Decentralized and Dynamic Fault Detection Using
PCA and Bayesian Inference

A. Sanchez-Fernandez, M.J. Fuente, G.I. Sainz-Palmero
Department of System Engineering
and Automatic Control, EII
University of Valladolid
Valladolid, Spain
{alvsan, mjfuente, gresai}@eii.uva.es

Abstract—This paper proposes a dynamic and decentralized
fault detection method. The plant is divided in groups whose
members are selected using linear and non-linear modelling
techniques. In each group a Principal Component Analysis model
does the fault detection, including delayed data to get a dynamic
method. Then, a central node fuses the results of each group,
using Bayesian Index Criterion (BIC), to get a global detection
outcome. The method was tested on a widely used benchmark
and compared with other proposal to check its effectiveness.

Index Terms—Fault detection, Dynamic principal component
analysis, Decentralized process monitoring, Decision fusion

[. INTRODUCTION

The objective of process control includes not only making
the system work under desired conditions, keeping it stable
and safe, but also detecting faults, i.e., any deviation from
the expected behaviour. Any possible fault must be detected
quickly, because any malfunction of the plant can lead to great
losses in terms of reduced plant performance, product quality
losses, unscheduled stops, etc. Furthermore, these faults can
make the plant work under unsafe conditions for employees,
other installations, etc., so it is crucial to perform this task
effectively.

In general, data driven process monitoring methods such as
principal component analysis (PCA) [1] or partial least squares
(PLS) [2] have become very popular; this is because large
amounts of data can been generated and collected from the
plant, which can be used to extract useful information about
the current state of the process, and detect faults. However,
most multivariate statistical monitoring methods based on
PCA assume implicitly that the observations at one time
are statistically independent of observations at a past time,
and this situation does not occur in industrial plants, where
it is expectable that exist some degree of auto-correlation
(or time-correlation) among the variables. In order to take
into account this time-correlation and to capture the process
dynamic, [3] proposes dynamic PCA (DPCA), which performs
the PCA method using an augmented matrix with time-lagged
variables. While [4]-[7] use Canonical variate analysis (CVA)
for dynamic process monitoring where both past data and

The authors would like to express their gratitude to the European Commis-
sion and the Spanish Ministry of Economy and Competitivity for financial
support through the project DPI2015-67341- C2-2-R.

future measurements are used to estimate the process state
space model and to build a fault detection scheme.

As industrial plants tend to increase their level of automation
the number of sensors and, therefore, the amount of collected
data is huge, this implies that the requested computational
power to process this amount of data has grown significantly.
For this reason, the fault detection have became highly time
and resources consuming. In small plants fault detection can
be developed using a central processor which collects all the
information from the sensors, but in complex plants, with lot
of sensors, this central processor must be able to deal with this
vast amount of data, which is not always possible. One way
to afford this problem is dividing the plant in blocks, each one
containing a specific number of measured variables in it and
assigning one small processor in every block, this is called
decentralized approach. Here, each local processor does the
fault detection task with its own sensors and send the result
to a central processor which only has to fuse the local results
to obtain a global detection result.

Several researches have been carried out regarding decen-
tralized monitoring ([8]-[12]). The most important step in this
technique is to establish the criteria used to divide the plant.
Some authors opted for one-variable blocks [13], while other
authors constructed blocks that group more than one variable
([8], [10], [12], [14]). In the second option (multivariable
blocks), there are some possibilities: the previous knowledge
of the plant can be used to group variables that have any
physical connection ([9], [15]), however, as not always
is available enough information about the plant to do the
decentralization, many authors have tested different methods
to divide the plant only analysing measured data ([8], [12],
[14], [16]), obtaining significant relations between variables.

Once the local fault detection models obtain a result, it is
necessary to fuse all these results in order to get an unique
decision for the whole plant. There are different ways to do
that as [8] that proposed Maximum Entropy, Multicriteria
decision making (MCDM) methods as Ordered Weighted
Average (OWA) operators [17] are another option, also ([12],
[14]) used Bayesian Inference Criterion (BIC) for their Fault
Detection and Diagnosis (FDD) method.

In this paper we propose a decentralized and dynamic fault
detection method. The plant first is decomposed into blocks

based on the study of the correlation between the system
variables, using two methods, a linear one: the Sparse Partial
Least Squares (SPLS) method and a non-linear one (a neural
network). So, every measured variable has its own group where
it is accompanied by those variables who have a high level
of correlation with it. The local processors count in it with
a dynamic PCA-based fault detection model which analyses
new observations in order to detect anomalies. Finally, the
central processor will fuse all the local detection results using
the Bayesian Inference Criterion. This will lead to a global
detection result.

This document is organized as follows: Section II contains
the explanation of decentralized approach, the DPCA fault
detection method, and the BIC fusion method. Section III
presents the proposal of the distributed fault detection method.
The tests developed using the proposed method over the
Tennessee Eastman Plant and its results are included in Section
IV. Finally, conclusions and future work appear in Section V.

II. PRELIMINARIES
A. Decentralized fault detection

As opposed to centralized fault detection, where all the tasks
are carried out by an unique central processor, decentralized
fault detection implies to divide the measured data in groups
of variables, whose respective data are processed by separate
units. The way in which the plant is divided is a crucial task
and can be done using different strategies:

o Completely decentralized decomposition: each variable
has its own group, without including any other variable,
only it is possible to include lagged samples of this
variable. In this case the information about the correlation
between variables is lost [8].

o Multi-block decomposition:

— One block per variable: here each measured variable
has its own block. Each block includes one measured
variable and those ones that share some relation with
it.

— Less blocks than variables: after analysing the rela-
tions between variables, some blocks are constructed
with those variables that are more related. If there
are variables not related with any other, they can be
discarded or grouped in one extra block.

After the plant decomposition, the fault detection task is
carried out in each block. This can be performed using
different techniques, one of them is Dynamic PCA (DPCA).

B. Dynamic PCA

1) PCA: After measuring the variables of a process in nor-
mal operation conditions, a matrix X (n X m) can be arranged,
whose rows represent the observations and the columns rep-
resent the variables. After doing a z-score normalization, the
covariance matrix is obtained and decompose using singular
value decomposition (SVD) as:

1

T _ T
(n_DX’X_vmv (1)

S:

The eigenvalues of S are included in the diagonal of A,
sorted in decreasing order and representing the data variance
included in each principal component. Matrix V contains the
eigenvectors. The principal components are obtained as:

T=XP)

where T are the principal components and the loading matrix
P is formed using the first a columns of matrix V. The value
of a is selected as the one that maximizes the data variance
included in the model and maximizes the dimensionality
reduction. T is also known as the scores matrix, and its
columns represent the a principal components of X.

a) Fault detection: When the PCA method is used to
monitor the process, the T2 and (Q statistics are used to detect
anomalies [1].

T? statistic (or Hotelling’s Statistic) is calculated as:

T? = 2T PA P 2 (3)

where A, includes the a first rows and columns of A. A fault
is detected if:

(n? —1)a

T? > T2 =
* n(n-—a)

Fy(a,n —a) 4)
For a certain « significance level, where F,(a,n — a) is the
critical value (100(1 — «))% of the F distribution, with a and
n-a degrees of freedom.

The @ statistic (or squared prediction error, SPE), related

with the goodness of fit and the system noise, is obtained as:

Q=[(I - PP z)T[(I - PPT)a] 5)

where I is the square identity matrix of m dimension, and x
is a new measure which is been tested. The system is out of
control if Q value is greater than its threshold (), which is
calculated, for a significance level of «, as:

Qo = gx2(h) (6)

where g = % and h = % being 1 and S the mean and the

variance of () under non-faulty conditions [18].

In order to avoid false alarms caused by noise, disturbances,
etc. a number of consecutive anomalous observations is
required to indicate that the system is faulty. This value has to
be adjusted looking for a value that reduces the false alarms
occurrence without delaying the detection time too much.

2) DPCA method: Assuming that each variable has a
certain level of time-correlation, that is, the current value of a
variable is correlated with some past values of itself as well
as with past values of the other variables, it is necessary to
use a dynamic method. The Dynamic PCA (DPCA) is a PCA
method that works with the augmented data matrix, X, which
is formed using current and past values of the variables:

XZT 1 XZLT XI;
X, — Xz.+2 X1.+1 X3 o
Xio Xo X

where X, is the vector of measures in time ¢, and [is the
number of lags included in the augmented matrix. [can be
selected doing tests with different values and selecting the one
that gives the best performance, for example, using Akaike
Information Criterion (AIC) ([4], [19]).

C. Sparse PLS

The Partial Least Square method (PLS) was introduced in
[20] which is based in principal components and regression
[21]. Let Z be a matrix with n measures (rows) of m variables
(columns), this method considers two subsets of variables
whose measures are included in matrices X (predictors) and
Y (responses). A linear model is adjusted using least squares
over new features that are linear combination of the original
ones: X and Y.

X=TPT +E

Y=UQT +F ®

where X is the predictors matrix (n x m), Y is the responses
matrix (n x p), T is the projection of X, and U is the
projection of Y (X and Y scores, respectively), and their
dimension is (n x [); P and Q are (m x) and (p x 1),
respectively, the loading matrices. Finally, E and F represent
the error terms. They are supposed to be independent and
identically distributed random normal variables.

This model guarantees that the covariance between T and
U are maximum. The way in which this method is used to
perform a regression is:

Y =XB+G)

where G is the residuals matrix, and B is the vector of
coefficients for the PLS-regression, and it is calculated using
the well known algorithm of the non-linear iterative partial
least squares (NIPALS) until all variance in the data structure
is explained [22].

Sparse Partial Least Squares (SPLS) is a method based in
Partial Least Squares (PLS) whose objective is to obtain a
certain number of coefficients equal to zero in vector B. This
means that the method selects the most relevant predictors in
the regression, making easier the understanding of the model,
as well as allowing to perform a variable selection. A detailed
explanation of this method can be found in [23].

D. Neural Networks

Neural networks are a useful non-linear modelling technique
[24]. This model processes some inputs to return one or
various outputs. An artificial neural network is formed by
computing units, called neurons, which are connected to each
other, forming a network. The strength of each connection, or

Input Hidden Hidden Output

layer layer 1 layer 2 layer
Bd |
—(Y2

Figure 1. Neural network example

weight, is updated iteratively as the network is trained, so in
effect it learns patterns provided with the data. The neurons
are organized in layers; the first layer consists of neurons that
represent the inputs to the network. The hidden layer consists
of a number of neurons that apply a nonlinear function to the
inputs, and the output layer that consists of the predictions
made by the artificial neural network. As an example, a neural
net with three inputs, two hidden layers with four and three
neurons, respectively, and two outputs is shown in Figure 1.

E. Bayesian Inference Criterion (BIC)

In centralized approach, the fault detection task gives, for
each statistic, one value per sample, but if the plant is divided
in blocks, each one of them returns its own statistics. As the
system is unique, it is necessary to fuse local results for each
statistic to get one global result per statistic.

One option to fuse the results is the Bayesian Inference
Criterion (BIC) [14], which provides a global value for each
statistic. The fault posterior probability for a certain statistic

ST (which can be T2 or Q) in the block i (i = 1,2,...,m)
is:
P(piey) = Plau) Pry/ P (10)
where
Plai) = Play) Py + Plai) P(r) (D

where N and F are the normal and abnormal state of
the system, respectively. Py and Pry represent the prior
probabilities for the system working under normal and faulty
conditions. The first one is set to an « value between 0 and
1, and the second is 1 — «. Moreover:

_ST/STi,ZMn’P(x _STi,linL/ST

P vy =e¢ (12)

ST; 1im is the threshold of the statistic ST in the i-th block.
Finally, the results of each block are fused using the BIC'
index:

J|F) =€

" Pt Pl
BICsr =Y ALY
=1 ;P(xi\F)

13)

A fault is detected for a certain statistic if its respective BIC'
value is over (1 — «). This thresholds must be readjusted after
applying the model with the test data.

III. DISTRIBUTED FAULT DETECTION WITH PCA

The fault detection method presented in the above section
is considered as a centralized DPCA method. In this case,
all the sensor measurements are sent to a central node and
processed to detect faults in the whole plant. Now, in this
section, distributed DPCA methods are applied to detect faults.
The first step is to decompose the plant into different blocks
and then to perform a DPCA method to detect faults locally in
each block, and, finally, a central processor fuse all the local
detection results using the BIC index to take a global decision.
The methodology adopted is outlined in the following steps.

Step 1.- Plant decomposition: in this paper two ways to
do the decentralization of the plan, based only on data, are
proposed: SparsePLS and Neural Nets.

a) Sparse PLS: The way in which the plant was decom-
posed here is obtaining a regression model for each variable
using Sparse PLS method. So in this case, the matrix X is con-
structed, and a SPLS regression model is calculated taking as
output each of the system variables, i.e., Y =z;, i =1,....m
and as predictor the matrix X without the corresponding
i-th variable that it is being modeled. In each regression
model some values of sparsity must be tested, i.e., how
many coefficients in the respective regression model B; are
considered equal to zero, such that at the same time selecting
the sparse model that better fits the data. This problem can be
solved using the Root Mean Squared Error (rtMSE). So a block
is created for each variable together with the variables with
a non-zero coefficient in the respective regression coefficient
vector B;. For a plant with m variables, this results in a block
per each measured variable, i.e., a decomposition of m groups.

b) Neural Nets: As in the SPLS case, one model per
measured variable is created. In this case a neural network is
generated and trained, testing different values for parameters
(number of hidden layers, number of neurons in each layer,
etc.) and selecting the net which best fits to the data (as
previous method comparing rMSE results). After that, the
output is calculated using the inputs and the weights of the
net. The proposed method tries to find the influence of each
variable in the output. This is done analysing the path of each
variable along the network: when a variable enters to a neuron
is multiplied by a weight, and the output of this neuron is
multiplied by another weight to enter into the next neuron in
the net, so a score is assigned to each variable multiplying
all the weights of the net that affect this variable. Finally, the
variables with highest scores are included in the group. As a
neural net is able to model non-linear relations, it is expected
this method captures more information than SPLS.

Step 2.- Distributed Dynamic PCA (DDPCA) training: Each
block has its own fault detection model based on Dynamic
PCA. It is necessary to define how many lags, [, are going
to be used to create the augmented matrix X, of Eq. (7).
A statistically justified method can be used for selecting this

number, [, however it is possible to prove with different values,
using faulty train data, and choosing the number of lags that
gets the best performance in detection (lowest detection delay,
highest number of faults detected, absence of false alarms).
After doing the training process with selected value, local
DPCA models are obtained.

Now, it is necessary to calculate the thresholds for the
statistics 72 and Q, i.e., to calculate {77 and Q,} for each
block, taking into account that it is necessary to consider a
consecutive number of observations exceeding the threshold
in order to detect a fault. The thresholds of these statistics are
calculated theoretically as equations (4) and (6) respectively,
and after that these limits were tuned experimentally for an
imposed significance level (ISL or «) of 1%. This value is the
expected percentage of alarms for the system under normal
operation conditions.

These two steps are calculated off-line.

Step 3.- DDPCA fault detection. This step is calculated on-
line. When new observations are collected from the plant,
each local DPCA model calculates its current values for
the statistics Tf and Q;, for ¢ = 1,...,m, the number of
blocks. Then, a central processor collects all local results
and processes them. A global outcome, for each statistic, is
obtained fusing these local results using index BIC as it was
explained in Section II-E. Thus, BIC index for T2 and Q are
obtained, and the system is considered under control if both
BIC indexes are under their thresholds for a certain confidence
level a.

An overview of the process is shown in Algorithm 1

IV. ILLUSTRATIVE EXAMPLE

To validate the proposed method it was tested on a widely
used benchmark: Tennessee Eastman Process [25]. This is a
well-known process in the fault diagnosis field, as it is used
to test new methods about fault detection, fault identification,
etc. [6], [16], [26]-[29]. The process represents a chemical
plant with 52 variables measured each 3 minutes. A broad
description of these variables can be found in [25]. The
diagram of this plant is shown in Fig. 2. There are available
faultless train and test data. Also, there are 21 faulty train
and test datasets. Train and test datasets comprise 500 and
960 samples, respectively. These 21 faults are summarized in
Table I.

A. Experimental setup

The proposed methods were tested with different parame-
ters: the number of lags, the significance value for BIC, the
number of consecutive anomalous observations to detect a
fault, the variance retained by DPCA, the « used to obtain
PCA thresholds and the thresholds used in the variable assign
task, in each method. These combinations of parameters were
used with train data and then with test data, adjusting, if
necessary, the o value for BIC to avoid the appearance of
false alarms. The first step, Plant decomposition, was done
with SPLS regression and Neural Networks modelling looking
for the model with the lowest rMSE value for different values

@
29
@

| S

r

1

®
""" - f-

Y,

A\
g
K

Lo
bk

T et

HOOOEEEE

saomasssd

T
[

6000,

-
|:urnN-<l->z>|
:
1

g
g

Figure 2. Tennessee Eastman Process diagram

Table 1
TEP FAULTS
Fault # | Description Type
1 A/C feed ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss-reduced availability (Stream 4) | Step
8 A, B and C compositions (Stream 4) Random variation
9 D feed temperature (Stream 2) Random variation
10 C feed temperature (Stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown
18 Unknown
19 Unknown
20 Unknown -
21 Stream 4 valve Sticking

of parameters (non-zero elements in regression’s vector for
SPLS, and number of hidden neurons in Neural Net modelling)
for each variable. Then, the second step and third step are
carried out: DDPCA was applied looking for a combination of
parameters that achieves the best fault detection performance.

So, after some tries, the configuration with the best result in
terms of absence of false alarms, number of faults detected,
and best detection times was, for SPLS method, 5 lags for
the augmented matrix, 0.9 for o parameter in BIC criteria,
5 consecutive anomalous observations to detect a fault, 60%
of variance inside the DPCA, local DPCA thresholds were

adjusted for a confidence level of 99% and the SPLS regression
coefficients of each variable must be over 10~° to include this
variable in a block. The BIC significance level was readjusted,
as said before, using faultless test data, getting these values:
0.89 for 72 and 0.88 for Q.

In case of NeuralNet DPCA method, the parameters used
were 2 lags for the augmented matrix, 0.9 for a in BIC,
3 consecutive anomalous observations to detect faults, 60%
of variance included in DPCA, local DPCA thresholds were
obtained to get a confidence level of 99% and the coefficients
of each variable inside the neural net must be over the mean
of the maximum and minimum values of the whole variables
to be included inside a block. The BIC « did not need to be
readjusted using test data.

B. Results

As the proposed method combines DPCA fault detection
method with a decentralized approach, it was compared with
a centralized approach that uses DPCA to detect faults. The re-
sults of this last method were taken from [4]. This comparison
was done in terms of the fault missed detection rate (MDR),
that denotes that faulty data are misclassified as faultless data,
the fault detection delay, the false alarm rate (FAR), which
measures the number of non-faulty observations identified as
anomalous, and the number of faults detected.

First of all, the Missed Detection Rate (MDR) are shown
in Tables II, and III. As this index counts, in percentage, the
number of anomalous observations not detected as faults by
each method, it acts as a sensitivity test.

Algorithm 1 Correlation based decentralization with DPCA
fault detection

1: Off-line steps:

2: Normalize train data (faultless)

3: if method: SPLS then

4: for i=1 to m do > For each variable

5: Models SPLS with varied sparsity

6 Select model with lowest rMSE

7: end for

8: end if

9: if method: NeuralNet then

10: for i=1 to m do > For each variable

11: Models Neural Nets with varied parameters (lay-
ers, neurons)

12: Select model with lowest rMSE

13: end for

14: end if

15: Group unselected variables in an extra group

17: for i=1 to m do > For each variable or block
18: Train local DPCA models with different lags

19: Select DPCA model with best performance

20: end for

22: On-line steps:
23: for Each new observation do

24: for i=1 to m do > For each variable or block
25: Calculate ST* = { T2, Q } > Local statistics
26: end for

27: for s={T?, Q} do > For each statistic
28: BIC, = f(STy,STs,...,ST,)

29: if BIC; > (1 — «) then

30: Fault detected with statistic s

31: else

32: Normal condition with statistic s

33: end if

34: end for

35: end for

In Tables IV and V are the results of the detection time for
these methods. The time when each method points the start
of the fault it is shown, but, as it is needed to detect a certain
number of anomalous observations, the real detection time is
higher than the results of these tables for the three methods.

As can be seen in the Tables II, III, IV and V. MDR results
revealed the great results of Neural Net method with T2,
having the lowest value in 19 out of 21 faults. Also, SPLS is
still better that central DPCA, being the best of the comparison
in 6 faults. This method, SPLS, showed better outcome using
@, where it is the best in 19 faults. Neural Net performance
was also good, as it is the best in 7 faults, and not far from
SPLS in the remaining cases. Anyway, both methods have
better behaviour than central DPCA.

In the delay results, the situation is very similar, Neural Net
is the best with 72 (it had the fastest time in 18 faults), the

Table II
MISSED DETECTION RATE (MDR), IN %. T2
Fault | SPLS DPCA | NNET DPCA | DPCA
1 0 0.13 0.6
2 1.13 1.13 1.9
3 96.61 94.11 99.1
4 63.74 27.44 93.9
5 73.15 70.30 75.8
6 0 0 1.3
7 0 0 15.9
8 2.26 0.88 2.8
9 97.99 93.61 99.5
10 44.54 38.22 58
11 55.33 43.98 80.1
12 0.50 0.38 1
13 4.27 4.39 49
14 0 0 6.1
15 88.58 83.08 96.4
16 60.73 48.75 78.3
17 12.30 8.77 24
18 11.04 9.77 11.1
19 99.75 97.74 99.3
20 47.30 42.11 64.4
21 55.83 55.51 64.4
Table III
MISSED DETECTION RATE (MDR), IN %. Q
Fault | SPLS DPCA | NNET DPCA | DPCA
1 0 0 0.5
2 0.753 1.25 1.5
3 96.49 98.50 99
4 0 0 0
5 73.53 75.56 74.8
6 0 0 0
7 0 0 0
8 1.51 2.01 2.5
9 97.11 98.37 99.4
10 36.01 38.72 66.5
11 10.16 8.90 19.3
12 0.38 0.50 24
13 4.52 4.76 4.9
14 0 0 0
15 90.46 96.24 97.6
16 50.06 54.39 70.8
17 2.38 2.88 5.3
18 9.16 9.65 10
19 31.74 75.31 73.5
20 32.99 38.97 49
21 51.82 47.49 55.8

second method is SPLS (which is the best in 13 fault). Central
DPCA got poor results with this statistic. SPLS, once again,
is the best using) (in 19 faults it got the fastest time), and
Neural Net achieved the second best result (12 faults with the
best delay).

In summary, NeuralNet method gave the best MDR and
Delay results with 72, obtaining a good result with @, always
ahead of Central DPCA. This shows the greater performance
of this method with 72 statistic. This may be due to the
ability of this method to extract non-linear characteristics of
the plant to construct the groups. Also, as T2 statistic monitors
the behaviour of the model, while () monitors the noise,
disturbances, etc. [1], if the model is better, it is expected

from 0 to 0.2004, a bit lower than DPCA with T2 but clearly
below than central DPCA with Q.

Table VI
FALSE ALARMS RATES AND FAULTS DETECTED (IN %)
SPLS DPCA | NNET DPCA | DPCA
FAR T2 0 0.2004 0.6
FAR Q 0.2004 0 28.1
Detected faults T2 | 20 21 17
Detected faults @) 20 21 18

Table IV
DETECTION DELAY, IN SAMPLES. T2
Fault | SPLS DPCA | NNET DPCA | DPCA
1 0 1 6
2 9 9 16
3 81 40
4 58 0 151
5 0 0 2
6 0 0 11
7 0 0 1
8 18 7 23
9 0 0
10 33 22 101
11 9 9 195
12 1] 0 3
13 34 35 45
14 0 0 6
15 572 573
16 30 0 199
17 20 20 28
18 91 83 93
19 8
20 78 78 87
21 450 415 522
Table V

DETECTION DELAY, IN SAMPLES.)

Fault | SPLS DPCA | NNET DPCA | DPCA
1 0 0 5
2 7 10 13
3 86
4 0 0 2
5 0 0 2
6 0 0 1
7 0 0 1
8 12 16 21
9 358 3
10 31 32 50

11 3 3 7
12 0 0 8
13 36 36 40
14 0 0 1
15 233 571

16 13 16 196
17 17 18 24
18 77 78 84
19 7 79 82
20 78 78 84
21 254 265 286

that 72 will be more effective than Q.

Also, SPLS obtained the best results in MDR and Delay
with @, being the second using T2. In this case, as this
method is linear, did not take in account non-linear relations to
construct groups thus they are not modelled by local DPCAs.
This made that these non-linearities had more influence in @
than in T2.

Finally, Table VI shows that the proposals were able to
detect more faults than the central DPCA, being NeuralNet
the method with the highest figures, 21 faults detected with
T? and Q. Also, SPLS was capable of detecting 20 faults out
of 21 with both statistics, while central DPCA only gets to 18
in the best case. The fault alarm rate (FAR) for test data vary

In these tests it is clear that the decentralized approach,
using good block-construction methods, works better than the
centralized method. This implies that, prior to do the fault
detection, it is better to group the variables that share any
relation between them.

V. CONCLUSIONS

This paper proposed a fault detection method based on
dividing the plant in blocks of variables, setting local fault
detection models in each block and fusing all the local results
to obtain a global fault detection outcome. The decentralization
task was developed with two methods: Sparse PLS regression
and Neural Net modelling. The first one is a linear method
while the second is a non-linear one. In each group the fault
detection method was based on Dynamic PCA which can
model the time and space-correlations between variables. Fi-
nally, the global result was obtained using Bayesian Inference
Criterion to fuse local results.

The objective was to check the advantages of the decen-
tralized approach using linear and non-linear methods, and to
test the performance of DPCA fault detection method in such
a distributed plant. To do that, the proposals were compared
with other method: a centralized DPCA [4], a dynamic, but
not distributed method.

As can be seen in section IV, both proposals gave better
results than centralized DPCA in Missed Detection Rate,
detection delay and number of faults detected. Also, the results
showed that SPLS works better using () statistic, while Neural
Net is the best of the comparison with T2,

In the case of SPLS, @ statistic, which analyses information
not captured by the model, worked better, suggesting that
SPLS, as it is a linear method, was not able to capture non-
linear relations to create the groups, thus local DPCA models
were not as good as they should, giving worse results with
T2. On the other hand, Neural Net decentralization, as it is
based on a non-linear modelling method, seemed to be able to
capture non-linear relations between variables to create groups,
allowing local modelling to obtain better models. This lead to
better results with 72, as it is a statistic that analyses the
information retained by the model.

After this work, some questions remain opened. The first
one is the selection of the decentralization method, known that
there is not an unique and best option. So, it is necessary to do
more tests with other techniques, linear and non-linear, having
in mind that each type of plant will need one or other option.
Also, it would be interesting to test the idea of combining two

or more fault detection methods and fuse the results of them to
obtain a final diagnostic. Another question is the selection of
the fault detection method applied in each block. The DPCA
method is effective but not perfect, so more techniques should
be investigated and developed in order to approach to a Missed
Detection Rate of 0%, 0 samples detection delay and 100%
of faults detected.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

REFERENCES

T. Kourti and J.F. MacGregor. Multivariate SPC methods for process
and product monitoring. Journal of Quality Technology, 28:409—428,
1996.

R. Muradore and P. Fiorini. A PLS-based statistical approach for fault
detection and isolation of robotic manipulators. IEEE Transactions on
Industrial Electronics, 59(8):3167-3175, 2012.

W. Ku, R.H. Storer, and C. Georgakis. Disturbance detection and
isolation by dynamic principal component analysis. Chemometrics and
intelligent laboratory systems, 30:179-196, 1995.

E. L. Russell, L. H. Chiang, and R. D. Braatz. Fault detection
in industrial processes using canonical variate analysis and dynamic
principal component analysis. Chemometrics and Intelligent Laboratory
Systems, 2000.

A. Simoglou, E.B. Martin, and A.J. Morris. Statisical performance mon-
itoring of dynamic multivariate processes using state space modeling.
Computers & Chemical Engineering,, 26(6):909-920, 2002.

PP. Odiowei and Y. Cao. State-space independent component analysis
for nonlinear dynamic process monitoring. Chemometrics and Intelligent
Laboratory Systems, 103:59-65, 2010.

Z. Chen, K. Zhang, H. Hao, S. X. Ding, M. Krueger, and Z. He.
A canonical variate analysis based process monitoring scheme and
benchmark study. [IFAC Proceedings Volumes, 47(3):10634-10639,
2014. 19th IFAC World Congress.

M. Grbovic, W. Li, P. Xu, A.K. Usadi, L. Somg, and S. Vucetic.
Decentralized fault detection and diagnosis via sparse PCA based de-
composition and maximum entropy decision fusion. Journal of Process
Control, 22:738-750, 2012.

Y. Zhang, H. Zhou, S.J. Qin, and T. Chai. Decentralized fault diagnosis
of large-scale processes using multiblock kernel partial least squares.
IEEE Transactions on Industrial Informatics, 6(1):3-10, 2010.

A. Sanchez-Ferniandez, M. J. Fuente, and G. I. Sainz-Palmero. Fault
detection in wastewater treatment plants using distributed pca methods.
In 2015 IEEE 20th Conference on Emerging Technologies Factory
Automation (ETFA), pages 1-7, Sept 2015.

A. Sanchez-Fernandez, M. J. Fuente, and G. I. Sainz-Palmero. Fault
detection with distributed PCA methods in water distribution networks.
In 2015 23rd Mediterranean Conference on Control and Automation
(MED), pages 156161, June 2015.

C. Tong, T. Lan, and X. Shi. Fault detection and diagnosis of dynamic
processes using weighted dynamic decentralized PCA approach. Chemo-
metrics and Intelligent Laboratory Systems, 161(Supplement C):34 — 42,
2017.

Q. Cheng, PK. Varshney, J. Michels, and C.M. Belcastro. Distributed
fault detection via particle filtering and decision fusion. In 2005 7th
International Conference on Information Fusion, volume 2. IEEE, 2005.
C. Tong and X. Shi. Decentralized monitoring of dynamic processes
based on dynamic feature selection and informative fault pattern dissim-
ilarity. IEEE Transactions on Industrial Electronics, 63(6):3804-3814,
June 2016.

W. Li, W. H. Gui, Y. E Xie, and S. X. Ding. Decentralised fault detection
of large-scale systems with limited network communications [brief
paper]. IET Control Theory Applications, 4(9):1867-1876, September
2010.

Z. Ge and Z. Song. Distributed PCA model for plant-wide process
monitoring. Industrial and Engineering Chemistry Research, 52:1947—
1957, 2013.

R.R. Yager. On ordered weighted averaging aggregation operators in
multi-criteria decision making. [EEE Transactions on Systems, Man
and Cybernetics, 18:183-190, 1988.

P. Nomikos and J F. MacGregor. Multivariate SPC charts for monitoring
batch processes. Technometrics, 37(1):41-59, 1995.

[19]

[20]

(21]

[22]

[23]

[24]
[25]
[26]
(27

(28]

[29]

W. E. Larimore. Statistical methods in control and signal processing.
Marcel Dekker, 1997.

H. Wold. Estimation of principal components and related models by
iterative least squares, pages 391-420. Academic Press, New York,
1966.

C. Colombani, P. Croiseau, S. Fritz, F. Guillaume, A. Legarra,
V. Ducrocq, and C. Robert-GraniA©®. A comparison of partial least
squares (pls) and sparse pls regressions in genomic selection in french
dairy cattle. Journal of Dairy Science, 95(4):2120-2131, 2012.

S. Wold, M. Sjostrom, and L. Eriksson. PLS-regression: a basic tool
of chemometrics. Chemometrics and Intelligent Laboratory Systems,
58:109-130, 2001.

H. Chun and S. Keles. Sparse partial least squares regression for
simultaneous dimension reduction and variable selection. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 72(1):3-25,
2010.

M. Kuhn and K. Johnson. Applied predictive modeling. 2013.

J. J. Downs and E. F. Vogel. A plant-wide industrial process control
problem. Computers & Chemical Engineering, 17:245-255, 1993.

J. Liu. Fault diagnosis using contribution plots without smearing effect
on non-faulty variables. Journal of Process Control, 22:1609-1623,
2012.

B. Jiang, D. Huang, X. Zhu, F. Yang, and R. D. Braatz. Canonical
variate analysis-based contributions for fault identification. Journal of
Process Control, 26:17-25, 2015.

Sankar Mahadevan and Sirish L. Shah. Fault detection and diagnosis
in process data using one-class support vector machines. Journal of
Process Control, 19:1627-1639, 2009.

Funa Zhou, Ju H. Park, and Yajuan Liu. Differential feature based hier-
archical PCA fault detection method for dynamic fault. Neurocomputing,
202:27-35, aug 2016.

