figure 2.4: An application of Algorithm 3-Pooling.
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Algorithm 4 Density based hierarchical clustering

Input: C1, . . . , CN , T

1: Ci ← set formed by every cluster of every cytometry in group Ti.
2: for j, k ≤ |Ci| do
3: Wjk ←W2(N(mi

j, S
i
j), N(mi

k, S
i
k))

4: end for
5: T ← partition using density based hierarchical clustering on W .
6: for j ≤ |T | do
7: T ij ← barycenter of elements with label j in T .
8: end for
9: T i ← {T i1 , . . . , T i|T |}

Output: T i

Figure 2.5: Application of Algorithm 4 - Density based.

Algorithm 5 k-barycenter

Input: C1, . . . , CN , T, K

1: Ci ← set formed by every cluster of every cytometry in group Ti.
2: T i ← K-barycenter of the elements in Ci.

Output: T i
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Figure 2.6: Application of Algorithm 5 - 4-barycenter.

cell type is the (1-)barycenter, a consensus representation, of the clusters (multivariate
distributions) representing the same cell type in the cytometries that are members of the
same group in T. A prototype cytometry is the collection of prototypes of each cell type.
This can be seen in Figure 2.4. In the left hand side we have 5 different cytometries
where each has 4 different cell types, hence L = {Monocytes (black), CD4 + CD8 −
(red), Mature SIg Kappa (green), TCRgd− (blue)}. Taking advantage of the fact that
cell types are known we take all the black ellipsoids of the left plot, representing the
different normal distributions, and obtain the black ellipsoid, the barycenter of the group
of normal distributions, as a consensus element for Monocytes. Doing this for every cell
type gives us the prototype cytometry represented on the right of Figure 2.4.

However, our templates could be obtained even when we have gated cytometries but
without cell type identification between them. This could be the case when unsupervised
gating is used to obtain a database. Density based hierarchical clustering (Algorithm
4) and k-barycenter (Algorithm 5) are based on the idea that clusters that are close in
Wasserstein distance should be understood as representing the same cell type, although
we may not know which cell type. When using k-barycenters we have to specify the
number of cell types, K, that we want for the artificial cytometry. However, when using
density based hierarchical clustering as HDBSCAN (see [Campello et al., 2013]) or DB-
SCAN (see [Ester et al., 1996]) the selection of the number of cell types for the prototype
cytometry is automatic. Recall that both k-barycenters, through trimming, and density
based hierarchical clustering are robust clustering procedures.

In Figure 2.5 and 2.6 we have a representation of how Algorithm 4 and 5 work. Since
we do not have cell type information for the 5 gated cytometries, we have the plot that
can be seen on the left of Figure 2.5 and 2.6. However, the absence of this information can
be mitigated using the spatial information, which clearly shows a group structure between
the ellipsoids. We use density based hierarchical clustering and k-barycenters respectively
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to try to capture this spatial information. As a result we obtain the template cytometries
on the right of Figure 2.5 and 2.6. Clearly we see that the templates represent well the
real cell types behind the cytometries (compare with Figure 2.4), although we still do not
know the cell types corresponding to each ellipsoid. This could be achieved using expert
information or matching populations.

2.2.2 optimalFlowClassification

Now, our goal is to do supervised classification, i.e., assign cell types to a new cytometry
XT , using the information given in a database of gated cytometries {Ci}Ni=1. The differ-
ent sources of variability, mainly those of technical nature and those which are properly
due to different cohorts present in the database, advise to search for different cytometric
structures. Hence, we should assign XT to the group of cytometries that is more similar
to it and then use supervised techniques. Indeed, this is the purpose of optimalFlowClas-
sification, as shown in Algorithm 6. As an input we apply optimalFlowTemplates to the
database {Ci}Ni=1 in order to obtain the partition T and the templates T .

Algorithm 6 optimalFlowClassification

Input: XT = {XT
1 , . . . , X

T
nT
}, T,T

1: for i ≤ |T| do
2: Ci,u ← tclust on XT initialized with T i
3: end for
4: Cu ← arg max of tclust objective function over all Ci,u

5: for i ≤ |T| do
6: Si ← dS(Cu, T i)
7: end for
8: T ∗ ← T arg minSi ; T∗ ← Targ minSi

9: CT ← labelling of XT using transfer labelling or supervised classification based on T ∗
or T∗.

Output: CT

Lines 1-4 in Algorithm 6 are dedicated to finding an unsupervised partition of the new
cytometry XT using as initialization for tclust the prototypes of the database. Initializing
with the database entries attempts to use optimally the available information. Hence, if
XT is similar to some of the cytometries in the database, appropriate initialization should
be advantageous. However, some other suitable unsupervised initializations can be used,
as the ones proposed in FLOCK, flowPeaks or flowMeans. We need to cluster XT in order
to compare it with the template cytometries.

Recall that tclust, introduced in [Garćıa-Escudero et al., 2008], is a robust model based
clustering procedure that allows for non spherical clusters. Nontheless, it is possible to use
any other unsupervised procedure that allows an initialization with a clustering defined
by probability distributions. For example, this is the case for the popular mclust [Fraley
and Raftery, 2002,Scrucca et al., 2016], a finite Gaussian mixture model based clustering
solved by an EM-algorithm.

tclust searches for a partition {C0, . . . , Ck} of X = {X1, . . . , Xn}, with |C0| = dnαe, vec-
tors mj, positive definite matrices Sj and weights pj ∈ [0, 1] that approximately maximize
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the pseudo-likelihood
k∑
j=1

∑
i∈Cj

log (pjϕ(Xi;mj, Sj)) , (2.3)

under restrictions over the scatter matrices Sj. By ϕ(·;mj, Sj) we denote the density
function of the multivariate normal N(mj, Sj). C0 is the cluster of trimmed observations,
where the trimming level is α.

The details of the algorithm can be found in [Fritz et al., 2013]. For us it is relevant to
recall only the initialization step, i.e, to provide an initial θ0 = (p0

1, . . . , p
0
k,m

0
1, . . . ,m

0
k, S

0
1 ,

. . . , S0
k). Hence, to initialize tclust we only need a set of weights with corresponding means

and covariances.
We favour the use of tclust over k-means since it allows for non-spherical clusters and

for trimming, making partitions more robust to outliers.
In lines 5-8 we look to assign XT , using the clustering Cu, produced in the previous

step, to the template that is closest in similarity distance to Cu. With this we hope to
use only the most relevant information of the database, summarized in T ∗ and T∗.

The last step in algorithm 6, line 9, is concerned with assigning cell types to XT . To
do this we have several options. We can try to relabel Cu in an optimal way using T ∗
or T∗, i.e, do label transfer. Alternatively, we can use T ∗ to do Quadratic Discriminant
Analysis (QDA) or we can find the most similar partition in similarity distance (11) from
T∗ to Cu and use it to do QDA or random forest classification. In short, we can do label
transfer or supervised classification.

For supervised classification we use standard tools, random forest and QDA, however,
other methods can be used in a straightforward fashion. We remark that when using QDA
and T ∗ we are using non-linear multidimensional gating regions obtained from T ∗ in order
to classify XT . This can be taught as an extension of the method presented in [Lux et al.,
2018] where only linear one-dimensional regions are used. Another interesting fact is that
the use of dS allows us to select the most similar real cytometry to Cu, hence supervised
tools should be more effective.

The problem of relabelling a clustering Cj with respect to another clustering Ci is
usually stated as a weighted bipartite matching problem, where weights are related to
the similarity between clusters in the two partitions. This problem can be solved by the
hungarian method [Kuhn, 1995]. Generalized edge cover is another possible solution to
relabelling (see [Azad et al., 2012]).

Additionally we introduce an approach to obtain a fuzzy relabelling based on solving
the optimal transport linear program associated to (9). The solution, (w∗kl), is the base
for this fuzzy relabelling. We define the score of cluster l in Cj to come from cluster k in
Ci as slk = w∗kl/p

j
l . In words, slk is the proportion of probability coming from cluster k,

with respect to the probability in cluster l, that arrives at cluster l. Clearly, 0 ≤ slk ≤ 1,
and the closer to 1 the score is the more evidence we have that cluster k and l represent
the same cluster. A fuzzy relabelling for cluster l in Cj is the collection of all the scores
sl = {sl1, . . . , sl|Ci|}. A variation of the previous score is s̃lk = slk ∗ w∗kl/pik, where we
are weighting by the proportion of cluster k that goes to cluster l, with respect to the
probability contained in cluster k. In this way we down-weight the effect of a small
proportion of a big cluster with respect to a big proportion of a small cluster arriving to
l. From these fuzzy relabellings a hard relabelling can be easily obtained.
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Again, a suitable distance between clusters can be the Wasserstein distance as in (2.1).
However, another possibility is to use

d(Cik, C
j
l ) =

1

|Cik||C
j
l |

∑
x∈Cik

∑
y∈Cjl

‖x− y‖2. (2.4)

(2.1) is computationally very efficient but does not allow to label very small clusters in
Cj.(2.4) does allow labelling small clusters in Cj, at the price of using sub-sampling to
compare bigger clusters (for example more than 10000 points).

2.3 Results

In this section we present several experiments and comparisons of our methods with other
state of the art procedures on real databases.

2.3.1 Data

We will work with two databases of gated flow cytometries obtained following the Euroflow
protocols, kindly provided by Centro de Investigación del Cancer (CIC) in Salamanca,
Spain.

The first database is formed by 21 gated flow cytometries, {(X i, Y i)}21
i=1 equivalently

viewed as partitions C = {Ci}21
i=1. All 21 cytometries have been obtained in a BD FAC-

SCanto flow cytometer but in three different centres. The size of the cytometry datasets
vary from 50,000 cells to 254,450 cells. The samples are from adult male and female
individuals, with a varied range of ages, that have been diagnosed as healthy. More
information about the data set can be found in Table 2.2.

Clearly, there is biological variability, since there are different individuals with different
ages and other different characteristics. Moreover, we have technical variability since we
have different centres, different dates of measurement and different incubation times.
However, we remark that all individuals belong to the same class of healthy people.

The second database is formed by 20 gated flow cytometries but now belonging to 10
healthy and 10 sick individuals. We refer to this new collection of gated cytometries by
DB2 = {C1,s, C2,s, C3,s, C4,s, C5,s, C6,s, C7,s, C8,s, C9,h, C10,h, C11,h, C12,h, C13,h, C14,s, C15,s, C16,h,
C17,h, C18,h, C19,h, C20,h}, where the superindex smeans sick and superindex hmeans healthy.
The size of the cytometry datasets vary from 50,000 cells to 300,000 cells.

2.3.2 Measures of performance

We need appropriate measures of the performance of the different automated gating proce-
dures that appear in this chapter. We recall that we use both unsupervised and supervised
methods. In this set-up an appropriate tool is the F-measure statistic which has been
used in [Aghaeepour et al., 2013,Aghaeepour et al., 2011,Ge and Sealfon, 2012,Li et al.,
2017]. With our notation we have

F (Ci, Cj) =
∑

k=1,...,|Ci|

|Cik|
M

max
l=1,...,|Cj |

F (Cik, C
j
l ),
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F (Cik, C
j
l ) = 2

R(Cik, C
j
l )P (Cik, C

j
l )

R(Cik, C
j
l ) + P (Cik, C

j
l )
,

R(Cik, C
j
l ) =

|Cik ∩ C
j
l |

|Cik|
and P (Cik, C

j
l ) =

|Cik ∩ C
j
l |

|Cjl |

withM =
∑

k=1,...,|Ci| |Cik| =
∑

l=1,...,|Cj | |C
j
l |. We make the conventionR(∅, Cjl ) = P (Cik, ∅) =

1 and R(Cik, ∅) = P (∅, Cjl ) = 0. Another appealing measure is the median F-measure used
in [Lux et al., 2018] specifically for supervised learning. The formal definition is

F̃ (Ci, Cj) = median{{F (Cik, C
j
k∗) : k such that Lik = Ljk∗ ∈ L

i∩Lj}, {0}×|Li4Lk|} (2.5)

where Ci is the considered ground truth, in our case a manual gating, and Cj is another
classification of the same data.

To measure how similar for learning are two gated cytometries, i.e., how well we do
when learning from one to classify the other and how well we do when learning with the
later to classify the former we introduce the following distance.

dlearning(X
i, Xj) = 1− F (Cj, C̃j) + F (Ci, C̃i)

2

where C̃j is the partition resulting from the classification of the data in Xj using a random
forest learned in X i. C̃i is the partition resulting from the classification of the data in
X i using a random forest learned in Xj. This measure gives us a notion of how close
in terms of being good predictors for one another are two cytometries. We have that
0 ≤ dlearning ≤ 1, and two cytometries are interchangeable for learning if dlearning is close
to 0. A variation of this measure is

d̃learning(X
i, Xj) = 1− F̃ (Cj, C̃j) + F̃ (Ci, C̃i)

2
.

2.3.3 Clustering and Template obtention

Suppose that we have a database, which is a subset of 15 cytometries, given by DB =
{C2, C3, C4, C5, C7, C8, C9, C12, C13, C14, C15, C16, C17, C19, C21} ⊂ C. We want to compare dif-
ferent methods to cluster the database DB. We use for a ground truth hierarchical
clusterings obtained using dlearning and d̃learning. For a state of the art comparison, we
use flowMatch, described in [Azad et al., 2012]. Recall that flowMatch is based in a
Generalized Edge Cover procedure, a generalization of bipartite matching, where the cost
between partitions is given bye

d(Ci, Cj) =
1

kikj

ki∑
k=1

kj∑
l=1

dKL(Cik, C
j
l ),

where dKL is as in (2.2), or

d(Ci, Cj) =
1

kikj

ki∑
k=1

kj∑
l=1

dMahalanobis(N(mi
k, S

i
k), N(mj

l , S
j
l )),
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Figure 2.7: Hierarchical trees for the database DB. Top-left: result of optimalFlowTem-
plates. Top-right: result of flowMatch with Mahalanobis distance. Bottom-left: single
linkage with d̃learning. Bottom-right: single linkage with dlearning.

where dMahalanobis is the well known Mahalanobis distance between multivariate normals.

In Figure 2.7 we use single linkage hierarchical clustering with the distance matrices
obtained with dlearning (bottom-right) and d̃learning (bottom-left). We also use single link-
age with optimalFlowTemplates (top-left). In the case of flowMatch we use Mahalanobis
distance (top-right). In Figure 2.8 we change the clustering method to complete linkage
and in the case of flowMatch we use the symmetric Kullback-Leibler divergence.

At a first glance it is clear that the results form optimalFlowTemplates are much more
similar to the ground truth than those of flowMatch. This should be interpreted as the fact
that optimalFlowTemlates captures more accurately the similarity between cytometries
than flowMatch. Two additional facts should be stated: first, the similarity distance is
independent of parameters, something that is not the case for the generalized edge cover
distance used in flowMatch. Second, optimalFlowTemplates produces templates only at
one stage, once the number of clusters is determined, while flowMatch produces templates
at every stage of the hierarchical clustering procedure.

Our next goal is to see if our clustering of cytometries is sensitive enough to detect
differences between normal and sick individuals. For this we are going to use DB2. On
the top row of Figure 2.9 we see the results of using the manually gated database with
optimalFlowTemplates. Top-right we clearly see three different groups of cytometries, two
of them corresponding to sick individuals and the other one containing all the healthy
individuals. Therefore, it seems that our method has enough sensitivity to differentiate
healthy from sick individuals. On the middle row of Figure 2.9 we present the results
when using flowMatch. Clearly this method is not as sensitive as ours, since some of
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Figure 2.8: Hierarchical trees for the database DB. Top-left: result of optimalFlowTem-
plates. Top-right: result of flowMatch with symmetric Kulback-Leibler divergence.
Bottom-left: complete linkage with d̃learning. Bottom-right: complete linkage with
dlearning.
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Figure 2.9: Hierarchical trees for the database DB2. Top-left: result of optimalFlowTem-
plates with complete linkage. Top-right: result of optimalFlowTemplates with single link-
age. Middle-left: flowMatch with symmetric Kullback-Libler. Middle-right: flowMatch
with Mahalanobis. Bottom-left: result of optimalFlowTemplates with complete linkage
and unsupervised gating with flowMeans. Bottom-right: result of optimalFlowTemplates
with single linkage and unsupervised gating with flowMeans.
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DeepCyTOF DeepCyTOF 2 flowMeans tclust optFlowC
C1 0.9641 0.9857 0.9501 0.9504 0.9740
C2 0.9420 0.9585 0.8988
C5 0.8728 0.8720 0.8977
C6 0.9195 0.9335 0.9522
C7 0.8763 0.8062 0.9508
C10 0.8610 0.8141 0.9595
C11 0.8653 0.9170 0.9256
C14 0.9825 0.9295 0.9004
C17 0.6982 0.9816 0.8978
C18 0.6840 0.9797 0.9003 0.8716 0.9853
C20 0.6884 0.9760 0.9223 0.8661 0.9834
C21 0.6942 0.9699 0.9269

Table 2.1: Table of F-measure statistics. DeepCyTOF: results of deepCyTOF on S.
DeepCyTOF 2: results of deepCyTOF on S1 and S2. flowMeans: results of flowMeans.
tclust : results of optimalFlowTemplates initialized tclust on T S. optimalFlowC: results
ot optimalFlowClassification on T S.

the groups clearly contain healthy and sick individuals. Indeed, optimalFlowTemplates
also outperforms flowMatch in this case. In the bottom row of Figure 2.9, we offer
a slightly modified example. In this case the gating has been done in an unsupervised
fashion using flowMeans. It is remarkable, that even in this case, for example bottom-left,
optimalFlowTemplates is able to separate quite well sick from healthy individuals.

2.3.4 Gating and Classification

We will apply optimalFlowTemplates+optimalFlowClassification to the database DB in-
troduced in the previous section. We will use as a test set T S = {C1, C6, C10, C11, C18, C20} ⊂
C. For the cytometries in T S, we also perform an unsupervised gating given by flowMeans
and a semi unsupervised procedure given by tclust initialized with the templates obtained
by optimalFlowTemplates.

Results can be seen in columns 3-5 of Table 2.1. In Table 2.3 and 2.4 we have a
full description of the results of optimalFlowClassification. We see that tclust initialized
with optimalFlowTemplates is competitive with flowMeans, but more importantly, opti-
malFlowTemplates+optimalFlowClassification is superior in every of the test cytometries,
giving 5 form 6 F-measures higher than 0.95 and the other higher than 0.92. Clearly our
supervised procedure is working well and, as expected, is giving better performance than
state of the art unsupervised alternatives.

However, we also want to compare with a state of the art supervised procedure. In
this case we will use deepCyTOF, with some bug corrections and some adaptations to
our setting of the github version, implemented in Python with tensorflow 0.12 and keras
1.2.2. In order to use deepCyTOF we need cytometries with the same number and type
of cell types so we use a data set S = {C̃1, C̃2, C̃5, C̃7, C̃14, C̃17, C̃18, C̃20, C̃21}, where we have
eliminated one group from each cytometry in order to make them fulfil the mentioned
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Figure 2.10: Result of optimalFlowTemplates on the databse S after gating each cytom-
etry with flowMeans.

requirements. We recall that deepCyTOF only uses the supervised information of one of
the cytometries in S to classify all other members. We see the results of deepCyTOF,
with domain adaptation and without de-noising, since all entries are classified, in column
1 of Table 2.1. DeepCyTOF’s performance is rather poor, achieving worst F-measure
than flowMeans in 6 of the 9 cases and also for all applicable cases (cytometries 1,18,20)
than optimalFlowTemplates+optimalFlowClassification.

However, these poor results are due to the high variability of the cytometries that can
not be accommodated by the domain adaptation procedure of deepCyTOF. Hence if we
were able to reduce this variability, deepCyTOF should give better results. Indeed, if
we use flowMeans to gate the cytometries in S, and then we use optimalFlowTemplates,
we obtain the hierarchical tree presented in Figure 2.10. It suggest to split S into S1 =
{C̃1, C̃2, C̃14} and S2 = {C̃5, C̃7, C̃17, C̃18, C̃20, C̃21}. We recall that until now we have not
used supervised information. Applying deepCyTOF to S1 and S2 we obtain the results
in column 2 of Table 2.1. Now deepCyTOF performs better than flowMeans in 7 of the
9 cases, however it is better than optimalFlowTemplates+optimalFlowClassification only
for Cytometry 1, which is the one that deepCyTOF uses for learning in S1.



84 CHAPTER 2. OPTIMAL-TRANSPORT APPROACH TO FLOW CYTOMETRY

P
a
rt
ic
ip
a
n
t

F
in
a
l
d
ia
gn

o
si
s

T
y
pe

o
f
te
st
ed

sa
m
p
le

T
y
pe

o
f
co
a
gu

la
n
t
(p
re
se
rv
a
ti
o
n
)

S
ex

A
ge

(y
ea
rs
)

In
cu

ba
ti
o
n
pe
ri
od

T
y
pe

o
f
F
lo
w

C
y
to
m
et
er

C
en

tr
e

1
H

D
P

B
E

D
T

A
M

5
3

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

1
H

D
P

B
E

D
T

A
M

5
0

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

1
H

D
P

B
E

D
T

A
M

6
1

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
M

2
9

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
M

3
8

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
F

2
7

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
F

N
A

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
M

N
A

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
F

N
A

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

2
H

D
P

B
H

ep
a
ri

n
F

N
A

3
0

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
N

A
M

3
4

1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
N

A
F

3
3

1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
N

A
M

3
2

1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
N

A
M

3
3

1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
N

A
F

3
5

1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
E

D
T

A
N

A
A

d
u

lt
1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
E

D
T

A
N

A
A

d
u

lt
1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
E

D
T

A
N

A
A

d
u

lt
1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
E

D
T

A
N

A
A

d
u

lt
1
5

m
in

B
D

F
A

C
S

C
a
n
to

C
en

tr
e

3
H

D
P

B
E

D
T

A
N

A
A

d
u

lt
1
5

m
in

B
D

F
A

C
S

C
a
n
to

T
ab

le
2.

2:
D

et
ai

le
d

in
fo

rm
at

io
n

ab
ou

t
th

e
p
ar

ti
ci

p
an

ts
an

d
th

e
m

ea
su

rm
en

ts
fo

r
20

of
th

e
21

cy
to

m
et

ri
es

.



2.3. RESULTS 85

C
y
to

m
et

ry
1

C
y
to

m
et

ri
es

cl
u
st

er
in

g
T

em
p
la

te
s

fo
rm

at
io

n
M

et
h
o
d

1
M

et
h
o
d

2
M

et
h
o
d

3
M

et
h
o
d

4
M

et
h
o
d

5
co

m
p
le

te
,

k
=

5
p

o
ol

in
g

0.
90

64
0.

93
39

0.
89

92
0.

91
96

0.
85

21
H

D
B

S
C

A
N

p
o
ol

in
g

0.
90

64
0.

93
23

0.
89

92
0.

91
96

0.
85

21
co

m
p
le

te
,

k
=

5
H

D
B

S
C

A
N

0.
00

00
0.

93
98

0.
88

25
0.

35
42

0.
74

29
H

D
B

S
C

A
N

H
D

B
S
C

A
N

0.
00

00
0.

91
11

0.
72

35
0.

52
63

0.
91

86
co

m
p
le

te
,

k
=

5
37

-b
ar

y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
94

98
0
.9

5
1
2

0.
22

98
0.

87
07

H
D

B
S
C

A
N

37
-b

ar
y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
94

85
0.

77
55

0.
68

46
0.

59
88

C
to

m
et

ry
6

C
y
to

m
et

ri
es

cl
u
st

er
in

g
T

em
p
la

te
s

fo
rm

at
io

n
M

et
h
o
d

1
M

et
h
o
d

2
M

et
h
o
d

3
M

et
h
o
d

4
M

et
h
o
d

5
co

m
p
le

te
,

k
=

5
p

o
ol

in
g

0.
76

92
0.

85
24

0.
76

13
0.

83
73

0.
83

73
H

D
B

S
C

A
N

p
o
ol

in
g

0.
87

87
0.

85
71

0.
77

62
0.

84
27

0.
84

27
co

m
p
le

te
,

k
=

5
H

D
B

S
C

A
N

0.
72

12
0.

92
65

0.
83

98
0.

06
53

0.
81

63
H

D
B

S
C

A
N

H
D

B
S
C

A
N

0.
82

70
0
.9

2
7
6

0.
83

99
0.

79
24

0.
80

34
co

m
p
le

te
,

k
=

5
37

-b
ar

y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
91

84
0.

83
99

0.
81

10
0.

75
72

H
D

B
S
C

A
N

37
-b

ar
y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

14
68

0.
91

12
0.

78
49

0.
63

14
0.

63
14

C
it

om
et

ry
10

C
y
to

m
et

ri
es

cl
u
st

er
in

g
T

em
p
la

te
s

fo
rm

at
io

n
M

et
h
o
d

1
M

et
h
o
d

2
M

et
h
o
d

3
M

et
h
o
d

4
M

et
h
o
d

5
co

m
p
le

te
,

k
=

5
p

o
ol

in
g

0
.9

5
2
5

0.
94

31
0.

94
40

0.
93

06
0.

93
06

H
D

B
S
C

A
N

p
o
ol

in
g

0
.9

5
2
5

0.
94

21
0.

94
40

0.
93

06
0.

93
06

co
m

p
le

te
,

k
=

5
H

D
B

S
C

A
N

0.
90

09
0.

94
51

0.
94

45
0.

07
39

0.
81

81
H

D
B

S
C

A
N

H
D

B
S
C

A
N

0.
90

09
0.

94
23

0.
94

45
0.

07
39

0.
81

81
co

m
p
le

te
,

k
=

5
37

-b
ar

y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
93

45
0.

94
07

0.
93

58
0.

11
63

H
D

B
S
C

A
N

37
-b

ar
y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
66

94
0.

63
25

0.
79

01
0.

16
10

T
ab

le
2.

3:
M

ed
ia

n
F

-m
ea

su
re

fo
r
C1
,C

6
an

d
C1

0
fo

r
d
iff

er
en

t
co

m
b
in

at
io

n
s

of
ou

r
p
ro

ce
d
u
re

s.
C

yt
om

et
ri

es
cl

u
st

er
in

g
in

d
ic

at
es

th
e

m
et

h
o
d

u
se

d
fo

r
cl

u
st

er
in

g
in

op
ti

m
al

F
lo

w
T

em
p
la

te
s.

T
em

pl
at

es
fo

rm
at

io
n

in
d
ic

at
es

th
e

m
et

h
o
d

u
se

d
fo

r
ob

ta
in

in
g

te
m

p
la

te
s

fo
r

th
e

cl
u
st

er
s

of
cy

to
m

et
ri

es
.

M
et

h
o
d

1
re

fe
rs

to
u
si

n
g

th
e

b
es

t
te

m
p
la

te
an

d
Q

D
A

.
M

et
h
o
d

2
re

fe
rs

to
u
si

n
g

ra
n
d
om

fo
re

st
w

it
h

th
e

cy
to

m
et

ry
cl

os
es

t
in

si
m

il
ar

it
y

d
is

ta
n
ce

in
th

e
as

si
gn

ed
gr

ou
p
.

M
et

h
o
d

3
is

li
ke

M
et

h
o
d

2
b
u
t

u
si

n
g

Q
D

A
.

M
et

h
o
d

4
is

la
b

el
m

at
ch

in
g

b
et

w
ee

n
th

e
b

es
t

te
m

p
la

te
an

d
th

e
b

es
t

tc
lu

st
re

su
lt

.
M

et
h
o
d

5
is

la
b

el
m

at
ch

in
g

th
ro

u
gh

a
vo

te
b

et
w

ee
n

la
b

el
m

at
ch

in
gs

of
ev

er
y

cy
to

m
et

ry
in

th
e

b
es

t
gr

ou
p
.



86 CHAPTER 2. OPTIMAL-TRANSPORT APPROACH TO FLOW CYTOMETRY

C
it

om
et

ry
11

C
y
to

m
et

ri
es

cl
u
st

er
in

g
T

em
p
la

te
s

fo
rm

at
io

n
M

et
h
o
d

1
M

et
h
o
d

2
M

et
h
o
d

3
M

et
h
o
d

4
M

et
h
o
d

5
co

m
p
le

te
,

k
=

5
p

o
ol

in
g

0.
90

69
0
.9

5
0
6

0.
93

36
0.

93
78

0.
93

63
H

D
B

S
C

A
N

p
o
ol

in
g

0.
90

69
0.

94
96

0.
93

36
0.

93
78

0.
93

63
co

m
p
le

te
,

k
=

5
H

D
B

S
C

A
N

0.
43

04
0.

75
00

0.
68

64
0.

12
64

0.
59

28
H

D
B

S
C

A
N

H
D

B
S
C

A
N

0.
43

04
0.

75
56

0.
68

64
0.

12
64

0.
59

28
co

m
p
le

te
,

k
=

5
37

-b
ar

y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

63
19

0.
93

83
0.

91
16

0.
62

06
0.

90
95

H
D

B
S
C

A
N

37
-b

ar
y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
94

94
0.

91
16

0.
71

51
0.

89
75

C
it

om
et

ry
18

C
y
to

m
et

ri
es

cl
u
st

er
in

g
T

em
p
la

te
s

fo
rm

at
io

n
M

et
h
o
d

1
M

et
h
o
d

2
M

et
h
o
d

3
M

et
h
o
d

4
M

et
h
o
d

5
co

m
p
le

te
,

k
=

5
p

o
ol

in
g

0.
90

88
0.

96
11

0.
90

38
0.

64
33

0.
32

32
H

D
B

S
C

A
N

p
o
ol

in
g

0.
84

65
0.

85
85

0.
70

45
0.

79
01

0.
47

40
co

m
p
le

te
,

k
=

5
H

D
B

S
C

A
N

0.
90

43
0
.9

6
1
8

0.
91

71
0.

64
15

0.
79

12
H

D
B

S
C

A
N

H
D

B
S
C

A
N

0.
90

43
0.

96
17

0.
91

71
0.

21
33

0.
62

14
co

m
p
le

te
,

k
=

5
37

-b
ar

y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
96

17
0.

91
71

0.
78

79
0.

78
95

H
D

B
S
C

A
N

37
-b

ar
y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
85

01
0.

91
71

0.
84

68
0.

79
11

C
it

om
et

ry
20

C
y
to

m
et

ri
es

cl
u
st

er
in

g
T

em
p
la

te
s

fo
rm

at
io

n
M

et
h
o
d

1
M

et
h
o
d

2
M

et
h
o
d

3
M

et
h
o
d

4
M

et
h
o
d

5
co

m
p
le

te
,

k
=

5
p

o
ol

in
g

0.
91

40
0.

95
57

0.
90

46
0.

75
17

0.
44

47
H

D
B

S
C

A
N

p
o
ol

in
g

0.
91

40
0.

95
37

0.
90

46
0.

75
17

0.
44

47
co

m
p
le

te
,

k
=

5
H

D
B

S
C

A
N

0.
91

40
0.

95
87

0.
92

31
0.

60
20

0.
43

46
H

D
B

S
C

A
N

H
D

B
S
C

A
N

0.
91

40
0
.9

5
8
9

0.
92

31
0.

63
08

0.
75

42
co

m
p
le

te
,

k
=

5
37

-b
ar

y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

25
38

0.
95

87
0.

92
31

0.
68

65
0.

61
98

H
D

B
S
C

A
N

37
-b

ar
y
ce

n
te

r,
al

p
h
a

=
0.

05
0.

00
00

0.
96

21
0.

92
31

0.
63

54
0.

40
60

T
ab

le
2.

4:
S
am

e
as

T
ab

le
2.

3
b
u
t

fo
r

cy
to

m
et

ri
es
C1

1
,C

1
8

an
d
C2

0
.



2.4. A SHORT TUTORIAL ON OPTIMALFLOW 87

2.4 A short tutorial on optimalFlow

We start by installing the required packages from gitHub using devtools.

require(devtools)

install_github("HristoInouzhe/optimalFlowData", build_vignettes = TRUE)

install_github("HristoInouzhe/optimalFlow", build_vignettes = TRUE)

Next, we load the required packages.

library(optimalFlowData)

library(optimalFlow)

require(rgl)

Our tutorial will be based on the database DB, but selecting only 4 cell types for ease of
visualization. Hence, we have the following database.

database = list(

Cytometry2[which(Cytometry2$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry3[which(Cytometry3$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry4[which(Cytometry4$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry5[which(Cytometry5$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry7[which(Cytometry7$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry8[which(Cytometry8$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry9[which(Cytometry9$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry12[which(Cytometry12$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry13[which(Cytometry13$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry14[which(Cytometry14$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry15[which(Cytometry15$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry16[which(Cytometry16$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry17[which(Cytometry17$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry19[which(Cytometry19$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),],

Cytometry21[which(Cytometry21$‘Population ID (name)‘ %in%

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-")),]

)
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We start with a default application of optimalFlowTemplates looking for 5 groups of
cytometries.

templates.optimalFlow =

optimalFlowTemplates(

database = database, templates.number = 5, cl.paral = 1

)

templates.optimalFlow$clustering

[1] 1 2 3 3 3 3 4 4 4 1 2 3 5 5 5

We see the clustering of the cytometries in the database in the last line. A three dimen-
sional representation of the cytometries corresponding to the group labelled as 3 can be
obtained with the following code.

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$database.elliptical[[3]][[1]]$

cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$database.elliptical[[3]][[1]]$

mean[c(4,3,9)]),

xlim = c(0,8000), ylim =c(0,8000), zlim = c(0,8000), alpha = 0.5,

col = 1, xlab = names(Cytometry1)[4], ylab = names(Cytometry1)[3],

zlab = names(Cytometry1)[9])

for (j in 2:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$

database.elliptical[[3]][[j]]$cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$database.elliptical[[3]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = j)

}

for (i in c(4:6,12)){

for (j in 1:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$

database.elliptical[[i]][[j]]$cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$database.elliptical[[i]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = j)

}

}

This gives us the plot represented on the left of Figure 2.4. This is due to the fact that
the default mode for optimalFlowTemplates is to use pooling. The artificial cytometry
corresponding to the group of cytometries is plotted with the following code.

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$templates[[3]][[1]]$

cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$templates[[3]][[1]]$

mean[c(4,3,9)]), xlim = c(0,8000), ylim =c(0,8000),

zlim = c(0,8000), lpha = 0.5, col = 1,

xlab = names(Cytometry1)[4], ylab = names(Cytometry1)[3],

zlab = names(Cytometry1)[9])

for (j in 2:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$templates[[3]][[j]]$

cov[c(4,3,9),][,c(4,3,9)],
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centre = templates.optimalFlow$templates[[3]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = j)

Hence, we obtain the image on the right of Figure 2.4.
With the next lines we show how to use the other two methods for consensus clustering.

templates.optimalFlow.barycenter =

optimalFlowTemplates(

database = database, templates.number = 5, consensus.method =

"k-barycenter", barycenters.number = 4, bar.repetitions = 10,

alpha.bar = 0.05, cl.paral = 1

)

templates.optimalFlow.hdbscan =

optimalFlowTemplates(

database = database, templates.number = 5, consensus.method =

"hierarchical", cl.paral = 1

)

templates.optimalFlow.barycenter$clustering

[1] 1 2 3 3 3 3 4 4 4 1 2 3 5 5 5

templates.optimalFlow.hdbscan$clustering

[1] 1 2 3 3 3 3 4 4 4 1 2 3 5 5 5

We see that the clusterings of the cytometries are the same since we are using the same
default method, complete linkage hierarchical clustering looking for the number of clusters
indicated by templates.number. However, the situation for obtaining a consensus repre-
sentative for the cytometries in group 3 is now very different. We can plot this situation
as follows.

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$database.elliptical[[3]][[1]]$

cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$database.elliptical[[3]][[1]]$

mean[c(4,3,9)]),

xlim = c(0,8000), ylim =c(0,8000), zlim = c(0,8000), alpha = 0.5,

col = 1, xlab = names(Cytometry1)[4], ylab = names(Cytometry1)[3],

zlab = names(Cytometry1)[9])

for (j in 2:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$

database.elliptical[[3]][[j]]$cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$database.elliptical[[3]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = 1)

}

for (i in c(4:6,12)){

for (j in 1:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow$

database.elliptical[[i]][[j]]$cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow$database.elliptical[[i]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = 1)

}

}
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This is what is represented on the left of both Figure 2.6 and 2.5.
We can plot the consensus element given by a 4-barycenter, obtaining the plot on the

left of Figure 2.6, using the lines

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow.barycenter$templates[[3]][[1]]$

cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow.barycenter$templates[[3]][[1]]$

mean[c(4,3,9)]), xlim = c(0,8000), ylim =c(0,8000), zlim = c(0,8000),

alpha = 0.5, col = 1, xlab = names(Cytometry1)[4], ylab =

names(Cytometry1)[3], zlab = names(Cytometry1)[9])

for (j in 2:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow.barycenter$

templates[[3]][[j]]$cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow.barycenter$templates[[3]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = j)

}

The plot on the right of Figure 2.5 is obtained by

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow.hdbscan$templates[[3]][[1]]$

cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow.hdbscan$templates[[3]][[1]]$

mean[c(4,3,9)]), xlim = c(0,8000), ylim =c(0,8000), zlim = c(0,8000),

alpha = 0.5, col = 1, xlab = names(Cytometry1)[4], ylab =

names(Cytometry1)[3], zlab = names(Cytometry1)[9])

for (j in 2:4){

rgl::plot3d(rgl::ellipse3d(templates.optimalFlow.hdbscan$

templates[[3]][[j]]$cov[c(4,3,9),][,c(4,3,9)],

centre = templates.optimalFlow.hdbscan$templates[[3]][[j]]$

mean[c(4,3,9)]), alpha = 0.5, add = T, col = j)

}

Wit the previous examples we have given some ideas on how to use optimalFlowTemplates.
Now we focus on how to use our other tool, optimalFlowClassification.

Our objective is to classify a new cytometry, in this case it is Cytometry 1 with the
corresponding four cell types, but without using the label information. We achieve this
by using the lines

classification.optimalFlow =

optimalFlowClassification(

Cytometry1[which(match(Cytometry1$‘Population ID (name)‘,

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0) > 0),

1:10],

database, templates.optimalFlow, consensus.method = "pooling", cl.paral = 1

)

The default method of optimalFlowClassification is to classify using QDA and the tem-
plate closest to the cytometry. In this case it is the artificial cytometry corresponding to
the group labelled as 1. A median F-measure, given by (2.5), can be calculated as follows
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scoreF1.optimalFlow =

optimalFlow::f1Score(

classification.optimalFlow$cluster,

Cytometry1[which(match(Cytometry1$‘Population ID (name)‘,

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],

noise.types

)

print(scoreF1.optimalFlow)

CD4+CD8- Monocytes Mature SIg Kappa TCRgd-

F1-score 0.9981778 0.9998445 1 0.8913043

Precision 1.0000000 1.0000000 1 0.8039216

Recall 0.9963622 0.9996890 1 1.0000000

We see that results are satisfying since values are close to 1 in the first row (named
F1-score) that gives de median F-score.

We get even better results by using the templates obtained via the 4-barycenter. In
order to do this, we use the lines

classification.optimalFlow.barycenter =

optimalFlowClassification(

Cytometry1[which(match(Cytometry1$‘Population ID (name)‘,

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0) > 0),

1:10],database,

templates.optimalFlow.barycenter, consensus.method = "k-barycenter",

cl.paral = 1

)

scoreF1.optimalFlow.barycenter =

f1ScoreVoting(

classification.optimalFlow.barycenter$cluster.vote,

classification.optimalFlow.barycenter$cluster,

Cytometry1[which(match(Cytometry1$‘Population ID (name)‘,

c("Monocytes", "CD4+CD8-", "Mature SIg Kappa", "TCRgd-"), nomatch = 0)>0),],

1.01, noise.types

)

print(scoreF1.optimalFlow.barycenter$F1_score)

TCRgd- Mature SIg Kappa Monocytes CD4+CD8-

F1-score 0.9318182 1 0.9997667 0.9990246

Precision 0.8723404 1 1.0000000 1.0000000

Recall 1.0000000 1 0.9995334 0.9980512

Again, results are quite close to 1 in the first row, so the result of the supervised classifi-
cation can be considered satisfying. We remind the reader that additional examples can
be found in the Vignette corresponding to the package optimalFlow.
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3
Attraction-Repulsion clustering for
fairness

3.1 Introduction

In the process of machine learning there are some instances where bias and unfairness can
appear. First, collecting data can be problematic, since data can reflect past unfair or
biased decisions or reflect some social bias present in the real world. Therefore we could
be dealing with a biased sample. Second, algorithms are developed by humans and may
reflect the creators viewpoint in a subtle fashion. This may be seen in the underlying as-
sumptions made during the development fase or in the selection of the objective functions
to be optimized. A more detailed explanation of sources of bias in machine learning can
be found in [Tolan, 2018].

In recent years, fair learning, a new field trying to address fairness in machine learning,
has emerged. The aim is to ensure that some variables which should not be taken into
account due to moral or legal issues are not playing a role in the decisions produced by
the machine learning algorithms. This has naturally led to some definitions of fairness
and how to try to enforce it.

When dealing with fair classification several fairness definitions have appeared in the
literature. In general, in the field of fair learning data present a special form. There are
some unprotected attributes X, which are the main information we want to use in the
decision making. There are some protected attributes, S, whose influence in the decisions
made by the algorithms we want to mitigate or eliminate. In particular, when classifying,
for simplicity of exposition we consider binary classification, we have a decision rule (a
classifier) f : X → {0, 1} and we usually have a record of the true decisions Y ∈ {0, 1}.
Again for simplicity, let us consider S ∈ {0, 1}, that is the protected variable is also
binary.

In this set up a possible definition of fairness known as demographic or statistical parity
or disparate impact doctrine is to ensure that P (f(X) = 1|S = 0) = P (f(X) = 1|S = 1)
or equivalently P (f(X) = 1|S) = P (f(X) = 1). This fairness definition has been widely
used, see for example [Feldman et al., 2015], and essential imposes that the classification
rule is independent of the protected variables.

In the same set up, another fairness definition known as equalized odds looks to impose

93
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P (f(X) = 1|S = 0, Y = y) = P (f(X) = 1|S = 1, Y = y) for y ∈ {0, 1}. This definition
was introduced in [Hardt et al., 2016] and as stated there “Unlike demographic parity,
equalized odds allows [f(X)] to depend on [S] but only through the target variable Y . As
such, the definition encourages the use of features that allow to directly predict Y , but
prohibits abusing [S] as a proxy for Y.”

There have been different proposals on how to achieve or approximate fairness when
dealing with classification. For instance some methods try to impose demographic parity
using transformations of the original variable X (see [Feldman et al., 2015, del Barrio
et al., 2018]). Other methods use a direct modification of the algorithms in order to
obtain fairness (see [Zafar et al., 2017,Kehrenberg et al., 2018]).

However, our purpose is to work with a related but different problem, i.e., unsupervised
fair learning. In this case, we have a dataset DS = {(X1, S1), . . . , (Xn, Sn)} and we would
like to obtain a fair clustering Cf = {Ci}ki=1 where Ci ⊂ DS. For that purpose we
define the notion of fair clustering, following the notion of balanced clusters introduced
in [Chierichetti et al., 2017]. A fair clustering or a fair partition fulfils that

|{(x, s) ∈ Ci : s = j}|
|Ci|

=
|{(x, s) ∈ DS : s = j}|

|DS|
for every j ∈ S and i = 1, . . . , k.

(3.1)
In essence, it is the notion of demographic parity adapted to the clustering setting. In
this case the proportion of individuals in any cluster for any protected class is the same
as the respective proportion in the total data, hence we could say that proportions are
independent of the particular cluster. This means that any decision taken with respect to
a particular cluster will affect individuals in the same proportion as if it was taken for the
entire population. Therefore disparate impact for some subpopulation would be avoided.

This definition brings with it some natural ways of enforcing it. The most straight-
forward approach was presented in [Chierichetti et al., 2017] and has led to many useful
extensions as we have mentioned in the Introduction. Their approach is to impose the
constraints defined in (3.1) by cleverly reformulating the constrained clustering problem
as a minimum cost flow problem. However, our experiments shown in Section 3.6.2 sug-
gest that imposing constraints on the proportions of the members in a cluster may be a
rather strong requirement.

Our proposal takes a different approach avoiding constraints on the proportions in each
cluster and instead looks for an appropriate transformation of the data, some how in the
spirit of methods introduced for the supervised problem. Our transformation could be con-
sider as a gerrymandering that looks to increase heterogeneity in the protected attributes
in each cluster. The main objects of our methods are what we call attraction-repulsion
dissimilarities, which are perturbations of the distances (or dissimilarities), based on the
protected attributes, of the original points in the space of unprotected variables. Our ap-
proach allows for the use of any clustering procedure in relatively straightforward fashion.

The chaper falls into the following parts. Section 3.2 presents the attraction-repulsion
dissimilarities. Clustering methods are developed in Section 3.3 while Section 3.4 is de-
voted to their extension to the kernel case. We study the importance of the choice of
parameters in Section 3.5. Finally, applications for our technique are given in Section
3.6. We provide a thorough discussion on a synthetic dataset in 3.6.1, while in ?? we
apply our methods to the Ricci dataset which describes the case of Ricci v. DeStefano
of the Supreme Court of the United States, [Supreme Court of the United States, 2009].
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In Section 3.6.2, we provide comparison between our methods and the ones proposed
in [Chierichetti et al., 2017], that suggests that proportion constraints are too strong
requirements if we want to retain structural information of the data.

3.2 Charged clustering via multidimensional scaling

Clustering relies on the choice of dissimilarities that control the part of information con-
veyed by the data that will be used to gather points into the same cluster, expressing how
such points share some common characteristics. To obtain a fair clustering we aim at
obtaining clusters which are not governed by the protected variables but are rather mixed
with respect to these variables. For this, we introduce interpretable dissimilarities in the
space (X,S) ∈ Rd+p aiming at separating points with the same value of the protected
classes. Using an analogy with electromagnetism, the labels S play the role of an electric
charge and similar charges tend to have a repulsive effect while dissimilar charges tend to
attract themselves.

Our guidances for choosing these dissimilarities are that we would like the dissimilar-
ities to

i) induce fairness into subsequent clustering techniques (eliminate or, at least, decrease
dependence of the clusters on the protected attribute),

ii) keep the essential geometry of the data (with respect to non-protected attributes)
and

iii) be easy to use and interpret.

Hence we propose the following dissimilarities.

Definition 3.1 (Attraction-Repulsion Dissimilarities).

δ1 ((X1, S1) , (X2, S2)) = 1′U1 + S ′1V S2 + ‖X1 −X2‖2 (3.2)

with U, V symmetric matrices in Rp×p;

δ2 ((X1, S1) , (X2, S2)) =
(

1 + ue−v‖S1−S2‖2
)
‖X1 −X2‖2 (3.3)

with u, v ≥ 0;
δ3 ((X1, S1) , (X2, S2)) = ‖X1 −X2‖2 − u‖S1 − S2‖2 (3.4)

with u ≥ 0.
Let 0 ≤ u ≤ 1 and v, w ≥ 0,

δ4 ((X1, S1) , (X2, S2)) =
(

1 + sign(S ′1V S2)u
(

1− e−v(S′1V S2)2
)
e−w‖X1−X2‖

)
‖X1 −X2‖.

(3.5)

Remark 3.1. δ1((X,S), (X,S)) 6= 0 and therefore it is not strictly a dissimilarity. Yet,
for all practical purposes discussed in this chapter this does not affect the proposed proce-
dures.
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To the best of our knowledge this is the first time that such dissimilarities have been
proposed and used in the context of clustering (in [Ferraro and Giordani, 2013] repul-
sion was introduced modifying the objective function, only taking into account distances
between points, to maintain centers of clusters separated). Dissimilarities (3.2) to (3.5)
are natural in the context of fair clustering because they penalize the Euclidean distance
taking into account the (protected) class of the points involved. Hence, some gains in
fairness could be obtained.

The dissimilarities we consider are easily interpretable, providing the practitioner with
the ability to understand and control the degree of perturbation introduced. Dissimilarity
(3.2) is an additive perturbation of the squared Euclidean distance where the intensity of
the penalization is controlled by matrices U and V , with V controlling the interactions
between elements of the same and of different classes S. Dissimilarity (3.4) presents an-
other additive perturbation but the penalization is proportional to the difference between
the classes S1 and S2, and the intensity is controlled by the parameter u.

Dissimilarity (3.3) is a multiplicative perturbation of the squared Euclidean distance.
With u we control the amount of maximum perturbation achievable, while with v we
modulate how fast we diverge from this maximum perturbation when S1 is different to
S2.

Dissimilarity (3.5) is also a multiplicative perturbation of the Euclidean distance.
However, it has a very different behaviour with respect to (3.2)-(3.4). It is local, i.e., it
affects less points that are further apart. Through w we control locality. With bigger w
the perturbation is meaningful only for points that are closer together. With matrix V
we control interactions between classes as in (3.2), while with u we control the amount
of maximum perturbation as in (3.3). Again, v is a parameter controlling how fast we
diverge from the maximum perturbation.

We present in the following a simple example for the case of a single binary protected
attribute, coded as−1 or 1. This is an archetypical situation in which there is a population
with an (often disadvantaged) minority, that we code as S = −1, and the new clustering
has to be independent (or not too dependent) on S.

Example 3.1. Let us take S1, S2 ∈ {−1, 1}. For dissimilarity (3.2) we fix U = V = c ≥ 0,
therefore

δ1 ((X1, S1) , (X2, S2)) = c(1 + S1S2) + ‖X1 −X2‖2.

If S1 6= S2, we have the usual squared distance ‖X1 −X2‖2, while when S1 = S2 we have
2c + ‖X1 − X2‖2, effectively we have introduced a repulsion between elements with the
same class. For dissimilarity (3.3) let us fix u = 0.1 and v = 100,

δ2 ((X1, S1) , (X2, S2)) =
(

1 + 0.1e−100‖S1−S2‖2
)
‖X1 −X2‖2.

When S1 6= S2 we have approximately ‖X1−X2‖2, while when S1 = S2 we have 1.1‖X1−
X2‖2, again introducing a repulsion between elements of the same class. For dissimilarity
(3.4), when S1 = S2 we have ‖X1 − X2‖2 and when S1 6= S2 we get ‖X1 − X2‖2 − 2u,
therefore we have introduced an attraction between different members of the sensitive class.
When using dissimilarity (3.5), fixing V = c > 0, u = 0.1, v = 100, w = 1, we get

δ4 ((X1, S1) , (X2, S2)) =
(

1 + 0.1sign(cS ′1S2)
(

1− e−100(cS′1S2)2
)
e−‖X1−X2‖

)
‖X1 −X2‖.
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If S1 = S2 we get approximately
(
1 + 0.1e−‖X1−X2‖

)
‖X1 − X2‖, therefore we have a re-

pulsion. If S1 6= S2 we have approximately
(
1− 0.1e−‖X1−X2‖

)
‖X1 − X2‖, which can be

seen as an attraction.

Our proposals are flexible thanks to the freedom in choosing the class labels. If we
codify S with {−1, 1}, as in the previous example, we can only produce attraction be-
tween different classes and repulsion between the same classes (or exactly the opposite
if V < 0) in (3.2) and (3.5). On the other hand, if we codify S as {(1, 0), (0, 1)}, we
have a wider range of possible interactions induced by V . For example taking V =
((1,−1)′|(−1, 0)′) we produce attraction between different classes, no interaction between
elements labelled as (0, 1) and repulsion between elements labelled as (1, 0). If we had
three classes we could use {(1, 0, 0), (0, 1, 0), (0, 0, 1)} as labels and induce a personal-
ized interaction between the different elements via a 3 × 3 matrix V . For example
V = ((0,−1,−1)′|(−1, 0,−1)′|(−1,−1, 0)′) provides attraction between different classes
and no interaction between elements of the same class. Extensions to more than three
classes are straightforward. More details on parameter and class codification selection
will be given in Section 3.5.

These dissimilarities can then be used directly in some agglomerative hierarchical
clustering methods, as described in Section 3.3. Alternatively, we could use these dissim-
ilarities to produce some embedding of the data into a suitable Euclidean space and use
some optimization clustering technique (in the sense described in Chapter 5 in [Everitt
et al., 2011]) on the embedded data. Actually, the dissimilarities δl can be combined with
common optimization clustering techniques, such as k-means, via some embedding of the
data. We note that our dissimilarities aim at increasing the separation of points with equal
values in the protected attributes while respecting otherwise the geometry of the data.
Using multidimensional scaling (MDS) we can embed the original points in the space Rd′

with d′ ≤ d and use any clustering technique on the embedded data. Quoting [Cox and
Cox, 2000], multidimensional scaling ‘is the search for a low dimensional space, usually
Euclidean, in which points in the space represent the objects, one point representing one
object, and such that the distances between the points in the space, match, as well as
possible, the original dissimilarities’. Thus, applied to dissimilarities δl, MDS will lead to
a representation of the original data that conveys the original geometry of the data in the
unprotected attributes and, at the same time, favours clusters with diverse values in the
protected attributes.

Here is an outline of how to use the dissimilarities δl coupled with MDS for a sample
(X1, S1), . . . , (Xn, Sn).

Attraction-Repulsion MDS For any l ∈ {1, 2, 3, 4}

• Compute the dissimilarity matrix [∆i,j] = [δl((Xi, Si), (Xj, Sj))] with a partic-
ular choice of the free parameters.

• If min∆i,j ≤ 0, transform the original dissimilarity to have positive entries:
∆i,j = ∆i,j + |min∆|+ ε, where ε is small.

• For δ1, δ2, δ3: ∆i,j =
√

∆i,j.

• Use MDS to transform (X1, S1), . . . , (Xn, Sn) into X ′1, . . . , X
′
n ∈ Rd′, where

Di,j = ‖X ′i −X ′j‖ is similar to ∆i,j.



98 CHAPTER 3. ATTRACTION-REPULSION CLUSTERING FOR FAIRNESS

• Apply a clustering procedure on the transformed data X ′1, . . . , X
′
n.

This procedure will be studied in Section 3.6 for some synthetic and real datasets.

3.3 Charged hierarchical clustering

Agglomerative hierarchical clustering methods (bottom-top clustering) encompass many
of the most widely used methods in unsupervised learning. Rather than a fixed number of
clusters, these methods produce a hierarchy of clusterings starting from the bottom level,
at which each sample point constitutes a group, to the top of the hierarchy, where all the
sample points are grouped into a sigle unit. We refer to [Murtagh and Contreras, 2011]
for an overview. The main idea is simple. At each level, the two groups with the lowest
dissimilarity are merged to form a single group. The starting point is typically a matrix
of dissimilarities between pairs of data points. Hence, the core of a particular agglom-
erative hierarchical clustering lies at the way in which dissimilarities between groups are
measured. Classical choices include single linkage, complete linkage, average linkage or
McQuitt’s method. Additionally, some other methods are readily available for using dis-
similarities, as, for example, DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) introduced in [Ester et al., 1996].

When a full data matrix (rather than a dissimilarity matrix) is available it is possible to
use a kind of agglomerative hierarchical clustering in which every cluster has an associated
prototype (a center or centroid) and dissimilarity between clusters is measured through
dissimilarity between the prototypes. A popular choice (see [Everitt et al., 2011]) is Ward’s
minimum variance clustering : dissimilarities between clusters are measured through a
weighted squared Euclidean distance between mean vectors within each cluster. More
precisely, if clusters i and j have ni and nj elements and mean vectors gi and gj then
Ward’s dissimilarity between clusters i and j is

δW (i, j) =
ninj
ni+nj

‖gi − gj‖2,

where ‖ · ‖ denotes the usual Euclidean norm. Other methods based on prototypes are
the centroid method or Gower’s median method (see [Murtagh and Contreras, 2011]).
However, these last two methods may present some undesirable features (the related
dendrograms may present reversals that make the interpretation harder, see, e.g., [Everitt
et al., 2011]) and Ward’s method is the most frequently used within this prototype-based
class of agglomerative hierarchical clustering methods.

Hence, in our approach to fair clustering we will focus on Ward’s method. Given two
clusters i and j consisting of points {(Xi, Si)}nii=1 and {(Yj, Tj)}

nj
j=1, respectively, we define

the charged dissimilarity between them as

δW,l(i, j) =
ninj
ni+nj

δl((
1
ni

∑ni
i=1Xi,

1
ni

∑ni
i=1 Si), (

1
nj

∑nj
j=1 Yj,

1
nj

∑nj
j=1 Tj)) (3.6)

where δl, l = 1, . . . , 4 is any of the point dissimilarities defined by (3.2) to (3.5).
The practical implementation of agglomerative hierarchical methods depends on the

availability of efficient methods for the computation of dissimilarities between merged clus-
ters. This is the case of the family of Lance-Williams methods (see [Lance and Williams,
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1967], [Murtagh and Contreras, 2011] or [Everitt et al., 2011]) for which a recursive for-
mula allows to update the dissimilarities when clusters i and j are merged into cluster i∪j
in terms of the dissimilarities of the initial clusters. This allows to implement the related
methods using computer time of order O(n2 log n). We show next that a recursive formula
similar to the Lance-Williams class holds for the dissimilarities δl,W and, consequently,
the related agglomerative hierarchical method can be efficiently implemented. The fact
that we are dealing differently with genuine and protected attributes results in the need
for some additional notation (and storage). Given clusters i and j consisting of points
{(Xi, Si)}nii=1 and {(Yj, Tj)}

nj
j=1, respectively, we denote

dx(i, j) =
∥∥ 1
ni

∑ni
i=1Xi − 1

nj

∑nj
j=1 Yj‖. (3.7)

Note that dx(i, j) is simply the Euclidean distance between the means of the X-attributes
in clusters i and j. Similarly, we set

ds(i, j) =
∥∥ 1
ni

∑ni
i=1Si −

1
nj

∑nj
j=1 Tj‖. (3.8)

Proposition 3.1. For δW,l as in (3.6), dx(i, j) as in (3.7) and ds(i, j) as in (3.8) and as-
suming that clusters i, j and k have sizes ni, nj and nk, respectively, we have the following
recursive formulas:

i) δW,1(i ∪ j, k) = ni+nk
ni+nj+nk

δW,1(i, k) +
nj+nk

ni+nj+nk
δW,1(j, k)− nk

ni+nj+nk
d2
W,x(i, j);

ii)

δW,2(i ∪ j, k) =
(

1 + ue
−v(

ni
ni+nj

d2
s(i,k)+

nj
ni+nj

d2
s(j,k)−

ninj

(ni+nj)2
d2
s(i,j))

)
×

(
ni+nk

ni+nj+nk
d2
W,x(i, k) +

nj+nk
ni+nj+nk

d2
W,x(j, k)− nk

ni+nj+nk
d2
W,x(i, j)

)
;

iii) δW,3(i ∪ j, k) = ni+nk
ni+nj+nk

δW,3(i, k) +
nj+nk

ni+nj+nk
δW,3(j, k)− nk

ni+nj+nk
δW,3(i, j),

where d2
W,x(i, j) =

ninj
ni+nj

d2
x(i, j).

Proof. For i) we just denote by Rs,St and Tr the protected attributes in clusters i, j and
k, respectively and note that

δW,1(i ∪ j, k) =
(ni+nj)nk
ni+nj+nk

(
1′U1 + 1

ni+nj

(∑ni
s=1 Rs +

∑nj
t=1 St

)′
V 1
nk

∑nk
r=1 Tr + d2

x(i ∪ j, k)
)

=
(ni+nj)nk
ni+nj+nk

ni
ni+nj

(
1′U1 + 1

ni
(
∑ni

s=1Rs)
′
V 1
nk

∑nk
r=1 Tr

)
+

(ni+nj)nk
ni+nj+nk

nj
ni+nj

(
1′U1 + 1

nj

(∑nj
t=1 St

)′
V 1
nk

∑nk
r=1 Tr

)
+ d2

W,x(i ∪ j, k)

= ni+nk
ni+nj+nk

nink
ni+nk

(
1′U1 + 1

ni

(∑ni
s=1Rs

)′
V 1
nk

∑nk
r=1 Tr + d2

x(i, k)
)

+
nj+nk

ni+nj+nk

njnk
nj+nk

(
1′U1 + 1

nj

(∑nj
j=1 Sj

)′
V 1
nk

∑nk
r=1 Tr + d2

x(j, k)
)

− nk
ni+nj+nk

d2
W,x(i, j)

= ni+nk
ni+nj+nk

δW,1(i, k) +
nj+nk

ni+nj+nk
δW,1(j, k)− nk

ni+nj+nk
d2
W,x(i, j).
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Observe that we have used the well-known recursion for Ward’s dissimilarities, namely,

d2
W,x(i ∪ j, k) = ni+nk

ni+nj+nk
d2
W,x(i, k) +

nj+nk
ni+nj+nk

d2
W,x(j, k)− nk

ni+nj+nk
d2
W,x(i, j) (3.9)

(see, e.g., [Everitt et al., 2011]). The update formulas ii) and iii) are obtained similarly.
We omit details.

From Proposition 3.1 we see that a practical implementation of agglomerative hier-
archical clustering based on δW,l, l = 1, 2 would require the computation of d2

W,x(i, j),
which can be done using the Lance-Williams formula (3.9). In the case of δW,2 we also
need d2

s(i, j), which again can be obtained through a Lance-Williams recursion. This
implies that agglomerative hierarchical clustering based on δW,l, l = 1, 2 or 3 can be im-
plemented using computer time of order O(n2 log n) (at most twice the required time for
the implementation of an ‘unfair’ Lance-Williams method).

We end this section with an outline of the implementation details for our proposal for
fair agglomerative hierarchical clustering based on dissimilarities δW,l.

Iterative Attraction-Repulsion Clustering For l ∈ {1, 2, 3}

• Compute the dissimilarity matrix [∆i,j] = [δl((Xi, Si), (Xj, Sj))] with a partic-
ular choice of the free parameters.

• If min ∆i,j ≤ 0, transform the original dissimilarity to have positive entries:
∆i,j = ∆i,j + |min∆|+ ε, where ε is arbitrarily small.

• Use the Lance-Williams type recursion to determine the clusters i and j to be
merged; iterate until there is a single cluster

3.4 Fair clustering with kernels

Clustering techniques based on the minimization of a criterion function typically result
in clusters with a particular geometrical shape. For instance, given a collection of points
x1, . . . xn ∈ Rd, the classical k-means algorithm looks for a grouping of the data into
K ≤ n clusters C = {c1, . . . , cK} with corresponding means {µ1, . . . , µK} such that the
objective function

K∑
k=1

∑
x∈ci

‖x− µi‖2

is minimized. The clusters are then defined by assigning each point to the closest center
(one of the minimizing ci’s). This results in convex clusters with linear boundaries. It is
often the case that this kind of shape constraint does not adapt well to the geometry of
the data. A non-linear transformation of the data could map some clustered structure to
make it more adapted to convex linear boundaries (or some other pattern). In some cases
this transformation can be implicitly handled via kernel methods. We explore in this
section how the charged clustering similarities that we have introduced can be adapted
to the kernel clustering setup, focusing on the particular choice of kernel k-means.
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Kernel k-means is a non-linear extension of k means that allows to find arbitrary
shaped clusters introducing a suitable kernel similarity function κ : Rd × Rd → R, where
the role of the squared Euclidean distance between two points x, y in the classical k-means
is taken by

d2
κ(x, y) = κ(x, x) + κ(y, y)− 2κ(x, y). (3.10)

Details of this algorithm can be found in [Schölkopf et al., 1998].
In a first approach, we could try to introduce a kernel function for vectors (X1, S1),

(X2, S2) ∈ Rd+p such that d2
κ takes into account the squared Euclidean distance between

X1 and X2 but also tries to separate points of the same class and/or tries to bring closer
points of different classes, i.e., makes use of S1, S2. Some simple calculations show that
this is not an easy task, if possible at all in general. If we try, for instance, a joint kernel
of type κ((X1, S1), (X2, S2)) = τ(S1, S2) + k(X1, X2), S1, S2 ∈ {−1, 1} with τ, k Mercer
(positive semi-definite) kernels (this covers the case k(X1, X2) = X1 ·X2, the usual scalar
product in Rd), our goal can be written as

d2
κ((X1, S1), (X2, S1)) > d2

κ((X1, S1), (X2, S2)), (3.11)

for any X1, X2, with S1 6= S2. However, the positivity contraints on τ , imply that

2τ(S1, S2) > τ(S1, S1) + τ(S2, S2), τ 2(S1, S2) ≤ τ(S1, S1)τ(S2, S2).

But the solutions of this inequalities violate that τ is positive-semi-definite. Therefore,
there is no kernel on the sensitive variables that we can add to the usual scalar prod-
uct. Another possibility is to consider a multiplicative kernel, κ((X1, S1), (X2, S2)) =
τ(S1, S2)k(X1, X2), S1, S2 ∈ {−1, 1} with τ, k Mercer kernels. From (3.11) we get

2 (τ(S1, S1)− τ(S1, S2)) k(X1, X2) < (τ(S1, S1)− τ(S2, S2)) k(X2, X2)

which depends on k(X1, X2) and makes it challenging to eliminate the dependence of the
particular combinations X1, X2.

The previous observations show that it is difficult to think of a simple and interpretable
kernel κ that can be a simple combination of a kernel in the space of unprotected attributes
and a kernel in the space of sensitive attributes. This seems to be caused by our desire to
separate vectors that are similar in the sensitive space, which goes against our aim to use
norms induced by scalar products. In other words a naive extension of the kernel trick to
our approach to fair clustering seems to be inappropriate.

Nonetheless, the difficulty comes from a naive desire to carry out the (implicit) trans-
formation of the attributes and the penalization of homogeneity in the protected attributes
in the clusters in a single step. We still may obtain gains in fairness, while improving the
separation of the clusters in the unprotected attributes if we embed the X data into a
more suitable space by virtue of some sensible kernel κ and consider the corresponding
kernel version of δl, with δl as in (3.2) to (3.5). Instead of using the Euclidean norm
‖X1 −X2‖ we should use dκ(X1, X2). In the case of δ1, for instance, this would amount
to consider the dissimilarity

δκ,1 ((X1, S1) , (X2, S2)) = 1′U1 + S ′1V S2 + dκ(X1, X2)2, (3.12)

with similar changes for the other dissimilarities. Then we can use an embedding (MDS
the simplest choice) as in Section 3.2 and apply a clustering procedure to the embedded
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data. This would keep the improvement in cluster separation induced (hopefully) by
the kernel trick and apply, at the same time, a fairness correction. An example of this
adaptation of the kernel trick to our setting is given in Section 3.6.1.

3.5 Parameter selection

The attraction-repulsion dissimilarities (3.2) - (3.5) introduced in Section 3.2 depend on
two main sets of parameters. First, on several free parameters used to balance the influence
of the variablesX and the protected variable S. Second, on the way the protected variables
are labelled for the different classes, with the possibility to include different interactions
between the groups. Here we propose some guidelines on the choice of these parameters.
A complete example of how to select the best parameters, the best dissimilarity and the
best clustering method is provided in Section 3.6.3.

The dissimilarities we consider can be divided into two groups: (3.3) and (3.4) do not
depend on the codification of the class variable, while (3.2) and (3.5) do depend on such
a choice. In our method, the level of perturbation, which influences the level of fairness
is imposed through the choice of the parameters in the dissimilarities. Contrary to other
methods such as [Chierichetti et al., 2017] where only completely fair solutions can be
found (see for instance in Figure 3.1), choosing the parameters enables to balance fairness
and the original structure of the data which may convey information that should not be
erased by fairness constraints.

Consider first dissimilarities (3.3) and (3.4). They rely on two parameters u and v.
In the multiplicative dissimilarity (3.3), v is a parameter that measures how sudden is
the change in the distance when switching from elements with different protected class to
elements with same protected class. For v large enough, e−v‖S1−S2‖2 is small when S1 6= S2,
which implies that the fair dissimilarity only modifies the distance between points inside
the same protected class, increasing heterogeneity of the clusters.

Once v has been fixed, the main parameter u controls the intensity of the perturbation
in a similar way for both dissimilarities (3.3) and (3.4). To illustrate the effect of this
parameter we focus on (3.3) and perform a fair clustering, with MDS or hierarchically,
for different values of the intensity parameter u and measure the fairness of the clusters
obtained. Such example is depicted in the left middle row of Figure 3.1. We can see that,
as expected, increasing the values for u puts more weight on the part of the dissimilarity
that enforces heterogeneity of the clusters. u = 0 leads to the usual clustering. Indeed,
varying u from 0 to 4.5 in steps of 0.5 increases the fairness achieved for both clusters, with
a saturation effect from 4.5 to 5 where we do not appreciate an improvement in fairness.
Hence, maximum fairness is achieved for u = 4.5 and gives the lowest perturbation that
achieves the highest level of fairness. If one aims at preserving more of the structure of
the original information at the expense of a lower level of fairness, some smaller value of u
can be selected. For example, in the right middle row of Figure 3.1 we provide the result
of choosing u = 1. Hence u balances both effects of closeness to the usual dissimilarities
and the amount of heterogeneity reached in the clustering.

Next, dissimilarities (3.2) and (3.5), as described in Section 3.2, depend on the values
chosen for the protected variable S, and a matrix V , which plays the role of the ma-
trix of interactions for different classes. When dealing with a two-class discrimination



3.6. APPLICATIONS 103

problem where the protected class has only two values, labelling the classes as {−1, 1}
or {(1, 0), (0, 1)} can lead to the same results for appropriate choices of V . However, for
more than two protected classes we will use only the following vectorial codification: for
q different values of the protected class, we will codify the values as the q unitary vectors
{a1, . . . , aq} where ai,j = 1 if i = j and ai,j = 0 if i 6= j for 1 ≤ i, j ≤ q.

To build the interaction matrix we proceed as follows. First, consider a matrix Ṽi,j
with 1 ≤ i, j ≤ q. We fix Ṽi,j = 0 if we want no interaction between classes i and j,
in particular, if i = j this means that there is no interaction between elements with the
same class. We take Ṽi,j = 1 if we want repulsion (relative increase in the distance)
between classes i and j. We fix Ṽi,j = −1 if we want attraction (relative decrease in
distance) between classes i and j. Hence, if the practitioner believes that there is some
discrimination, in the sense of disproportional impact, against a class represented by ai∗ ,
it is recommendable to set values of Ṽi∗,j = −1 for j 6= i∗. As an example, in Section
3.6.1, we have chosen the interaction matrix V = ((1,−1)′|(−1, 0)′), to model repulsion
between elements of the same class (1, 0), attraction between elements of the classes (1, 0)
and (0, 1), and no interaction between the elements of the same class (0, 1).
Then intensity of the interaction is modelled using a constant v0 > 0, and we set V = v0Ṽ .
In the previous example v0 = 1. The parameter v for dissimilarity (3.5) has the same
meaning as the corresponding parameter for (3.3) and can be selected in the same way.

Finally, matrix U for dissimilarity (3.2) represents and extra additive shift. In many
cases it can be set to U = 0 (the zero matrix).

We provide an example to explain how to select the intensity v0 for dissimilarity (3.2)
in the top left image of Figure 3.1. Notice that using V > 0 and S ∈ {−1, 1} is the
same as using V = v0Ṽ with Ṽ = ((1,−1)′|(−1, 1)′) and S ∈ {(1, 0), (0, 1)}. We plot
the variation of the fairness in each cluster when we vary the intensity of the interaction
between 0 and 4.4 with steps of size 0.44. There is a steady improvement in fairness
in both clusters until the intensity reaches v0 = 3.52, but from this level, as previously,
there is no more improvement in fairness. Therefore, if a practitioner wants to achieve
the highest level of fairness, v0 = 3.52 should be the proper intensity, since it corresponds
to the smallest perturbation to the geometry that achieves the best observed fairness.
However, a smaller correction in fairness may be of interest, we have a representation of
that top right in Figure 3.1 for v0 = 1.32.

For dissimilarity (3.5), after choosing the interaction matrix Ṽ , we can try to find
a maximum in fairness, fixing a grid formed by different combinations for the vector of
parameters (v0, u, w). In the second and third column of Table 3.2 we see the fairness of
the respective clusters when we look at the grid (1, u, 0.05) with u = 0, 0.098, . . . , 0.98.
What we notice is an improvement in fairness for all values of u, therefore a practitioner
would be advised to select u = 0.98 where we obtain the best fairness values.

3.6 Applications

In this section we provide examples of attraction repulsion clustering. In the first two
subsections we mainly want to describe how attraction-repulsion clustering works and
how it compares to some other fair clustering procedures. The last subsection is a full
example on a non trivial real data set where full tuning of the parameters and selection
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of the best clustering algorithms is provided.

3.6.1 Synthetic data

General example

We generate 50 points from four distributions,

µ1 ∼ N((−1, 0.5), diag(0.25, 0.25)), µ2 ∼ N((−1,−0.5), diag(0.25, 0.25));

µ3 ∼ N((1, 0.5), diag(0.25, 0.25)), µ4 ∼ N((1,−0.5), diag(0.25, 0.25)),

and label the samples from µ1 and µ2 as S = 1 (squares) and the samples from µ3

and µ4 as S = −1 (circles). A representation of the data in the original space is given
in the third column of Figure 3.1. We can think of the data as heavily biased in the
x direction, therefore any sensible clustering procedure is going to have clusters that
are highly homogeneous in the class S when the original coordinates are used. This is
exemplified in Table 3.1, as we look for different number of clusters: with k-means we
are detecting almost pure groups (1st row); the same happens with a complete linkage
hierarchical clustering with the Euclidean distance (5th row) and with Ward’s method
with the Euclidean distance (9th row).

Therefore, it may be useful to apply our procedures to the data to gain diversity in S.
In the first column of Figure 3.1 we study the relation between the gain in fairness from the
increase in intensity of the corrections we apply and the disruption of the geometry of the
original classes after MDS. In the first row we use dissimilarity (3.2), where we fix U = 0,
and we vary V = 0, 0.44, 0.88, . . . , 4.4. In the second row we work with dissimilarity (3.3),
where we fix v = 20 and set u = 0, 0.5, 1, . . . , 5. In the last row we work with dissimilarity
(3.5) fixing V = 1, v = 20, w = 1 and we vary u = 0, 0.099, 0.198, . . . , 0.99. We do not
show results for dissimilarity (3.4), since in this example it gives results very similar to
dissimilarity (3.2). With some abuse of notation, throughout Section 3.6 we will use S
as the name of the protected variable. Squares and circles represent the proportion of
class S = 1 in the two clusters found by k-means after the MDS transformation. Crossed
squares and circles represent the average silhouette index of class S = 1 and class S = −1.
We recall that the silhouette index of an observation Xi is given by

s(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) is the average distance to Xi of the observation in the same group as Xi, and
b(i) is the average distance to Xi of the observations in the closest group different than
the one of Xi (see [Rousseeuw, 1987]). The average silhouette index of a group is the
average of the silhouette indexes of the members of the group and the average silhouette
index is the average of the silhouette indexes of all points.

What we see top-left and middle-left in Figure 3.1 is that greater intensity relates to
greater heterogeneity but also relates to lower silhouette index. This can be interpreted
as the fact that greater intensity in dissimilarities (3.2) and (3.3) has a greater impact
in the geometry of the original problem. In essence, the greater the intensity, the more
indistinguishable S = 1 and S = −1 become after MDS, therefore, any partition with k-
means will result in very diverse clusters in S. By construction this is not what happens
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Figure 3.1: Top row: dissimilarity (3.2). Middle row: dissimilarity (3.3). Bottom row:
dissimilarity (3.5). Left column: proportions of S = 1 in the clusters (squares and circles)
and average silhouette indexes for S = 1 and S = −1 in the transformed space (crossed
squares and circles), for varying input parameters. Middle column: two clusters in the
transformed space for a particular choice of parameters. Right column: same two clusters
in the original space.

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2 −1 0 1 2−
2

−
1

0
1

2

−2 −1 0 1 2

−
1

0
1

2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
1

0
1

2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
1

0
1

2

with dissimilarity (3.5). The strong locality penalty (w = 1) allows to conserve the
geometry, shown by the little reduction in silhouette index (row 3 column 1), but results
in smaller corrections in the proportions.

From the previous discussion, a practitioner interested in imposing fairness, with no
strong requirements on the compactness of clusters in the original geometry should use
high intensity corrections. However, a practitioner interested in gaining some fairness
while still being able to keep most of the original geometry should go for low intensity or
local corrections.

In the rest of Figure 3.1 we show the actual clusters in the MDS embedding obtained
with k-means (column 2) and the same clusters in the original space (column 3), for some
moderate intensities. For dissimilarity (3.2) we take V = 1.32, for (3.3) u = 1 and for
(3.5) we use u = 0.99. A short remark is that a rotation of a MDS is a MDS, and that is
the cause of the rotations that we see in column 2. Indeed, after MDS the geometry of the
groups is not heavily modified, but at the same time some corrections to the proportions
are achieved when clustering. This corrections appear very natural once we return to the
original space.

For the same values as the previous paragraph we present Table 3.1, where we look for
2,3 and 4 clusters with MDS and k-means, but also using the approximation-free complete
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Table 3.1: Proportion of class S = 1 in every group in different clustering procedures.

Proportion of squares in the group
K = 2 K = 3 K = 4

k-means

Unperturbed 0.03 0.99 0.02 0.88 0.98 0.98 1.00 0.06 0.02

MDS
δ1 0.15 0.90 0.11 0.49 0.95 0.75 0.94 0.16 0.14
δ2 0.09 0.96 0.43 0.04 0.97 0.08 0.97 0.85 0.06
δ4 0.13 0.96 0.96 0.05 0.42 0.96 0.11 0.13 0.95

Complete Linkage

Unperturbed 0.99 0.07 0.99 0.08 0.05 0.99 1.00 0.08 0.05
δ1 1.00 0.32 1.00 0.40 0.25 1.00 0.56 0.25 0.00
δ2 0.72 0.22 0.72 0.30 0.00 1.00 0.30 0.24 0.00
δ4 0.78 0.11 1.00 0.43 0.11 1.00 0.43 0.47 0.00

Ward’s Method

Unperturbed 0.99 0.07 0.08 0.05 0.99 0.97 0.08 0.05 1.00
δ1 0.11 0.78 0.54 0.98 0.11 0.54 0.18 0.00 0.98
δ2 0.99 0.18 0.37 0.99 0.03 0.07 0.00 0.37 0.99

linkage hierarchical clustering and our Ward’s-like method. Since we are applying a small
perturbation, we see some, but not a drastic, improvement in the heterogeneity of the
groups. We also see that the more clusters we want the smaller the improvement. We
stress that we are able to produce some improvements in fairness while modifying slightly
the geometry of the data. This is a desirable situation when a lot of relevant information
is codified in the geometry of the data. We also notice that we are able to induce almost
full fairness with a stronger perturbation as shown in the last row of Table 3.3.

Kernel trick example

Let us explore the adaptation of the kernel trick explained in Section 3.4. We consider the
data in the top-left image of Figure 3.2. These data have a particular geometrical shape
and are split into two groups. There is an inside ring of squares, a middle ring of circles,
and then an outer ring of squares. There are 981 observations and the proportions of the
classes are approximately 3 to 1 (circles are 0.246 of the total data).

It is natural to apply to the original data some clustering procedure as k-means or a
robust extension as tclust (deals with groups with different proportions and shapes and
with outliers [Garćıa-Escudero et al., 2008]). Looking for two clusters, we would be far
from capturing the geometry of the groups, but the clusters would have proportions of
the classes that are similar to the total proportion. Indeed, this is what we see in Figure
3.2 middle-left when we apply k-means to the original data.

On the other hand, the kernel trick is convenient in this situation. We propose to
use the kernel function κ(x, y) = x2

1y
2
1 + x2

2y
2
2, which corresponds to a transformation

φ((x1, x2)) = (x2
1, x

2
2). This kernel indeed produces linear separation between the groups.

The data in the transformed space is depicted in the top-right of Figure 3.2. Our adap-
tation to the kernel trick uses dκ as defined in (3.10) and dissimilarity (3.5) in the form

δκ,4((X1, S1), (X2, S2)) =
(
1 + sign(S ′1V S2)u(1− e−v(S′1V S2)2

)e−wdκ(X1,X2)
)
dκ(X1, X2),

(3.13)
for X1, X2 in the original two dimensional space, as described in Section 3.4.
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Table 3.2: Effect of varying the intensity u of the local dissimilarity (3.13), for fixed
V = ((1,−1)′|(−1, 0)′), v = 20 and w = 0.05. First two columns contain the proportion
of points with S = (0, 1) in the clusters found with tclust in the transformed space. Last
two columns show the silhouette of the original classes in the MDS.

u Prop. in cluster 1 Prop. in cluster 2 Silhouette for (0, 1) Silhouette for (1,0)

0.000 0.629 0.950 -0.247 0.502

0.098 0.629 0.950 -0.245 0.502

0.196 0.629 0.950 -0.243 0.499

0.294 0.630 0.948 -0.241 0.495

0.392 0.631 0.945 -0.239 0.491

0.490 0.631 0.943 -0.237 0.486

0.588 0.631 0.943 -0.235 0.481

0.686 0.631 0.943 -0.234 0.476

0.784 0.630 0.946 -0.232 0.471

0.882 0.672 0.863 -0.231 0.467

0.980 0.681 0.849 -0.229 0.465

Taking into account the discussion at the end of Section 3.2 and Section 3.5 we use
dissimilarity (3.13) with S1, S2 ∈ {(1, 0), (0, 1)}. In our setting circles are labelled as
(1, 0) and squares as (0, 1). Now if we fix u = 0, use (3.13) to calculate the dissimilarity
matrix ∆ and use MDS, essentially, we will be in the space depicted top-right on Figure
3.2. Looking for two clusters with tclust, allowing groups with different sizes, we get the
result depicted middle-right in Figure 3.2. We have captured the geometry of the clusters
but the proportions of the class S are not the best, as seen in row 1 columns 2 and 3
of Table 3.2 (ideally they should be close to 0.754). In order to gain diversity in what
is referred as cluster 2 in Table 3.2 (in red in the plots), we vary the intensity u of our
local dissimilarity, with the other parameters set as indicated in Table 3.2. We see that
as we increase the intensity of the interactions we gain in heterogeneity in cluster 2, and
both proportions come closer to the total proportion 0.754 (columns 2-3). Again, this is
achieved without destroying the geometry of the original classes after the MDS, as seen
in the small variation of the average silhouette index in columns 4-5.

We plot the best performance, given by u = 0.98, after MDS in bottom-left and in the
original space in bottom-right of Figure 3.2. It is clear that we have been able to capture
the geometry of the groups and to produce relatively fair clusters.

3.6.2 Comparison with fair clustering through fairlets

In this section we present a comparison of the results of our methods with results ob-
tained by implementing, in Python and R, the fair clustering procedure introduced in
[Chierichetti et al., 2017] based on fairlets decomposition. Since our examples are con-
cerned with two values for the protected class it is justified to use [Chierichetti et al.,
2017] for comparison since it is well suited for this situation. Our implementation of the
case when the size of both protected classes is the same, which reduces to an assignment
problem, is implemented using the function max bipartite matching of the package igraph
in R. In the case of different sizes, we have to solve a min cost flow problem as stated
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Figure 3.2: Top row: data in the original space (left) and after transformation φ (right).
Middle row: k-means in the original space (left) and tclust applied in the transformed
space and plotted in the original one (right). Bottom row: tclust after fairnes corrections
applied in the transformed space (left) and represented in the original space (right).
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Table 3.3: Rows 1-7 are implementations of fair clustering with fairlets while the last row
is k-median clustering after using δ1, with (U = 0, V = 4.4), and MDS embedding.

balance Average Silhouette K-median Objective
Assignement Problem 1 -0.0043 462.5843

(2,∞) 1 -0.0064 468.8754
(2, 2.416589) 1 -0.0010 471.2754

(3,∞) 1 -0.0021 465.7702
(3, 2.416589) 1 -0.0035 468.3651

(4,∞) 1 -0.0048 465.8894
(4, 2.416589) 1 -0.0009 464.3114

Attraction-repulsion 0.8929 0.2007 440.1799

in [Chierichetti et al., 2017], which can be done in Python with the function min cost flow
of the package networkx (also it can be solved with a min cost flow solver in ortools).

We recall that the balance of a set X of points that are labelled black or red is defined
as

balance(X) = min

(
#Black

#Red
,

#Red

#Black

)
and the balance of C, a clustering of the data in X, is given by

balance(C) = min
C∈C

balance(C).

When implemented as a min cost flow problem, Chierichietti’s et al. methodology has two
free parameters, t′ and τ . First, 1/t′ ≤ balance(C) ≤ balance(X) and hence t′ controls the
lower bound of the fairness of the partition. Second, τ is a free parameter that controls
something similar to the locality that we have mentioned previously, and has a defined
lower limit given by the maximal minimal distance between points of the two original
classes.

We start with the data used for the example studied in Figure 3.1. We will address
k-median clustering for which [Chierichetti et al., 2017] has a fair implementation. Since
the data has two groups of the same size we can solve an assignment problem or use a min
cost flow problem. For the min cost flow problem we have the set of parameters {(t′, τ)}
with t′ = 2, 3, 4 and τ = ∞, 2.416589. Values for τ represent no locality and maximum
locality. As comparison we will use k-median clustering after perturbing the data with δ1

with parameters (U = 0, V = 4.4) and doing and MDS embedding. Results are shown in
Table 3.3. Since the data is into one to one correspondence between the two classes, both
the alignment solution and the different min cost flow solutions give balance = 1, hence
total fairness is achieved. Our method gives balance close to 1, but does not achieve total
fairness. However, the average silhouette index of our method is higher, which means that
clusters are more identifiable and compact and the k-median objective function is also
lower, and hence better. A plot of some of the different clusterings can be seen in Figure
3.3.

Our next comparison is for the data used in Figure 3.2. We stress that for fairlets we
are working with the data after the k-trick transformation, i.e., the data shown top-right
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Figure 3.3: Left: clusters obtained by fair k-median as an assignment problem(
[Chierichetti et al., 2017]). Middle: clusters obtained by fair k-median as min cost flow
problem with t′ = 4, τ = 2.416589( [Chierichetti et al., 2017]). Right: clusters obtained
by attraction-repulsion clustering with dissimilarity (3.2) and MDS, using k-median.
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Figure 3.4: Left: clustering obtained using fair k-median as min cost flow problem with
t′ = 4, τ = 19.62385( [Chierichetti et al., 2017]).
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in Figure 3.2, and therefore results are comparable with attraction-repulsion clustering in
the k-trick setting. Results are shown in Table 3.4. We see that consistently the fair k-
madian implementation gives balance values very close to 241/740 ≈ 0.3257, hence giving
great approximation to fairness. Our method, gives a lower balance value, hence groups
are more unfair, but as we see from the silhouette and k-median objective function values,
the groups are more identifiable and more compact. Even more, comparing middle-right
of Figure 3.2 and left of Figure 3.4, we see that our procedure is even able to capture the
underlying geometry of the data.

Our last comparison is on a real data set known as the Ricci dataset, consisting of
scores in an oral and a written exam of 118 firefighters, where the sensitive attribute is the
race of the individual. This dataset was a part of the case Ricci v. DeStefano presented
before the Supreme Court of the United States.

For applying our attraction-repulsion clustering we codify white individuals as S = 1
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Table 3.4: Rows 1-6 are implementations of fair clustering with fairlets as a min cost flow
problem with different parameters. Last row is a tclust clustering after using δ4, with
(u = 0.98, v = 20, w = 0.05, V = ((1,−1)′|(−1, 0)′), and MDS embedding.

balance Average Silhouette K-median Objective
(4,∞) 0.3163 0.0265 14613.74

(4, 19.62385) 0.3253 0.0685 14975.96
(5,∞) 0.3220 0.0359 14819.47

(5, 19.62385) 0.3016 0.0636 14854.99
(6,∞) 0.3049 0.0257 14683.25

(6, 19.62385) 0.2991 0.0511 14792.05
Attraction-repulsion 0.1890 0.3957 6751.01

Table 3.5: Rows 1-8 are implementations of fair clustering with fairlets as a min cost flow
problem with different parameters. Rows 9-10 are the best results we have obtained with
attraction-repulsion clustering. Last row represents the values for a k-means clustering in
the original data.

k = 2 k = 4
balance Aver. Silhouette K-median Objec. balance Aver. Silhouette K-median Objec.

(2,∞) 0.7353 0.0118 4060.61 0.5882 -0.0448 4038.87
(2, 18.61958) 0.7073 0.2081 3683.90 0.6667 0.0559 3658.68

(3,∞) 0.6818 0.0652 3881.94 0.6552 -0.0420 4170.90
(3, 18.61958) 0.6818 0.1673 3546.61 0.6250 0.0633 3437.27

(4,∞) 0.6500 0.0705 3949.70 0.6522 -0.0560 4160.95
(4, 18.61958) 0.7000 0.1626 3590.71 0.6429 0.0740 3547.68

(5,∞) 0.6744 0.0594 3922.27 0.6842 -0.0527 3836.52
(5, 18.61958) 0.6154 0.2254 3475.19 0.5625 0.0593 3470.53
A-R Ward 0.6129 0.2948 3866.83 0.3571 0.2847 3356.86

A-R Kmeans 0.5238 0.3961 3420.14 0.4783 0.2863 3123.96
Kmeans 0.3409 0.4215 3265.82 0.1111 0.3912 2988.61

and black and hispanic individuals as S = −1. The appropriate parameters for the
dissimilarities are chosen to give a good performance (after a grid search as suggested in
Section 3.5). The best results are obtained with our adaptation of Ward’s method with
δ2 and parameters (u = 3.125, v = 10) and k-means after applying δ1, with parameters
(U = 0, V = 500), and a MDS embedding. Results are given in Table 3.5. We generally
see that again the balance given by using fairlets is higher than the one obtained with our
procedures. However, we see that our procedures produce more identifiable and compact
clusters. As a remark, we see that both procedures achieve a nice improvement in fairness
compared to the k-means solution in its non fair version.

A plot of some of the clusterings can be seen in Figure 3.5. Visually it is quite clear why
the average silhouette index is higher in the attraction-repulsion clustering than in the
fair k-median. It also clarifies what we mean by more identifiable and compact clusters.
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Figure 3.5: First row: k-means for 2 and 4 clusters in the unperturbed (original) data.
Second row: k-means for 2 and 4 clusters in the MDS setting with δ1. Third row: Ward’s
method for 2 and 4 clusters with δ2. Forth row: fair k-median as in [Chierichetti et al.,
2017] with t′ = 5, τ = 18.61958 for 2 and 4 clusters. Circles represent not white individu-
als; squares represent white individuals.

40 50 60 70 80 90

50
60

70
80

90

Oral

W
rit

te
n

40 50 60 70 80 90

50
60

70
80

90

Oral

W
rit

te
n

40 50 60 70 80 90

50
60

70
80

90

Oral

W
rit

te
n

40 50 60 70 80 90

50
60

70
80

90

Oral

W
rit

te
n

40 50 60 70 80 90

50
60

70
80

90

Oral

W
rit

te
n

40 50 60 70 80 90

50
60

70
80

90

Oral

W
rit

te
n

40 50 60 70 80 90

50
60

70
80

90

40 50 60 70 80 90

50
60

70
80

90



3.6. APPLICATIONS 113

Figure 3.6: Left: location of schools in the state of New Jersey. Right: mds-embedding
of the straight-line distances between the schools.

3.6.3 Civil Rights Data Collection

In this section we are going to apply our procedure to the Schools Civil Rights Data
Collection (CRDC) for the year 2015-2016 which is available for download in the following
link https://ocrdata.ed.gov/DownloadDataFile. In particular we are going to work with
the data for entry, middle level and high schools in the state of New Jersey.

From the CRDC data we can collect the number of students in each school that
belong to six distinct categories: Hispanic, American Indian/Alaska Native, Asian, Native
Hawaiian/Pacific Islander, Black, White. An entry of our dataset looks like this.

LEA_STATE_NAME LEAID SCH_NAME hispanic native_american asian pacific_islander black

53559 NEW JERSEY 3400004 Chatham High School 46 0 106 2 19

53560 NEW JERSEY 3400004 Chatham Middle School 52 0 91 0 7

53561 NEW JERSEY 3400004 Lafayette Avenue School 28 0 70 0 4

53562 NEW JERSEY 3400004 Milton Avenue School 19 0 37 0 0

53563 NEW JERSEY 3400004 Washington Avenue School 31 0 34 0 0

53564 NEW JERSEY 3400004 Southern Boulevard School 25 0 58 0 4

white total hispanic_frac native_american_frac asian_frac black_frack pacific_islander_frac white_frac

53559 1021 1204 0.03820598 0 0.08803987 0.015780731 0.00166113 0.8480066

53560 877 1052 0.04942966 0 0.08650190 0.006653992 0.00000000 0.8336502

53561 526 647 0.04327666 0 0.10819165 0.006182380 0.00000000 0.8129830

53562 274 355 0.05352113 0 0.10422535 0.000000000 0.00000000 0.7718310

53563 337 427 0.07259953 0 0.07962529 0.000000000 0.00000000 0.7892272

53564 349 461 0.05422993 0 0.12581345 0.008676790 0.00000000 0.7570499

Additionally, using geolocate of the package ggmap in R we are able to extract latitude
and longitude coordinates of the schools in New Jersey. Hence we have a precise location
for the schools and can calculate distances in a straight line between them. A plot of the
locations can be seen in Figure 3.6.
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A relevant problem in public management is how to group schools in districts in order
to improve decision making. This is a typical problem in governance, whit a famous
example being electoral districts (constituencies) in the USA.

Usually districts are made mainly taking into account geographical and political infor-
mation. Hence, we can fall into disparate impact decisions which is undesirable. However,
imposing total fairness seems to be inadequate since geographical information is very rel-
evant. Therefore, we think that our methodology can be successfully applied to this type
of problems. In the following we present our results.

First let us state that the total proportion of students with respect to race is

pt = (0.242309362, 0.001795377, 0.098752930, 0.002761563, 0.160439062, 0.474144492).

Let C be a clustering of the schools into K clusters, therefore we have K districts and for
each, 1 ≤ k ≤ K, there is an associated proportions vector pk. A simple measure for the
unfairness of a partition is

unfairness(C) =
1

K

K∑
k=1

‖pk − pt‖,

where ‖ · − · ‖ denotes the usual Euclidean distance. Notice that unfairnes(C) = 0 means
that the partition is completely fair with respect to the disparate impact doctrine.

Recall that the average silhuette index can be seen as a measure of the compactness of
the clusters in a partition. Hence our methodology is to use attraction-repulsion clustering
where tuning is done over a mesh of distinct parameters, and the best parameters are
those that give the lowest unfairness while keeping the average silhuette index over some
treshold τ . In this way we impose the maximum improvement in fairness while keeping
part of the geographical information codified by the distance. This procedure can be seen
in Algorithm 7.

Codification of the protected attributes in this case is straight forward, it is just
the number of students of the school in each category. Hence Catham High School has
SC.H.S. = (46, 0, 106, 2, 19, 1021). We want to stress that another easy possibility is to use
proportions with respect to the total number of students, i.e. (0.03820598, 0, 0.08803987,
0.015780731, 0.00166113, 0.8480066).

Selecting the grid or mesh of parameters for the different dissimilarities is an impor-
tant task. For some of them, δ2 and δ3, it is mainly an analytical task of selecting the
best values. However, in proposing candidates for V in δ1 and δ4 we can use available
information as we will see below. In this example we will concentrate on δ1, δ2 and δ4.
As hierarchical clustering methods, since we only have distances between schools, we will
use complete, average and single linkage. Trough a MDS embedding we will use k-means.
Hence, cluster.methods = (complete, average, single, k-means) in Algorithm 7.

The grid we use for δ2 in Algorithm 7 is formed by parameters = {(u, v)} with u =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and v = 0.1, 0.3, 0.5, 0.7, 0.9, 1,
3.25, 5.57.75, 10.

As we stated previously, for proposing values for V = v0Ṽ in δ1 and δ4 we are going to
use some a priori information that can be corroborated by the data. The most numerous
minorities are the Hispanic, Asian and Black communities. Even more, it is well known
that poor neighbourhoods have higher concentration of minorities, and therefore schools
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Algorithm 7 Tuning

Input: data, cluster.methods, δi, parameters, τ

1: for cluster.method in cluster.methods do
2: D ← distance matrix computed using unprotected attributes in data.
3: for parameter in parameters do
4: ∆ ← dissimilarity matrix computed using δi, parameter and entries of pro-

tected and unprotected attributes in data
5: if cluster.method = k-means then
6: X ← MDS embedding using ∆
7: end if
8: C ← clustering using cluster.method
9: U ← unfairnes(C)

10: aS ← average silhouette index for C using D.
11: end for
12: param.values ← all respective touples (U, aS) for the different parameter values
13: best.parameter ← parameter corresponding to the entry in param.values such that

aS ≥ τ and with lowest U .
14: end for

Output: best parameter for dissimilarity δi for each clustering method.

in those areas should be representative of that. Hence, this is a major source of unfairness
in a mainly geographical clustering of the schools. Since white students are the majority,
values of the proportion for the previously mentioned minorities and white students will
affect the most our unfairness index. Hence we should thrive to achieve mixing in precisely
these groups. Our first three proposals are variations of schemes that should improve
mixing in the above mentioned communities.

Ṽ =

{
1 −1 −1 −1 −1 −1
0 0 0 0 0 0
−1 −1 1 −1 −1 −1
0 0 0 0 0 0
−1 −1 −1 −1 1 −1
0 0 0 0 0 1

 ,


1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
−1 −1 −1 −1 1 −1
0 0 0 0 0 1

 ,


1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 −1 −1 −1 1 −1
0 0 0 0 0 1

 ,


1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1

 ,


1 0 0 0 0 0
−1 1 −1 −1 −1 −1
0 0 1 0 0 0
−1 −1 −1 1 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1

 ,


0 0 0 0 0 0
−1 1 −1 −1 −1 −1
0 0 0 0 0 0
−1 −1 −1 1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0


}
.

The forth proposal is the obvious one, which tries to produce mixing in all communities.
The fifth and sixth proposals try to impose mixing mainly for the smallest minorities
American Indians/Alaska Natives and Native Hawaiians/ Pacific Islanders.

Now we can define the values we will use for the input parameters in Algorithm 7.
For δ1 we have parameters = {(U, v0, V

′)} where U = 06×6, v0 = 0.001, 0.002, 0.003, 0.004,
0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1 and V ′ ∈ Ṽ . For δ4 another parameter that can incorporate a
priori information is w, which in this case tells us how strong should be the influ-
ence between schools that are further apart. For the local dissimilarity δ4 we pro-
pose to use parameters = {(u, v, w, V )} such that u = 0.5, 2, 8, v = 0.1, 1, 10, w =
0.1, 0.5, 0.9, 1, 5.5, 10 and V ∈ Ṽ .
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Figure 3.7: Continuous lines represent unfairness while dashed lines represent average
silhouette index. The clustering methods are complete linkage in black, k-means in red,
single linkage in green and average linkage in blue. Top row is for the unperturbed case
while bottom row is for δ1. The x label indicates the number of clusters which goes from
2 to 15. We stress that single linkage with δ1, green line in bottom row, does not achieve
τ > 0 for k ≥ 9.
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Before showing results for the attraction-repulsion procedures we will cluster the data
without taking into account race information, hence only geographical distance is of im-
portance. From the top row of Figure 3.7 we can say that k-means is giving the best
performance since it has the lowest unfairness index and a reasonably high average sil-
houette index. We stress that the k-means procedure is done in the MDS embedding
shown on the right in Figure 3.6. In the left column of Figure 3.9 we can see k-means
clustering for 5 and 11 clusters. We clearly see that spatial proximity is the driving force
of the clustering. The values of unfairness and average silhouette index are respectively
(0.1260654, 0.421962) and (0.2065493, 0.4167931).

In order to apply our attraction-repulsion clustering as shown in Algorithm 7 we need
to fix the silhouette bound. To do this we take τ = 0, and hence we are not imposing
very strong compactness criteria, recall that the silhouette index varies between -1 and 1,
but we still want clusters to be relatively compact. In this way we are making a trade-of
between reduction in unfairness and spatial coherence. In Figure 3.8 we see the effects
of the different best parameters for dissimilarities δ1, δ2 and δ4 for k-means and complete
linkage clustering. Generally we see that δ1 (in red) is the dissimilarity that produces
the strongest reduction in unfairness (solid line) and of course this is on behalf of a
reduction in average silhouette index (dashed line). Also as expected a local dissimilarity
as δ4 (blue) brings only a modest reduction of unfairness but maintains a high spatial
coherence. Hence, if we want to slightly gerrymander districts to improve fairness while
maintaining a very high geographical coherence we should use δ4. On the other hand, if
we want the maximum unfairness reduction achievable with our procedure we should use
δ1.

In order to decide which clustering method is the best we use the bottom row of Figure
3.7. There we see that for attracction-repulsion clustering using δ1, k-means (red) and
complete linkage (black) produce similar reduction in unfairness while k-means keeps a rel-
atively higher average silhouette index. Therefore in this case k-means with perturbation
δ1 and a MDS embedding seems to be the best procedure.

In Figure 3.9 we can see a visual comparison between k-means clustering in the different
situations. The best parameters for the dissimilarities in the cases we have shown are the
following

params(Cδ45 ) =

2, 1, 10,


1 −1 −1 −1 −1 −1
0 0 0 0 0 0
−1 −1 1 −1 −1 −1
0 0 0 0 0 0
−1 −1 −1 −1 1 −1
0 0 0 0 0 1



 , params(Cδ411 ) =

2, 0.1, 1,


1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
−1 −1 −1 −1 1 −1
0 0 0 0 0 1



 ,

params(Cδ15 ) =

06×6, 0.03,


1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1



 , params(Cδ111 ) =

06×6, 0.07,


1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1



 .

What we see is that the matrices V that we introduced on an intuitive bases using a priori
information work very well. Hence real world intuitions are compatible with our model.
In the case of the parameters for δ1 again what we expected from intuition is seen, i.e., in
order to reduce unfairness for a bigger number of clusters it is necessary to use a stronger
perturbation (a higher value for v0). In the plots we clearly see the behaviour we have
previously mentioned. The local dissimilarity δ4 does a sort of positive gerrymandering
while δ1 imposes a stronger reduction in unfairness and hence alters significantly the
clustering results.
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Figure 3.8: Continuous lines represent unfairness while dashed lines represent average
silhouette index. Top we have k-means and bottom complete linkage clustering. In black
we have the unperturbed situation, in red we have the best δ1 perturbation, in green the
best δ2 and in blue we have δ4. The x label indicates the number of clusters which goes
from 2 to 15.

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6



3.6. APPLICATIONS 119

Figure 3.9: Results of k-means clustering, top row looking for 5 clusters and bottom
row looking for 11. Left: unperturbed situation. Middle: δ4 perturbation and MDS
embedding. Right: δ1 perturbation and MDS embedding.
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4
A stability heuristic for selecting the
number of clusters

4.1 Introduction

We have seen in several instances of this work that in statistical practice one often faces
the problem of dividing a dataset {y1, . . . , yn} ⊂ Rp into disjoint groups, i.e, one faces
the problem of clustering a dataset. Immediately, the next two questions that pop into
the interested persons mind are: what clustering method should I use and how many
groups are really in my data. Hence, that person has arrived to the the two fundamental
problems in cluster analysis. As it is often the case with fundamental problems, many
different answers and procedures have been proposed for both questions. An extensive
compilation of different clustering and cluster number selection procedures can be found
in [Hennig et al., 2015].

Probably the most popular way of doing clustering is known as k-means clustering.
That is, we are looking for a partition of the data, {y1, . . . , yn}, into k disjoint sets
{C1, . . . , Ck} that minimize the objective function

k∑
i=1

∑
y∈Ci

‖y − µi‖2 (4.1)

where µi is the mean of the points in Ci. k-means is present in many popular software
packages and as mentioned in [Hennig et al., 2015], “the algorithm is appealing in many
aspects. It is computationally easy, fast, and memory-efficient. Conceptually, this method
may be considered a model for the cognitive process of making a data-conditioned typol-
ogy. Also, it has nice mathematical properties.”

However, it is less well known that there are some populational results about the
solution of the k-means problem. Let Y be a random variable, then the populational
k-means problem can be written as

arg min
µj∈Rp,1≤j≤k

E min
1≤l≤k

‖Y − µl‖2. (4.2)

Analitical solutions for problem (4.2), called principal points, were first given in [Flury,
1990] for Y following an elliptical distribution, with k = 2 and for general dimension
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p. In [Tarpey et al., 1995] it was shown that principal points are a special case of what
is called self-consistent points. Results on principal points for general k for univariate
distributions can be found in [Zoppè, 1995,Mizuta, 1998].

We stress that solutions of (4.1) are estimators of the solutions of (4.2) if we assume
that {y1, . . . , yn} is an i.i.d. sample coming from Y . Of course, solutions of the later
are usually unknown and that is why we need approximation algorithms. However, it is
quite striking that solutions, analytical or coming from a numerical solution of a system
of equations, are available for such a hard problem. In this chapter we propose solutions
for the populational problem (we will also call them principal points) for another popular
clustering algorithm.

Model based clustering assumes that the data {y1, . . . , yn} comes from a random
variable that is a mixture of some family of distributions, the most popular family be-
ing the Gaussian. Hence, the data come from a random variable Y whose density is
f(y) =

∑K
k=1 pkfk(y) where {pk}Kk=1 are weights and {fk}Kk=1 are density functions be-

longing to a certain family. From now on, we will assume that we are in a Gaussian
family. There are two popular approaches to model based clustering, called respectively
mixture and classification maximum likelihood (see [McLachlan, 1982]), from now on
referred as mml and cml.

In mml the objective function to be maximized is

n∑
i=1

log

(
K∑
k=1

pkϕ(yi; θk)

)
(4.3)

over the parameters pk and θk, where θk are the parameters for the multivariate normal
density ϕ. In contrast, in cml one looks to maximize

K∑
k=1

∑
y∈Ck

log (pkϕ(y; θk)) =

K∑
k=1

∑
y∈Ck

(
log

pk
(2π)p/2

− (y −mk)
′S−1
k (y −mk)

2
− 1

2
log |Sk|

)
(4.4)

over a partition of the data {C1, . . . , CK} and the parameters pk and θk = (mk, Sk). Our
interest will be in the cml version of model based clustering. Recall that if S1 = · · · = Sk =
Ip×p and p1 = · · · = pK then maximizing (4.4) is the same as minimizing (4.1). Hence
with cml we have freedom in the elliptical shapes of the clusters, while with k-means
sphericity is imposed.

It is interesting to notice that cml is inconsistent (see [Bryant and Williamson, 1978])
in the sense of estimating the true mixture parameters. That is, if the true distribution of
the data is a mixture, the parameters given by the cml procedure may not converge to the
true parameters. However, it is consistent for the true maximizer of the objective function
(again, see [Bryant and Williamson, 1978]). Even more, since we will be concerned only
with classification and not with estimation of the mixture parameters this should not be
a relevant concern.
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Our main objective in this chapter is to justify a conjecture and a subsequent heuristic
procedure. In section 4.2, we present a conjecture on the solutions to the restricted
population cml problem

argmax
(mk,Sk),1≤k≤K

Emax logϕ(Y ;mk, Sk) (4.5)

when Y ∼ N(µ,Σ), with µ ∈ Rp and Σ a covariance matrix in Rp×p, for general K and p.
We stress that it is the restricted cml problem, since weights are equal for all the groups
and are not a relevant part of the optimization problem. This problem can be understood
as an extended k-means where any elliptical shape can be used for the distributions. It
is quite shocking that solutions for a problem with so many degrees of freedom seem to
be achievable by solving a system of K − 1 non-linear equations.

From Conjecture 4.1 in Section 4.2 and the results in [Flury, 1990,Tarpey et al., 1995]
we can infer that solutions of (4.5) and solutions of (4.2) behave very differently. In
particular, see Figure 4.3, principal points for the restricted cml are more unstable (in a
certain sense specified later) than principal points for k-means. This behaviour will be
useful for determining the number of clusters of restricted cml using stability criteria as
shown in Section 4.4.

Stability concerns can be intuitively justified by the question “If we cluster data from
a new sample from the same DGP [data generating process], how likely are we getting
a similar partition as the current one?” (see [Hennig et al., 2015]). Since, in practice
the DGP is unknown we have to resort to resampling techniques such as bootstrapping
or sub-sampling. In this way we may take different sub-samples of the original data, do
a clustering procedure on them and compare the different partitions via some clustering
similarity criteria. If the clusterings are similar this means that at least we are detecting
stable structures in the data. Hence when some instability appears we may say that
something has went wrong. This is, loosely speaking, the intuition behind stability used
for detecting the optimal number of clusters.

Stability can be measured in a global sense, comparing different partitions between
them, or locally, meaning that we compare how stable are clusters individually. We will
be interested in the later version since it makes more sense in view of Conjecture 4.1.
In Section 4.4 we introduce our second main result, a procedure for cluster-wise stability
measurement based on the Wasserstein k-barycenters (see (14)). The advantage of this
procedure is that it is well suited for model based clustering and that it can be used
for partitions coming from different data in a straight forward fashion. We see that our
method is competitive with state of the art cluster-wise stability procedures in a synthetic
study.

4.2 Behaviour of the solutions of the restricted cml

problem

In this section we are interested in providing a solution for problem (4.5). That is, we want
to find vectors {mk}Kk=1 ∈ Rp and covariance matrices {Sk}Kk=1 ∈ Rp×p that maximize the
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objective function

Emax

log
e
−D2(Y,m1,S1)

2

(2π)p/2|S1|1/2
, . . . , log

e
−D2(Y,mK,SK )

2

(2π)p/2|SK |1/2

 (4.6)

where D2(y,mk, Sk) = (y−mk)
′S−1
k (y−mk) is the squared Mahalanobis distance and |Sk|

is the usual notation for the determinant of a matrix Sk. As before, we refer to problem
(4.6) as (the population version of) the restricted (since cluster weights are equal and
hence omitted) cml problem.

It is straightforward that an equivalent formulation of the problem is

max
(mk,Sk),1≤k≤K

Emax

(
−D

2(Y,mk, Sk)

2
− 1

2
log |Sk|

)
and therefore we may concentrate on

min
(mk,Sk),1≤k≤K

Emin
(
D2(Y,mk, Sk) + log |Sk|

)
.

Taking Y = Σ1/2Z + µ and Z = (Z1, . . . , Zp)
′ ∼ N(0, I), where I is the identity matrix of

dimension p, we can rewrite the expectation as

Emin

(
D2
(
Z,Σ−1/2(m1 − µ),Σ−1/2S1Σ−1/2

)
+ log |Σ−1/2S1Σ−1/2|, . . . ,

D2
(
Z,Σ−1/2(mK − µ),Σ−1/2SKΣ−1/2

)
+ log |Σ−1/2SKΣ−1/2|

)
− log |Σ−1|.

The previous results imply that we may restrict ourselves to solving

argmin
(mk,Sk),1≤k≤K

Emin
(
D2(Z,mk, Sk) + log |Sk|

)
(4.7)

with Z = (Z1, . . . , Zp)
′ ∼ N(0, I).

A useful reformulation of the problem is the following. Let us define

G(m1, S1, . . . ,mK , SK) = Emin
(
D2(z,m1, S1) + log |S1|, . . . , D2(z,mK , SK) + log |SK |

)
(4.8)

and the regions

Rk =
{
z ∈ Rp : D2(z,mk, Sk) + log |Sk| ≤ D2(z,mj, Sj) + log |Sj|,∀j 6= k, 1 ≤ j ≤ K

}
.

We have

GR(m1, S1, . . . ,mK , SK) =
K∑
k=1

(
EIRk(Z)D2(Z,mk, Sk) + log |Sk|EIRk(Z)

)
=

K∑
k=1

(
P (Rk)ED

2(Xk,mk, Sk) + log |Sk|P (Rk)
)

=
K∑
k=1

P (Rk)
(
ED2(Xk,mk, Sk) + log |Sk|

)
(4.9)
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where Xk ∼ Z|Rk.
In order to use a well known result, let us write ED2(Xk,mk, Sk) = tk for some tk > 0,

then we have

E(Xk −mk)
′
(
tk
p
Sk

)−1

(Xk −mk) = p. (4.10)

From [Grübel, 1988] we know that the pair (mk,
t
p
Sk) that fulfils (4.10) and achieves

the minimum determinant is the pair (EXk,Cov(Xk)). For short, we write Cov(Xk) =
ΣXk . Therefore Sk = p

tk
ΣXk has the minimum determinant when ED2(Xk,mk, Sk) = tk.

Furthermore, we have

tk + log

∣∣∣∣ ptkΣXk

∣∣∣∣ = tk + p log
p

tk
+ log |ΣXk | ≥ p+ log |ΣXk | (4.11)

since tk/p+ log(p/tk)− 1 ≥ 0 for p/tk ≥ 0. From the fact that ED2(Xk, EXk,ΣXk) = p,
inequality (4.11) implies that the minimum of the objective function (4.9), for fixed re-
gions {Rk}Kk=1, is achieved on ((m1, S1), . . . , (mK , SK)) = ((EX1,ΣX1), . . . , (EXK ,ΣXK )).
Hence we introduce

GR,m = GR(EX1,ΣX1 , . . . , EXK ,ΣXK ) = p+
K∑
k=1

P (Rk) log |ΣXk | (4.12)

whit GR,m ≤ GR. Hence, the reformulation in terms of regions has been quite useful
allowing us to obtain minimizers for fixed sets of regions.

Another useful relation can be obtained in the case where K = 2. From the equality
EZ = P (R1)EX1 + P (Rc

1)EX2, we obtain that EX2 = −P (R1)
P (Rc1)

EX1. Furthermore,

EZiZj = P (R1)Cov(X1i, X1j)+P (Rc
1)Cov(X2i, X2j)+P (R1)EX1iEX1j+P (Rc

1)EX2iEX2j,

and we can write

ΣZ = I = P (R1)ΣX1 + P (Rc
1)ΣX2 + P (R1)EX1(EX1)′ + P (Rc

1)EX2(EX2)′. (4.13)

From this we obtain an useful relation (that will be used in the next section), just
taking traces on both sides of (4.13), where we use q = P (R1) to simplify notation,

qtr(ΣX1) + (1− q)tr(ΣX2) = p− ‖EX1‖2 q

1− q
. (4.14)

From the discussion above, solving the population restricted cml problem (4.7) is
equivalent to finding and adequate partition of the space Rp given by {R∗k}Kk=1 that mini-
mizes (4.12). However, for now, let us turn to a slightly simpler problem whose relevance
will be shown later.

Let us focus on the real line R and fix the regions {Rk}Kk=1 as Rk = [ck−1, ck] ⊂ R for
k = 1, . . . , K where c0 = −∞ < c1 < · · · < cK−1 < cK = ∞. In this setting, minimizing
(4.9) is the same as minimizing

H(c1, . . . , cK−1) =
K∑
k=1

qk log σ2
k
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where

qk =

∫ ck

ck−1

ϕ(x)dx, Ak =

∫ ck

ck−1

x2ϕ(x)dx, Bk =

∫ ck

ck−1

xϕ(x)dx (4.15)

and

µk =
Bk

qk
and σ2

k =
Ak
qk
− µ2

k. (4.16)

Since we are interested in a minimum, the following system of equations is pertinent

∂ckH = 0 for 1 ≤ k ≤ K − 1.

Taking partial derivatives and after some cumbersome calculations we arrive at the fol-
lowing system of equations

∂ckH = ϕ(ck)

(
1

σ2
k

(ck − µk)2 − 1

σ2
k+1

(ck − µk+1)2 + log
σ2
k

σ2
k+1

)
= 0 for 1 ≤ k ≤ K − 1.

(4.17)
Now we have everything to introduce our main result, which is given as a conjecture.

Conjecture 4.1. Let {c∗1, . . . , c∗K−1} be a solution of the system (4.17) with corresponding
µ∗k and σ2

k
∗
, given by (4.15) and (4.16), for k = 1, . . . , K. Let u be an unitary vector

indicating a direction in Rp. Let B = {u, u⊥} be a basis of Rp, where u⊥ is an orthonormal
basis of the orthogonal complement of u.

We have that {(m∗k, S∗k)}Kk=1 given by

m∗k = µ∗k(1, 0, . . . , 0)′, S∗k = diag(σ2
k
∗
, 1, . . . , 1)

are a solution for (4.7) in the basis B. Hence, in the standard basis for Rp, the regions,
{R∗k}Kk=1, minimizing (4.9) are delimited by K − 1 hyperplanes orthogonal to u which
contain respectively the points c∗ku.

If we call B the change of basis matrix associated with B, we have that the solutions
of the problem (4.6), written in the standard basis of Rp are

m∗k = µ∗kΣ
1/2u+ µ, S∗k = Σ1/2Bdiag(σ2

k
∗
, 1, . . . , 1)Σ1/2.

In words, Conjecture 4.1 means that the solution of the general problem (4.6) reduces
to that of problem (4.7). Even more, problem (4.7) reduces essentially to solving a problem
in the real line given by (4.17). It is remarkable that for any dimension p, any direction
u and any number of clusters K ≥ 2 there are always K points, {m∗1, . . . ,m∗K}, that lie
along u and are solutions for the restricted cml problem. This is in sharp contrast with
the case of principal points when the distribution of Y is not a standard normal. We
think that this is a result of the extra freedom of choosing covariance matrices in the cml
problem compared to the k-means problem.

Let us see our conjecture at work. We start with Figure 4.1, where we are in R2

with Y ∼ N(0, I2×2) and we take a sample of 2 × 105 points. We are going to look for
k = 2, 6, 10, 15 clusters and use tclust in order to obtain a local optimum for the empirical
restricted cml problem. The centers of the clusters obtained by tclust are shown as red
points. Since Conjecture 4.1 indicates that the centers should lie on a line with separation
given by appropriate ellipses (circles) we draw them in blue. Indeed, what we see is that
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Figure 4.1: Behaviour of the centers m∗k, for k = 2, 6, 10, 15, obtained by tclust (in red)
with respect to the prediction of Conjecture 4.1 (in blue). The underlying distribution is
N(0, I2×2) and we draw a sample of size 2× 105 depicted in gray.
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the empirical solutions, in red, lie on an approximately straight lines with separation that
is very close to the theoretical one, given in blue.

We recall that the solution given by tclust is an estimator of the population restricted
cml problem, so we should expect that convergence depends on the number of sample
points, on the dimension of the space and on the number of clusters. Our numerical
experiments clearly reflect this. We see in Figure 4.1 that for k = 2, 6 solutions are
extremely close to the behaviour described in our conjecture, while for k = 10, 15 they
are slightly further.

Dimension effects are studied in Figure 4.2. Here we are in R3 with Y ∼ N(0, I3×3)
and again a sample of 2× 105 points. Once again, we see that tclust solutions are a good
estimate of the theoretical solutions for k = 6, 10, however they seem to be worst estimates
than for the same case in two dimensions. Even more in 2d the estimates become quite
bad (do not lie on an almost straight line) around k = 20 while in 3d this happens around
k = 16. For 2 × 105 points coming from Y ∼ N(0, I6×6) estimates become bad around
k = 6. As usual, an increase in the sample size allows to observe the expected behaviour
for a bigger number of clusters.

We have previously mentioned that Conjecture 4.1 and the results on principal points
in [Flury, 1990, Tarpey et al., 1995] imply that behaviour of restricted cml and k-means
should be very different. We have a glimpse on that difference in Figure 4.3. We are
going to look for k = 2, 3, 4 clusters with tclust and k-means in 60 different samples of 104

points drawn from a N(0, diag(22, 1)) (left column) and N(0, diag(32, 1)) (right column)
respectively. In green we have the centers of the clusters given by k-means and in red the
centers given by tclust. In blue is shown the prediction of Conjecture 4.1. First, let us
recall how close the empirical estimate, i.e., the results from tclust, are to the theoretical
predictions, and how we clearly appreciate that centers are lying on different directions.
Even more, we see that there is a much bigger instability present in the solutions of
restricted cml that the one present in the solutions of k-means. This will be in the heart
of our stability procedure for determining the number of clusters that we will present in
Section 4.4. But for now, let us explore some ideas for a possible prove of Conjecture 4.1
in the next section.

4.3 Thoughts on proving the one-dimensional case

for k = 2

In this section we provide some insights on our attempts at proving Conjecture 4.1 in the
one-dimensional case (p = 1) when looking for k = 2 clusters. First let us stress that we
think that the approach followed by Flury in [Flury, 1990] to produce the principal points
for k = 2 and general dimension is not applicable for the restricted cml problem. This is
due to the change in geometry produced by the scalar product being dependent on the
covariance matrices. Second, we think that methods provided in [Zoppè, 1995] for finding
principal points in the one dimensional case but for general k are also not suitable for the
restricted cml problem. Indeed, this methods rely on a particular parametrization which
in turn relies on Euclidean geometry of the k-means problem, which is not the geometry
of the cml problem.

Hence a first approach for handling Conjecture 4.1 is to start with the simplest case
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Figure 4.2: Behaviour of the centers m∗k, for k = 6, 10, obtained by tclust (in red) with
respect to the prediction of Conjecture 4.1 (in blue). The underlying distribution is
N(0, I3×3) and we draw a sample of size 2× 105.
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Figure 4.3: Comparison of the behaviour of restricted cml and kmeans centers, in red
and green respectively, for k = 2, 3, 4. In blue we have the predicted cml behaviour given
by Conjecture 4.1. Left column corresponds to 60 samples of 104 points taken from a
N(0, diag(22, 1)) and the right column to 60 samples from a N(0, diag(32, 1)). In gray is
shown a particular sample for reference.
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and try to do the necessary calculations. Hence we will fix p = 1 and k = 2. We stress
that solving the corresponding problem for k-means is fairly simple. The discussion bellow
may be an indication of the cml problem being more involved than the k-means problem.

Since in the one-dimensional problem and for k = 2 the optimal region R1 in (4.7)
must be of type (a, b) or a complement of it (and then R2 = RC

1 is of the last type), we
can equivalently focus on the functional

H̃(a, b) = min
µ1,µ2,σ2

1 ,σ
2
2

E
[( (X−µ1)2

σ2
1

+ log σ2
1

)
I(a,b)(X) +

( (X−µ2)2

σ2
2

+ log σ2
2

)
I(a,b)C (X)

]
for −∞ ≤ a ≤ b ≤ ∞. Once the region R1 is fixed, the optimal location and scale
parameters are the conditional mean and variance. This means that H̃(a, b) = 1+H(a, b)
with

H(a, b) = (Φ(b)− Φ(a)) log σ2
(a,b) + (1− Φ(b) + Φ(a)) log σ2

(a,b)C ,

σ2
(a,b) =

1

Φ(b)− Φ(a)

∫ b

a

x2ϕ(x)dx−
( 1

Φ(b)− Φ(a)

∫ b

a

xϕ(x)dx
)2

,

σ2
(a,b)C =

1

1− Φ(b) + Φ(a)

(
1−

∫ b

a

x2ϕ(x)dx
)
−
( −1

1− Φ(b) + Φ(a)

∫ b

a

xϕ(x)dx
)2

.

We define now

A(a, b) =

∫ b

a

x2ϕ(x)dx, B(a, b) =

∫ b

a

xϕ(x)dx, q(a, b) = Φ(b)− Φ(a).

Then
H(a, b) = q(a, b) log σ2

1(a, b) + (1− q(a, b)) log σ2
2(a, b),

with

σ2
1(a, b) = A(a,b)

q(a,b)
−
(
B(a,b)
q(a,b)

)2

, σ2
2(a, b) = 1−A(a,b)

1−q(a,b) −
(

B(a,b)
1−q(a,b)

)2

.

From now on, for simplicity, we omit the explicit dependence of a and b. Taking partial
derivatives and after some algebra we get

∂aH = log(
σ2

1

σ2
2

)∂aq +
q

σ2
1

∂aσ
2
1 +

1− q
σ2

2

∂aσ
2
2

= ϕ(a)

(
(a+ B

1−q )
2

σ2
2

−
(a− B

q
)2

σ2
1

− log(
σ2

1

σ2
2

)

)
(4.18)

∂bH = log(
σ2

1

σ2
2

)∂bq +
q

σ2
1

∂bσ
2
1 +

1− q
σ2

2

∂bσ
2
2

= ϕ(b)

(
log(

σ2
1

σ2
2

) +
(b− B

q
)2

σ2
1

−
(b+ B

1−q )
2

σ2
2

)
(4.19)

Suppose that we are out of the region −∞ < a < b <∞, hence we are in the boundary.
The boundary consists of points where a = b or (a, b) = (−∞,∞) which have the same
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value for H and are easy to handle taking limits in H. The other boundary points are
of the type (a, b) = (−∞, b) with −∞ < b < ∞, hence, (4.17) is a necessary condition
for the minimum of H if it exists. The case when (a, b) = (a,∞) with −∞ < a < ∞ is
equivalent to the previous. If we are able to prove that ∂aH = 0 = ∂bH is never fulfilled
in −∞ < a < b <∞, then only the boundary is relevant for extreme points. This is what
we attempt below.

For any −∞ < a < b < ∞ we have that 0 < ϕ(a) and 0 < ϕ(b). Hence from (4.18)
and (4.19) we get that ∂aH = 0 and ∂bH = 0 if and only if

(a+ B
1−q )

2

σ2
2

−
(a− B

q
)2

σ2
1

− log(
σ2

1

σ2
2

) = 0 (4.20)

log(
σ2

1

σ2
2

) +
(b− B

q
)2

σ2
1

−
(b+ B

1−q )
2

σ2
2

= 0 (4.21)

Therefore it follows that

(a+ B
1−q )

2

σ2
2

−
(a− B

q
)2

σ2
1

= −
(b− B

q
)2

σ2
1

+
(b+ B

1−q )
2

σ2
2

(b− a)(b+ a)− 2(b− a)B
q

σ2
1

=
(b− a)(b+ a) + 2(b− a) B

1−q

σ2
2

and since a < b we have that

a+b
2
− B

q

σ2
1

=

a+b
2

+ B
1−q

σ2
2

. (4.22)

Hence (4.22) is a necessary, but not sufficient, condition for an extreme point. With
some more algebra we have

a+ b

2
(σ2

2 − σ2
1) = B

(
σ2

2

q
+

σ2
1

1− q

)
=

B

q(1− q)
((1− q)σ2

2 + qσ2
1). (4.23)

But we also have the relation that comes from (4.14)

qσ2
1 + (1− q)σ2

2 = 1− B2

q(1− q)
.

This leads to σ2
2 = 1

1−q

(
1− B2

q(1−q)

)
− q

1−qσ
2
1. Therefore substituting in (4.23) and after

some manipulation we get(
a+ b

2
− B

q

)
1

1− q

(
1− B2

q(1− q)

)
=
a+ b

2

1

1− q
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1.

Since 0 < q < 1 we get that

σ2
1 =

a+b
2
− B

q

a+b
2

(
1− B2

q(1− q)

)
=

(
1− 2B

q(a+ b)

)(
1− B2

q(1− q)

)
, (4.24)
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and

σ2
2 =

(
1

1− q
− q

1− q

a+b
2
− B

q

a+b
2

)(
1− B2

q(1− q)

)
=

(1− q)a+b
2

+B

(1− q)a+b
2

(
1− B2

q(1− q)

)
=

(
1 +

2B

(1− q)(a+ b)

)(
1− B2

q(1− q)

)
.

If we substitute these values in (4.20) we get (a+ B
1−q )

2(
a+b

2
+ B

1−q

) − (a− B
q

)2(
a+b

2
− B

q

)
 a+b

2(
1− B2

q(1−q)

) − log

(
a+b

2
− B

q

a+b
2

+ B
1−q

)
= 0. (4.25)

If this equation has no solutions we would have proven that there is no local extrema
in −∞ < a < b < ∞. Sadly for our purposes this is not the case, i.e., equation (4.25)
has solutions, since it can be shown that it changes signs. Therefore we need to show
that solutions of (4.25) give a σ2

1, obtained using (4.24), that contradicts the fact that
σ2

1 = A/q − (B/q)2. However this requires solving multiple difficult implicit equations.
Therefore this path seems to be inappropriate for achieving an analytical conclusion.
Nonetheless, we can check it for any particular solution of (4.25) obtained numerically.

Another possibility is to use a different parametrization given by a = m−h, b = m+h
where m ∈ [−∞,∞] and h ∈ [0,∞]. A plot of H(m,h) can be seen in Figure 4.4. From
that plot we see that H(m0, h) seems to have a single minimum point h∗m0

for any fixed
m0, but that H is decreasing in the direction given by two nearby minima. That is H is
decreasing in the direction given by the points (m0, h

∗
m0

) and (m0+ε, h∗m0+ε) for ε > 0 small
enough. Therefore it seems that there are no local minima, and that limm→∞H(m,m)
and limm→∞H(−m,m) are the absolute minima. However, proving this seems to involve
the same type of implicit equations that we have discussed above.

With the previous discussion we hope that we have convinced the reader that proving
Conjecture 4.1 is no joke even in the simplest case. We will delay further attempts on
the prove for future work and we invite anyone interested in attacking the problem to do
so. However in the next section we provide useful applications of the behaviour of the
solutions for the restricted cml problem.

4.4 A heuristic for k based on cluster-wise stability

A result of a model based clustering procedure can be characterized as a collection
{(p1, ν1), . . . , (pK , νK)} where {pk}Kk=1 are weights and {νk}Kk=1 are probability measures
associated with each cluster. It is common to have a collection of different clusterings for
the same K, as a result of using resampling techniques, of using different data sources
or of using a parallelization scheme. Hence a collection, {Ci}Ni=1 = {{νi1, . . . , νiK}}Ni=1, is
available, where we omit the weight information. Let us pool all distributions together
to obtain C = {νi}KNi=1 , and calculate the Wasserstein K-barycenter (recall (12) and (14)),
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Figure 4.4: Plot of H(m,h).

{ν̄k}Kk=1, for the collection C. We also recall that associated to the barycenter there is a
partition of C into K groups, {Sk}Kk=1. If the partitions Ci were similar to each other, we
should expect that distributions in each cluster, Sk, are similar to each other. Hence they
should be similar to the “center” of the cluster ν̄k. This idea gives us a natural measure
of how similar are the distributions in a cluster with respect to the central element

V l
k =

1

|Sk|
∑
ν∈Sk

W l
2(ν, ν̄k). (4.26)

Recall, that this measure reduces to the mean within-cluster sum of squares in the case of
l = 2 and k-means if we consider the result of the clustering procedure to be the collection
{( 1

K
, δµk)}Kk=1 with {µk}Kk=1 the centers returned by k-means.
We propose to use V l

k as a measure of the stability of cluster k. Hence {V l
k}Kk=1 will

reflect the stability of all the clusters when we look for K groups. Therefore we propose
the following scheme for cluster-wise stability assessment:

• Obtain a collection of distributions {Ci}Ni=1 = {{νi1, . . . , νiK}}Ni=1 from the respective
model based clustering results {{(pik, νik)}Kk=1}Ni=1. This can be done by sub-sampling
or bootstrapping a data set and then clustering. By clustering different sources of
data that are modelled to come from the same generating mechanism. In the rare
cases when the generating mechanism is known by sampling from it and clustering.

• Pool together all distributions in {Ci}Ni=1 to obtain C = {νi}KNi=1 . Then obtain the
K-barycenter of C, {ν̄k}Kk=1.
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• For each 1 ≤ k ≤ K take V l
k as the stability measure for cluster k.

Inspiration for this procedures comes from the behaviour shown in Conjecture 4.1.
Indeed with our procedure we should capture the instability that arises when we divide
a solid cluster into several clusters. However the logic of our scheme is not limited to
restricted cml clustering and can be used in any model based clustering procedure, or
even in combinations of different model based clustering procedures.

For comparison we use the sub-sampling version of the procedure introduced in [Hen-
nig, 2007]. For a data set {yi}Mi=1 ⊂ Rp we obtain N sub-samples of size m that we denote
Y1, . . . , YN . A clustering of the original data set will be denoted as CY = {CY,k}Kk=1 and
of the sub-samples as CYi = {CYi,k}Kk=1 with CY,k, CYi,k′ ⊂ {yi}Mi=1. The maximum Jaccard
agreement for cluster k (in CY ) in the clustering CYi was defined as

sik = max
1≤k′≤K

|CY,k ∩ CYi,k′|
|CY,k ∪ CYi,k′|

.

Then the mean value

sk =
1

N

N∑
i=1

sik

is the stability indicator for cluster CY,k.
For a study of the behaviour of our procedure we will use the following setting. For

simplicity and visualization purposes we will be in R2. Clusters will come from bivariate
normal distributions with respective parameters

θ1 =

(
(−r, 0),

(
22 0
0 1

))
, θ2 =

(
(2r, 0),

(
2 0.8

0.8 1

))
,

θ3 =

(
(0, 1.5r),

(
1 0
0 1.52

))
, θ4 =

(
(0,−2.5r),

(
1 0.5

0.5 2

))
.

We will study two different cases, a very favourable one with r = 9 and a less favourable
one with r = 3. We sample n1 = 0.3×8000, n2 = 0.5×8000, n3 = 0.7×8000 and n4 = 8000
points respectively from each normal distribution and obtain a sample {yi}2×104

i=1 . The
samples for both values of r are shown in Figure 4.5. We take 60 sub-samples of size
16000 to obtain Y1, . . . , Y60. For each sub-sample we look for K = 2, 3, 4, 5, 6, 7, 8 clusters
with five different clustering procedures: k-means, restricted cml, cml, robust cml (see
(2.3)) and mclust ( [Scrucca et al., 2016]) which solves the mml problem (4.3). For each
clustering procedure and each K we calculate {sk}Kk=1 and {V 1

k }Kk=1. We choose V 1
k since

it is more sensitive to small variations in stability. The results for the case r = 9 are
depicted in Figure 4.6 and for the case r = 3 in Figure 4.7.

In order to get a clear understanding of the results shown below we are going to analyse
the particular case of cml clustering in Figure 4.6, i.e., second and forth row left. In the x
axes we have the clusters labels, i.e., when we look for K = 2 clusters we have labels 1 and
2, when we look for K = 3 we have labels 1, 2 and 3 and so on. From the plot, K = 2, 3, 4
(black, red, green) are extremely stable giving sk values of 1 (second row left) and V 1

k

close to 0 (forth row left). However stability decreases greatly when K = 5, 6, 7, 8 (blue,
cyan, magenta yellow) which is depicted as a noticeable decrease in sk and a noticeable
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Figure 4.5: Data in the very favourable case r = 9 (left) and in the less favourable case
r = 3 (right)
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increase in V 1
k . Hence, from a stability point of view it makes sense to choose K = 4

as the optimal number of clusters. We stress that visual representations like Figure 4.6
and 4.7 are compact summaries of information. For example, Figure 4.8 represents the
information contained in Table 4.1.

Another thing to notice is that cml clustering (also robust cml and mclust) can return
empty clusters, that is why the magenta line, corresponding to K = 7 (second row left in
Figure 4.6), only goes to six clusters. This is handled in a straightforward fashion for sk.
When using V 1

k we select for the number K of clusters in the K-barycenter the majority
vote from the sub-samples, i.e. the clustering procedure has produced a list {Kj}60

j=1 of
the number of clusters found in the respective sub-samples and we take K as the majority
vote in that list. This explains why some lines end before they are supposed to. This
itself is an indication that the number of clusters is smaller than the value we ask for that
is provided by the original methods.

Now we should be able to extract several general conclusions from Figures 4.6 and 4.7.
We see that both methods give very comparable results, for each type of clustering and
for both studied cases. In fact, both methods detect that the optimal number of clusters
with respect to stability is K = 4 (the correct one), for all methods except k-means.
This makes complete sense since the results on principal points mentioned before (see
also Figure 4.3) imply that overdivision of clusters should be very stable in the k-means
case. This is extremely clear when looking at the first and third row left in Figure 4.7.
Another interesting fact is that robust cml, i.e., what tclust was introduced for, with only
5% trimming is able to automatically detect that there are 5 or less clusters.

We think that the main strengths of our methodology are: the fact that we do not
need to cluster the complete original sample, which sometimes can be computationally
demanding, and the fact that implementation is straightforward even when different sam-
ples do not share any points. The last point usually requires some adaptation for standard
criteria, however it does not make any difference for our methodology.
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Figure 4.6: Results for r = 9. First two rows correspond to values of sk, last two rows to
values of V 1

k . From left to right the clustering algorithms are: k-means, restricted cml,
cml, robust cml and mclust. For K = 2, 3, 4, 5, 6, 7, 8 we have respectively the colours
black, red, green, blue, cyan, magenta and yellow.
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Figure 4.7: Results for r = 3. First two rows correspond to values of sk, last two rows to
values of V 1

k . From left to right the clustering algorithms are: k-means, restricted cml,
cml, robust cml and mclust. For K = 2, 3, 4, 5, 6, 7, 8 we have respectively the colours
black, red, green, blue, cyan, magenta and yellow.
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Figure 4.8: Results for r = 9 of the values of V 1
k when drawing independent samples.

From left to right the clustering algorithms are: k-means, restricted cml, cml, robust cml
and mclust. For K = 2, 3, 4, 5, 6, 7, 8 we have respectively the colours black, red, green,
blue, cyan, magenta and yellow.

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0



140 CHAPTER 4. STABILITY HEURISTIC FOR THE NUMBER OF CLUSTERS

To show this last point at work we draw 60 independent samples of 16000 points each
with each cluster in the same proportion and coming from the same distribution as in our
previous example (fixing r = 9). The implementation of our procedure does not change
at all, and we give the results in Figure 4.8 and Table 4.1.

Results are very consistent with what we have obtained previously with sub-sampling.
Indeed our procedure captures that from a stability point of view K = 4 is the best option
for all methods except k-means. This can be seen both in the plots of Figure 4.8 or in
the values from which we have obtained these plots represented in Table 4.1.

All previous results suggest that cluster-wise stability is an important criteria for
choosing the appropriate number of clusters in a model based clustering procedure. We
also see that our methodology is very well suited for this kind of clustering and that it
provides results competitive with a state of the art procedure.
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Table 4.1: Results of V 1
k for r = 9 and 60 independent samples.

K k-means
2 0.0150 0.0221
3 0.0221 0.0254 0.0349
4 0.0205 0.0349 0.0221 0.0482
5 0.0349 0.0482 0.0272 0.0205 0.0242
6 0.0242 0.0270 0.0482 0.0349 0.0272 0.0293
7 0.0332 1.0099 1.1861 0.0268 0.0291 0.0237 0.0510
8 0.0412 0.3378 0.0295 1.3586 0.0269 0.3104 0.2944 0.0757
K restricted cml
2 0.0303 0.0346
3 0.0271 0.0291 0.0462
4 0.0664 0.0405 0.0291 0.0271
5 0.4351 0.0664 0.0405 0.0271 0.4462
6 0.0664 0.7512 0.0405 0.0271 0.7993 0.7429
7 0.7995 0.0664 0.8654 0.0405 0.6539 0.7369 0.8164
8 0.0405 0.5613 0.0664 0.7143 0.6917 0.6314 0.7637 0.7353
K cml
2 0.0346 0.0278
3 0.0410 0.0291 0.0400
4 0.0405 0.0664 0.0271 0.0291
5 1.7551 1.1819 1.9802 2.3092 0.0271
6 0.9947 2.4048 1.9467 1.1717 1.4838 2.5749
7 1.8658 1.1715 3.3650 1.0363 2.5498 0.4975 1.5761
8 2.1112 1.4105 2.3760 1.7603 1.3048 1.8129 2.5374
K robust cml
2 0.0483 0.0691
3 0.0633 0.0290 0.0430
4 0.0286 0.1103 0.0319 0.0465
5 0.0464 0.8366 0.8639 0.1099
6 0.0000 0.0285 1.3196 0.0466 0.0318
7 1.4460 0.0000 0.0285 0.0322 0.0454
8 0.0284 1.1086 0.0461 1.2416 0.1104
K mclust
2 0.0344 0.0291
3 0.0405 0.0291 0.0346
4 0.0664 0.0291 0.0405 0.0271
5 0.0291 0.1569 0.2228 0.0271 0.9842
6 0.2142 1.5346 0.1793 0.0271 0.0000 0.0000
7 0.2866 0.2362 0.0000 0.0800 0.3622 0.3677 0.6834
8 0.2411 0.7151 0.0271 0.2514 0.4239 0.1729 0.0000 0.2217
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Conclusion (English)

Throughout Chapter 1 of this thesis we showed that the Kolmogorov distance, the credi-
bility index bounds and the tK-index of fit, provide an intuitive and easy to understand
comparison between models. The Kolmogorov distance between a contamination model
and a generator gives a straightforward way of comparing accepted or rejected models
and, further, allows the use of the other two indexes in the case of rejection. The credi-
bility index bounds provide a summary of which model is closest to the data and give an
idea of the region in which the model agrees well with the data. The tK-index of fit pro-
vides a single summary that can be widely used and can have attached some informative
tolerance region. The procedure we have followed to calculate the normal family tolerance
region can be more or less directly extended to other absolutely continuous distributions.
We have also provided an efficient algorithm for computing dK(F0, Rα(Fn)) which makes
possible the implementation of all the previous procedures.

With these tools we elaborate on the idea that rejecting a model does not mean
that the model is useless. Our testing procedure and asymptotic results allow different
applications of this idea. As showed in our toy example in Section 1.6, we can use them
to assess how some known generating mechanism produces data compatible with some
fixed model when we allow some “small” contamination. In this way we may obtain some
useful (hopefully simpler or faster to implement) generators for some range of sample
sizes. These tools allow also to compare different data sets, from unknown generators, to
a contamination model and rank how well the model agrees with the data.

Future work can be the extension of some of the results to a general dimension. Achiev-
ing an algorithm for the computation of a suitable multidimensional version of the trimmed
Kolmogorov distance would be a very beautiful and useful result. However both of these
problems are difficult due to the nature of the Kolmogorov distance.

Chapter 2 presents a methodology based on clustering of clusterings, supervised clas-
sification methods and the Wasserstein distance between probabilities to classify a new
sample when a database of classified data has big intrinsic variability. We have built a
freely available R package called optimalFlow to implement our methodology with the
special focus on Flow Cytometry analysis.

Working with real data in collaboration with the Cancer Research Center in Salamanca
we have obtained state of the art precision when using our methods to classify new data.
Even more, an useful by-product of our method is the obtention of artificial prototypes
for groups of similar cytometries. These prototypes can be used as a reference point for
comparing different cytometries and hence allow to detect atypical behaviour. Another
useful application can be to reduce the size of a databases since only prototypes can be
used for classification.
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As future work we would like to apply our methodology to a variety of data obtained
from fields where conditions are similar to the ones present in Flow Cytometry. This
should be a validation of the fact that our methodology is quite general. We are also
working in some Bayesian techniques that we think should be competitive in the field of
Flow Cytometry but also in general.

In Chapter 3 we have consider the problem of clustering data taking into account
an extra variable S which models some sensible information such as age, sex, race. A
so-called fair clustering means that the cluster labels should not enable any inference on
the values of S, hence promoting clusters which are not homogeneous with respect to the
values of S. We have considered an algorithm based on attraction-repulsion dissimilarities,
which offers some advantages over previous methods dealing with proportion constrained
clustering approaches.

First, our method is flexible in the sense that it is possible to vary the amount of
fairness we impose on the clusters and to consider the trade-off between fairness and the
geometrical structure of the original data. Furthermore, the method is extremely simple to
implement, something shared with the methods proposed in [Chierichetti et al., 2017], but
not being the case for the other algorithms implementing fair clustering procedures that
have been mentioned previously. For instance, we may use any clustering algorithm, since
we are not restricted to clustering algorithms that minimize an objective function of some
distance. In particular, this allows the use of hierarchical clustering. As a consequence,
this method of fair clustering can be extended to the case of non Euclidean data, opening
the field of applications for this method. For instance, fairness corrections can be included
when clustering probability distributions or some other objects that present geometrical
shapes. This can be achieved by replacing the squared euclidean distance ‖X1 −X2‖ in
dissimilarities (3.2) - (3.5) with an appropriate distance for the objects involved.

Finally, from a practitioners point of view it should be straightforward to use and easy
to program with standard tools as R or Python as provided in https://github.com/

JMLToulouse/FairLearning.

The field of fair learning and particularly fair clustering is very young and hence there
are many opportunities for novel future work. We think that this field will be a bright
star in the machine learning universe for many years to come.

In the last chapter of this thesis we have presented some of the results of a work in
progress. We had set our minds on achieving the ambitious goal of proving the existence
of populational solutions for a popular mixture model based clustering procedure. At the
time of writing these lines we still have a long way to go to fully achieve this goal.

However, we think that we have discovered the behaviour of the solutions of the
restricted classification maximum likelihood problem in some particular conditions and
we have presented it as Conjecture 4.1. We think that a similar behaviour should be
generalizable to elliptical distributions but this goes out of the scope of the present work.
We have provided several numerical examples that support our conjecture. It is also
remarkable how the behaviour of restricted cml and of k-means is very different in the
same conditions.

Inspired by the behaviour of restricted cml and based on Wasserstein k-barycenters
we have proposed a cluster-wise stability measure tailor made for model based clustering
procedures. We have shown that our measure is compatible with other state of the
art measures and that it can be used to obtain the optimal number of clusters in a

https://github.com/JMLToulouse/FairLearning
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straightforward fashion.
The challenges that lay ahead are clear, to try to prove Conjecture 4.1 and to apply

our methods successfully to meaningful real data examples.
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Conclusión (Castellano)

A lo largo del Caṕıtulo 1 de esta tesis hemos mostrado que la distancia de Kolmogorov, las
cotas para el ı́ndice de credibilidad y el ı́ndice de ajuste tK proporcionan una comparación
intuitiva y fácil de entender entre modelos. La distancia de Kolmogorov entre un modelo
de contaminación y un generador ofrece una forma sencilla de comparar modelos acepta-
dos o rechazados y, además, permite el uso de los otros dos ı́ndices en caso de rechazo.
Las cotas para el ı́ndice de credibilidad proporcionan un resumen en cuanto a que modelo
es el más cercano a los datos y dan una idea de la región en la que el modelo concuerda
bien con los datos. El ı́ndice de ajuste tK proporciona un único valor resumen que puede
ser ampliamente utilizado y puede tener asociada alguna región de tolerancia informa-
tiva. El procedimiento que hemos seguido para calcular la región de tolerancia para la
familia normal puede extenderse más o menos directamente a otras distribuciones abso-
lutamente continuas. También hemos proporcionado un algoritmo eficiente para calcular
dK(F0, Rα(Fn)) que hace posible la aplicación de todos los procedimientos anteriores.

Con estas herramientas profundizamos en la idea de que rechazar un modelo no sig-
nifica que el modelo sea inútil. Nuestro procedimiento de contraste y nuestros resultados
asintóticos permiten diferentes aplicaciones de esta idea. Al igual que en el ejemplo de
juguete en la Sección 1.6, podemos usarlos para evaluar cómo algún mecanismo de ge-
neración conocido produce datos compatibles con algún modelo fijo cuando permitimos
alguna contaminación “pequeña”. De esta manera podemos obtener algunos generadores
útiles (posiblemente más sencillos o más rápidos de implementar) para algún rango de
tamaños de muestra. Estas herramientas permiten comparar diferentes conjuntos de
datos, procedentes de generadores desconocidos, a un modelo de contaminación, y pro-
porciona una jerarqúıa de como de bien el modelo concuerda con los distintos datos.

El trabajo futuro puede consistir en la extensión de algunos de los resultados a una
dimensión general. Lograr un algoritmo para el cálculo de una versión adecuada de la
distancia de Kolmogorov recortada en dimensión general seŕıa un resultado muy bonito
y útil. Sin embargo, ambos problemas son dif́ıciles debido a la naturaleza de la distancia
de Kolmogorov.

El caṕıtulo 2 presenta una metodoloǵıa basada en el clustering de particiones, en
métodos de clasificación supervisada y en la distancia de Wasserstein entre probabili-
dades para clasificar una nueva muestra cuando una base de datos de muestras clasificada
tiene una gran variabilidad intŕınseca. Hemos construido un paquete de R disponible gra-
tuitamente llamado optimalFlow para implementar nuestra metodoloǵıa con un enfoque
especial en el análisis de Citometŕıas de Flujo.

Trabajando con datos reales en colaboración con el Centro de Investigación del Cáncer
de Salamanca hemos obtenido una precisión de última generación a la hora de utilizar
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nuestros métodos para clasificar nuevos datos. Además, un subproducto útil de nuestro
método es la obtención de prototipos artificiales para grupos de citometŕıas similares.
Estos prototipos pueden ser utilizados como punto de referencia para comparar diferentes
citometŕıas y, por lo tanto, permiten detectar comportamientos at́ıpicos. Otra aplicación
útil puede ser reducir el tamaño de las bases de datos, ya que sólo se utilizaŕıan los
prototipos para la clasificación.

Como trabajo futuro nos gustaŕıa aplicar nuestra metodoloǵıa a una variedad de datos
obtenidos de campos donde las condiciones son similares a las presentes en la citometŕıa
de flujo. Esto debeŕıa ser una validación del hecho de que nuestra metodoloǵıa es bastante
general. También estamos trabajando en algunas técnicas Bayesianas que creemos que
debeŕıan ser competitivas en el campo de la citometŕıa de flujo, pero también en problemas
más generales.

En el Caṕıtulo 3 hemos considerado el problema de agrupar los datos teniendo en
cuenta una variable extra S que modela alguna información sensible como la edad, el
sexo, la raza. La llamada partición justa requiere que las etiquetas de los clusters no de-
beŕıan permitir ninguna inferencia sobre los valores de S, promoviendo aśı agrupaciones
que no son homogéneas con respecto a los valores de S. Hemos considerado un algo-
ritmo basado en disimilaridades de atracción-repulsión, que ofrece algunas ventajas sobre
métodos anteriores basados en métodos de clustering con restricciones en las proporciones.

En primer lugar, nuestro método es flexible en el sentido de que es posible controlar la
cantidad de justicia que imponemos a los clusters y considerar un equilibrio entre la justicia
y la estructura geométrica de los datos originales. Además, el método es extremadamente
simple de implementar, algo compartido con los métodos propuestos en [Chierichetti et al.,
2017], pero no es el caso de los otros algoritmos que implementan procedimientos de
clustering justo que se han mencionado anteriormente. Por ejemplo, podemos utilizar
cualquier algoritmo de clustering, ya que no estamos limitados a algoritmos de clustering
que minimicen una función objetiva de cierta distancia. En particular, esto permite el
uso de clustering jerárquico. En consecuencia, este método de agrupación equitativa
puede extenderse al caso de datos no viven en el espacio Eucĺıdeo, abriendo el campo
de aplicación de este método. Por ejemplo, las correcciones de equidad pueden incluirse
al agrupar distribuciones de probabilidad o algunos otros objetos que presentan formas
geométricas. Esto puede lograrse reemplazando la distancia Eucĺıdea ‖X1 − X2‖ en las
disimilaridades (3.2) - (3.5) por una distancia apropiada para los objetos involucrados.

Por último, desde el punto de vista de los usuarios, debeŕıa ser sencillo de usar y fácil
de programar con herramientas estándar como R o Python, como se indica en https:

//github.com/JMLToulouse/FairLearning.

El campo del aprendizaje justo y, en particular, del clustering justo es muy joven y,
por lo tanto, existen muchas oportunidades para un trabajo futuro novedoso. Creemos
que este campo será una estrella brillante en el universo del machine learning durante
muchos años.

En el último caṕıtulo de esta tesis hemos presentado algunos de los resultados de un
trabajo en progreso. Nos hab́ıamos propuesto alcanzar el ambicioso objetivo de probar la
existencia de soluciones poblacionales para un procedimiento de clustering popular basado
en un modelo de mezcla. En el momento de escribir estas ĺıneas todav́ıa nos queda un
largo camino por recorrer para alcanzar plenamente este objetivo.

Sin embargo, creemos que hemos descubierto el comportamiento de las soluciones del

https://github.com/JMLToulouse/FairLearning
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problema restringido de máxima verosimilitud de clasificación en algunas condiciones par-
ticulares y lo hemos presentado como la Conjetura 4.1. Pensamos que un comportamiento
similar debeŕıa ser generalizable a distribuciones eĺıpticas, pero esto se sale del alcance
del presente trabajo. Hemos proporcionado varios ejemplos numéricos que apoyan nues-
tra conjetura. También es notable cómo el comportamiento del cml restringido y de las
k-medias es muy diferente en las mismas condiciones.

Inspirados por el comportamiento de los cml restringidos y basados en los k-baricentros
de Wasserstein, hemos propuesto una medida de estabilidad de clústeres hecha a medida
para los procedimientos de clústering basados en modelos. Hemos demostrado que nuestra
medida es compatible con otras medidas de última generación y que se puede utilizar para
obtener el número óptimo de clústers de forma sencilla.

Los retos que tenemos por delante son claros, tratar de probar la Conjetura 4.1 y
aplicar nuestros métodos con éxito a ejemplos de datos reales y significativos.
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[Grübel, 1988] Grübel, R. (1988). A minimal characterization of the covariance matrix.
Metrika, 39:49–52.

[Hardt et al., 2016] Hardt, M., Price, E., Srebro, N., et al. (2016). Equality of opportunity
in supervised learning. In Advances in neural information processing systems, pages
3315–3323.



BIBLIOGRAPHY 155

[Hennig, 2007] Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computa-
tional Statistics and Data Analysis, 52:258–271.

[Hennig et al., 2015] Hennig, C., Meila, M., Murtagh, F., and Rocci, R. (2015). Handbook
of Cluster Analysis. CRC Press.

[Hodges and Lehmann, 1954] Hodges, J. and Lehmann, E. (1954). Testing the approxi-
mate validity of statistical hypotheses. J. R. Statist. Soc. B, 16(2):261–268.

[Hsiao et al., 2016] Hsiao, C., Liu, M., Stanton, R., McGee, M., Qian, Y., and Scheuer-
mann, R. (2016). Mapping cell populations in flow cytometry data for cross-sample
comparison using the friedman-rafsky test statistic as a distance measure. Cytometry
A, 89:71–88.

[Huber, 1964] Huber, P. J. (1964). Robust estimation of a location parameter. Ann.
Math. Statist., 35:73–101.

[Kehrenberg et al., 2018] Kehrenberg, T., Chen, Z., and Quadrianto, N. (2018). Inter-
pretable fairness via target labels in gaussian process models. arXiv:1810.05598v2.

[Kuhn, 1995] Kuhn, H. (1995). The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97.

[Lance and Williams, 1967] Lance, G. and Williams, W. (1967). A General Theory of
Classificatory Sorting Strategies: 1. Hierarchical Systems. The Computer Journal,
9(4):373–380.

[Li et al., 2017] Li, H., Shaham, U., Stanton, K., Yao, Y., Montgomery, R., and Kluger,
Y. (2017). Gating mass cytometry data by deep learning. Bioinformatics, 33:3423–3430.

[Lindsay and Liu, 2009] Lindsay, B. and Liu, J. (2009). Building and using semiparamet-
ric tolerance regions for parametric multinomial models. Ann. Statist., 37:3644–3659.

[Liu and Lindsay, 2009] Liu, J. and Lindsay, B. (2009). Model assessment tools for a
model false world. Stat. Science, 24:303–318.

[Lo et al., 2008] Lo, K., Brinkman, R., and Gottardo, R. (2008). Automated gating of
flow cytometry data via robust model-based clustering. Cytometry A, 73:321–332.

[Lo et al., 2009] Lo, K., Hahne, F., Brinkman, R., and Gottardo, R. (2009). flowclust:
a bioconductor package for automated gating of flow cytometry data. BMC Bioinfor-
matics, 10:145.

[Lum and Johndrow, 2016] Lum, K. and Johndrow, J. (2016). A statistical framework
for fair predictive algorithms. arXiv:1610.08077L.

[Lux et al., 2018] Lux, M., Brinkman, R., Chauve, C., Laing, A., Lorenc, A., Abeler-
Dörner, L., and Hammer, B. (2018). flowlearn: fast and precise identification and
quality checking of cell populations in flow cytometry. Bioinformatics, 34:2245–2253.



156 BIBLIOGRAPHY

[Massart, 1990] Massart, P. (1990). The tight constant in the dvoretzky-kiefer-wilfowitz
inequality. Ann. Prob., 24:303–318.

[McLachlan, 1982] McLachlan, J. (1982). The classification and mixture maximum like-
lihood approaches to cluster analysis. In Mengersen, K., Robert, C., and Titterington,
D., editors, Mixtures: Estimation and Applications, volume 2, pages 199–208. North-
Holland.

[Meinshausen and Rice, 2006] Meinshausen, N. and Rice, J. (2006). Estimating the pro-
portion of false null hypotheses among a large number of independently tested hypothe-
ses. Ann. Statist., 34(1):373–393.

[Mizuta, 1998] Mizuta, M. (1998). Two principal points of symmetric distributions. In
Rizzi, A., Vichi, M., and Bock, H.-H., editors, Advances in Data Science and Classifi-
cation, pages 171–176, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Munk and Czado, 1998] Munk, A. and Czado, C. (1998). Nonparametric validation of
similar distributions and assessment of goodness of fit. J. R. Statist. Soc. B, 60:223–241.

[Murtagh and Contreras, 2011] Murtagh, F. and Contreras, P. (2011). Algorithms for
hierarchical clustering: an overview. WIREs Data Mining and Knowledge Discovery.

[Owen, 1995] Owen, A. B. (1995). Nonparametric likelihood confidence bands function
for a distribution. J. Amer. Statist. Assoc., 90(430):516–521.

[Pyne et al., 2009] Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T., Maier, L., Baecher-
Allan, C., McLachlan, G., Tamayo, P., Hafler, D., Jager, P. D., and Mesirov, J. (2009).
Automated high-dimensional flow cytometric data analysis. PNAS, 106:8519–8524.

[Qian et al., 2010] Qian, Y., Wei, C., Lee, F. E.-H., Campbell, J., Halliley, J., Lee, J.,
Cai, J., Kong, Y., Sadat, E., Thomson, E., Dunn, P., Seegmiller, A., Karandikar, N.,
Tipton, C., Mosmann, T., Sanz, I., and Scheuermann, R. (2010). Elucidation of seven-
teen human peripheral blood b cell subsets and quantification of the tetanus response
using a density-based method for the automated identification of cell populations in
multidimensional flow cytometry data. Cytometry B Clin Cytom, 78:S69–82.

[Raghavachari, 1995] Raghavachari, M. (1995). Limiting distributions of kolmogorov-
smirnov type statistics under the alternative. Ann. Statist., 1:67–73.

[Rockafellar and Wets, 2009] Rockafellar, R. T. and Wets, R. (2009). Variational Analy-
sis. Springer Berlin Heidelberg.

[Rousseeuw, 1987] Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpreta-
tion and validation of cluster analysis. Journal of Computational and Applied Mathe-
matics, 20:53–65.

[Rudas et al., 1994] Rudas, T., Clogg, C., and Lindsay, B. (1994). A new index of fit
based on mixture methods for the analysis of contingency tables. J. R. Statist. Soc. B,
56(4):623–639.



BIBLIOGRAPHY 157

[Rösner and Schmidt, 2018] Rösner, C. and Schmidt, M. (2018). Privacy preserving clus-
tering with constraints. 45th International Colloquium on Automata, Languages and
Programming.

[Saeys et al., 2016] Saeys, Y., Gassen, S. V., and Lambrecht, B. (2016). Computational
flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev
Immunol, 16:449–462.

[Schmidt et al., 2018] Schmidt, M., Schwiegelshohn, C., and Sohler, C. (2018). Fair core-
sets and streaming algorithms for fair k-means clustering. arXiv:1812.10854.

[Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Müller, K. (1998). Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

[Scott and Symons, 1978] Scott, A. and Symons, M. (1978). Asymptotic behaviour of
classification maximum likelihood estimates. Clustering methods based on likelihood
ratio criteria, 27:387–397.

[Scrucca et al., 2016] Scrucca, L., Fop, M., Murphy, T., and Raftery, A. (2016). mclust 5:
Clustering, classification and density estimation using gaussian finite mixture models.
The R Journal, 8:289–317.

[Shorack and Wellner, 1986] Shorack, G. R. and Wellner, J. A. (1986). Empirical Pro-
cesses with Applications to Statistics. Classics in Applied Mathematics. SIAM.

[Supreme Court of the United States, 2009] Supreme Court of the United States (2009).
Ricci v. DeStefano. 557 U.S. 557, 174.

[Tarpey et al., 1995] Tarpey, T., Li, L., and Flury, B. (1995). Principal points and self-
consistent points of elliptical distributions. The Annals of Statistics, 23:103–112.

[Tolan, 2018] Tolan, S. (2018). Fair and unbiased algorithmic decision making: Current
state and future challenges. JRC technical reports (European Comission).

[Ubhaya, 1974a] Ubhaya, V. A. (1974a). Isotone optimization. i. J. Approx. Theory,
12:146–159.

[Ubhaya, 1974b] Ubhaya, V. A. (1974b). Isotone optimization. ii. J. Approx. Theory,
12:315–331.

[Villani, 2009] Villani, C. (2009). Optimal Transport: Old and New. Springer.

[Xu et al., 2016] Xu, S., Qiao, X., Zhu, Y., Zhang, Y., Xue, C., and Li, L. (2016). Reviews
on determining the number of clusters. Applied Mathematics & Information Sciences,
10:1493–1512.

[Zafar et al., 2017] Zafar, M., Valera, I., Rodriguez, M., and Gummadi, K. (2017). Fair-
ness constraints: Mechanisms for fair classification. Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, 54:962–970.
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