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ABSTRACT: We characterized the bis-quinolizidine tetracyclic alkaloid (5S, 6S, 7R, 

11R)-matrine in a supersonic jet expansion, using chirped-pulsed broadband microwave 

spectroscopy. Previous crystal diffraction analysis suggested 16 diastereoisomers 

associated to matrine’s four carbon stereocenters, but were inconclusive whether the 

lactamic nitrogen atom would additionally produce separated trans-/cis- diastereoisomers 

or if both species may interconvert through low potential barriers. Our experiment 

simultaneously detected trans- and cis-matrine through their rotational spectrum, 

confirming the possibility of conformational rearrangement in matrine alkaloids. The two 

matrine conformers mainly differ in the envelope or half-chair lactamic ring, as evidenced 

by the experimental rotational and nuclear quadrupole coupling parameters. Molecular 

orbital calculations with ab initio (MP2) and density functional methods (B3LYP-D3(BJ) 

and MN15) were tested against the experiment, additionally offering an estimation of the 

cis-/trans- barrier of 24.9-26.9 kJ mol-1. The experiment illustrates the structural potential 

of chirped-pulsed broadband microwave spectroscopy for high-resolution rotational 

studies of biomolecules in the range of 20-40 atoms. 
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INTRODUCTION 

Chirped-pulsed microwave spectroscopy is probably the last weapon to join the chemical 

arsenal of structural tools, following the introduction of broadband fast-passage excitation 

techniques by Pate,1–4 the discovery of rotational chiral detection5,6 and the recent 

availability of commercial equipment. This combination of factors has totally changed 

the face of molecular rotational resonance, but these advantages are still unnoticed for 

most practicing chemists. We illustrate the structural potential of broadband rotational 

spectroscopy for moderately-sized (ca. 20-40 atoms) molecules, seldom investigated in 

the gas phase and offering new avenues for pharmaceutical and chemical analysis7 and 

quantification of crude reaction mixtures.8 

We report a first rotational study on the family of matrine alkaloids, never before 

examined in the gas phase. Matrine compounds belong to the class of quinolizidine 

alkaloids9–12 and are broadly encountered in nature, especially in plants of the genera 

Sophora and Leontice. Matrine exhibits multiple pharmacological effects, as well as κ-

opiod and µ-opiod receptor agonism.13 In particular, matrine displays strong antitumor 

activities,14 both in vitro and in vivo, and is an active component of the traditional Chinese 

medicine extracted from Sophora flavescens.15 Additionally, matrine has also shown 

acaricidal and insecticidal activity,16 so it may be used as bio-pesticide. The biological 

properties and biosynthesis are reviewed elsewhere.9–11  

From a structural point of view matrine (C15H24N2O) possesses a unique bis-

quinolizidine tetracyclic structure characterized by two asymmetrically condensed 

quinolizidine fragments, including (A/B) quinolizidinic and (C/D) quinilizidone ring 

systems. The molecule has four stereogenic carbon centers (C5, C6, C7 and C11 in Figure 

1), which generate 24=16 stereoisomers in 8 enantiomeric pairs. Half of these species 

have non-inverting equatorial trans-fused A/B rings, including (5S,6S,7R,11R)-matrine,  
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Figure 1. Matrine alkaloids (diastereoisomers with A/B trans- 

and A/B cis-fusion configurations are shown in the first and 

second row, respectively). 

 

 

 
 
 

 

(5R,6S,7R,11R)-sophoridine, (5R,6R,7S,11R)-isomatrine and (5S,6R,7R,11R)-

allomatrine. Of the four A/B cis-fused species only two species have been identified in 

nature ((5R,6R,7R,11R)-isosophoridine and (5S,6R,7S,11R)-tetrahydroneo-

sophoramine). Despite these molecules are apparently rigid, the different conformations 

for each ring (chair, boat, half-chair, etc), the alternative trans/cis-fusions for the A/B, A-

B/C or C/D ring junctions, the plausible nitrogen stereochemistry and the structural 

distortions associated to the ring fusion offer conformational variability. As a result, some 

confusion has remained in the literature concerning the stereochemical identification of 
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matrine compounds, now mostly solved thanks to the combination of X-ray diffraction 

data17–19 and  IR, NMR and vibrational circular dichroism (VCD) experiments.20,21 

However, some specific issues and the absolute configuration of several derivatives are 

still debatable. Concerning matrine stereochemistry, reviews by Ibragimov et al.22 based 

on the independent crystal diffraction observation of two different species denoted (C/D) 

trans-matrine23 and cis-matrine24 suggested that the two nitrogen atoms (N1 and N16) 

would behave as stereogenic centers, raising the number of different natural 

stereoisomers to 26=64 or 32 enantiomeric pairs. This point of view was recently rebutted 

by Tashkhodzhaev and Vinogradova,25 who claimed that “cis-matrine is a non-existent 

quasi-diastereoisomer” and that distinguishing matrine molecules according to C/D ring-

fusion conformations is not correct. A previous IR and VCD study of matrine could not 

resolve this issue because of its low resolution (4 cm-1), justifying that those spectra “are 

essentially the same as those obtained with just the most stable trans-matrine”.20 

We now address this problem by observation of the molecular rotation of matrine 

in the gas phase, free of matrix, solvent or crystal effects. The high resolution (10-7 cm-1) 

of rotational spectra is critically sensitive to molecular structure, precisely resolving all 

populated species and offering the most accurate description of the intrinsic structural 

properties and plausible conformational equilibria in matrine. Our work follows previous 

rotational investigations of other quinolizidine alkaloids like sparteine26 and lupinine,27 

and tropane28,29 and norbornane30 bicycles and related derivatives.31  

 

RESULTS AND DISCUSSION 

The spectral analysis was supported by ab initio and density functional theory molecular 

orbital calculations using the MP2,32 B3LYP-D3(BJ)33–35 and MN1536 methods and a 

triple-ζ (def2-TZVP37) basis set, described in the Methods section. The conformational 



 6 

search produced only the two low-lying isomers shown in Figure 2, differing in the C/D 

ring connection. Both species essentially correspond to the trans- and cis-matrine 

structures detected in the X-ray diffraction experiments (see 3D Figures S1-S2, structural 

parameters in Figures S3-S4 and atomic coordinates in Tables S1-S2, Supporting 

Information). Trans-matrine was predicted as global minimum, as in previous 

calculations,20,21 with cis-matrine at relative free energies of 2.0-2.6 kJ mol-1 at room 

temperature. This energy separation would ensure sufficient population for the gas-phase 

 

Figure 2. Structural predictions for trans- and cis-matrine, 

showing the HOMO and representative dihedrals of the lactamic 

group (B3LYP-D3(BJ)/def2-TZVP, see 3D Figures S1-S2 and 

Tables S1-S3, SI). 
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observation of the higher-energy isomer, provided that no low-barrier (<5-10 kJ mol-1) 

exist which might produce a conformational relaxation in the jet to the global minimum.38 

We estimated the cis-/trans- interconversion barrier with B3LYP-D3(BJ) and MN15 

using the intrinsic reaction coordinate (IRC) method, which corresponds to the minimum 

energy reaction pathway in mass-weighted cartesian coordinates between the transition 

state and reactants and products. The calculated Gibbs free-energy barriers of 24.9 and 

26.9 kJ mol-1 in Figures 3 and S5 (SI) suggest that collisional mechanisms would be 

ineffective for conformational relaxation in the jet and that the two isomers may be 

observable in the spectrum. The predicted energetic and rotational parameters are 

presented in Table 1. 

 

Figure 3. The interconversion barrier between cis- and trans-

matrine according to B3LYP-D3(BJ) (see Figure S5 for the 

MN15 calculation).  

 

 
 

 
 
 
 

The computational predictions were checked against the experiment using a 

supersonic jet expansion of commercial matrine. The rotational spectrum was recorded 
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using a broadband cm-wave chirped-pulsed microwave spectrometer (see Methods 

section). The spectrum was dense and complicated by multiple transitions showing small 

(0.5-2 MHz) hyperfine effects, as expected from the electric interaction between the 

nuclear quadrupoles of the two 14N (I=1) atoms of matrine and the molecular electric field 

gradient. This interaction couples the angular momenta of the nuclear spins (𝑰𝑰1, 𝑰𝑰2) to the 

overall molecular rotation (𝑱𝑱) according to Foley’s coupling scheme39 𝑰𝑰 = 𝑰𝑰1 + 𝑰𝑰2, 𝑭𝑭 =

𝑰𝑰 + 𝑱𝑱. A section of the spectrum and a typical transition are illustrated in Figure 4. Using 

trial rotational constants from the computational predictions the spectrum was searched 

iteratively for plausible spectral patterns. Finally, two different asymmetric rotors (I and 

II) were detected in the spectrum. More than 500 R-branch (𝐽𝐽 + 1 ← 𝐽𝐽) µa- and µb-type 

rotational transitions were measured for isomer I, which was fitted to a semirigid-rotor 

Watson’s Hamiltonian with first-order (diagonal) nuclear quadrupole coupling terms.40 

For isomer II a set of more than 200 transitions was measured and analyzed using the 

same Hamiltonian. The fitted experimental parameters are collected in Table 2 (rotational 

transitions in Tables S3-S4, SI). For both isomers the rotational and quadrupole coupling 

parameters were accurately determined, but the contribution of the centrifugal distortion 

was small and not all quartic parameters were determinable. The jet populations of the 

two isomers of matrine were later estimated from measurements of relative intensities 

assuming a quadratic dependence with the dipole moments and a uniform instrumental 

response.2 We used a set of 10 rotational transitions and the (B3LYP-D3(BJ)) predicted 

electric dipole moments in Table 1, quite close for both isomers. This calculation gave 

conformational populations of I:II=1:0.29(7). On the assumption that the cis-/trans- 

barrier makes the conformational population transfer negligible, a Boltzmann distribution 

gives an estimation for the potential energy difference between the two isomers of 3.0(6) 

kJ mol-1 energy, which is consistent with the theoretical predictions.  
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Figure 4. A 3 GHz section of the microwave spectrum of 

matrine. The lower trace is a horizontal expansion 

illustrating the nuclear quadrupole coupling hyperfine 

effects in one of the rotational transitions of the trans- 

isomer (quantum numbers: 𝐽𝐽,𝐾𝐾−1,𝐾𝐾−1, 𝐼𝐼,𝐹𝐹). 

 

 
 

A comparison between experiment and computations in Tables 1-2 established 

the carriers of the spectrum. Following the good agreement of rotational constants and 

nuclear quadrupole coupling constants the most populated isomer I is unequivocally 

identified as trans-matrine, with isomer II corresponding to cis-matrine. The best 

agreement between experiment and theory was obtained for B3LYP-D3(BJ), with relative 
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differences in the rotational constants of 0.1-0.5% (=(Btheo-Bexp)/Bexp). MP2 offered worse 

predictions (0.8-2.1%) while MN15 was giving the poorest prediction (1.2-2.7%). The 

agreement with the nuclear quadrupole coupling predictions was reasonable. These 

considerations assume that the vibrational corrections to the computational equilibrium 

structures are small41 (<1%) and do not impede valid conformational comparisons with 

the experimental ground-state parameters.   

 

Table 1. Computational predictions for the isomers of matrine. 

 

 B3LYP-D3(BJ)f MN15f MP2f 

 trans- cis- trans- cis- trans- cis- 

Ae / MHza 670.9 675.6 676.0 681.2 674.6 679.0 
Be / MHz 373.9 391.8 380.8 404.1 379.4 401.7 
Ce / MHz 263.5 271.5 268.4 279.6 267.1 277.8 

3/2 χaa (14N-1) / MHzb -0.10 1.67 -0.23 1.79 -0.02 1.75 
¼ (χbb -χcc) (14N-1) / MHz 1.32 1.62 1.29 1.64 1.16 1.47 

3/2 χaa (14N-16) / MHz 2.95 2.60 3.01 2.48 2.58 2.19 
¼ (χbb -χcc) (14N-16) / MHz 1.67 1.58 1.66 1.54 1.51 1.41 

DJ / kHzc 0.0031 0.0080 0.0031 0.0105 0.0032 0.0092 
DJK / kHz -0.0003 -0.0089 -0.0001 -0.0118 0.0008 -0.0104 
DK / kHz 0.0086 0.0036 0.0079 0.0053 0.0079 0.0045 
d1 / kHz -0.0008 0.0004 -0.0008 0.0010 -0.0008 0.0007 
d2 / kHz -0.0001 0.0002 -0.0001 0.0007 -0.0001 0.0005 
µa/ Dd 2.45 2.31 2.42 2.10 2.4 2.0 
µb/ D 3.68 3.62 3.66 3.58 3.7 3.6 
µc/ D 0.09 0.14 0.01 0.33 0.1 0.1 

∆EZPE / kJ mol-1 e 0.00 1.85 0.00 1.73 0.00 0.82 
∆G / kJ mol-1 0.00 2.62 0.00 2.17 0.00 1.95 

aEquilibrium rotational constants (A, B, C). bNuclear quadrupole coupling constants (χαα, α=a, b, c). cWatson’s S-
reduction centrifugal distortion constants (DJ, DJK, DK, d1, d2).  dElectric dipole moments (μα, α = a, b, c). eRelative 
energies corrected with the zero-point energy (ZPE) and Gibbs energy (∆G) at 100 K and 298 K (1 atm). fThe 
B3LYP-D3(BJ), MN15/def2-TVZP and MP2 calculations used the def2-TZVP basis set.   
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Table 2. Experimental rotational parameters of the trans- and cis- 

isomers of matrine. 

 

 Experiment 

 trans-Matrine cis-Matrine 

A0 / MHza 667.96909(47)  673.3856(22)     
B0 / MHz 373.52761(25)  393.57019(66)     
C0 / MHz 263.40264(24) 272.65497(44)     

3/2 χaa (14N-1) / MHzb -0.293(97)        1.29(14)     
¼ (χbb -χcc) (14N-1) / MHz  1.164(20)       1.435(44)     

3/2 χaa (14N-16) / MHz  2.883(84)        2.59(14)     
¼ (χbb -χcc) (14N-16) / MHz  1.609(20)       1.560(46)     

DJ / kHzc -0.00135(94) [0.0] 
DJK / kHz [0.0]    0.083(42) 
DK / kHz [0.0]      -3.62(15) 

Nd 508 228 
σ / kHz 21.2 38.2 

aGround-state rotational constants (A, B, C). bNuclear quadrupole coupling 
constants (χαα, α=a, b, c). cWatson’s S-reduction centrifugal distortion constants 
(DJ, DJK, DK, d1, d2): d1 and d2 were fixed to zero for both isomers. dNumber of 
transitions (N) and rms deviation (σ) of the fit. 

 

Trans- and cis-matrine share a common A/B/C ring system, based on three (2C5, 

10C7, 6C16) chairs with trans- ring junctions for A/B and cis- unions for A/C and B/C 

(conformational descriptors follow ref. 42). The D lactamic ring is characterized by the 

partial double bond character of the C-N bond but may show differences in the planarity 

of the amide group and orientation of C12 and C13, leading to near-envelope (E) or half-

chair (H) conformations. The C/D trans- union represents the global minimum and 

exhibits a near-planar amidic nitrogen (sum of internal angles of 359.6º), which should 

be referred more properly as transoid.21 Because of the planarity of the lactamic fragment 

C14-C15-N16-C11 (τ= -0.5º), C13 moves away from the average ring plane, giving a 

distorted 13E envelope. Figure S6 and Table S5 collect the Cremer-Pople ring puckering 

coordinates43  (q2, q3, φ, θ) for the lactamic ring, which locate the global minimum D-ring 

conformation (θ=128.7°, φ=11.8°) on the negative (q3<0) envelope/half-chair 

pseudorotation pathway (θ=125.5°-129.2) of the conformational globe.44 Conversely, the 

cis- or cisoid isomer has indications of a larger conformational strain, showing a small N 
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pyramidalization (sum of internal angles of 357.0º) and deviation of the lactamic 

fragment C14-C15-N16-C11 from linearity (τ = -16.5º), which results in a 12H13 half-chair 

isomer (C12 and C13 on opposite sides of the average plane), with puckering coordinates 

(θ=37.2, φ=217.2) close to the positive (q3>0) envelope/half-chair pseudorotation 

pathway (θ=50.8°-54.7°). The gas-phase structural data are qualitatively similar to the 

solid phase (i.e., differences in torsion angles of 1-5º in Figure S3, SI)23,24 and confirm 

that the origin of matrine isomerism is intrinsic to the molecule and cannot be attributed 

to crystal packing effects or intermolecular forces. Because of the relatively small 

potential barriers, neither the lactamic conformational rearrangements nor the plausible 

amine inversion isomerism45 of matrine produce rigid stereocenters and cannot be 

referred as diastereoisomers. The proposed existence of 32 matrine enantiomeric pairs22 

is thus incorrect, as suggested.25  

 

CONCLUSION 

We have observed two isomers of matrine in the gas phase, confirming the presence of 

conformational rearrangements in matrine alkaloids and its independence of any crystal 

packing effects in the solid. Matrine isomerism is attributed to the conformational strain 

of the lactamic six-membered ring of the tetracycle. Chirality cannot be associated with 

the near-planar conformation of the lactamic nitrogen bridgehead nor to the pyramidal 

amine because of its facile nitrogen inversion, previously observed in other alkaloids.45 

While conformational changes were previously observed in the bis-quinolizidine ring 

system of sparteine,26 this is the first direct observation of isomerism in isolated 

tetracyclic matrine alkaloids. We anticipate that other isomers may be found for matrine 

diastereoisomers and derivatives where several conformers are predicted to lie close in 

energy, like sophoridine and oxymatrine.20  
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The value of the new broadband chirped-pulse microwave spectroscopy 

techniques for gas-phase stereochemical and structural characterization of moderately-

sized biochemical molecules is finally emphasized. Rotational spectroscopy appears 

particularly useful for complex multiconformational biochemical systems, where 

conventional techniques in condensed phases like IR and VCD may show deficiencies 

for structural identification. In these cases, the broadband and high-resolution advantage 

of rotational spectroscopy may contribute significantly to the advance of the techniques 

of chemical analysis7,8 used in academia and industry.  

 

EXPERIMENTAL AND COMPUTATIONAL METHODS 

The experiment was conducted with a supersonic-jet chirped-pulsed Fourier-transform 

microwave (CP-FTMW) spectrometer at the University of Valladolid, covering the 

frequency region 2-8 GHz. The spectrometer uses a direct-digital design following Pate.1 

In this technique a short (1-5 µs) linear microwave chirp is synthesized digitally with an 

arbitrary-wave generator, exciting the rotational resonances of the expanding molecular 

jet. The chirp is amplified to 20 W and broadcasted into the jet through a horn antenna, 

perpendicular to the vertically moving jet. The jet originates from a pulsed solenoid valve 

(Parker, series 9), which injects a gaseous mixture into the expansion chamber through a 

0.8 mm-size circular nozzle. The gas expands into an ultimate vacuum pressure of ca. 

10-7 hPa at typical stagnation pressures of 1-3 bar. Matrine (98%, GC) was obtained 

commercially (TCI Chemicals) and used without any further purification. The sample 

was vaporized at temperatures in the rage of 140-165ºC, using neon (99.999%) as carrier 

gas. Gas pulses were typically of 900 µs duration. The effective rotational temperatures 

produced in the expansion were estimated as 2 K. Following the transient excitation the 

spectrometer records the time-domain free-induction decay caused by rotational 
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dephasing, using a receiver made of a horn antenna, low-noise amplifiers and a digital 

oscilloscope. Typical acquisition times are of 40 µs. Normally a single gas pulse is probed 

several times to increase the signal-to-noise level. The final time-domain record is Fourier 

transformed using a Kaiser-Bessel window, resulting in linewidths of ca. 100 kHz. 

Frequency uncertainties for the experimental measurements were estimated as 20 kHz for 

the fits of Table 2. For the present purposes ca. 1 M spectral averages were acquired at a 

repetition rate of 5 Hz. 

The computational methods included an initial conformational search with 

molecular mechanics, followed by molecular orbital calculations using ab initio and 

Kohn-Sham density-functional-theory. Molecular mechanics used the MMFFs force 

field46 and were implemented in Macromodel.47 Geometry optimizations and harmonic 

vibrational frequency calculations were carried out with the B3LYP,33 MN1536 and 

MP232 methods (absolute energies and lowest vibrational frequencies in Tables S6-S7, 

SI). The Becke’s three-parameter functional was supplemented with two-body Grimme’s 

D3(BJ) dispersion34 corrections with Becke-Johnson35 damping. All calculations were 

combined with the Alrich’s balanced triple-ζ def2-TZVP basis set.37 DFT calculations 

were implemented in Gaussian16.48 For the interconversion barrier the intermediates, 

products and transition states were located by means of the GRRM (Global Reaction 

Route Mapping) program,49 linked to Gaussian16. Transition state structures were 

optimized as saddle points at the same level of calculation. To verify that they correspond 

to the expected reactant and product wells, intrinsic reaction coordinate (IRC) 

calculations were performed at the same level. 
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