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1 Introduction

Two-dimensional (2D) systems are attracting significant attention from the re-
search community, due to the presence of this class of systems in water stream
heating, seismographic data processing, thermal processes, multidimensional
digital filtering, process control, image and signal processing, etc [13,16,15,
17]. Among the relevant results already published, the stability of 2D systems
has been studied in, for example, [10,12,21,23]; the stabilization of 2D systems
has been explored in [25,9,18,11].
This paper concentrates on 2D singular systems which have been studied in
the few past decades and which could have various practical applications in
many areas such as: digital filtering, modeling and control of electrical circuits,
power systems, economics etc. They describe physical systems that involve al-
gebraic non-dynamic constraints [8,6].
In practical 2D system one can consider some algebraic constraints on the
state vector components (an example is given for 1D system in [7]). The de-
scription becomes then the one of a 2D singular system. It is worth noting
that singularity may also be a result of modelling [1,2].
The jump behavior and the associated stability analysis for 2D singular sys-
tems was established in [29]. The stability of 2D singular systems has been
further studied in, for example, [3,31,24]. Other problems like H∞ 2D fil-
tering, H∞ 2D control and H∞ 2D model reduction have been reported in
[14,27,26]. Most of these works are developed based on non-strict LMI which
motivates us to search for stability and stabilization conditions in terms of
a strict LMI. Some previous results obtained for 2D singular systems extend
fundamental results on 1D singular systems [28,20,5]. For example, the admis-
sibility and state feedback admissibilization of discrete singular systems have
been elaborated in [19] and the stabilization of continuous descriptor systems
has been investigated in [4].
Most of the published works in the literature use z-transformation approach
and algebraic methods. Here, decomposition methods are used as already per-
formed for 1D Singular systems and we extend these techniques to 2D singular
deterministic Systems.
In this paper, we then study the admissibility of 2D singular systems described
by a Roesser model using a strict LMI, that is tractable using available LMI
software solvers. This result is used to derive a controller that ensures the
admissibility of the closed loop.
We mainly focus for the time being on theoretical development but we hope
in the near future be able to deal with some application in the discretization
of partial differential equation which are already modeled as 2D systems.
The structure of this paper is as follows: Section 2 gives the problem formu-
lation. In section 3, we discuss the regularity and causality of 2D singular
systems described by a Roesser model. In section 4, we establish the stability
of this class of system, expressed by means of a strict LMI. In section 5, we deal
with the problem of stabilization by state feedback for these systems. Section
6 presents a numerical example to highlight the usefulness of the proposed
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method.
Notations

In this paper, the following notations will be used:
∗ Sym {A} stands for the addition of a matrix and its symmetric:

Sym {A} = AT +A.

∗ diag{.} represents a block-diagonal matrix.

∗ For simplicity, instead of X⊤Y X , we will write (•)
⊤
Y X where (•) replaces

X . X and Y are some matrix expressions.

2 Problem Formulation

The class of 2D discrete systems studied in this paper is described by the
following Singular Roesser Model (SRM):

E

[
xh(i + 1, j)
xv(i, j + 1)

]

= A

[
xh(i, j)
xv(i, j)

]

(1)

where xh ∈ R
nh is the horizontal state vector, xv ∈ R

nv is the vertical state
vector, A ∈ R

n×n, with n = nh + nv is the system matrix.

Definition 1 [27]

(i) The system (1) is said to be stable if λ (E,A) ⊂ Dint (0, 1).
(ii) The system (1) is said to be admissible if it is regular, causal and stable.

Definition 2 [30]
A 2D Singular Roesser Model is said to be of the separated standard form if
it is of the form (1) with

E = diag
{
Eh, Ev

}
(2)

where Eh ∈ R
nh×nh and Ev ∈ R

nv×nv .

For system described by (1), for now on matrix E will comply with (2).

3 Regularity and causality of 2D singular systems

For a singular system, a solution can be ensured to exist only if the system is
regular, that is, if the system can be transformed into standard subsystems,
with an algebraic constraint on the state vector of the system.

If the matrix A is partitioned as follows:

A =

[
Ahh Ahv

Avh Avv

]

(3)
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Then, one can write the 2D SRM equivalently as follows:

Ehxh(i+ 1, j) = Ahhxh(i, j) +Ahvxv(i, j) (4)

Evxv(i, j + 1) = Avhxh(i, j) +Avvxv(i, j) (5)

with rank(Ek) = rk, for k = h, v.
Let us consider the matrices Uk and V k, for k = h, v such that

UkEkV k =

[
Irk 0
0 0

]

, (6)

with the state vectors partitioned similarly:

x̄k = (V k)−1xk =

[
x̄k
1

x̄k
2

]

where x̄k
1 is in IRr

k

and x̄k
2 is in IR(nk−r

k), for k = h, v.
Let also:

Ākl = UkAklV l, k, l = h, v.

Multiplying the left side of equation (4) by Uh we get

UhEhV h(V h)−1xh(i+ 1, j) = UhAhhV h(V h)−1xh(i, j) +

UhAhvV v(V v)−1xv(i, j)

= Āhhx̄h(i, j) + Āhvx̄v(i, j)

[
Irh 0
0 0

]

x̄h(i+ 1, j) =

[
x̄h
1 (i + 1, j)

0

]

=

[
Āhh

11 x̄
h
1 (i, j) + Āhh

12 x̄
h
2 (i, j) + Āhv

11 x̄
v
1(i, j) + Āhv

12 x̄
v
2(i, j)

Āhh
21 x̄

h
1 (i, j) + Āhh

22 x̄
h
2 (i, j) + Āhv

21 x̄
v
1(i, j) + Āhv

22 x̄
v
2(i, j)

]

which can be written as follows

x̄h

1 (i + 1, j) = Āhh

11 x̄
h

1 (i, j) + Āhh

12 x̄
h

2 (i, j) + Āhv

11 x̄
v

1(i, j) + Āhv

12 x̄
v

2(i, j) (7)

0 = Āhh

21 x̄
h

1 (i, j) + Āhh

22 x̄
h

2 (i, j) + Āhv

21 x̄
v

1(i, j) + Āhv

22 x̄
v

2(i, j). (8)

Performing the same operation for the second equation (4), we get

UvEvV v(V v)−1xv(i, j + 1) = UvAvhV h(V h)−1xh(i, j) +

UvAvvV v(V v)−1xv(i, j)

= Āvhx̄h(i, j) + Āvvx̄v(i, j)

[
Irv 0
0 0

]

x̄v(i, j + 1) =

[
x̄v
1(i, j + 1)

0

]

=

[
Āvh

11 x̄
h
1 (i, j) + Āvh

12 x̄
h
2 (i, j) + Āvv

11 x̄
v
1(i, j) + Āvv

12 x̄
v
2(i, j)

Āvh
21 x̄

h
1 (i, j) + Āvh

22 x̄
h
2 (i, j) + Āvv

21 x̄
v
1(i, j) + Āvv

22 x̄
v
2(i, j)

]
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and similarly as for the horizontal direction, we get

x̄v

1(i, j + 1) = Āvh

11 x̄
h

1 (i, j) + Āvh

12 x̄
h

2 (i, j) + Āvv

11 x̄
v

1(i, j) + Āvv

12 x̄
v

2(i, j) (9)

0 = Āvh

21 x̄
h

1 (i, j) + Āvh

22 x̄
h

2 (i, j) + Āvv

21 x̄
v

1(i, j) + Āvv

22 x̄
v

2(i, j) (10)

Equations (8) and (10) imply that
[
Āhh

21 Āhv
21

Āvh
21 Āvv

21

] [
x̄h
1 (i, j)

x̄v
1(i, j)

]

+

[
Āhh

22 Āhv
22

Āvh
22 Āvv

22

] [
x̄h
2 (i, j)

x̄v
2(i, j)

]

= 0 (11)

whereas equations (7) and (9) imply that
[
x̄h
1 (i+ 1, j)

x̄v
1(i, j + 1)

]

=

[
Āhh

11 Āhv
11

Āvh
11 Āvv

11

] [
x̄h
1 (i, j)

x̄v
1(i, j)

]

+

[
Āhh

12 Āhv
12

Āvh
12 Āvv

12

] [
x̄h
2 (i, j)

x̄v
2(i, j)

]

(12)

It comes then that if we assume that
[
Āhh

22 Āhv
22

Āvh
22 Āvv

22

]

is non singular (13)

we get from (11)
[
x̄h
2 (i, j)

x̄v
2(i, j)

]

= −

[
Āhh

22 Āhv
22

Āvh
22 Āvv

22

]−1 [
Āhh

21 Āhv
21

Āvh
21 Āvv

21

] [
x̄h
1 (i, j)

x̄v
1(i, j)

]

(14)

Using (14) in (12), we get a standard 2D subsystem as follows
[
x̄h
1 (i+ 1, j)

x̄v
1(i, j + 1)

]

=
(
¯̄A11 −

¯̄A12
¯̄A−1
22

¯̄A21

) [
x̄h
1 (i, j)

x̄v
1(i, j)

]

(15)

With:

¯̄A11 =

[
Āhh

11 Āhv
11

Āvh
11 Āvv

11

]

, ¯̄A12 =

[
Āhh

12 Āhv
12

Āvh
12 Āvv

12

]

,

¯̄A22 =

[
Āhh

22 Āhv
22

Āvh
22 Āvv

22

]

, ¯̄A21 =

[
Āhh

21 Āhv
21

Āvh
21 Āvv

21

]

(16)

As a consequence, if condition (13) is satisfied, the system will be regular and

causal. Moreover, if the matrix
(
¯̄A11 −

¯̄A12
¯̄A−1
22

¯̄A21

)

is stable, then the system

(1) is stable. This development is summarized by Theorem 1.

Theorem 1 If condition (13) is satisfied, then system (1) is regular and causal.

One can effectively check the admissibility of a 2D singular system by first
checking the singularity of (13) and then the stability of (15). However, the
use of Linear Matrix Inequalities (LMI) is more appropriate to solve such a
problem, in particular if the system matrices are corrupted by uncertainties.
In addition, the available LMI toolboxes are nowadays very efficient. That’s
why, it’s more appropriate to work with this approach. In the case of a state
feedback design, the state matrix is effectively A+BK. The objective in the
design is to compute K in such a way that the closed loop system is admissible,
that is, regular causal and stable. In the design, condition (13) will depend on
K. As a consequence, it will be difficult, if not impossible, to use (13) to check
the non singularity and (15) for the stability.
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4 Stability of 2D singular systems

To state the first theorem on the stability of 2D singular, let us introduce some
matrices that will be used in the sequel. Recall that E and A are defined as
in (2) and (3). First, define the following permutation matrix

J =







Irh 0 0 0
0 0 Irv 0
0 Inh−rh 0 0
0 0 0 Inv−rv







satisfying JJ⊤ = I and

U =

[
Uh 0
0 Uv

]

V =

[
V h 0
0 V v

]

where Uh, Uv, V h and V v are defined by (6).

Theorem 2 If there exist symmetric matrices P h and P v and a matrix Y

such as the inequalities

EPE⊤ + Sym
{
E†Y

}
> 0 (17)

APA⊤ − EPE⊤ < 0 (18)

hold, with

P =

[
P h 0
0 P v

]

and

E† = (V U)−1 − E,

then system (1) is regular and stable.

Proof

Condition (17) makes possible to prove that the top left entry of ¯̄P = JV −1PV −⊤J⊤

is positive definite.

Indeed, multiplying (17) on the left by JU and on the right by its transpose
we get
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JUEPE⊤UJ⊤ + Sym
{
JUE†Y UJ⊤

}

= JUEV JJ⊤V −1PV −⊤JJ⊤V ⊤E⊤UJ⊤ + Sym
{(

JUE†V J⊤
)
JV −1Y UJ⊤

}

= ¯̄E ¯̄P ¯̄E
⊤
+ Sym

{(

I − ¯̄E
) [

Ȳ11 Ȳ12

Ȳ21 Ȳ22

]}

=

[ ¯̄P11 0
0 0

]

+ Sym

{([
0 0
0 I

])[
Ȳ11 Ȳ12

Ȳ21 Ȳ22

]}

=

[ ¯̄P11 Ȳ21

Ȳ ⊤
21 Ȳ22 + Ȳ ⊤

22

]

> 0 (19)

with: ¯̄E =

[
I 0
0 0

]

.

It is easy to notice that (19) states effectively that ¯̄P11 > 0.
The second inequality makes possible to prove the regularity and the sta-

bility of the system under investigation.
Effectively, multiplying (18) by JU on the left, and by its transpose on the

right, we get

JUAPA⊤U⊤J⊤ − JUEPE⊤U⊤J⊤ < 0. (20)

The second term in (20) can then be expressed as

JUEPE⊤U⊤J⊤ =
(
JUEV J⊤

) (
JV −1PV −⊤J⊤

) (
JV ⊤E⊤U⊤J⊤

)

=
(
JĒJ⊤

) (
JP̄J⊤

) (
JĒ⊤J⊤

)

with:

P̄ = V −1PV −⊤ =

[
P̄ h 0
0 P̄ v

]

, (21)

¯̄P = JP̄J⊤ =







P̄ h
11 0 P̄ h

12 0
0 P̄ v

11 0 P̄ v
12

P̄ h
21 0 P̄ h

22 0
0 P̄ v

21 0 P̄ v
22






=

[ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

]

(22)

¯̄E = JĒJ−1 =







Irh 0 0 0
0 Irv 0 0
0 0 0 0
0 0 0 0







(23)

where P̄ h and P̄ v were partitioned similarly as, for instance, Āhh.
The previous development implies that

JUEPE⊤U⊤J⊤ =







P̄ h
11 0 0 0
0 P̄ v

11 0 0
0 0 0 0
0 0 0 0
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The first term of the Lyapunov inequality (18) can then be transformed as
follows
(
JUAV J⊤

) (
JV −1PV −⊤J⊤

) (
JV ⊤A⊤U⊤J⊤

)
=

(
JĀJ⊤

) (
JP̄J⊤

) (
JĀ⊤J⊤

)

with

Ā = UAV (24)

Moreover, defining

¯̄A = JT ĀJ =

[ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

]

and T21 such as

[
I 0

− ¯̄P21
¯̄P−1
11 I

] [ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

] [

I − ¯̄P−1
11

¯̄P12

0 I

]

︸ ︷︷ ︸

T21

=

[ ¯̄P11 0

0 ¯̄P22 −
¯̄P21

¯̄P−1
11

¯̄P12

]

with: ¯̄P21 = ¯̄PT
12 and ¯̄P11 = ¯̄P⊤

11.
The first term of (18) can be transformed to give

(•)⊤
(
T⊤
21JP̄J⊤T21

) (
T−1
21 JĀ⊤J⊤

)

=

[
L11

¯̄A12

L12
¯̄A22

] [ ¯̄P11 0

0 P̂22

] [
L⊤
11 L⊤

12
¯̄A⊤
12

¯̄A⊤
22

]

=

[
L11

¯̄P11L
⊤
11 +

¯̄A12P̂22
¯̄A⊤
21 L11

¯̄P11L
⊤
12 +

¯̄A12P̂22
¯̄A⊤
22

L12
¯̄P11L

⊤
11 +

¯̄A22P̂22
¯̄A⊤
21 L12

¯̄P11L
⊤
12 +

¯̄A22P̂22
¯̄A⊤
22

]

(25)

with:

P̂22 = ¯̄P22 −
¯̄P21

¯̄P−1
11

¯̄P12,

L11 =
(
¯̄A⊤
11 +

¯̄P−1
11

¯̄P12
¯̄A⊤
12

)⊤

, (26)

L12 =
(
¯̄A⊤
21 +

¯̄P−1
11

¯̄P12
¯̄A⊤
22

)⊤

. (27)

At this step, the Lyapunov inequality reads

[
L11

¯̄P11L
⊤
11 +

¯̄A12P̂22
¯̄A⊤
21 L11

¯̄P11L
⊤
12 +

¯̄A12P̂22
¯̄A⊤
22

L12
¯̄P11L

⊤
11 +

¯̄A22P̂22
¯̄A⊤
21 L12

¯̄P11L
⊤
12 +

¯̄A22P̂22
¯̄A⊤
22

]

−

[ ¯̄P11 0
0 0

]

< 0

from which we get

L12
¯̄P11L

⊤
12 +

¯̄A22P̂22
¯̄A⊤
22 < 0. (28)

Taking account of the fact that ¯̄P11 > 0, inequality (28) implies that ¯̄A22 is
non singular.
Indeed, if ¯̄A22 is singular, then there exist ξ 6= 0 such as ξ⊤ ¯̄A22 = 0. Thus,
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multipliying the left side of (28) by ξ⊤ and the right side by ξ, we get the
following inequality

ξ⊤L12
¯̄P11L

⊤
12ξ + ξ⊤ ¯̄A22P̂22

¯̄A⊤
22ξ < 0

Assume L⊤
12ξ = a, we get

a⊤ ¯̄P11a < 0

Which contradicts the fact that ¯̄P11 > 0. Then, ¯̄A22 is non singular.

The second step is to show that matrix
(
¯̄A11 −

¯̄A12
¯̄A−1
22

¯̄A21

)

is stable.

For this, let us consider the transformed Lyapunov inequality
(
JĀJ⊤

) (
JP̄J⊤

) (
JĀ⊤J⊤

)
−
(
JĒJ−1

) (
JP̄J⊤

) (
JĒ⊤J⊤

)
< 0

or similarly

(•)⊤
([ ¯̄P11

¯̄P12
¯̄P21

¯̄P22

])([ ¯̄A⊤
11

¯̄A⊤
21

¯̄A⊤
12

¯̄A⊤
22

])

−

[ ¯̄P11 0
0 0

]

< 0. (29)

Multiplying the right side of (29) by

S12 =

[
I 0

− ¯̄A−⊤
22

¯̄A⊤
12 I

]

and the left side by its transpose, we get

(•)
⊤

([ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

])([
A⊤ ¯̄A⊤

21

0 ¯̄A⊤
22

])

−

[ ¯̄P11 0
0 0

]

< 0. (30)

Note also that the last inequality can be written as follows

(•)
⊤

(

S−⊤
21

[ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

]

S−1
21

)(

S21

[
A⊤ ¯̄A⊤

21

0 ¯̄A⊤
22

])

−

[ ¯̄P11 0
0 0

]

< 0. (31)

with

S21 =

[

I − ¯̄A⊤
21

¯̄A−⊤
22

0 I

]

or equivalently

(•)⊤
(

S−⊤
21

[ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

]

S−1
21

)([
A⊤ 0

0 ¯̄A⊤
22

])

−

[ ¯̄P11 0
0 0

]

< 0. (32)

Notice that
(

S−⊤
21

[ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

]

S−1
21

)

= S−⊤
21

[ ¯̄P11
¯̄P12 +

¯̄P11
¯̄A⊤
21

¯̄A−⊤
22

¯̄P21
¯̄P22 +

¯̄P21
¯̄A⊤
21

¯̄A−⊤
22

]

=

[ ¯̄P11
¯̄P12 +

¯̄P11
¯̄A⊤
21

¯̄A−⊤
22

¯̄P21 +
¯̄A−1
22

¯̄A21
¯̄P11

¯̄P22 +
¯̄P21

¯̄A⊤
21

¯̄A−⊤
22 + ¯̄A−1

22
¯̄A21

¯̄P12 +
¯̄A−1
22

¯̄A21
¯̄P11

¯̄A⊤
21

¯̄A−⊤
22

]
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which shows that (31) can be equivalently written as follows:

(•)
⊤

([ ¯̄P11 ∗
∗ ∗

])([
A⊤ 0

0 ¯̄A⊤
22

])

−

[ ¯̄P11 0
0 0

]

< 0. (33)

where (∗) denotes expressions that are irrelevant.
From (32) we get easily

A ¯̄P11A
⊤ − ¯̄P11 < 0

which states the stability of matrix A, having in mind the positivity of ¯̄P11.
This concludes the proof of Theorem 2

5 Admissibilization of the 2-D system

In this section, we first look for a strict inequality condition to check the
stability of the system, to replace the two conditions (17) and (18).

Theorem 3 The 2D singular system described by the Roesser model is ad-

missible for a given β > 1, if and only if there exist matrices P and X such

that:
[
−EPE⊤ Z⊤

Z P

]

+ Sym

{[
A

−I

]

X
[
U−⊤ −βV ⊤

]
}

< 0 (34)

Proof

Notice that condition (18) can be written, for Z = 0, as follows

[
I A

]
[
−EPE⊤ Z⊤

Z P

] [
I

A⊤

]

< 0 (35)

Condition (17) can be written equivalently as follows

[
I I

]
[
−EPE⊤ −E†Y

−(E†Y )⊤ 0

]

︸ ︷︷ ︸

Φ1

[
I

I

]

< 0

which is in a similar form as:

[
βU V −1

]
[
−EPE⊤ Z⊤

Z P

] [
βU⊤

V −⊤

]

< 0 (36)

where Z is a matrix that has to be selected to recover the regularity and the
stability of the system.The 22-block of the multiplier Φ1 has been changed
from zero to P in order to write (17)-(18) respectively as (34)-(35).

According to the projection lemma [22, Theorem 2.3.12], conditions (35)-
(36) are equivalent to the existence of a matrix X of appropriate dimension
such as (34) holds.
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If we expand (36) we get

−β2UEPE⊤U⊤ + V −1PV −⊤ + Sym
{
βUZ⊤V −⊤

}
< 0

or equivalently

−β2
(
J⊤UEV J

) (
J⊤V −1PV −⊤J

) (
J⊤V ⊤E⊤U⊤J

)

+J⊤V −1PV −⊤J + Sym
{
βJ⊤UZ⊤V −⊤J

}
< 0.

A simple way to satisfy the condition above is to choose Z in such a way that

Sym
{
βJ⊤UZ⊤V −⊤J

}
=

[
0 ∗
∗ ∗

]

where (∗) are irrelevant expressions. This yields

−β2

[ ¯̄P11 0
0 0

]

+

[ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

]

+

[
0 ∗
∗ ∗

]

< 0

which implies that
(
1− β2

) ¯̄P11 < 0, and since β > 1, then ¯̄P11 is strictly
positive definite.

If we expand (35) and after some appropriate manipulations, we get

−
(
J⊤UEV J

) (
J⊤V −1PV −⊤J

) (
J⊤V ⊤E⊤U⊤J

)

+
(
J⊤UAV J

) (
J⊤V −1PV −⊤J

) (
J⊤V ⊤A⊤U⊤J

)

+Sym
{(

J⊤UAV J
) (

J⊤V −1ZU⊤J
)}

< 0,

or more explicitly

−

[ ¯̄P11 0
0 0

]

+

[ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

] [ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

] [ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

]⊤

+Sym
{(

J⊤UAV J
) (

J⊤V −1ZU⊤J
)}

< 0.

If matrix J⊤V −1ZU⊤J is partitioned as follows:

J⊤UZ⊤V −⊤J =

[
0 0

∗ ¯̄Z22

]

(37)

we get

−

[ ¯̄P11 0
0 0

]

+

[ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

] [ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

] [ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

]⊤

+Sym

{[ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

] [
0 0

∗ ¯̄Z22

]}

< 0 (38)
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and taking account of (26), we get

−

[ ¯̄P11 0
0 0

]

+

[
L11

¯̄P11L
⊤
11 +

¯̄A12P̂22
¯̄A⊤
21 L11

¯̄P11L
⊤
12 +

¯̄A12P̂22
¯̄A⊤
22

L12
¯̄P11L

⊤
11 +

¯̄A22P̂22
¯̄A⊤
21 L12

¯̄P11L
⊤
12 +

¯̄A22P̂22
¯̄A⊤
22

]

+Sym

{[ ¯̄A11
¯̄A12

¯̄A21
¯̄A22

] [
0 0

∗ ¯̄Z22

]}

< 0

which yields

L12
¯̄P11L

⊤
12 +

¯̄A22P̂22
¯̄A⊤
22 + Sym

{
¯̄A22

¯̄Z22

}

< 0

an inequality that asserts that ¯̄A⊤
22 is non singular.

Going back to (38) and performing the same manipulations used to obtain
(31), we get

(•)⊤
(

S−⊤
21

[ ¯̄P11
¯̄P12

¯̄P21
¯̄P22

]

S−1
21

)([
A⊤ 0

0 ¯̄A⊤
22

])

−

[ ¯̄P11 0
0 0

]

+ Sym

{[
A 0

0 ¯̄A22

] [
0 0
∗ ∗

]}

< 0. (39)

The top left matrix in inequality (39) is

A ¯̄P11A
⊤ − ¯̄P11 < 0

which asserts that A is stable.
One can notice that (35) and (36) can be recovered using backward the same
argument above which results in (34) and the equivalence is proved.

Let us now look for a matrix Z which satisfies condition (37). If we choose
a matrix Z as follows:

Z =
(
V J

(
I − JV ⊤E⊤U⊤J⊤

)
J⊤U−⊤

)

then we get

(
J⊤V −1ZU⊤J

)
= I − JV ⊤E⊤U⊤J⊤

=

[
0 0

0 ¯̄Z22

]

which shows effectively that Z complies with condition (37).



Stability and Stabilization of 2D Singular Systems: A Strict LMI Approach 13

5.1 Stabilization of 2D singular systems

In this subsection, we will deal with the problem of stabilization by state
feedback for the 2D singular system given by:

E

[
xh(i+ 1, j)
xv(i, j + 1)

]

= A

[
xh(i, j)
xv(i, j)

]

+Bu (i, j) (40)

where u (i, j) ∈ R
m is the control input.

The control law given by a state feedback is then

u (i, j) = K

[
xh(i, j)
xv(i, j)

]

(41)

where the gain K, of appropriate dimension, is computed in a way that the
singular closed loop system is admissible.

Theorem 4 The closed loop singular system is admissible with the state feed-

back

K = GX−1 (42)

for a given β ∈ R, with β > 1, if and only if the following LMI is feasible in

the variables X, P , G:

[
−EPE⊤ Z⊤

Z P

]

+ Sym

{[
AX +BG

−X

]
[
U−⊤ −βV ⊤

]
}

< 0 (43)

Proof

The closed loop 2D singular system is admissible if and only if there exist X ,
P , and a state feedback K satisfying the following LMI

[
−EPE⊤ Z⊤

Z P

]

+ Sym

{[
A+BK

−I

]

X
[
U−⊤ −βV ⊤

]
}

< 0 (44)

for a given β > 1. Thus, it is clear that a change of variable G = KX yields
condition (44) which completes the proof.

6 Example

To highlight the effectiveness of the proposed approach, a numerical example
is now developed. Consider the 2D SRM in (40) with the following system
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matrices:

A =









0.0400 −0.6800 0.7600 −1.4480 2.2320
0.1160 −0.7720 0.6840 −0.6000 0.6800
−0.4720 1.9440 0.5520 −0.2800 0.6400
−0.8400 −0.9160 0.6800 0.1200 0.4000
0.4000 0.6000 0.5520 0.1200 0.6400









E =









1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0









,

B =
[
1.00 −0.10 2.20 0.50 0.70

]⊤
.

The open loop system is not regular, with the corresponding matrix ¯̄A22 not
invertible.

By solving the LMI (43), with the design parameter β = 2 the following
feasible solution can be found:

P = 103









0.2615 −0.2609 0.1178 0 0
−0.2609 0.2604 −0.1254 0 0
0.1178 −0.1254 −1.2129 0 0

0 0 0 0.0076 0.0143
0 0 0 0.0143 −0.4475









X =









−104.1804 81.3792 −120.3466 −15.3932 −77.3744
90.4095 −97.7882 154.1874 11.8161 27.7099
31.7315 −69.5319 231.2352 −0.1020 −32.2636
30.7065 −0.4232 4.4671 −38.4950 10.5835
83.6472 −51.1011 64.5327 −17.0386 52.9031









G =
[
−95.0569 94.6840 −282.8348 −12.5036 −64.8997

]

K =
[
0.3765 2.2150 −1.6297 2.3162 −3.2936

]

Some simulated results are now presented, with null boundary values for
i > 250 or j > 250. To facilitate the visualitation, we plot in Figure 6 the
evolution of the two following quantities, which correspond to the norm of the
generalized vector along the diagonal i+ j = k:

Xh(k) =

k∑

i=0

‖xh(i, k − i)‖2

Xv(k) =

k∑

i=0

‖xv(i, k − i)‖2

This makes possible to compress the evolution of the 2D system using 1D
plots: It can be seen that they go to zero as k goes to infinity, indicating that
the system is stable.
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7 Conclusion

In this paper, we consider the stabilization of a class of 2D singular systems,
expressed in a separated Roesser form; that is, with the singular matrix E

partitioned as a two blocks diagonal matrix, where the blocks correspond to
the horizontal and vertical directions. These separated Roesser form allows
to derive algebraic equations on each direction, making possible to rewrite
the regularity condition as the non singularity of a certain matrix. A suffi-
cient stability condition is then established, which makes possible to check
the admissibility of the 2D singular system. To design feedback controllers, a
sufficient but strict LMI condition is established and then used in the design
of a state feedback controller.

A numeric example is given at the end of the paper to illustrate the ef-
fectiveness of the proposed approach, showing how it is possible to design
controllers that provides admissibility for the closed loop system. As further
work, the proposed approach could be extended to multidimensional systems
or systems with constraints.
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