

PCCP

Physical Chemistry Chemical Physics

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Jin, R. T. Saragi, M. Juanes, G. Feng and A. Lesarri, *Phys. Chem. Chem. Phys.*, 2021, DOI: 10.1039/D1CP00997D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Chemical Physics Accepted Manuscript

Physical Chemistry

ARTICLE

Published on 14 April 2021. Downloaded by Universidad de Valladolid Biblioteca on 4/14/2021 12:36:27 PM

Interaction Topologies of the S…O Chalcogen Bond: The Conformational Equilibrium of the Cyclohexanol…SO₂ Cluster

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Yan Jin,^{a,b} Rizalina T. Saragi,^b Marcos Juanes,^b Gang Feng,^{*a} Alberto Lesarri^{*b}

The conformational landscape of the cyclohexanol···SO₂ cluster was revealed in the gas phase using chirped-pulsed broadband rotational spectroscopy and quantum chemical calculations. Four isomers stabilized by a dominant S···O chalcogen bond and cooperative C–H···O=S and O–H···O=S secondary weak hydrogen bonds were observed, with a near-parallel orientation of the S=O and O–H bonds. Isomers formed by equatorial-*gauche* cyclohexanol are more stable than the isomers containing axial cyclohexanol. The multiple conformations of cyclohexanol and the versatile binding properties of SO₂, simultaneously operating as nucleophile and electrophile through its π -holes and non-bonding electrons lead to a complex conformational behavior when the cluster is formed. The long (2.64 - 2.85 Å) attractive S···O interaction between SO₂ and cyclohexanol is mainly electrostatic and the contribution of charge transfer is obvious, with a NBO analysis suggesting that the strength of the S···O interaction is nearly two orders of magnitude larger than the hydrogen bonds. This study provides molecular insights into the structural and energetic characteristics that determine the formation of pre-nucleation clusters between SO₂ and a volatile organic compound like cyclohexanol.

Introduction

Sulfur dioxide (SO₂) is a major pollutant originated from coal burning and industrial emissions. Once in the atmosphere SO₂ operates as a source of sulfuric acid (H₂SO₄),¹ which serves as nucleating precursor for the formation of new larger atmospheric particles. Particle formation is explained by binary $(H_2SO_4-H_2O^2)$, ternary (H₂SO₄-H₂O-NH₃³ and H₂SO₄-H₂O-RNH₂⁴) or organicenhanced⁵ nucleation. Investigations also confirmed that SO₂ and SO₃ can form stable pre-nucleation clusters and therefore promote the formation of second organic aerosols (SOA).⁶ Acquiring fundamental knowledge on the intermolecular interactions and binding topologies of sulfur nucleation centers is thus important for revealing initial processes in the formation of the critical nuclei. Field measurements and laboratory experiments on particle formation involving sulfur and organic compounds have mostly used aerosol chambers, mass spectrometry or photoelectron spectroscopy, but they do not provide a molecular description of the clusters.^{3,7}

Among the gas-phase experiments, the combination of jet expansions and rotational spectroscopy⁸ is a powerful tool for determining the preferred structures, binding topologies and molecular properties of intermolecular clusters, illustrating the structural and energetic features of the initial steps toward to the

formation of new atmospheric particles. Indeed, some rotational investigations of pre-nucleation clusters have been reported.9 Interestingly, SO₂ may adopt multiple binding roles and exhibit a wide variety of binding interactions when forming intermolecular clusters. The nucleophilic n-pairs on the two terminal O atoms can form either hydrogen-bonds (HBs) to proton donors like HCl or HF, ¹⁰ or form halogen-bonds (XBs) to localized electron-deficient regions (σ -holes) within an halogen, as in SO₂…CIF.¹¹ Alternatively, the charge holes¹² in the sulfur atom produce electrophilic regions acting as additional binding sites for S…O, S…N, S…S and S… π chalcogen bonds (ChBs) with H₂O,¹³ CH₃OH,¹⁴ (CH₃)₂O,¹⁵ HCN,¹⁶ N(CH₃)₃,¹⁷ H₂S,¹⁸ $(CH_3)_2S^{19}$ or the π electrons of C_2H_4 , ²⁰ $C_2H_2^{21}$ and benzene.²² ChBs are highly directional having strength comparable to HBs and sometimes even exceeding that of HBs,²³ conferring them a significant role in molecular recognition,²⁴ catalysis²⁵ and synthesis.²⁶ Cooperative or secondary weak HBs to the ChBs were also observed in several cases, further enhancing the stability of the clusters.^{14-15, 19} However, only a single conformation has been observed for all the above SO₂ clusters. Conformational flexibility provides more possibilities for the formation and the subsequent growth of these clusters. The versatile conformations of SO₂ in forming clusters is still unclear, limiting the level of molecular understanding or how its intermolecular binding topology determines the conformational preference in multiconformational systems.

Herein cyclohexanol, a common volatile organic compound (VOC), is selected as the partner molecule to probe the multiple configurations of SO_2 in forming pre-nucleation clusters. Cyclohexanol has a certain degree of flexibility in its molecular structure. The ring inversion interconverts the alcohol group position, generating equatorial (*E*) and axial (*A*) conformers. In addition, the (low-barrier) internal rotation of the OH group generates gauche (g) and anti (a) orientations, and further

^{a.} School of chemistry and chemical engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing, 401331, China. E-mail: fengg@cqu.edu.cn

^{b.} Departamento de Química Física y Química Inorgánica — I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain. E-mail: alberto.lesarri@uva.es

⁺ Electronic Supplementary Information (ESI) available: molecular sketch of eight isomers (Figure S1); spectroscopic parameters of the eight isomers (Table S1); interconversion barrier connecting isomers I and II (Figure S2); experimental transition frequencies (Tables S2-S6); results of NBO analysis (Table S7) and results of the SAPT analysis of the eight isomers (Table S8). See DOI:

Theoretical Results

ARTICLE

complicates the conformational potential energy surface, resulting in a total of four plausible cyclohexanol conformers, i.e. Eg, Ea, Ag and Aa. The two gauche orientations produce transient chirality, which is frozen on formation of clusters. Rotational spectroscopic investigations detected only the two equatorial conformers Eg and Ea in the gas phase, establishing that the Eg conformation is the global minimum followed by Ea.27 The multiple conformations of cyclohexanol do not lead to a complex conformational behaviour when forming a cluster with water, since only one isomer, Eg-H₂O, has been observed.²⁷ However, multiple conformations showed up for the cyclohexanol dimer, in which six isomers have been identified.28

In this study, the multiple conformations and binding features of the cyclohexanol···SO₂ cluster were investigated by using chirped-pulsed Fourier transform microwave (CP-FTMW) spectroscopy and quantum chemical calculations.

Methods

Published on 14 April 2021. Downloaded by Universidad de Valladolid Biblioteca on 4/14/2021 12:36:27 PM

Rotational spectroscopy

The rotational spectrum was measured with a broadband pulsed-jet direct-digital chirped-pulsed Fourier transform microwave (FTMW) spectrometer at the University of Valladolid,²⁹ working in the frequency range of 2-8 GHz. In this spectrometer, a (4 µs) chirp pulse is created by an arbitrary waveform generator, amplified to 20 W and radiated into the jet. The molecular transient emission created from rotational decoherence extends for ca. 40 µs per excitation pulse and is recorded by using a (250 MS/s) digital oscilloscope. Commercial samples of cyclohexanol and SO₂ were used without further treatment. Cyclohexanol was put inside a reservoir nozzle and vaporized in situ at 50°C. The molecular cluster was then generated by co-expanding cyclohexanol with a stream of a gaseous mixture of SO₂ (0.5%) diluted in neon at backing pressures of 0.2 MPa. The final spectrum was obtained by averaging 1 M freeinduction-decays in the time-domain and was Fourier transformed to provide the frequency-domain spectrum. The spectral linewidths after the Fourier transformation (Kaiser-Bessel window) are ca. 150 kHz (FWHM). The accuracy of the frequency measurements is estimated to be better than 10 kHz.

Computational methods

The possible conformations of the cyclohexanol-SO₂ cluster were first explored with a conformational search based on molecular mechanics and the MMFFs force field³⁰ (implemented in Macromodel³¹). The initial structures were subject to full geometry optimizations and harmonic vibrational frequency calculations using the B3LYP³² method including two-body Grimme's D3³³ dispersion corrections with Becke-Johnson (BJ) damping,³⁴ employing the def2-TZVP and the aug-cc-pVTZ basis sets. The basis-set superposition error (BSSE)³⁵ was corrected with the counterpoise (CP) method. A Natural Bond Orbital (NBO) analysis³⁶ was performed at the B3LYP-D3(BJ)/aug-cc-pVTZ level. All the calculations were implemented in the Gaussian16 program package.³⁷

The Multiwfn program³⁸ and VMD software³⁹ were used to perform the non-covalent interaction (NCI) $^{\rm 40}$ analysis. Finally, a Symmetry-Adapted Perturbation Theory (SAPT)⁴¹ analysis was Page 2 of 7

implemented at the SAPT2+(3)δMP2/aug-cc-pVDZ level by using the PSI4 program⁴² to produce an energy decomposition.^{39/D1CP00997D} **Results and discussion** Eight isomers with relative energies within 500 cm⁻¹ were initially predicted for the cyclohexanol...SO₂ cluster (Figure S1 and

Table S1, ESI⁺) using the B3LYP-D3(BJ)/def2-TZVP method. The first five most stable isomers displayed in Figure 1 were later reoptimized at the B3LYP-D3(BJ)/aug-cc-pVTZ level. The global minimum (isomer Eg_SO₂_1) is constituted by Eg cyclohexanol, with all atoms of SO₂ simultaneously interacting with the alcohol and the ring hydrogens. The Eq cyclohexanol is also the conformation found in isomer Eg_SO2_2, while isomer Ea_SO2_1 contains Ea cyclohexanol. The cyclohexanol moiety in isomers Ag_SO2_1 and Aa_SO2_1 adopts the Ag and Aa conformations, respectively. Table 1 reports the calculated rotational constants, electric dipole moment components and relative energies of the five most stable isomers. The zero-point and counterpoise corrected interaction energies of the five isomers are also given in Table 1.

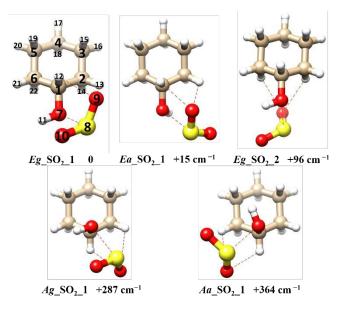
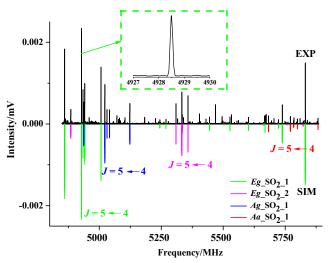


Figure 1. B3LYP-D3(BJ)/aug-cc-pVTZ calculated molecular structures, relative electronic energies (zero-point and counterpoise corrected) and atom numbering of the five lowest-lying isomers of the cyclohexanol...SO₂ cluster.

Table 1. Rotational parameters of the first five stable isomers of cyclohexanol...SO2 calculated at the B3LYP-D3(BJ)/aug-cc-pVTZ level of theory.^a

	<i>Eg_</i> SO ₂ _1	Ea_SO ₂ _1	Eg_SO ₂ _2	Ag_SO ₂ _1	Aa_SO ₂ _1
A _e /MHz	2479.05	2408.89	2124.13	2517.30	2363.22
B _e /MHz	527.00	535.48	568.16	538.64	575.52
C _e /MHz	479.39	502.14	561.96	500.22	536.64
$ \mu_{a} /D$	2.54	2.40	2.22	2.70	2.75
$ \mu_{ m b} /$ D	0.47	1.16	0.74	0.12	0.47
$ \mu_{c} /D$	0.87	0.74	1.08	0.42	0.75
ΔE_0 / cm ⁻¹	0	13	94	288	361
∆G / kJ mol⁻¹	0.0	0.0	1.1	0.4	0.1
D _{0,BSSE} / kJ mol ⁻¹	-28.2	-28.3	-27.0	-27.8	-28.7

^a Equilibrium rotational constants (A_e , B_e , C_e), dipole moment components in the principal inertial axes system (μ_{α} , α = a, b, c), electronic (ΔE_0), Gibbs (ΔG) and complexation energies ($D_{0,BSSE}$).


Accepted Manusci

Chemistry Chemical Phy

VSICal

PCCP

Using the theoretical predictions in Table 1, four different sets of rotational spectra were positively assigned to isomers $Eg_SO_2_1$, $Eg_SO_2_2$, $Ag_SO_2_1$ and $Aa_SO_2_1$. A section of the spectrum is given in Figure 2, showing the *R*-branch $(J + 1) \leftarrow J = 5 \leftarrow 4$ *a*-type transitions with $K_a = 0$, 1, 2 of the four detected isomers together with other transitions of isomers $Eg_SO_2_1$ and $Eg_SO_2_2$. For isomer $Eg_SO_2_1$, the rotational spectrum of the mono-substituted ³⁴S species was also measured in natural abundance (~4%). None of the observed transitions showed tunnelling splittings associated to the internal motion of the SO₂ moiety or the torsion of the OH group of cyclohexanol, suggesting that the two subunits are rigidly linked or that complexation quenches plausible tunnelling motions in the dimer.

Figure 2. A section of the measured rotational spectrum in the 4850-5885 MHz range, showing the assignment of four isomers of cyclohexanol···SO₂. The positive trace shows the experimental transitions belonging to isomers **Eg_SO₂_1**, **Eg_SO₂_2**, **Ag_SO₂_1** and **Aa_SO₂_1**. The negative trace represents the fit results of Table 2, with different colours for each isomer. The inset shows a typical rotational transition ($5_{04} \leftarrow 4_{04}$) of isomer **Eg_SO₂_1**. The spectrum was simulated at a rotational temperature of 1 K and used the theoretical values of the dipole moments reported in Table 1.

The rotational transitions were fitted independently to the Watson's S-reduction semi-rigid rotor Hamiltonian (*I^r* representation),⁴³ implemented in Pickett's SPCAT/SPFIT programs.⁴⁴ The determined spectroscopic parameters of the four isomers and the ³⁴S isotopologue of isomer *Eg_SO***21** are reported

in Table 2. The details of the spectral measurements_{icandtiapalysis} along with all the assigned transitions are given in the spectral information (Tables S2-S6, ESI+).

The isomer identification confirmed that both equatorial (*Eg*) and axial (*Ag* and *Aa*) conformers of cyclohexanol are present in the clusters with SO₂. The global minimum (isomer *Eg_SO₂_1*) is formed by the most stable conformer of cyclohexanol (*Eg*), with the versatile SO₂ engaging in a dominant S···O chalcogen bond and apparently additional secondary C–H···O=S and O–H···O=S hydrogen bonds as attractive forces for stabilizing the cluster. All other isomers share the S···O bond, but present different SO₂ contacts to the ring. The second detected isomer (*Eg_SO₂_2*) also contains *Eg* cyclohexanol, but SO₂ approaches the opposite side of the ring, linking to a different lone pair of the cyclohexanol oxygen. The isomers with lower populations formed by the *Ag* and *Aa* forms (*Ag_SO₂_1* and *Aa_SO₂_1*) combine also multiple interactions primarily governed by a S···O bond.

Conformations and molecular structure

The relative abundance of the four isomers in the supersonic jet was estimated by their spectral intensities and the electric dipole moment components in Table 1, assuming a linear fast-passage excitation regime (intensities proportional to the square dipole moments) and uniform instrumental response.⁴⁵ This estimation gives a population ratio of N (Eg_SO₂_1): N (Eg_SO₂_2) : N (Ag_SO₂_1): N (Aa_SO₂_1) = 16.7 : 7.6 : 4.5 : 1, in qualitative agreement with the calculated conformational ordering of 5.8 : 5.4 : 3.7 : 1. The discrepancy is attributed to kinetic effects in the jet, including collisional population transfer⁴⁶ and enhanced preference for the most abundant monomer conformations.47 No isomer containing Ea cyclohexanol could be found, especially that of isomer Ea SO₂ 1, which is predicted to be the second most stable structure. A calculation of the conformational interconversion from isomer Ea_SO2_1 to Eg_SO2_1 gives a potential energy barrier of ~ 298 cm⁻¹ (Figure S2), indicating that conformational relaxation⁴⁶ likely occurs in the supersonic jet which therefore prevents the detection of isomer Ea SO₂ 1. A calculated conformational ordering of 11.5: 5.4: 3.7 : 1 is obtained considering the population transfer of *Ea_SO₂_1* to Eg_SO2_1, closer to the experimental estimation. For the only isomer with all selection rules active, Ag_SO2_1, the experimental ratios $\mu_a:\mu_b:\mu_c$ are estimated as 18:1:2.7, in qualitative agreement with the predicted values of the dipole moment components.

Table 2. Experimental rotational parameters of the dimer cyclohexanol...SO2.

	<i>Eg_</i> SO ₂ _1	<i>Eg_</i> SO ₂ _1- ³⁴ S	<i>Eg_</i> SO ₂ _2	<i>Ag</i> _SO ₂ _1	Aa_SO ₂ _1
A ₀ /MHz ^a	2430.1591(9) ^d	2428.2(6)	2137.020(3)	2506.4(2)	2187.2(3)
B ₀ /MHz	508.2381(3)	500.7532(7)	538.1844(6)	521.8200(4)	598.6738(6)
C ₀ /MHz	478.8195(3)	472.1942(6)	528.5905(6)	484.6814(4)	558.5563(6)
<i>D</i> J/kHz	0.196(3)	0.196(3) ^e	0.252(7)	0.094(3)	0.465(6)
<i>D</i> _{Jк} /kHz	-0.81(2)	-0.81(2) ^e	-1.04(5)	0.49(3)	2.8(1)
$ \mu_{a} ^{b}$	+++	+++	+++	+++	+++
$ \mu_{\rm b} $	++	None	+	None	None
$ \mu_{c} $	None	None	++	None	None
N ^c	63	17	40	32	22
σ/kHz	7.1	8.9	9.9	4.9	5.2

^a Ground-state rotational constants (A_0 , B_0 , C_0) and Watson's *S*-reduction centrifugal distortion constants (D_1 and D_{1K} ; D_k , d_1 and d_2 were fixed to zero). ^bA positive sign indicates the observation of the corresponding type of transitions. ^cNumber of transitions in the fit (N) and root-mean-square (RMS) error (σ). ^d Errors in parenthesis are 1 σ uncertainties expressed in units of the last digit.

Published on 14 April 2021. Downloaded by Universidad de Valladolid Biblioteca on 4/14/2021 12:36:27 PM

PCCP

View Article Online DOI: 10.1039/D1CP00997D

Table 3. Experimental structural parameters (r_0) compared with the theoretical (r_e) values (distances in Å, angles in degrees).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eg_SO ₂ _1	<i>r</i> ₀₇₅₈	<i>r</i> _{010H11}	<i>r</i> _{09H12}	r _{09H13}	∠\$807C1	∠S807C1C6	∠H1107C1C4	∠010S807H11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>r</i> e ^a	2.578	2.755	2.609	2.926	109.9	86.0	-112.5	-2.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>r</i> ₀	2.638(5) ^b	-	-	-	108.4(2)	105.6(3)	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eg_SO ₂ _2	<i>r</i> ₀₇₅₈	<i>r</i> _{010Н11}	<i>r</i> _{09Н14}	r _{09H22}	∠S807C6	∠\$807C1C6	∠H1107C1C4/	∠010S807H11
Ag_SO_1 r_{0758} r_{010H11} r_{09H12} r_{09H13} \angle S807C1 \angle S807C1C2 \angle H1107C1C4 \angle 010S807H1 r_e 2.572 2.738 2.624 2.988 109.6 -86.2 109.5 2.2 r_0 2.6894(8) - - - - -83.0(1) - Aa_SO_1 r_{0758} r_{010H11} r_{09H21} \angle S807C1 \angle S807C2C3 \angle H1107C1C4 \angle 010S807H1 r_e 2.567 2.991 2.664 2.910 111.1 145.1 19.0 17.5	r _e	2.620	2.790	2.740	2.685	101.4	57.2	-117.9	4.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_0	2.70(2)	-	-	-	105.8(6)	-	-	-
r_0 2.6894(8) -		. ,							
A\sigma_SO_1 r_{0758} r_{010H11} r_{09H21} $\angle S807C1$ $\angle S807C2C3$ $\angle H1107C1C4$ $\angle O10S807H1$ r_e 2.567 2.991 2.664 2.910 111.1 145.1 19.0 17.5	Ag_\$0 ₂ _1	r ₀₇₅₈	<i>r</i> _{010H11}	<i>r</i> _{09H12}	r _{09H13}		∠S807C1C2	∠H1107C1C4	∠010S807H11
r _e 2.567 2.991 2.664 2.910 111.1 145.1 19.0 17.5						∠\$807C1			
	r _e	2.572				∠\$807C1	-86.2		
$r_{0} = 2.848(5) 101.4(6)$	r _e r ₀	2.572 2.6894(8)	2.738	2.624	2.988	∠S807C1 109.6	-86.2 -83.0(1)	109.5	
	r _e r ₀ Aa_SO ₂ _1	2.572 2.6894(8) r ₀₇₅₈	2.738 - r _{010H11}	2.624 - r _{09H12}	2.988 - r _{09H21}	∠\$807C1 109.6 - ∠\$807C1	-86.2 -83.0(1) ∠\$807C2C3	109.5 _ ∠H1107C1C4	2.2

^a The r_e structure was calculated at B3LYP-D3(BJ)/aug-cc-pVTZ levels of theory.^b Errors in parenthesis are 1σ uncertainties expressed in units of the last digit.

The experimental rotational constants reported in Table 2 were used to determine effective (r_0) structures of the observed isomers through a least-squares fit procedure,48 assuming that the ring skeleton and SO₂ are not perturbed upon complexation. Since only limited isotopic data were available (two sets of rotational constants for the most stable isomer and one set of rotational constants for other three observed isomer), only the structural parameters involving the intermolecular internal coordinates were adjusted to fit the rotational constants to the experimental ones, while keeping the structural parameters of the isomers fixed at the B3LYP-D3(BJ)/augcc-pVTZ predicted values. The derived structural parameters concerning the non-covalent interactions for the four observed isomers of cyclohexanol...SO2 are reported in Table 3 (the equilibrium structures or $r_{\rm e}$ are also present for comparison). The S…O distances are in the range of 2.64 - 2.85 Å with the shortest distance observed in isomer Eg_SO2_1 (2.638(5) Å). These distances are significantly shorter than that of S…O ChB determined for the 2,2,4,4-tetrafluoro-1,3-dithietane $(C_2S_2F_4)$ -water cluster (2.912(5) Å).49 The distances of C-H-O=S and O-H-O=S in the four isomers are in the range of 2.6 - 3.0 Å and 2.7 - 3.0 Å, respectively, structurally suggesting the existence of these secondary interactions. The presence of secondary interactions determining the conformational preference was also revealed in the chalcogen bonded clusters of C₂S₂F₄.^{49,50} The dihedral angles H11O7C1C4 (Table 3) are slightly changed in the cluster compared to that of the cyclohexanol monomer (-120.3° for Eg, 116.4° for Ag, 0.0° for Aa) to better accommodate the intermolecular interactions.

Non-covalent interactions

The non-covalent interactions between cyclohexanol and SO₂ are visualized through NCI plots in Figure 3, using a reduced gradient of the electronic density.⁵¹ The results show that the dominant S···O ChB interaction contribute to the stabilization of all isomers. The C–H···O=S interaction cooperatively stabilizes the observed isomers while O-H···O=S interaction is rather weak and is not present in the NCI plots. Figure 4 reports the plot of the electronic reduced density gradient (RDG) versus the signed density (sign(λ_2) ρ) for the four observed isomers, further indicating the existence of S···O ChB and weak attractive intermolecular interactions.

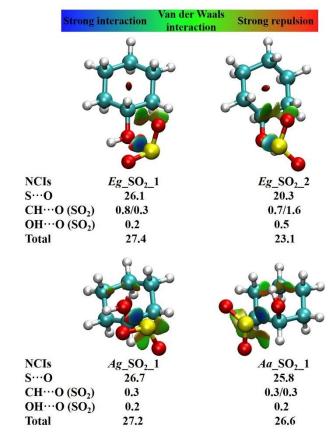


Figure 3. The NCI plots and the NBO analysis showing stabilization energy contributions (≥ 0.2 kJ mol⁻¹) for the four isomers of the cyclohexanol…SO₂ cluster.

The strength of each kind of NCI was quantitatively evaluated by a NBO analysis. The results of the NBO analysis are given in Figure 3 and Table S7 (ESI⁺). The second-order perturbation stabilization energies ($E^{(2)}$) for the S…O ChB in the four isomers are calculated to be 23.1 - 27.4 kJ mol⁻¹, representing the largest contribution to the stabilization of the clusters. The C–H…O=S and O–H…O=S interactions have very weak interaction energies (larger for C–H…O=S) in the range of 0.2 - 1.6 kJ mol⁻¹, but are clearly identified **PCCP**

as necessary contributors to the cluster stabilization. Isomer *Eg_SO_{2-1* has the highest total interaction energy (27.4 kJ mol⁻¹), followed by isomers *Ag_SO_{2-1* and *Aa_SO₂₋₁***.** The NBO analysis thus supports the experimentally observed structural preferences of the cluster, which simultaneously depend both on the cyclohexanol conformational equilibria and the peculiar strength of NCIs formed between the subunits, in particular the chalcogen bond. The total interaction energies from the NBO analysis are consistent with the zero-point and counterpoise-corrected interaction energies calculated at the B3LYP-D3(BJ)/aug-cc-pVTZ level of theory (Table 1).}}

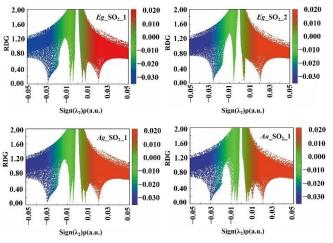


Figure 4. The scatter diagram of the electronic density reduced density gradient (RDG) vs the signed density $(sign(\lambda_2)p)$ for the four isomers of the cyclohexanol···SO₂ cluster.

Table 4. The SAPT energy decomposition analysis for the four isomers of the cyclohexanol···SO₂ cluster, the most stable isomer of cyclohexanol dimer, cvclohexanol-H₂O, SO₂-H₂O and water dimer (all energy values in kJ mol⁻¹).

cyclonexanol-120, 302-120 and water differ (an energy values in k) filor j.								
	E _{elec.}	$E_{dis.}$	E _{ind.}	E _{exc.}	СТ	Total		
<i>Eg_</i> SO ₂ _1	-68.5	-25.8	-31.6	82.8	-17.6	-43.1		
<i>Eg_</i> \$0 ₂ _2	-64.2	-25.6	-27.8	74.6	-14.6	-43.0		
<i>Ag</i> _SO ₂ _1	-68.5	-25.6	-31.6	83.2	-17.8	-42.5		
Aa_\$02_1	-70.4	-268	-32.2	84.4	-17.9	-45.0		
(Cyclohexanol) ₂	-47.0	-30.2	-17.2	63.4	-5.7	-30.9		
Cyclohexanol…H ₂ O	-46.1	-15.6	-14.8	53.1	-5.8	-23.5		
SO ₂ …H ₂ O	-46.3	-12.5	-16.6	58.9	-10.5	-16.6		
(H ₂ O) ₂	-36.3	-7.6	-9.2	36.2	-4.9	-16.9		

The physical nature of the NCIs contributing to the stability of the four detected isomers is revealed by energy decomposition with a SAPT analysis. This approach provides an estimation of the contribution of electrostatic ($E_{elec.}$), dispersion ($E_{dis.}$), induction ($E_{ind.}$) and exchange-repulsion (E_{exc}) to the total interaction energy and the contribution of charge transfer (CT). The results of the SAPT analysis for the four observed isomers are reported in Table 4. The SAPT total interaction energies are in the range of - 42.5 to - 45.0 kJ mol⁻¹. The main term of the attractive energy of the cyclohexanol...SO₂ cluster is electrostatic, accounting for 54.4%, 54.9%, 54.5% and 54.4% of the attractive interactions for isomers Eg_SO2_1, Eg_SO2_2, Ag_SO2_1 and Aa_SO2_1, respectively. The induction and dispersion energy terms are comparable in magnitude. The contribution of charge transfer to the interaction energy is obvious, accounting for 14.0%, 12.4%, 14.2% and 13.8% of the total attractive energy for isomers Eq SO₂ 1, Eq SO₂ 2, Aq SO₂ 1 and Aa SO₂ 1, respectively. This charge transfer feature is consistent with the observations in the SO2---dimethyl sulfide (DMS) cluster, where remarkable charge

ARTICLE

transfer between the sulfur atoms of DMS and Q_{a} has been observed. 19 The total SAPT interaction energies of Q_{a} has been observed. 19 The total SAPT interaction energies of Q_{a} has body (-43 to -45 kJ mol^{-1}) are larger than the calculations in Table 1 and also about 12 and 27 kJ mol^{-1} larger than the $C_{2}S_{2}F_{4}\cdots$ isopropylamine 50b and $C_{2}S_{2}F_{4}\cdots$ water 49 clusters, respectively.

The SAPT analyses for the cyclohexanol dimer, H_2O dimer, cyclohexanol···H_2O and SO₂···H₂O were also carried out for comparison (Table 4). The total interaction energy of cyclohexanol···SO₂ ranks the highest among these clusters. Especially, the total interaction energy of cyclohexanol···SO₂ is about 2.5 times of that of SO₂···H₂O, in which a S···O ChB is the main contribution of the stabilization. These results suggest that the formation of cyclohexanol···SO₂ cluster (or more general alcohol···SO₂ cluster) is likely preferred in the atmosphere when alcohol precursors, SO₂ and water are co-present.

Conclusions

In conclusion, the binary intermolecular cluster formed by cyclohexanol and SO_2 was investigated in the gas phase by chirpedpulsed microwave spectroscopy and quantum chemical computations. Four isomers, in which the cyclohexanol moiety adopts Eg, Ag and Aa conformations, were observed in the jet expansion. The S…O ChB is the dominant attractive force in forming the cluster. Secondary and relatively weaker C-H···O=S hydrogen bonds contribute further stabilization to the cluster, with SAPT calculations suggesting that electrostatics is the main contributor to the attractive energy. No isomer containing *Ea* cyclohexanol could be observed. Since binding energies are relatively similar for all isomers (differing less than 1.7 kJ mol⁻¹ in Table 1), the experimental jetcooled conformational preferences of the cyclohexanol···SO2 cluster are affected by collisional relaxation⁴⁶ and by the population⁴⁷ and conformational preferences of the cyclohexanol monomer (Ag and Aa are calculated to be ~1.8 kJ mol⁻¹ and 5.7 kJ mol⁻¹ higher in energy than that of Eg^{27}). The multiple conformations of cyclohexanol and the versatile binding properties of SO₂ thus lead to a complex conformational behaviour when the cluster is formed. The present work adds accurate information on the evasive S…O chalcogen bond, mostly studied in condensed phases or by theoretical methods, emphasizing the factual value of gas-phase investigations for the analysis of weakly-bound molecular clusters in isolation conditions.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Chongqing University and the Spanish MICINN-FEDER (PGC2018-098561-B-C22) for financial support. Y. Jin thanks the China Scholarships Council (CSC) for a scholarship (201906050058).

Author Contributions

Yan Jin, Rizalina T. Saragi performed the experiment;

PCCP

M

Published on 14 April 2021. Downloaded by Universidad de Valladolid Biblioteca on 4/14/2021 12:36:27

Yan Jin, Rizalina T. Saragi, Marcos Juanes contributed to the theoretical calculation and analysis;

Yan Jin, Gang Feng, Alberto Lesarri performed the data analyses and wrote the manuscript;

Gang Feng, Alberto Lesarri contributed to the conception and supervision of the study.

Notes and references

- J. G. Calvert, A. Lazrus, G. L. Kok, B. G. Heikes, J. G. Walega, J. 1 Lind, C. A. Cantrell, Nature 1985, 317, 27.
- M. Sipilä, T. Berndt, T. Petäjä, D. Brus, J. Vanhanen, F. 2 Stratmann, J. Patokoski, R. L. M. III, A.-P. Hyvärinen, H. Lihavainen, M. Kulmala, Science 2010, 327, 1243.
- 3 D. J. Coffman, D. A. Hegg, J. Geophys. Res. 1995, 100, 7147.
- 4 a)M. E. Erupe, A. A. Viggiano, S.-H. Lee, Atmos. Chem. Phys. 2011, 11, 4767; b)J. Almeida, S. Schobesberger, A. Kurten, I. K. Ortega, O. Kupiainen-Maatta, A. P. Praplan, A. Adamov, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard, E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, A. Hansel, M. Heinritzi, H. Henschel, T. Jokinen, H. Junninen, M. Kajos, J. Kangasluoma, H. Keskinen, A. Kupc, T. Kurten, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, M. Leiminger, J. Leppa, V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, T. Olenius, A. Onnela, T. Petaja, F. Riccobono, I. Riipinen, M. Rissanen, L. Rondo, T. Ruuskanen, F. D. Santos, N. Sarnela, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Simon, M. Sipila, Y. Stozhkov, F. Stratmann, A. Tome, J. Trostl, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Virtanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, C. Williamson, D. Wimmer, P. Ye, T. Yli-Juuti, K. S. Carslaw, M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop, H. Vehkamaki, J. Kirkby, Nature 2013, 502, 359.
- 5 a)R. Zhang, I. Suh, J. Zhao, D. Zhang, E. C. Fortner, X. Tie, L. T. Molina, M. J. Molina, Science 2004, 304, 1487; b)S. Schobesberger, H. Junninen, F. Bianchi, G. Lonn, M. Ehn, K. Lehtipalo, J. Dommen, S. Ehrhart, I. K. Ortega, A. Franchin, T. Nieminen, F. Riccobono, M. Hutterli, J. Duplissy, J. Almeida, A. Amorim, M. Breitenlechner, A. J. Downard, E. M. Dunne, R. C. Flagan, M. Kajos, H. Keskinen, J. Kirkby, A. Kupc, A. Kurten, T. Kurten, A. Laaksonen, S. Mathot, A. Onnela, A. P. Praplan, L. Rondo, F. D. Santos, S. Schallhart, R. Schnitzhofer, M. Sipila, A. Tome, G. Tsagkogeorgas, H. Vehkamaki, D. Wimmer, U. Baltensperger, K. S. Carslaw, J. Curtius, A. Hansel, T. Petaja, M. Kulmala, N. M. Donahue, D. R. Worsnop, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17223.
- a)L. Xu, H. Guo, C. M. Boyd, M. Klein, A. Bougiatioti, K. M. 6 Cerully, J. R. Hite, G. Isaacman-VanWertz, N. M. Kreisberg, C. Knote, K. Olson, A. Koss, A. H. Goldstein, S. V. Hering, J. d. Gouw, K. Baumann, S.-H. Lee, A. Nenes, R. J. Weber, N. L. Ng, Proc. Natl. Acad. Sci. U.S.A. 2015, 112, E4506; b)J. Ye, J. P. D. Abbatt, A. W. H. Chan, Atmos. Chem. Phys. 2018, 18, 5549; c)S. Liu, L. Jia, Y. Xu, N. T. Tsona, S. Ge, L. Du, Atmos. Chem. Phys. 2017, 17, 13329; d)Z. Yang, N. T. Tsona, J. Li, S. Wang, L. Xu, B. You, L. Du, Environ. Pollut. 2020, 264, 114742; e)P. M. Pawlowski, S. R. Okimoto, F.-M. Tao, J. Phys. Chem. A 2003, 107, 5327; f)S. W.

Hunt, C. S. Brauer, M. B. Craddock, K. J. Higgins, A. M. Nienow, K. R. Leopold, Chem. Phys. 2004, 305, 199: 10.1039/D1CP00997D

- a)R. Zhang, L. Wang, A. F. Khalizov, J. Zhao, J. Zheng, R. L. 7 McGraw, L. T. Molina, Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 17650; b)G. L. Hou, W. Lin, S. H. Deng, J. Zhang, W. J. Zheng, F. Paesani, X. B. Wang, J. Phys. Chem. Lett. 2013, 4, 779; c)G. L. Hou, X. B. Wang, Acc. Chem. Res. 2020, 53, 2816.
- 8 a) M. Juanes, R. T. Saragi, W. Caminati, A. Lesarri, Chem. Eur. J. 2019, 25, 11402; b)W. Caminati, J.-U. Grabow, in Frontiers and Advances in Molecular Spectroscopy Elsevier, Amsterdam, 2018.
- 9. a)M. K. Jahn, E. Mendez, K. P. R. Nair, P. D. Godfrey, D. McNaughton, P. Ecija, F. J. Basterretxea, E. J. Cocinero and J.-U. Grabow, Phys. Chem. Chem. Phys. 2015, 17, 19726; b)A. Vigorito, Q. Gou, C. Calabrese, S. Melandri, A. Maris and W. Caminati, ChemPhysChem 2015, 16, 2961-2967.
- 10 A. J. Fillery-Travis, A. C. Legon, Chem. Phys. Lett. 1986, 123, 4.
- G. Cotti, J. H. Holloway, A. C. Legon, Chem. Phys. Lett. 1996, 255, 11 401.
- a) A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem. 2015, 12 16, 2496.
- 13 K. Matsumura, F. J. Lovas, R. D. Suenram, J. Chem. Phys. 1989, 91.5887.
- L. Sun, X. Q. Tan, J. J. Oh, R. L. Kuczkowski, J. Chem. Phys. 1995, 14 103. 6440.
- 15 J. J. Oh, K. W. Hillig, R. L. Kuczkowski, Inorg. Chem. 1991, 30, 4583.
- 16 E. J. Goodwin, A. C. Legon, J. Chem. Phys. 1986, 85, 6828.
- J. J. Oh, M. S. LaBarge, J. Matos, J. W. Kampf, K. W. Hillig, R. L. 17 Kuczkowski, J. Am. Chem. Soc. 1991, 113, 4732.
- R. E. Bumgarner, D. J. Pauley, S. G. Kukolich, J. Chem. Phys. 1987, 18 **87**, 3749.
- 19 D. A. Obenchain, L. Spada, S. Alessandrini, S. Rampino, S. Herbers, N. Tasinato, M. Mendolicchio, P. Kraus, J. Gauss, C. Puzzarini, J.-U. Grabow, V. Barone, Angew. Chem. Int. Ed. 2018, **57**. 15822.
- 20 A. M. Andrews, A. Taleb-Bendiab, M. S. LaBarge, K. W. Hillig, R. L. Kuczkowski, J. Chem. Phys. 1990, 93, 7030.
- 21 A. M. Andrews, K. W. Hillig, R. L. Kuczkowski, A. C. Legon, N. W. Howard, J. Chem. Phys. 1991, 94, 6947.
- A. Taleb-Bendiab, K. W. Hillig, R. L. Kuczkowski, J. Chem. Phys. 22 1992, 97, 2996.
- 23 a)A. C. Legon, Phys. Chem. Chem. Phys. 2017, 19, 14884; b) P. Scilabra, G. Terraneo, G. Resnati, Acc. Chem. Res., 2019, 52, 1313; c)V. P. N. Nziko, S. Scheiner, J. Phys. Chem. A 2014, 118, 10849.
- N. Biot, D. Bonifazi, Coord. Chem. Rev. 2020, 413, 213243. 24
- 25 S. Benz, A. I. Poblador-Bahamonde, N. Low-Ders, S. Matile, Angew. Chem. Int. Ed., 2018, 57, 5408.
- 26 K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Dalton Trans. 2017, 46, 10121.
- 27 M. Juanes, W. Li, L. Spada, L. Evangelisti, A. Lesarri, W. Caminati, Phys. Chem. Chem. Phys. 2019, 21, 3676.
- 28 M. Juanes, I. Usabiaga, I. Leon, L. Evangelisti, J. A. Fernandez, A. Lesarri, Angew. Chem. Int. Ed. 2020, 59, 14081.
- 29 a)S. T. Shipman, B. H. Pate, in Handbook of High-Resolution Spectroscopy, Wiley, New York, 2011; b) J. L. Neill, S. T.

Published on 14 April 2021. Downloaded by Universidad de Valladolid Biblioteca on 4/14/2021 12:36:27 PM

View Article Online

PCCP

Shipman, L. Alvarez-Valtierra, A. Lesarri, Z. Kisiel, B. H. Pate, J. Mol. Spectrosc. 2011, 269, 21.

- 30 T. A. Halgren, J. Comput. Chem. 1996, **17**, 520.
- 31 MacroModel, Schrödinger Release 2020-1; Schrödinger, LLC: New York, NY, 2020.
- 32 A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- a)S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456; b)E. R. Johnson, A. D. Becke, J. Chem. Phys. 2006, 124, 174104.
- 35 S. F. Boys, F. Bernardi, *Mol. Phys.* 1970, **19**, 553.
- 36 E. D. Glendening, C. R. Landis, F. Weinhold, WIRES Comput. *Mol. Sci.* 2012, **2**, 1.
- 37 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian16, Revision A.03, Gaussian, Inc., Wallingford, CT, 2016.
- 38 T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33.
- E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García,
 A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
- 41 B. Jeziorski, R. Moszynski, K. Szalewicz, *Chem. Rev.* 1994, **94**, 1887.
- 42 R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, 3rd, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, 3rd, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J. Chem. Theory Comput. 2017, **13**, 3185.
- J. K. G. Watson, in *Vibrational Spectra and Structure, Vol. 6*, J.
 R. Durig, ed., Elsevier, New York/Amsterdam, 1977; Vol. 6, pp. 1-89.
- 44 H. M. Pickett, J. Mol. Spectrosc. 1991, 148, 371-377.
- 45 J.-U. Grabow, in Handbook of High-Resolution Spectroscopy, Wiley, New York, 2011.
- 46 R. S. Ruoff, T. D. Klots, T. Emilsson, H. S. Gutowsky, J. Chem. Phys. 1990, 93, 3142.
- 47 W. Caminati, J. C. Lopez, S. Blanco, S. Mata, J. L. Alonso, *Phys. Chem. Chem. Phys.* 2010, **12**, 10230.
- 48 Z. Kisiel, J. Mol. Spectrosc. 2003, 218, 58.
- 49 Y. Jin, X. Li, Q. Gou, G. Feng, J.-U. Grabow, W. Caminati, Phys.

Chem. Chem. Phys. 2019, 21, 15656.

- 50 a)T. Lu, Y. Zheng, Q. Gou, G.-L. Hou, G. Feng, Phys. 2019, 21, 24659; b)Y. Jin, T. Lu, G. Feng, Phys. Chem. Chem. Phys. 2020, 22, 28339; c) X. Li, K. G. Lengsfeld, P. Buschmann, J. Wang, J.-U. Grabow, Q. Gou, G. Feng, J. Mol. Spectrosc. 2021, 376, 111409.
- A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.

This journal is © The Royal Society of Chemistry 2021