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Abstract

The influence of the hydraulic retention time (HRT) (2 and 4 days) and the 

carbon/nitrogen ratio (C/N) (7, 8 and 9) of the wastewater on the treatment of synthetic 

domestic wastewater was evaluated in a new anoxic-aerobic algal-bacterial 

photobioreactor configuration operated at solids retention time of 10 d by biomass 

recycling and withdrawal. The removal of chemical oxygen demand remained between 

84% and 89% regardless of the operational conditions. However, the decrease in the HRT 

from 4 to 2 d entailed reductions in the removal of total nitrogen (TN) and P-PO4
3- from 

87±2% to 62±2% and from 22±5% to 11±1%, respectively. On the other hand, the 

decrease in the C/N ratio of the wastewater from 9 to 8 and 7 at a HRT of 2 d induced TN 

removals of 62±4% and 48±4%, respectively. In contrast, P-PO4
3- removals unexpectedly 

increased from 11±1% at a C/N ratio of 9 to 53±3% and 47±5% at C/N ratios of 8 and 7, 

respectively. Finally, biomass settling and recycling supported the enrichment of an algal-

bacterial population with good settleability characteristics (suspended solids removals in 

the settler ~98%), being Chlorella vulgaris the dominant microalga specie at a C/N ratio 

of 9 which was gradually replaced by Phormidium sp., as a result of the reduction in the 

C/N ratio of the wastewater.

Keywords: 

Algal-bacterial processes; anoxic-aerobic photobioreactor; C/N ratio; nitrification-

denitrification; photosynthetic oxygenation.
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Abbreviations

C: Carbon

CBio: Carbon content in biomass

C/N: Carbon/Nitrogen ratio

C/N/P: Carbon/Nitrogen/Phosphorous ratio

COD: Chemical oxygen demand 

DO: Dissolved oxygen concentration 

HRAP: High rate algal pond

HRT: Hydraulic retention time

IC: Inorganic carbon concentration

N: Nitrogen

NH4
+: Ammonium

NO2
-: Nitrite

NO3
-: Nitrate 

P: Phosphorous

PAR: Photosynthetically active radiation 

Pb: Biomass productivity

QEff: Effluent flowrate

QSWW: Influent flowrate 

REs: Removal efficiencies 

SRT: Solids retention time

SWW: Synthetic domestic wastewater 

TN: Total nitrogen concentration

TOC: Total organic carbon concentration
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TSS: Suspended solids concentration 

WWTPs: Wastewater treatment plants

Xi Eff: Concentrations of either COD, TOC, IC, TN, NH4
+ or P-PO4

3- in the effluent

Xi sww: Concentrations of either COD, TOC, IC, TN, NH4
+ or P-PO4

3- in the influent
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1. Introduction

Algal-bacterial processes have emerged in the past decades as a cost-effective and 

environmentally friendly platform technology to remove carbon (C), nitrogen (N) and 

phosphorus (P) from wastewaters [1]. The synergistic interactions between microalgae 

and bacteria are based on the in-situ supply of O2 (produced by photosynthesis) for 

aerobic heterotrophic bacteria and autotrophic nitrifiers, and the subsequent assimilation 

of C, N, and P in the form of valuable algal-bacterial biomass [2,3]. This green 

biotechnology significantly reduces oxygenation costs when compared to activated 

sludge systems and enhances nutrient recovery compared to anaerobic digestion 

technologies in conventional wastewater treatment plants (WWTPs) [2,4]. 

Despite the above-mentioned advantages, the efficiency of microalgae-based wastewater 

treatment processes is often limited by the C/N/P ratio of the secondary wastewater 

(100/25/12) or centrate (100/207/5), which hinders a complete nutrient assimilation due 

to carbon limitation [5,6] In this sense, only wastewaters with balanced C/N/P ratios (e.g. 

100/14/2 on mass basis) are favorable for microalgae growth and can therefore support N 

and P removals by assimilation, which opens the investigation niche for innovative 

photobioreactor configurations capable of supporting an effective N and P removals at 

low C/N ratios [3,7]. In this context, the complete nitrification-denitrification process 

represents a key metabolic pathway to remove C and N in wastewaters with low C/N 

ratios in algal-bacterial photobioreactors [3,8]. Nevertheless, the relatively low hydraulic 

retention times (HRTs =2-6 days) applied in high rate algal ponds (HRAPs) devoted to 

wastewater treatment limit the occurrence of nitrifying bacterial communities in the 

cultivation broth. Typically, the oxidation of NH4
+ requires HRT >8 d for complete 

nitrification [4,9]. Therefore, a new generation of anoxic-aerobic algal-bacterial 

photobioreactors based on decoupling the HRT from the solids retention time (SRT) were 
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developed and successfully tested at laboratory scale [3,9]. In these systems, 

photosynthesis supports the oxidation of NH4
+ to NO2

- or NO3
- required for carbon 

oxidation in the anoxic bioreactor through an internal recirculation. For instance, De 

Godos et al. [8] reported C (95%) and N (98%) removals from synthetic wastewater in a 

1 L anoxic bioreactor coupled to a 3.5 L closed photobioreactor operated at HRTs of 2-

4.5 d and SRTs of 9-31 d. These authors also reported that the recirculation of the 

harvested biomass from a 1 L settler to the anoxic bioreactor (external recirculation) 

avoided the washout of nitrifying bacteria and supported process operation at biomass 

concentrations of 1.0-1.5 g volatile suspended solids (VSS) L-1. Alcántara et al. [3] 

observed the absence of nitrification at high dissolved oxygen concentrations (DO), 21 ± 

4 mgO2 L-1, during synthetic wastewater treatment in a similar anoxic-aerobic algal-

bacterial closed photobioreactor configuration; Additionally, light-dark cycles combined 

with process aeration during dark periods were tested in order to elucidate a light-mediated 

inhibition on nitrifying activity. These authors recorded total organic carbon (TOC), 

inorganic carbon (IC) and total nitrogen (TN) removal efficiencies (REs) of ~ 80% at 2 d 

of HRT and SRTs of 20 d, the N removal mechanisms being governed by the light 

intensity and DO. This particular configuration has also been tested for the treatment of 

domestic wastewater [9] and synthetic textile wastewater [10] coupled to biogas 

upgrading and flue gas scrubbing, respectively. CO2 supply overcame the IC limitation, 

enhanced N and P removal by assimilation and supported an efficient nitrification-

denitrification process. However, the local availability of an external CO2 source is not 

always technical or economically feasible.

On the other hand, despite the high biomass productivities reached in closed 

photobioreactors, the high construction and operating costs limit their scalability [11]. 

Thus, HRAPs are typically the preferred photobioreactor configuration for microalgae-
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based wastewater treatment [5]. However, the use of a HRAP as process oxygenation unit 

for this novel anoxic-aerobic configuration has not been evaluated yet. Furthermore, there 

is a lack of studies assessing the influence of the C/N ratio of the wastewater on the 

performance of wastewater treatment in anoxic-aerobic algal-bacterial systems. 

Therefore, this work aim at evaluating the influence of the HRT and the C/N ratio of the 

wastewater on the C, N and P removal in an anoxic-aerobic algal-bacterial 

photobioreactor with a HRAP as process oxygenation unit. Mass balance calculations 

were conducted to elucidate the global carbon and nutrient removal mechanisms. Finally, 

a characterization of the biomass harvesting efficiency and the microalgae population 

structure was carried out during the different operational conditions assessed. 

2. Materials and methods 

2.1 Algal-bacterial inoculum

The inoculum consisted in a mixture of secondary activated sludge from the Valladolid 

WWTP (which operates with a nitrification-denitrification configuration) and a 

microalgae consortium collected from an outdoors pilot HRAP treating digestate located 

at the Department of Chemical Engineering and Environmental Technology of the 

University of Valladolid, Spain.

2.2 Synthetic domestic wastewater

The synthetic domestic wastewater (SWW) was prepared according to Frutos et al. [12] 

with the follow composition in g L-1: 0.16 of casein peptone, 0.11 of meat extract, 0.03 

of NH2COH2, 0.007 of NaCl, 0.004 of CaCl2·2H2O, 0.002 of MgSO4·7H2O, 5·x10-6 of 

CuCl2·2H2O, 0.112 of K2HPO4·3H2O, 0.25 of glucose, and 1.1 of NaHCO3. The main 

characteristics of the SWW were chemical oxygen demand (COD) concentration of 
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632±45 mg L-1, TOC of 196±9 mg L-1, IC of 195±12 mg L-1, TN of 43±3 mg L-1, N-NH4
+ 

of 24±3 mg L-1, P-PO4
3- of 13.1±0.8 mg L-1 and pH of 7.7±0.2.

2.3 Experimental set-up

The experimental set-up consisted of a 3.75 L enclosed anoxic bioreactor (15 cm long, 

15 cm wide, 17 cm deep), an 11.25 L open photobioreactor (HRAP) (30 cm long, 15 cm 

wide, 25 cm deep) and a 1 L conical settler (Fig. 1). The agitation of the cultivation broth 

in the anoxic bioreactor and in the HRAP was provided by Eheim compact 300 immersion 

pumps (Spain) (one pump in the anoxic bioreactor and two pumps in the HRAP). The 

HRAP was illuminated at an average photosynthetically active radiation (PAR) of 

1314±12 µmol m-2 s-1 (light:dark cycles of 12:12 h) by high-intensity LED PCBs (Phillips 

SA, Spain). The internal liquid recirculation from the HRAP to the anoxic bioreactor 

supported the denitrification process, while the external liquid recirculation from the 

bottom of the settler to the anoxic bioreactor mediated controlling the SRT according to 

table 1.

The bioreactors were initially filled with SWW and inoculated to have an initial total 

suspended solids concentrations (TSS) of 0.2 g TSS L-1 of microalgae and 0.6 g TSS L-1 

of activated sludge. The SWW was fed to the anoxic bioreactor at 4 and 2 d of total HRT 

(HRT of anoxic bioreactor + HRT of HRAP) (Table 1). These operational conditions 

promote the nitrification-denitrification process [13]. The flow rates of the internal and 

external recirculation (Watson Marlow 120 S pump, UK, and Masterflex 7021-24, USA, 

respectively) corresponded to 200% and 50% of the SWW flow rate, respectively, and 

were adjusted depending on the HRT tested. The SRT of the system was fixed at 10 d 

regardless of the operational stage by means of harvesting a volume of the external 

recirculation (wasted biomass ~1.5 g TSS d-1 under a steady biomass concentration in the 
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reactor). This volume was adjusted in accordance with the TSS concentration recorded in 

the wastage stream.

Stage I lasted 47 days in which the system was operated at an HRT of 4 d by feeding the 

SWW with a C/N ratio of 9 (COD concentration of 669±6 mg L-1). Afterwards, the HRT 

was decreased to 2 d during stages II, III and IV, while the C/N ratio of the wastewater 

was step-wise decreased from 9 to 8 and 7, respectively, by means of decreasing the 

glucose concentration (corresponding to COD concentrations of 669±6 mg L-1, 493±11 

mg L-1 and 434± 11 mg L-1, respectively). Stages II, III and IV were maintained for 40 d 

(~4 times the SRT) to achieve consistent steady states values. 

2.5 Analytical methods

Samples (50 mL) from the SWW, anoxic bioreactor, HRAP, settler and effluent were 

drawn twice per week in order to monitor the concentrations of dissolved TOC, IC, and 

TN in a Shimadzu TOC-VCSH analyzer with TNM-1 module (Japan). The NH4
+ 

concentration of samples was determined by using an Electrode Orion Dual Star (Thermo 

Scientific, The Netherlands), while the NO2
-, NO3

- and PO4
3- concentrations by HPLC-

IC according to Posadas et al. [14]. The pH (Eutech Cyberscan pH 510, The Netherlands), 

dissolved oxygen concentration (DO) (OXI 330i oximeter, WTW, Germany) and 

temperature were daily monitored in situ (anoxic bioreactor and HRAP). Furthermore, 

the TSS concentrations in the anoxic bioreactor, HRAP, settler, and effluent were monitor 

twice per week according to standard methods [15]. The concentration of COD in the 

SWW and treated effluent was only assessed under steady state (last three days from each 

operational stage) by the closed reflux method [15]. The influent and effluent flowrates 

were daily recorded in order to determine the water evaporation rate, while the PAR was 

weekly monitored (LI-250A, LI-COR Biosciences, Germany). The algal-bacterial 
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biomass harvested from the bottom of the settler under steady state was washed three 

times with distilled water and dried for 24 hours at 105 ºC prior determination of its 

elemental composition C, N, and P (LECO CHNS-932 analyzer). Finally, the 

morphological identification of the microalgae population in the HRAP was carried out 

at steady state. Two biomass samples were preserved with lugol acid at 5% and 

formaldehyde at 10%, respectively, and stored at 4 ºC prior analysis. The quantification 

and morphological identification of photosynthetic microorganisms were carried out 

according to Sournia [16] in an inverted microscope (OLYMPUS IX70, USA).

2.6 Mass balance calculation

The global mass balance calculation for C, N, and P were conducted based on the average 

concentrations of all their chemical species at the inlet (SWW) and outlet (effluent).

Carbon mass balance:

(TOCSWW + ICSWW) QSWW = (TOCEff + ICEff) QEff + CBio Pb + C-CO2-stripping    Eq. 1

Nitrogen mass balance:

TNSWW QSWW = TNEff QEff + NBio Pb + (N-NH4
+

volatilization + N2)                       Eq. 2

Phosphorous mass balance:

P-PO4
3- 

SWW QSWW = P-PO4
3- 

Eff QEff + PBio Pb                                                   Eq. 3

The carbon and nutrients recovery as algal-bacterial biomass and their removal 

efficiencies (REs) were calculated as follows:
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Carbon recovery= CBio Pb / ((TOCSWW + ICSWW) QSWW) × 100                        Eq. 4

Nitrogen recovery= NBio Pb / (TNSWW QSWW) × 100                                         Eq. 5

Phosphorous recovery= PBio Pb / (P-PO4
3- 

SWW QSWW)  × 100                           Eq. 6

                                                    Eq. 7RE𝑖 =  
(X𝑖,𝑆𝑊𝑊 × Q𝑆𝑊𝑊 ) ‒ (X𝑖,𝐸𝑓𝑓 × Q𝐸𝑓𝑓)

X𝑖,𝑆𝑇𝑊𝑊 × Q𝑆𝑊𝑊
× 100    

where Xi accounts for the corresponding COD, TOC, IC, TN, NH4
+ or P-PO4

3- 

concentrations (g L-1) in the influent (SWW) and effluent (Eff). QSWW stands for the 

influent SWW flowrate (L d-1) and QEff for the effluent flowrate (L d-1). Pb stands for the 

biomass productivity (g d-1), CBio for the carbon content in biomass (g g-1), NBio for the 

nitrogen content in biomass (g g-1) and PBio for the phosphorous content in biomass (g g-

1). ). Finally, C-CO2-stripping contribution was calculated as the difference between the total 

carbon input and the sum of the total carbon in the effluent and biomass wastage. 

Similarly, the contribution of N-NH4
+

volatilization + N2 from denitrification was calculated 

as the difference between the total nitrogen input and the sum of total nitrogen in the 

effluent and biomass wastage. All data are reported as means  ± SD, n = 4 (in steady-

state).

3. Results and discussion

3.1 Environmental parameters

The DO concentration in the anoxic bioreactor remained lower than 0.3±0.2 mgO2 L-1 

during all operational stages which is suitable to support an effective denitrification 

process (it typically requires DO concentrations <1 mgO2 L-1) [4]. During stage I, the low 

oxygen demand induced by the HRT tested (lowest organic matter load) promoted the 

highest DO concentration in the HRAP (7.8±3.6 mgO2 L-1). Afterward, the decrease in 
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the HRT (2 d) applied during stage II resulted in a severe decrease in the DO concentration 

to 0.4±0.1 mgO2 L-1. In contrast, the decrease in the C/N ratio promoted oxygen 

concentrations of 3.4±2.6 and 4.7±3.6 mgO2 L-1 during stages III and IV, respectively, 

due to the lower oxygen demand required for oxidizing the organic matter of the SWW 

with lower C/N ratios. Furthermore, the algal photosynthetic activity in the HRAP 

supported higher pHs compared to those recorded in the anoxic bioreactor (Table 1). 

However, the decreasing C/N ratios of the SWW fed during stages III and IV entailed a 

reduction of the pH in the HRAP, which equaled the pH in the anoxic bioreactor during 

stage IV. Nonetheless, the pHs were optimum to support a successful SWW treatment 

[17]. 

The seasonal increase of temperature slightly increased the temperature in the anoxic 

bioreactor and HRAP from stage I to IV, being the HRAP temperature higher than the 

anoxic bioreactor due to the heating associated with LED lighting (Table 1). 

Temperatures were always suitable to support effective nitrification, denitrification, 

photosynthesis and aerobic organic matter biodegradation [17]. Nonetheless, the 

evaporation rates ranged from 13 to 17 L m-2 d-1, mainly due to the temperature of the 

cultivation broth (Table 1). These values were significantly higher than those typically 

observed at industrial scale (~3-8 L m-2 d-1) as a result of the high turbulence prevailing 

in this lab-scale HRAP [18]. 

3.2 Carbon removal

COD removals of 87±0%, 84±0%, 89±1%, and 86±1% were recorded during stages I, II, 

III and IV, respectively, while TOC-REs accounted for 93±3%, 88±2%, 87±8%, and 

82±5%, respectively (Fig. 2a). These removal efficiencies allowed average COD effluent 

concentrations of 89±4 mg L-1, 116±4 mg L-1, 61±5 mg L-1, and 67±7 mg L-1, 
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respectively, and TOC effluent concentrations of 15±5 mg L-1, 24±3 mg L-1, 13±2 mg 

L-1, and 19±3 mg L-1, respectively (Fig. 2a). As expected, the decrease in the C/N ratio 

applied during stages III and IV mediated the lowest COD concentrations in the effluent, 

while the highest COD concentration was achieved during stage II when the highest 

organic loading rate (HRT of 2 d and C/N ratio of 9) and the lowest DO concentrations 

in the HRAP occurred. Furthermore, the lower C/N ratio applied in stage IV caused an 

organic carbon limitation that likely affected the algal-bacterial metabolism, which 

ultimately affected COD and TN removal (Section 3.3). However, the organic matter 

removal in this novel anoxic-aerobic algal-bacterial photobioreactor complied with the 

limits for COD concentration (≤125 mg L-1) of the wastewater discharged into the 

environment regardless of the operational conditions [19]. Furthermore, the recorded 

TOC-REs were similar to those reported by Alcántara et al. [3] (88±2%) in an anoxic 

bioreactor of 1 L interconnected to an enclosed photobioreactor of 3.5 L operated at 2 d 

of HRT  (SWW with C/N ratio of ~2) and 20 d of SRT. In this sense, a higher SRT 

typically entails higher oxidations rates of C and NH4
+, although no significant increase 

in TOC, NH4
+ or TN removal is expected when increasing the SRT from 10 to 20 days 

since no washout of key microbial communities occurs in this SRT range.

IC-REs of 18±5%, 0±1%, 15±4%, and 9±1% were recorded during stages I, II, III and 

IV, respectively, which corresponded to IC effluent concentrations of 191±6 mg L-1, 

197±10 mg L-1, 190±5 mg L-1, and 187±3 mg L-1, respectively (Fig. 2b). The REs here 

observed were lower than the 30-40% IC-REs reported by De Godos et al. [8] during the 

operation of a 1 L anoxic bioreactor coupled to a 3.5 L enclosed photobioreactor, in which 

the IC consumption by nitrifying bacteria at DO concentrations ranging from 12 to 20 mg 

L-1 likely enhanced the IC-REs. Nonetheless, according to the heterotrophic TOC 
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removal above reported, among 580 to 1250 mg C-CO2 d-1 were produced which 

supported the imposed biomass productivity (SRT=10 d) of ~1.5 g TSS d-1 (section 3.4). 

Therefore, CO2 stripping and phototrophic microalgae production can explain the 

removal of inorganic carbon, which was not significantly impacted by the low nitrifying 

activity recorded in our system (Section 3.3). Finally, the carbon recoveries in the 

harvested biomass accounted for 56±8%, 43±7%, 36±2% and 73±9% of the total 

(TOC+IC) carbon removal during stages I, II, III and IV, respectively (carbon content in 

the biomass was 38.8±0.6% during the four operational stages). Thus, the increase in the 

total carbon-loading rate mediated by the decrease in HRT from 4 to 2 days slightly 

affected the C recovery. However, decreasing the C/N ratio (stages III and IV) clearly 

induced the assimilatory carbon removal (higher carbon recovery) with the associated 

CO2 stripping reduction (lower IC-RE observed in stage IV). Figure 3 shows a schematic 

representation of mass balance performed during stage IV:

3.3 Nitrogen and phosphorous removal

TN-REs of 87±2%, 62±2%, 62±4%, and 48±4% were recorded during stages I, II, III and 

IV, respectively, which resulted in TN effluent concentrations of 7±1 mg L-1, 18±2 mg L-

1, 17±1 mg L-1, and 23±2 mg L-1, respectively (Fig. 4a). Hence, TN effluent 

concentrations only complied with the EU Water Framework Directive during stage I, 

since requires TN concentrations lower than 15 mg L-1 [19]. The decrease in the HRT 

applied during stage II mediated lower TN-REs likely due to low photosynthetic activity 

(DO concentration of 0.4±0.1 mgO2 L-1) that prevented the complete nitrification-

denitrification process. Photosynthetic activity is typically correlated with the dissolved 

oxygen concentration in the cultivation broth. Therefore, oxygen limitation or availability 

may inhibit or boost nitrifying activity, respectively, which ultimately impacts on the 
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performance of the denitrification process. In fact, during stage II neither NO2
- nor NO3

- 

were returned from the photobioreactor via the internal and external recirculations to the 

anoxic bioreactor (Fig. 4b), and therefore, no significant denitrification occurred. 

Furthermore, the impact of the C/N ratio on TN removal was significant at a ratio of 7, 

where a decrease in TN-RE caused by a severe organic carbon limitation was observed 

[9,10]. 

N-NH4
+-REs of 86±11%, 45±4%, 50±3%, and 43±4% were recorded during stages I, II, 

III and IV, respectively, which resulted in N-NH4
+ effluent concentrations of 4±3 mg L-

1, 13±2 mg L-1, 12±1 mg L-1, and 18±2 mg L-1, respectively (Fig. 4a). The low DO 

concentrations prevailing in the cultivation broth of the HRAP during stages II, III and 

IV limited N-NH4
+ oxidation. Indeed, N-NO3

- was only detected in the HRAP cultivation 

broth during stage I at a maximum concentration of 2.4 mg L-1 (Fig. 4b). Average effluent 

N-NO2
- concentrations of 1.4±1.1 mg L-1, 0.0±0.0 mg L-1, 0.9±0.9 mg L-1, and 1.4±0.8 

mg L-1 were recorded during stage I, II, III and IV respectively. Despite the fact that the 

DO concentration remained >2 mgO2 L-1, the fluctuations in DO concentration during the 

illuminated period along with the high temperature in the HRAP (>28 ºC) likely favored 

the accumulation of NO2
-. 

Overall, the decrease in the HRT from 4 to 2 d reduced the rate of nitrification due to the 

low DO concentrations prevailing in the cultivation broth, while the decrease in the 

organic carbon load ultimately limited the denitrification process and TN removal. 

Indeed, this limited denitrification resulted in lower TN-RE compared to Alcántara et al. 

[3]) and De Godos et al. [8], who reported TN-REs of 68-79% and 90%, respectively, in 

a similar experimental set-up. The use of a HRAP as oxygenation unit showed low 

activity of nitrifying bacteria, compared to similar anoxic-aerobic configurations 

engineered in enclosed photobioreactors, due to the lower DO concentrations in the 
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cultivation broth mediated by the O2 exchange with the open atmosphere and the lower 

illuminated area/volume ratio [3,8].

Neither the HRT nor the C/N ratio influenced the N biomass content, which averaged 

7.4±0.3% along the four operational stages. The nitrogen mass balance showed average 

N recoveries in the harvested biomass of 56±5%, 52±3%, 37±3% and 73±2% during 

stages I, II, III and IV, respectively. Despite the high pHs (8.4 to 9.1) prevailing in the 

HRAP, the open nature of the system and the low rates of nitrification recorded, likely 

induced N-NH4
+ losses by volatilization. The nitrogen mass balance also confirmed the 

limited denitrification activity occurring in the anoxic bioreactor during stage IV, as 

previously hypothesized. 

The REs of P-PO4
3- accounted for 22±5%, 11±1%, 53±3% and 47±5% during stages I, 

II, III and IV, respectively, which corresponded to P-PO4
3- effluent concentrations of 

11±1 mg L-1, 13±1 mg L-1, 6±1 mg L-1 and 7±1 mg L-1, respectively (Fig. 5). P-PO4
3- 

effluent concentrations did not comply with the EU Water Framework Directive, which 

requires P-PO4
3- concentrations lower than 2 mg L-1 prior to wastewater discharge [19]. 

The decrease in P-PO4
3- REs when decreasing the HRT from 4 to 2 d was likely mediated 

by the overload of the assimilation capacity of algal-bacterial consortium present in the 

anoxic-aerobic photobioreactor. This finding agreed with the results obtained by Posadas 

et al. [14], who reported a P-PO4
3- REs decreasing from 57±17% to 36±22% when the 

HRT was reduced from 5.2 d to 3.1 d during secondary domestic wastewater treatment in 

a 31 L open algal-bacterial biofilm photobioreactor. The highest P removals observed at 

C/N ratios of 8 and 7 compared to that recorded at a C/N ratio of 9 were likely mediated 

by a luxury phosphorus uptake at the lowest C/P ratios in the SWW [20,21]. In fact, 
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microalgae can store acid-insoluble polyphosphate when phosphorous concentration in 

the media becomes limiting [22].

3.4 Biomass concentration and settling efficiency

The average TSS concentrations in the anoxic bioreactor during stages I, II, III, and IV 

were 0.5±0.1 g L-1, 0.7±0.1 g L-1, 0.5±0.1 g L-1, and 0.6±0.1 g L-1, respectively; while the 

TSS concentrations in the HRAP averaged 0.9±0.1 g L-1, 1.0±0.1 g L-1, 0.7±0.1 g L-1, and 

1.0±0.1 g L-1, respectively. The decreasing organic loads during process operation at C/N 

ratios of 8 and 7 did not imply lower TSS concentrations in the system likely due to the 

decreasing carbon losses by stripping. The slightly higher TSS concentrations in the 

HRAP than in the anoxic bioreactor were caused by the higher retention time and superior 

C and N assimilation mediated by algal activity in the photobioreactor [14]. This 

difference in TSS concentration was also in agreement with De Godos et al. [8] who 

reported VSS concentrations of 0.57-0.94 g L-1 in the anoxic bioreactor and of 0.69-1.4 g 

L-1 in the enclosed photobioreactor. 

Process operation at 10 d of SRT supported biomass productivities of 1.4-1.6 g TSS d-1 

regardless of the HRT and C/N ratio, which resulted in the low variations in the biomass 

concentrations of the cultivation broth of the anoxic bioreactor and HRAP above 

mentioned. In this sense, decoupling the SRT from the HRT by means of recycling the 

settled biomass allowed washing out from the system the poorly settleable species while 

keeping a constant the biomass productivity. This operating strategy represents a cost-

effective method for algal biomass production/harvesting in spite of the variation of the 

operating parameters during the wastewater treatment [23]. Furthermore, the wastage 

stream TSS concentration averaged 6.7±0.6 g L-1, 5.9±1.0 g L-1, 5.8±1.5 g L-1, and 

6.8±1.5 g L-1 in stage I, II, III and IV, respectively; while the TSS removal efficiency in 
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the settler averaged 98±1%, 92±1%, 97±1% and 98±5%, respectively. This resulted in 

TSS concentrations in the effluent along stages I to IV of 0.02±0.01 g L-1, 0.08±0.01 g 

L-1, 0.02±0.01 g L-1, and 0.03±0.01 g L-1, respectively. Therefore, effluent TSS 

concentrations complied with the EU Water Framework Directive, which requires TSS 

concentrations ≤35 mg TSS L-1 prior to discharge [19].

3.5 Microalgae population dynamics

The microalgae inoculum was composed of (percentage of cells) 49% of Chlorella 

vulgaris, 20% of Chlorella kessieri, 20% of Chlamydomonas altera, 7% of Chlorella 

minutissima, 3% of Scenedesmus obliquus and 2% of Chlamydomonas sp. (Fig. 6). 

During steady state I, Chlorella vulgaris became the dominant microalga accounting for 

54% of the total number of cells. Species such as S. obliquus increased up to 22% while 

Chlamydomonas altera disappeared and others such as Chloroccum sp. (11%) and 

Synechococcus sp. (9%) appeared during stage I. These variations in microalgae 

population were caused by the imposed biomass productivity (throughout controlling the 

biomass withdrawal) and the acclimation to anoxic-oxic cycles, irradiation, and the 

wastewater characteristics. The decrease in the HRT from 4 to 2 d mediated a slight 

increase in the dominance of C. vulgaris (accounting for 61% of the total number of cells), 

while the abundance of S. obliquus decreased to 14% in stage II. Other species of 

Chlorella such as Chlorella kessieri and Chlorella minutissima were identified with 

abundances of 16% and 6%, respectively. Overall, the results revealed that the decrease 

in HRT did not change the most abundant microalga species. In contrast, the decrease in 

the C/N ratio to 8 applied during stage III resulted in a reduction in the number of cells 

of C. vulgaris (38%), while Phormidium sp. showed up with an abundance of 21% and 

S. obliquus population increased to 31%. The subsequent reduction in the C/N ratio to 7 
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induced a further decrease in the number of C. vulgaris to 32%, while the population of 

Phormidium sp. increased to 44% (Fig. 6). Thus, the C/N ratio of the wastewater played 

a key role in the structure of the microalgae population. Nonetheless, it is worth noticing 

that the morphology of microalgae could depend on these factors and therefore might bias 

microalgae identification at the species level. On the other hand, there is still an ongoing 

active discussion about the appropriate DNA fragment to be sequenced during molecular 

identification of microalgae for a clear species identification. ITS-2 is often used for 

phylogenetic studies of microalgae at species level, but shows difficulties with the 

alignment of sequences and the prediction of the secondary structure. In our particular 

study, the high microalgae diversity recorded in this research was in agreement with the 

observations of Alcántara et al. [3] in an anoxic-aerobic algal-bacterial photobioreactor 

treating domestic wastewater. Furthermore, the genera Chlorella and Phormidium have 

typically ranked among the 12 microalgae genera most tolerant to organic pollution in 

HRAPs [24]. 

4. Conclusions

This work represents, to the best of our knowledge, the first systematic evaluation of the 

influence of the HRT and C/N ratio on the wastewater treatment performance of an 

anoxic-aerobic algal-bacterial photobioreactor using a HRAP as oxygenation unit. The 

effluent COD concentrations complied with the EU Water Framework Directive 

regardless of the HRT and C/N ratio. However, the low DO concentrations in the 

cultivation broth of the HRAP during process operation at 2 d of HRT limited the 

nitrification-denitrification process. Therefore, the effluent TN concentrations only 

complied with the EU Directive at 4 d of HRT. Similarly, the effluent P-PO4
3- 

concentrations were over the discharge limits at all operating conditions tested. Biomass 
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settling and recycling mediated the enrichment of algal-bacterial biomass with good 

settleability properties, which resulted in TSS discharge levels complying with EU 

Directive. Finally, C. vulgaris was the dominant species at a C/N ratio of 9 regardless of 

the HRT and was gradually replaced by Phormidium sp. when decreasing this ratio to 7.
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Figure captions

Figure 1. Schematic diagram of the anoxic-aerobic algal-bacterial photobioreactor 

configuration.

Figure 2. Time course of the concentration of (a) total organic carbon and (b) total 

inorganic carbon in the influent (▲), the output of the anoxic bioreactor (x) and effluent 

(○). TOC and IC removal efficiencies (■) are displayed in the secondary Y-axis. 

Figure 3. Schematic representation of mass balance for total carbon (TC), total nitrogen 

(TN) and phosphorous (P-PO4
3-) during stage IV.

Figure 4a. Time course of the concentration of N-NH4
+ in the influent (▲) and effluent 

(○) and the TN removal efficiencies (■, displayed in the secondary Y-axis); 4b. Time 

course of the N-NO2
- (♦) and N-NO3

- (◊) concentrations in the effluent. 

Figure 5. Time course of the concentration of P-PO4
3- in the influent (▲), the output of 

the anoxic bioreactor (x) and effluent (○). P-PO4
3- removal efficiency (■) is displayed in 

the secondary Y-axis.

Figure 6. Time course of the structure of the microalgae population in the HRAP:  

Chlamydomonas sp.,  Chlamydomonas altera,  Chlorella Kessieri, Chlorella 

minutissima,  Chlorella vulgaris,  Chlorococcum sp.,  Phormidium sp.,  

Scenedesmus obliquus and  Synechococcus sp.



Highlights

 A new anoxic-aerobic algal-bacterial photobioreactor configuration was assessed
 High COD removals regardless of the HRT and C/N ratio applied were obtained
 Low DO concentrations at 2 d HRT limited the nitrification-denitrification process
 TP remained over regulation discharge limits at the HRT and C/N ratios tested
 Biomass settling and recycling allowed effluent TSS under discharge limits
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Abstract

The influence of the hydraulic retention time (HRT) (2 and 4 days) and the 

carbon/nitrogen ratio (C/N) (7, 8 and 9) of the wastewater on the treatment of synthetic 

domestic wastewater was evaluated in a new anoxic-aerobic algal-bacterial 

photobioreactor configuration operated at solids retention time of 10 d by biomass 

recycling and withdrawal. The removal of chemical oxygen demand remained between 

84% and 89% regardless of the operational conditions. However, the decrease in the HRT 

from 4 to 2 d entailed reductions in the removal of total nitrogen (TN) and P-PO4
3- from 

87±2% to 62±2% and from 22±5% to 11±1%, respectively. On the other hand, the 

decrease in the C/N ratio of the wastewater from 9 to 8 and 7 at a HRT of 2 d induced TN 

removals of 62±4% and 48±4%, respectively. In contrast, P-PO4
3- removals unexpectedly 

increased from 11±1% at a C/N ratio of 9 to 53±3% and 47±5% at C/N ratios of 8 and 7, 

respectively. Finally, biomass settling and recycling supported the enrichment of an algal-

bacterial population with good settleability characteristics (suspended solids removals in 

the settler ~98%), being Chlorella vulgaris the dominant microalga specie at a C/N ratio 

of 9 which was gradually replaced by Phormidium sp., as a result of the reduction in the 

C/N ratio of the wastewater.

Keywords: 

Algal-bacterial processes; anoxic-aerobic photobioreactor; C/N ratio; nitrification-

denitrification; photosynthetic oxygenation.
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Abbreviations

C: Carbon

CBio: Carbon content in biomass

C/N: Carbon/Nitrogen ratio
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COD: Chemical oxygen demand 

DO: Dissolved oxygen concentration 

HRAP: High rate algal pond

HRT: Hydraulic retention time

IC: Inorganic carbon concentration

N: Nitrogen
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+: Ammonium
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NO3
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P: Phosphorous
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Pb: Biomass productivity

QEff: Effluent flowrate
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REs: Removal efficiencies 

SRT: Solids retention time
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TN: Total nitrogen concentration

TOC: Total organic carbon concentration
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TSS: Suspended solids concentration 

WWTPs: Wastewater treatment plants

Xi Eff: Concentrations of either COD, TOC, IC, TN, NH4
+ or P-PO4

3- in the effluent

Xi sww: Concentrations of either COD, TOC, IC, TN, NH4
+ or P-PO4

3- in the influent
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1. Introduction

Algal-bacterial processes have emerged in the past decades as a cost-effective and 

environmentally friendly platform technology to remove carbon (C), nitrogen (N) and 

phosphorus (P) from wastewaters [1]. The synergistic interactions between microalgae 

and bacteria are based on the in-situ supply of O2 (produced by photosynthesis) for 

aerobic heterotrophic bacteria and autotrophic nitrifiers, and the subsequent assimilation 

of C, N, and P in the form of valuable algal-bacterial biomass [2,3]. This green 

biotechnology significantly reduces oxygenation costs when compared to activated 

sludge systems and enhances nutrient recovery compared to anaerobic digestion 

technologies in conventional wastewater treatment plants (WWTPs) [2,4]. 

Despite the above-mentioned advantages, the efficiency of microalgae-based wastewater 

treatment processes is often limited by the C/N/P ratio of the secondary wastewater 

(100/25/12) or centrate (100/207/5), which hinders a complete nutrient assimilation due 

to carbon limitation [5,6] In this sense, only wastewaters with balanced C/N/P ratios (e.g. 

100/14/2 on mass basis) are favorable for microalgae growth and can therefore support N 

and P removals by assimilation, which opens the investigation niche for innovative 

photobioreactor configurations capable of supporting an effective N and P removals at 

low C/N ratios [3,7]. In this context, the complete nitrification-denitrification process 

represents a key metabolic pathway to remove C and N in wastewaters with low C/N 

ratios in algal-bacterial photobioreactors [3,8]. Nevertheless, the relatively low hydraulic 

retention times (HRTs =2-6 days) applied in high rate algal ponds (HRAPs) devoted to 

wastewater treatment limit the occurrence of nitrifying bacterial communities in the 

cultivation broth. Typically, the oxidation of NH4
+ requires HRT >8 d for complete 

nitrification [4,9]. Therefore, a new generation of anoxic-aerobic algal-bacterial 

photobioreactors based on decoupling the HRT from the solids retention time (SRT) were 
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developed and successfully tested at laboratory scale [3,9]. In these systems, 

photosynthesis supports the oxidation of NH4
+ to NO2

- or NO3
- required for carbon 

oxidation in the anoxic bioreactor through an internal recirculation. For instance, De 

Godos et al. [8] reported C (95%) and N (98%) removals from synthetic wastewater in a 

1 L anoxic bioreactor coupled to a 3.5 L closed photobioreactor operated at HRTs of 2-

4.5 d and SRTs of 9-31 d. These authors also reported that the recirculation of the 

harvested biomass from a 1 L settler to the anoxic bioreactor (external recirculation) 

avoided the washout of nitrifying bacteria and supported process operation at biomass 

concentrations of 1.0-1.5 g volatile suspended solids (VSS) L-1. Alcántara et al. [3] 

observed the absence of nitrification at high dissolved oxygen concentrations (DO), 21 ± 

4 mgO2 L-1, during synthetic wastewater treatment in a similar anoxic-aerobic algal-

bacterial closed photobioreactor configuration; Additionally, light-dark cycles combined 

with process aeration during dark periods were tested in order to elucidate a light-mediated 

inhibition on nitrifying activity. These authors recorded total organic carbon (TOC), 

inorganic carbon (IC) and total nitrogen (TN) removal efficiencies (REs) of ~ 80% at 2 d 

of HRT and SRTs of 20 d, the N removal mechanisms being governed by the light 

intensity and DO. This particular configuration has also been tested for the treatment of 

domestic wastewater [9] and synthetic textile wastewater [10] coupled to biogas 

upgrading and flue gas scrubbing, respectively. CO2 supply overcame the IC limitation, 

enhanced N and P removal by assimilation and supported an efficient nitrification-

denitrification process. However, the local availability of an external CO2 source is not 

always technical or economically feasible.

On the other hand, despite the high biomass productivities reached in closed 

photobioreactors, the high construction and operating costs limit their scalability [11]. 

Thus, HRAPs are typically the preferred photobioreactor configuration for microalgae-
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based wastewater treatment [5]. However, the use of a HRAP as process oxygenation unit 

for this novel anoxic-aerobic configuration has not been evaluated yet. Furthermore, there 

is a lack of studies assessing the influence of the C/N ratio of the wastewater on the 

performance of wastewater treatment in anoxic-aerobic algal-bacterial systems. 

Therefore, this work aim at evaluating the influence of the HRT and the C/N ratio of the 

wastewater on the C, N and P removal in an anoxic-aerobic algal-bacterial 

photobioreactor with a HRAP as process oxygenation unit. Mass balance calculations 

were conducted to elucidate the global carbon and nutrient removal mechanisms. Finally, 

a characterization of the biomass harvesting efficiency and the microalgae population 

structure was carried out during the different operational conditions assessed. 

2. Materials and methods 

2.1 Algal-bacterial inoculum

The inoculum consisted in a mixture of secondary activated sludge from the Valladolid 

WWTP (which operates with a nitrification-denitrification configuration) and a 

microalgae consortium collected from an outdoors pilot HRAP treating digestate located 

at the Department of Chemical Engineering and Environmental Technology of the 

University of Valladolid, Spain.

2.2 Synthetic domestic wastewater

The synthetic domestic wastewater (SWW) was prepared according to Frutos et al. [12] 

with the follow composition in g L-1: 0.16 of casein peptone, 0.11 of meat extract, 0.03 

of NH2COH2, 0.007 of NaCl, 0.004 of CaCl2·2H2O, 0.002 of MgSO4·7H2O, 5·x10-6 of 

CuCl2·2H2O, 0.112 of K2HPO4·3H2O, 0.25 of glucose, and 1.1 of NaHCO3. The main 

characteristics of the SWW were chemical oxygen demand (COD) concentration of 
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632±45 mg L-1, TOC of 196±9 mg L-1, IC of 195±12 mg L-1, TN of 43±3 mg L-1, N-NH4
+ 

of 24±3 mg L-1, P-PO4
3- of 13.1±0.8 mg L-1 and pH of 7.7±0.2.

2.3 Experimental set-up

The experimental set-up consisted of a 3.75 L enclosed anoxic bioreactor (15 cm long, 

15 cm wide, 17 cm deep), an 11.25 L open photobioreactor (HRAP) (30 cm long, 15 cm 

wide, 25 cm deep) and a 1 L conical settler (Fig. 1). The agitation of the cultivation broth 

in the anoxic bioreactor and in the HRAP was provided by Eheim compact 300 immersion 

pumps (Spain) (one pump in the anoxic bioreactor and two pumps in the HRAP). The 

HRAP was illuminated at an average photosynthetically active radiation (PAR) of 

1314±12 µmol m-2 s-1 (light:dark cycles of 12:12 h) by high-intensity LED PCBs (Phillips 

SA, Spain). The internal liquid recirculation from the HRAP to the anoxic bioreactor 

supported the denitrification process, while the external liquid recirculation from the 

bottom of the settler to the anoxic bioreactor mediated controlling the SRT according to 

table 1.

The bioreactors were initially filled with SWW and inoculated to have an initial total 

suspended solids concentrations (TSS) of 0.2 g TSS L-1 of microalgae and 0.6 g TSS L-1 

of activated sludge. The SWW was fed to the anoxic bioreactor at 4 and 2 d of total HRT 

(HRT of anoxic bioreactor + HRT of HRAP) (Table 1). These operational conditions 

promote the nitrification-denitrification process [13]. The flow rates of the internal and 

external recirculation (Watson Marlow 120 S pump, UK, and Masterflex 7021-24, USA, 

respectively) corresponded to 200% and 50% of the SWW flow rate, respectively, and 

were adjusted depending on the HRT tested. The SRT of the system was fixed at 10 d 

regardless of the operational stage by means of harvesting a volume of the external 

recirculation (wasted biomass ~1.5 g TSS d-1 under a steady biomass concentration in the 
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reactor). This volume was adjusted in accordance with the TSS concentration recorded in 

the wastage stream.

Stage I lasted 47 days in which the system was operated at an HRT of 4 d by feeding the 

SWW with a C/N ratio of 9 (COD concentration of 669±6 mg L-1). Afterwards, the HRT 

was decreased to 2 d during stages II, III and IV, while the C/N ratio of the wastewater 

was step-wise decreased from 9 to 8 and 7, respectively, by means of decreasing the 

glucose concentration (corresponding to COD concentrations of 669±6 mg L-1, 493±11 

mg L-1 and 434± 11 mg L-1, respectively). Stages II, III and IV were maintained for 40 d 

(~4 times the SRT) to achieve consistent steady states values. 

2.5 Analytical methods

Samples (50 mL) from the SWW, anoxic bioreactor, HRAP, settler and effluent were 

drawn twice per week in order to monitor the concentrations of dissolved TOC, IC, and 

TN in a Shimadzu TOC-VCSH analyzer with TNM-1 module (Japan). The NH4
+ 

concentration of samples was determined by using an Electrode Orion Dual Star (Thermo 

Scientific, The Netherlands), while the NO2
-, NO3

- and PO4
3- concentrations by HPLC-

IC according to Posadas et al. [14]. The pH (Eutech Cyberscan pH 510, The Netherlands), 

dissolved oxygen concentration (DO) (OXI 330i oximeter, WTW, Germany) and 

temperature were daily monitored in situ (anoxic bioreactor and HRAP). Furthermore, 

the TSS concentrations in the anoxic bioreactor, HRAP, settler, and effluent were monitor 

twice per week according to standard methods [15]. The concentration of COD in the 

SWW and treated effluent was only assessed under steady state (last three days from each 

operational stage) by the closed reflux method [15]. The influent and effluent flowrates 

were daily recorded in order to determine the water evaporation rate, while the PAR was 

weekly monitored (LI-250A, LI-COR Biosciences, Germany). The algal-bacterial 
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biomass harvested from the bottom of the settler under steady state was washed three 

times with distilled water and dried for 24 hours at 105 ºC prior determination of its 

elemental composition C, N, and P (LECO CHNS-932 analyzer). Finally, the 

morphological identification of the microalgae population in the HRAP was carried out 

at steady state. Two biomass samples were preserved with lugol acid at 5% and 

formaldehyde at 10%, respectively, and stored at 4 ºC prior analysis. The quantification 

and morphological identification of photosynthetic microorganisms were carried out 

according to Sournia [16] in an inverted microscope (OLYMPUS IX70, USA).

2.6 Mass balance calculation

The global mass balance calculation for C, N, and P were conducted based on the average 

concentrations of all their chemical species at the inlet (SWW) and outlet (effluent).

Carbon mass balance:

(TOCSWW + ICSWW) QSWW = (TOCEff + ICEff) QEff + CBio Pb + C-CO2-stripping    Eq. 1

Nitrogen mass balance:

TNSWW QSWW = TNEff QEff + NBio Pb + (N-NH4
+

volatilization + N2)                       Eq. 2

Phosphorous mass balance:

P-PO4
3- 

SWW QSWW = P-PO4
3- 

Eff QEff + PBio Pb                                                   Eq. 3

The carbon and nutrients recovery as algal-bacterial biomass and their removal 

efficiencies (REs) were calculated as follows:
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Carbon recovery= CBio Pb / ((TOCSWW + ICSWW) QSWW) × 100                        Eq. 4

Nitrogen recovery= NBio Pb / (TNSWW QSWW) × 100                                         Eq. 5

Phosphorous recovery= PBio Pb / (P-PO4
3- 

SWW QSWW)  × 100                           Eq. 6

                                                    Eq. 7RE𝑖 =  
(X𝑖,𝑆𝑊𝑊 × Q𝑆𝑊𝑊 ) ‒ (X𝑖,𝐸𝑓𝑓 × Q𝐸𝑓𝑓)

X𝑖,𝑆𝑇𝑊𝑊 × Q𝑆𝑊𝑊
× 100    

where Xi accounts for the corresponding COD, TOC, IC, TN, NH4
+ or P-PO4

3- 

concentrations (g L-1) in the influent (SWW) and effluent (Eff). QSWW stands for the 

influent SWW flowrate (L d-1) and QEff for the effluent flowrate (L d-1). Pb stands for the 

biomass productivity (g d-1), CBio for the carbon content in biomass (g g-1), NBio for the 

nitrogen content in biomass (g g-1) and PBio for the phosphorous content in biomass (g g-

1). ). Finally, C-CO2-stripping contribution was calculated as the difference between the total 

carbon input and the sum of the total carbon in the effluent and biomass wastage. 

Similarly, the contribution of N-NH4
+

volatilization + N2 from denitrification was calculated 

as the difference between the total nitrogen input and the sum of total nitrogen in the 

effluent and biomass wastage. All data are reported as means  ± SD, n = 4 (in steady-

state).

3. Results and discussion

3.1 Environmental parameters

The DO concentration in the anoxic bioreactor remained lower than 0.3±0.2 mgO2 L-1 

during all operational stages which is suitable to support an effective denitrification 

process (it typically requires DO concentrations <1 mgO2 L-1) [4]. During stage I, the low 

oxygen demand induced by the HRT tested (lowest organic matter load) promoted the 

highest DO concentration in the HRAP (7.8±3.6 mgO2 L-1). Afterward, the decrease in 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



12

the HRT (2 d) applied during stage II resulted in a severe decrease in the DO concentration 

to 0.4±0.1 mgO2 L-1. In contrast, the decrease in the C/N ratio promoted oxygen 

concentrations of 3.4±2.6 and 4.7±3.6 mgO2 L-1 during stages III and IV, respectively, 

due to the lower oxygen demand required for oxidizing the organic matter of the SWW 

with lower C/N ratios. Furthermore, the algal photosynthetic activity in the HRAP 

supported higher pHs compared to those recorded in the anoxic bioreactor (Table 1). 

However, the decreasing C/N ratios of the SWW fed during stages III and IV entailed a 

reduction of the pH in the HRAP, which equaled the pH in the anoxic bioreactor during 

stage IV. Nonetheless, the pHs were optimum to support a successful SWW treatment 

[17]. 

The seasonal increase of temperature slightly increased the temperature in the anoxic 

bioreactor and HRAP from stage I to IV, being the HRAP temperature higher than the 

anoxic bioreactor due to the heating associated with LED lighting (Table 1). 

Temperatures were always suitable to support effective nitrification, denitrification, 

photosynthesis and aerobic organic matter biodegradation [17]. Nonetheless, the 

evaporation rates ranged from 13 to 17 L m-2 d-1, mainly due to the temperature of the 

cultivation broth (Table 1). These values were significantly higher than those typically 

observed at industrial scale (~3-8 L m-2 d-1) as a result of the high turbulence prevailing 

in this lab-scale HRAP [18]. 

3.2 Carbon removal

COD removals of 87±0%, 84±0%, 89±1%, and 86±1% were recorded during stages I, II, 

III and IV, respectively, while TOC-REs accounted for 93±3%, 88±2%, 87±8%, and 

82±5%, respectively (Fig. 2a). These removal efficiencies allowed average COD effluent 

concentrations of 89±4 mg L-1, 116±4 mg L-1, 61±5 mg L-1, and 67±7 mg L-1, 
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respectively, and TOC effluent concentrations of 15±5 mg L-1, 24±3 mg L-1, 13±2 mg 

L-1, and 19±3 mg L-1, respectively (Fig. 2a). As expected, the decrease in the C/N ratio 

applied during stages III and IV mediated the lowest COD concentrations in the effluent, 

while the highest COD concentration was achieved during stage II when the highest 

organic loading rate (HRT of 2 d and C/N ratio of 9) and the lowest DO concentrations 

in the HRAP occurred. Furthermore, the lower C/N ratio applied in stage IV caused an 

organic carbon limitation that likely affected the algal-bacterial metabolism, which 

ultimately affected COD and TN removal (Section 3.3). However, the organic matter 

removal in this novel anoxic-aerobic algal-bacterial photobioreactor complied with the 

limits for COD concentration (≤125 mg L-1) of the wastewater discharged into the 

environment regardless of the operational conditions [19]. Furthermore, the recorded 

TOC-REs were similar to those reported by Alcántara et al. [3] (88±2%) in an anoxic 

bioreactor of 1 L interconnected to an enclosed photobioreactor of 3.5 L operated at 2 d 

of HRT  (SWW with C/N ratio of ~2) and 20 d of SRT. In this sense, a higher SRT 

typically entails higher oxidations rates of C and NH4
+, although no significant increase 

in TOC, NH4
+ or TN removal is expected when increasing the SRT from 10 to 20 days 

since no washout of key microbial communities occurs in this SRT range.

IC-REs of 18±5%, 0±1%, 15±4%, and 9±1% were recorded during stages I, II, III and 

IV, respectively, which corresponded to IC effluent concentrations of 191±6 mg L-1, 

197±10 mg L-1, 190±5 mg L-1, and 187±3 mg L-1, respectively (Fig. 2b). The REs here 

observed were lower than the 30-40% IC-REs reported by De Godos et al. [8] during the 

operation of a 1 L anoxic bioreactor coupled to a 3.5 L enclosed photobioreactor, in which 

the IC consumption by nitrifying bacteria at DO concentrations ranging from 12 to 20 mg 

L-1 likely enhanced the IC-REs. Nonetheless, according to the heterotrophic TOC 
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removal above reported, among 580 to 1250 mg C-CO2 d-1 were produced which 

supported the imposed biomass productivity (SRT=10 d) of ~1.5 g TSS d-1 (section 3.4). 

Therefore, CO2 stripping and phototrophic microalgae production can explain the 

removal of inorganic carbon, which was not significantly impacted by the low nitrifying 

activity recorded in our system (Section 3.3). Finally, the carbon recoveries in the 

harvested biomass accounted for 56±8%, 43±7%, 36±2% and 73±9% of the total 

(TOC+IC) carbon removal during stages I, II, III and IV, respectively (carbon content in 

the biomass was 38.8±0.6% during the four operational stages). Thus, the increase in the 

total carbon-loading rate mediated by the decrease in HRT from 4 to 2 days slightly 

affected the C recovery. However, decreasing the C/N ratio (stages III and IV) clearly 

induced the assimilatory carbon removal (higher carbon recovery) with the associated 

CO2 stripping reduction (lower IC-RE observed in stage IV). Figure 3 shows a schematic 

representation of mass balance performed during stage IV:

3.3 Nitrogen and phosphorous removal

TN-REs of 87±2%, 62±2%, 62±4%, and 48±4% were recorded during stages I, II, III and 

IV, respectively, which resulted in TN effluent concentrations of 7±1 mg L-1, 18±2 mg L-

1, 17±1 mg L-1, and 23±2 mg L-1, respectively (Fig. 4a). Hence, TN effluent 

concentrations only complied with the EU Water Framework Directive during stage I, 

since requires TN concentrations lower than 15 mg L-1 [19]. The decrease in the HRT 

applied during stage II mediated lower TN-REs likely due to low photosynthetic activity 

(DO concentration of 0.4±0.1 mgO2 L-1) that prevented the complete nitrification-

denitrification process. Photosynthetic activity is typically correlated with the dissolved 

oxygen concentration in the cultivation broth. Therefore, oxygen limitation or availability 

may inhibit or boost nitrifying activity, respectively, which ultimately impacts on the 
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performance of the denitrification process. In fact, during stage II neither NO2
- nor NO3

- 

were returned from the photobioreactor via the internal and external recirculations to the 

anoxic bioreactor (Fig. 4b), and therefore, no significant denitrification occurred. 

Furthermore, the impact of the C/N ratio on TN removal was significant at a ratio of 7, 

where a decrease in TN-RE caused by a severe organic carbon limitation was observed 

[9,10]. 

N-NH4
+-REs of 86±11%, 45±4%, 50±3%, and 43±4% were recorded during stages I, II, 

III and IV, respectively, which resulted in N-NH4
+ effluent concentrations of 4±3 mg L-

1, 13±2 mg L-1, 12±1 mg L-1, and 18±2 mg L-1, respectively (Fig. 4a). The low DO 

concentrations prevailing in the cultivation broth of the HRAP during stages II, III and 

IV limited N-NH4
+ oxidation. Indeed, N-NO3

- was only detected in the HRAP cultivation 

broth during stage I at a maximum concentration of 2.4 mg L-1 (Fig. 4b). Average effluent 

N-NO2
- concentrations of 1.4±1.1 mg L-1, 0.0±0.0 mg L-1, 0.9±0.9 mg L-1, and 1.4±0.8 

mg L-1 were recorded during stage I, II, III and IV respectively. Despite the fact that the 

DO concentration remained >2 mgO2 L-1, the fluctuations in DO concentration during the 

illuminated period along with the high temperature in the HRAP (>28 ºC) likely favored 

the accumulation of NO2
-. 

Overall, the decrease in the HRT from 4 to 2 d reduced the rate of nitrification due to the 

low DO concentrations prevailing in the cultivation broth, while the decrease in the 

organic carbon load ultimately limited the denitrification process and TN removal. 

Indeed, this limited denitrification resulted in lower TN-RE compared to Alcántara et al. 

[3]) and De Godos et al. [8], who reported TN-REs of 68-79% and 90%, respectively, in 

a similar experimental set-up. The use of a HRAP as oxygenation unit showed low 

activity of nitrifying bacteria, compared to similar anoxic-aerobic configurations 

engineered in enclosed photobioreactors, due to the lower DO concentrations in the 
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cultivation broth mediated by the O2 exchange with the open atmosphere and the lower 

illuminated area/volume ratio [3,8].

Neither the HRT nor the C/N ratio influenced the N biomass content, which averaged 

7.4±0.3% along the four operational stages. The nitrogen mass balance showed average 

N recoveries in the harvested biomass of 56±5%, 52±3%, 37±3% and 73±2% during 

stages I, II, III and IV, respectively. Despite the high pHs (8.4 to 9.1) prevailing in the 

HRAP, the open nature of the system and the low rates of nitrification recorded, likely 

induced N-NH4
+ losses by volatilization. The nitrogen mass balance also confirmed the 

limited denitrification activity occurring in the anoxic bioreactor during stage IV, as 

previously hypothesized. 

The REs of P-PO4
3- accounted for 22±5%, 11±1%, 53±3% and 47±5% during stages I, 

II, III and IV, respectively, which corresponded to P-PO4
3- effluent concentrations of 

11±1 mg L-1, 13±1 mg L-1, 6±1 mg L-1 and 7±1 mg L-1, respectively (Fig. 5). P-PO4
3- 

effluent concentrations did not comply with the EU Water Framework Directive, which 

requires P-PO4
3- concentrations lower than 2 mg L-1 prior to wastewater discharge [19]. 

The decrease in P-PO4
3- REs when decreasing the HRT from 4 to 2 d was likely mediated 

by the overload of the assimilation capacity of algal-bacterial consortium present in the 

anoxic-aerobic photobioreactor. This finding agreed with the results obtained by Posadas 

et al. [14], who reported a P-PO4
3- REs decreasing from 57±17% to 36±22% when the 

HRT was reduced from 5.2 d to 3.1 d during secondary domestic wastewater treatment in 

a 31 L open algal-bacterial biofilm photobioreactor. The highest P removals observed at 

C/N ratios of 8 and 7 compared to that recorded at a C/N ratio of 9 were likely mediated 

by a luxury phosphorus uptake at the lowest C/P ratios in the SWW [20,21]. In fact, 
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microalgae can store acid-insoluble polyphosphate when phosphorous concentration in 

the media becomes limiting [22].

3.4 Biomass concentration and settling efficiency

The average TSS concentrations in the anoxic bioreactor during stages I, II, III, and IV 

were 0.5±0.1 g L-1, 0.7±0.1 g L-1, 0.5±0.1 g L-1, and 0.6±0.1 g L-1, respectively; while the 

TSS concentrations in the HRAP averaged 0.9±0.1 g L-1, 1.0±0.1 g L-1, 0.7±0.1 g L-1, and 

1.0±0.1 g L-1, respectively. The decreasing organic loads during process operation at C/N 

ratios of 8 and 7 did not imply lower TSS concentrations in the system likely due to the 

decreasing carbon losses by stripping. The slightly higher TSS concentrations in the 

HRAP than in the anoxic bioreactor were caused by the higher retention time and superior 

C and N assimilation mediated by algal activity in the photobioreactor [14]. This 

difference in TSS concentration was also in agreement with De Godos et al. [8] who 

reported VSS concentrations of 0.57-0.94 g L-1 in the anoxic bioreactor and of 0.69-1.4 g 

L-1 in the enclosed photobioreactor. 

Process operation at 10 d of SRT supported biomass productivities of 1.4-1.6 g TSS d-1 

regardless of the HRT and C/N ratio, which resulted in the low variations in the biomass 

concentrations of the cultivation broth of the anoxic bioreactor and HRAP above 

mentioned. In this sense, decoupling the SRT from the HRT by means of recycling the 

settled biomass allowed washing out from the system the poorly settleable species while 

keeping a constant the biomass productivity. This operating strategy represents a cost-

effective method for algal biomass production/harvesting in spite of the variation of the 

operating parameters during the wastewater treatment [23]. Furthermore, the wastage 

stream TSS concentration averaged 6.7±0.6 g L-1, 5.9±1.0 g L-1, 5.8±1.5 g L-1, and 

6.8±1.5 g L-1 in stage I, II, III and IV, respectively; while the TSS removal efficiency in 
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the settler averaged 98±1%, 92±1%, 97±1% and 98±5%, respectively. This resulted in 

TSS concentrations in the effluent along stages I to IV of 0.02±0.01 g L-1, 0.08±0.01 g 

L-1, 0.02±0.01 g L-1, and 0.03±0.01 g L-1, respectively. Therefore, effluent TSS 

concentrations complied with the EU Water Framework Directive, which requires TSS 

concentrations ≤35 mg TSS L-1 prior to discharge [19].

3.5 Microalgae population dynamics

The microalgae inoculum was composed of (percentage of cells) 49% of Chlorella 

vulgaris, 20% of Chlorella kessieri, 20% of Chlamydomonas altera, 7% of Chlorella 

minutissima, 3% of Scenedesmus obliquus and 2% of Chlamydomonas sp. (Fig. 6). 

During steady state I, Chlorella vulgaris became the dominant microalga accounting for 

54% of the total number of cells. Species such as S. obliquus increased up to 22% while 

Chlamydomonas altera disappeared and others such as Chloroccum sp. (11%) and 

Synechococcus sp. (9%) appeared during stage I. These variations in microalgae 

population were caused by the imposed biomass productivity (throughout controlling the 

biomass withdrawal) and the acclimation to anoxic-oxic cycles, irradiation, and the 

wastewater characteristics. The decrease in the HRT from 4 to 2 d mediated a slight 

increase in the dominance of C. vulgaris (accounting for 61% of the total number of cells), 

while the abundance of S. obliquus decreased to 14% in stage II. Other species of 

Chlorella such as Chlorella kessieri and Chlorella minutissima were identified with 

abundances of 16% and 6%, respectively. Overall, the results revealed that the decrease 

in HRT did not change the most abundant microalga species. In contrast, the decrease in 

the C/N ratio to 8 applied during stage III resulted in a reduction in the number of cells 

of C. vulgaris (38%), while Phormidium sp. showed up with an abundance of 21% and 

S. obliquus population increased to 31%. The subsequent reduction in the C/N ratio to 7 
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induced a further decrease in the number of C. vulgaris to 32%, while the population of 

Phormidium sp. increased to 44% (Fig. 6). Thus, the C/N ratio of the wastewater played 

a key role in the structure of the microalgae population. Nonetheless, it is worth noticing 

that the morphology of microalgae could depend on these factors and therefore might bias 

microalgae identification at the species level. On the other hand, there is still an ongoing 

active discussion about the appropriate DNA fragment to be sequenced during molecular 

identification of microalgae for a clear species identification. ITS-2 is often used for 

phylogenetic studies of microalgae at species level, but shows difficulties with the 

alignment of sequences and the prediction of the secondary structure. In our particular 

study, the high microalgae diversity recorded in this research was in agreement with the 

observations of Alcántara et al. [3] in an anoxic-aerobic algal-bacterial photobioreactor 

treating domestic wastewater. Furthermore, the genera Chlorella and Phormidium have 

typically ranked among the 12 microalgae genera most tolerant to organic pollution in 

HRAPs [24]. 

4. Conclusions

This work represents, to the best of our knowledge, the first systematic evaluation of the 

influence of the HRT and C/N ratio on the wastewater treatment performance of an 

anoxic-aerobic algal-bacterial photobioreactor using a HRAP as oxygenation unit. The 

effluent COD concentrations complied with the EU Water Framework Directive 

regardless of the HRT and C/N ratio. However, the low DO concentrations in the 

cultivation broth of the HRAP during process operation at 2 d of HRT limited the 

nitrification-denitrification process. Therefore, the effluent TN concentrations only 

complied with the EU Directive at 4 d of HRT. Similarly, the effluent P-PO4
3- 

concentrations were over the discharge limits at all operating conditions tested. Biomass 
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settling and recycling mediated the enrichment of algal-bacterial biomass with good 

settleability properties, which resulted in TSS discharge levels complying with EU 

Directive. Finally, C. vulgaris was the dominant species at a C/N ratio of 9 regardless of 

the HRT and was gradually replaced by Phormidium sp. when decreasing this ratio to 7.
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Figure captions

Figure 1. Schematic diagram of the anoxic-aerobic algal-bacterial photobioreactor 

configuration.

Figure 2. Time course of the concentration of (a) total organic carbon and (b) total 

inorganic carbon in the influent (▲), the output of the anoxic bioreactor (x) and effluent 

(○). TOC and IC removal efficiencies (■) are displayed in the secondary Y-axis. 

Figure 3. Schematic representation of mass balance for total carbon (TC), total nitrogen 

(TN) and phosphorous (P-PO4
3-) during stage IV.

Figure 4a. Time course of the concentration of N-NH4
+ in the influent (▲) and effluent 

(○) and the TN removal efficiencies (■, displayed in the secondary Y-axis); 4b. Time 

course of the N-NO2
- (♦) and N-NO3

- (◊) concentrations in the effluent. 

Figure 5. Time course of the concentration of P-PO4
3- in the influent (▲), the output of 

the anoxic bioreactor (x) and effluent (○). P-PO4
3- removal efficiency (■) is displayed in 

the secondary Y-axis.

Figure 6. Time course of the structure of the microalgae population in the HRAP:  

Chlamydomonas sp.,  Chlamydomonas altera,  Chlorella Kessieri, Chlorella 

minutissima,  Chlorella vulgaris,  Chlorococcum sp.,  Phormidium sp.,  

Scenedesmus obliquus and  Synechococcus sp.
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Table 1. Operational parameters and steady-state values recorded in the anoxic bioreactor (AX) and 
HRAP during the four operational stages.

Stage I Stage II Stage III Stage IV
HRT (d) 4 2 2 2

C/N ratio (g/g) 9 9 8 7
COD (mg O2 L-1) 595±27 669±6 493±11 434±11

Evaporation rate (L m-2 d-1) 13±0 14±1 15±2 15±2
pH AX 8.2±0.1 8.2±0.2 8.1±0.1 8.2±0.2

pH HRAP 9.1±0.1 9.0±0.1 8.7±0.1 8.4±0.3
DO AX (mg O2 L-1)* 0.2±0.1 0.1±0.1 0.2±0.1 0.3±0.2

DO HRAP (mg O2 L-1)* 7.8±3.6 0.4±0.1 3.4±2.6 4.7±3.6
T AX (ºC) 22±0 24±1 26±2 27±1

T HRAP (ºC) 24±0 26±0 28±2 29±1
*-DO measured during the illuminated period. Data shown are the mean ± SD, n = 4.
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