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A B S T R A C T   

In this work, we address the phonon dynamics in the stimulated Brillouin scattering process. There exists a wide 
consensus on the fact that the slowly varying approximation for the acoustic field cannot be invoked in the 
transient subphonon regime. We present an analysis where we set the precise limits of validity of this approx
imation. Our study shows that the resonant behavior of the Stokes interaction permits, in general, a first order 
treatment of this process in the theoretical analysis of current practical applications. An improved-accuracy first 
order model is also put forward. Numerical calculations are used to support our conclusions.   

1. Introduction 

Stimulated Brillouin scattering (SBS) finds many applications [1]. 
For instance, in strain and temperature optical fiber sensors [2–6], for 
optical pulse compression [7–11], for correcting wavefront aberrations 
through phase conjugation [12], for fast and slow light systems [13–20] 
or optical amplification [21,22]. The acoustic field dynamics dictate the 
main characteristics of SBS in its practical usages because the phonon 
lifetime determines the width of the Brillouin gain spectrum. Therefore, 
the SBS threshold can be significantly increased if the pump coherence 
or modulation bandwidths become comparable to the inverse of the 
phonon lifetime [23]. Optical pulse compression is a purely dynamic 
effect and its accurate modeling requires to take into account the evo
lution of the acoustic field in the medium [8,9,7,10,11]. Similarly, in 
Brillouin fiber sensors, either a phase modulated or a pulsed Stokes and/ 
or pump optical signal is employed and the theoretical modeling re
quires an adequate treatment of the phonon dynamics in the optical fiber 
[2–4]. 

When the signals participating in the stimulated Brillouin scattering 
process bear smooth variations, as it typically happens, for example, 
when optical pulses with duration larger than the phonon lifetime are 
employed, the dynamics of the acoustic field can be reduced to a first 
order model by the introduction of the slowly varying approximation 
(SVA). In the transient subphonon lifetime regime, abrupt pulse transi
tions of the order of the phonon oscillation period can be found and the 
SVA, in principle, could be under suspect. The customary treatment of 

the problem is, then, to use the full second order equation to rigorously 
analyze the scattering dynamics [1,4,7,18–22,24–28]. In spite of the 
existence of a broad consensus on this regard, some works have provided 
both numerical [3] and approximate analytical [2] results in the sub
phonon lifetime regime obtained invoking the SVA that fit remarkably 
well to the experimental results. This work aims to illuminate this 
apparent contradiction. 

We present a detailed study of the phonon dynamics in the SBS 
process. We show that the Navier-Stokes equation that describes the 
evolution of the acoustic field can in fact be simplified to a first order 
equation even in the subphonon lifetime regime. Both approximate and 
exact first order models for the phonon dynamics are studied. These are 
obtained, respectively, by simply neglecting the second order term and 
by modifying the first order dynamics to accurately reproduce the sec
ond order response. In all cases, numerical simulations performed with 
subphonon lifetime optical pulses show no significant difference with 
those obtained solving the full second order model. Finally, the precise 
limits for the application of the SVA are presented. 

2. Model equations 

The evolution equations of the pump, Stokes, and acoustic phonon 
fields were established some decades ago by Boyd from the Navier- 
Stokes equation [29]. Here, we rewrite them with the particular nota
tion used in [4], 
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where the optical powers are related to the complex field amplitudes as 
PP,S =

⃒
⃒AP,S

⃒
⃒2Aeff . ΩB is the Brillouin resonance frequency, which cor

responds to the hypersonic acoustic field frequency, Aeff is the effective 
area of the optical field, v = c/n, gB is the Brillouin gain at resonance, 
and Γ = 1/τph, with τph the phonon lifetime. To obtain (3), the spatial 
derivatives are neglected in the Navier-Stokes equation because the 
speed of the acoustical waves is much smaller than the velocity of light 
in the medium, and the interaction is assumed to be local [4,7]. 

3. Analysis 

Eq. (3) describes the response of the phonon field driven by the op
tical signals that appear in the right hand side of the equation. For suf
ficiently long and smooth pulses, the second order derivative can be 
safely neglected according to the SVA. This condition implies that 
⃒
⃒∂2Q/∂t2

⃒
⃒≪2|(Γ − jΩ) ||∂Q/∂t|. The period of the acoustic vibration is 

shorter than 100 ps and, therefore, the leading term determining the 
validity of the SVA in the coefficient of ∂Q/∂t is the magnitude of Ω. 

In [7], the precise argument used to keep the full second order Eq. (3) 
for the subphonon lifetime transient regime is that the spectral width of 
the optical pulses is usually not less than one order of magnitude smaller 
than Ω. The actual bandwidth of a pulsed signal does not depend solely 
on its duration, but also on the particular pulse waveform. For pulsed 
optical signals, the magnitudes of the time derivatives will depend on 
the steepness of their transitions and the specific shaping of the rising 
and falling edges of the pulses. When the duration of the optical pulses 
becomes of the order of the phonon lifetime [4,7], the signals involved 
in the SBS process are typically switched on and off in a very short time 
in such a way that an aprioristic estimation of 

⃒
⃒∂2Q/∂t2

⃒
⃒ based on the 

bandwidth of the optical signals could suggest that this term is compa
rable to 2|(Γ − jΩ) ||∂Q/∂t| and the SVA would, in principle, be ques
tionable. The common practice of retaining the second order term of Eq. 
(3) would then seem to be well-justified. We address all these issues in 
detail in the following sections, where we show that, in fact, this is not 
the case. 

3.1. Resonant and non-resonant contributions to the phonon dynamics 

The impulse response of Eq. (3) is [7] 

h(t) =
− vΓgBΩ

2
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B − Γ2

√

t
)

u(t),

(4)  

where u(t) is the Heaviside step function, and the solution of the phonon 
dynamics (3) can be written as a convolution integral [7] 

Q(z, t) =
∫ t

− ∞
h(t − τ)AP(z, τ)A*

S(z, τ)dτ. (5) 

The corresponding transfer function is 

H(s) =
− ΓΩgB

s2 + 2(Γ − jΩ) + (Ω2
B − Ω2 − 2jΓΩ)

(6)  

which has poles 

p1,2 = − Γ+ j
(

Ω ∓

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2
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√ )

, (7)  

where the minus and plus sign correspond, respectively, to subscript 1 
and 2. 

The transfer function can be expanded as a sum of contributions from 
each pole 

H(s) =
jΓΩgB
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(8) 

Since Γ≪ΩB, we can approximate the resonance frequencies of the 
two poles as 

Ω1 = Ω −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2
B − Γ2

√

≃ Ω − ΩB +
Γ2

2ΩB
, (9)  

and 

Ω2 = Ω+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2
B − Γ2

√

≃ Ω+ΩB +
Γ2

2ΩB
. (10) 

If we expand the sine in the impulse response (4), we obtain, at a 
given point within the Brillouin medium, two contributions to the 
convolution integral (5), namely, 

Q1(t) = C1exp( − Γt)exp(jΩ1t)

×

∫ t

− ∞
AP(τ)AS(τ)*exp(Γτ)exp( − jΩ1τ)dτ

(11)  

and 

Q2(t) = C2exp( − Γt)exp(jΩ2t)

×

∫ t

− ∞
AP(τ)AS(τ)*exp(Γτ)exp( − jΩ2τ)dτ

(12)  

with Cl =
j(− 1)(l+1)vΓgBΩ

4
̅̅̅̅̅̅̅̅̅̅̅
Ω2

B − Γ2
√ , l = 1, 2, for the responses from poles p1 and p2, 

respectively. 
AP and AS are the baseband complex envelopes of the pump and 

Stokes waves, respectively. For an efficient interaction, we have Ω ∼ ΩB. 
Thus, from (9), we have Ω1 ∼ 0, and the integral in (11) gives a resonant 
interaction contribution. On the other hand, the same considerations 
imply that Ω2 ∼ 2ΩB in (10). So, the off-resonant interaction described 
by (12), with a rapidly varying integrand, will produce a vanishing first 
order response [31]. For an abrupt pulsed response, there exists also a 
higher order contribution to the integral (12) produced by the pulse 
edges [31], but this term is much smaller than Q1 and will not affect the 
system dynamics. When the duration of the pulses becomes comparable 
to 2π/Ω2, the argument of the integral in Eq. (12) is no longer rapidly 
varying, and the contributions from Q1 and Q2 become comparable. 
Notwithstanding, in this extreme regime, both contributions are very 
small, and this limit is not likely to be of interest for most applications of 
SBS. 

Consequently, for SBS with optical pulses of duration T, the contri
bution from (11) clearly dominates over Q2 provided that T≫π/ΩB and, 
under this condition, the effective acoustic response is of first order even 
for signals in the subphonon lifetime regime that might bear very fast 
variations. This is analogous to the rotating wave approximation used in 
the analysis of the interaction of an atomic medium and a classical field 
[30]. The first resonance at Ω1 corresponds to the Stokes interaction, 
which is implicitly assumed in the model equations. The second order 
dynamics of the phonon field brings into (3) a second, non-resonant, 
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contribution at Ω2, associated to the anti-Stokes interaction. Neverthe
less, this will have a negligible practical effect in the solution of Eqs. (1)– 
(3). 

3.2. Improved accuracy first order dynamics 

From the analysis of the previous section, it can be concluded that 
the phonon dynamics are essentially of first order under rather broad 
conditions, running deep in the sub-phonon lifetime regime. In fact, we 
can construct a first order evolution equation which is almost as accu
rate as the second order (3) if we keep only the exact contribution from 
pole p1 in (8) as 

H2(s) =
jΓΩgB

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ω2 − Γ2

√
1

s − (− Γ + j
(

Ω +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2
B − Γ2

√ ) . (13) 

The corresponding first-order evolution equation reads 

∂Q
∂t

+( − Γ+ j
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2
B − Γ2

√

)Q =
jΓΩgB

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ω2 − Γ2

√ APA*
S (14)  

and it can be used as a replacement of (3). 
It is interesting to compare our model Eq. (14) with the result ob

tained by directly neglecting the second order derivative in (3). This 
latter approach results in the equation 

2(Γ − jΩ)
∂Q
∂t

+(Ω2
B − Ω2 − 2jΓΩ)Q = − ΓΩgBAPA*

S (15)  

which has a pole at 

p = −
Γ
(
Ω2

B + Ω2)

2(Γ2 + Ω2)
+ j

Ω
[(

Ω2 − Ω2
B

)
− 2Γ2 ]

2(Γ2 + Ω2)
. (16) 

Again, assuming Γ≪ΩB ∼ Ω, the pole can be approximated as 

p ≃ − Γ − j
(

Ω − ΩB +
Γ2

ΩB

)

, (17)  

which corresponds to an error of ∼ Γ2

2ΩB 
in the resonance frequency when 

compared with the exact dynamics (3) and the proposed model (14). The 
value of the decay constant of model (15), on the other hand, is a good 
approximation to the exact value of (14). 

3.3. Pulsed interactions 

As discussed in Section 3.1, the worst case regarding the validity of 
SVA in (3) is found when abruptly pulsed optical signals are involved. In 
this section we address this particular case, showing that infinitely steep 
transitions in the optical field are consistent with the SVA. For this 
purpose, we derive an approximate analytical expression for Q(t) that 
will be also valuable in the subsequent analyses of the numerical results 
presented in Section 4. 

We assume, for definiteness, a continuous wave (CW) pump AP =

AP,0 and a Stokes signal with the shape of a pulse on top of a CW 
background AS = AS,0 + A(t). However, the conclusions derived from 
our analysis are of a broad character and they can be extrapolated to any 
situation where pulsed optical signals are involved. For simplicity, we 
also consider an Stokes excitation at resonance, with Ω1 = 0 in (11), 
obtaining 

Q1(t) =
C1AP,0A*

S,0

Γ
+C1AP,0exp( − Γt)

∫ t

− ∞
A(τ)*exp(Γτ)dτ. (18) 

We also assume a Stokes pulse A(t) of duration T, with 
1/(2Ω1)≪T≪τph. Under the condition 1/(2Ω1)≪T,Q2(t) is much 
smaller than Q1(t) and it can be neglected, as discussed in the previous 
section. Since the Stokes pulse A(t) is of duration T≪τph, we have 
exp( − Γt) ≃ 1 in the range 0⩽t⩽T. We also consider ideally sharp 

transitions in the stokes pulse A(t) = A0(u(t) − u(t − T)), therefore 
maximizing its possible bandwidth. This permits, for t > T, to 
approximate 

Q(t) ≃
C1AP,0A*

S,0

Γ
+C1AP,0A*

0
exp(ΓT) − 1

Γ
exp( − Γt) (19)  

dQ(t)
dt

≃ − C1AP,0A*
0[exp(ΓT) − 1 ]exp( − Γt), (20)  

d2Q(t)
dt2 ≃ ΓC1AP,0A*

0[exp(ΓT) − 1 ]exp( − Γt), (21)  

thus obtaining the result 
⃒
⃒
⃒d2Q(t)/dt2

⃒
⃒
⃒

/
|dQ(t)/dt| = Γ≪Ω1, which is 

accordant with the validity of the SVA even for highly steep pulses. 
When the duration of the pulse A(t) is increased, while in the sub

phonon transient regime, T≲τph, the variation of exp( − Γt) in 0⩽t⩽T is 
still small, but it will have some effect on the calculations. Nevertheless, 
the previous considerations regarding the relative values of the de

rivatives of Q(t),
⃒
⃒
⃒d2Q(t)/dt2

⃒
⃒
⃒

/
|dQ(t)/dt|≪Ω1, will hold in general for 

these longer pulses. 
The approximate analytical results presented in this section permit to 

reaffirm the consistency of the SVA for pulsed optical signals of short 
duration despite the presence of very abrupt transitions even when 
considerations based on estimates of the bandwidth of the optical pulses 
might suggest the opposite [7]. Moreover, these approximate solutions 
depict in a very clear manner the flaw in the widespread reasoning that 
initiates this study. The rationale behind the use of the full second order 
dynamics for the phonon field when broad spectrum optical pulses are 
used does not take into account the fact that the bandwidth of the 
acoustic field, as illustrated by Eq. (20), has little dependence on the 
spectral width of the optical signals and, on the contrary, is largely 
determined by the phonon decay rate, as shown by the time-dependence 
exp( − Γt) in Eq. (19). 

4. Numerical results 

In order to assess our analysis, we have performed numerical simu
lations comparing the results obtained with and without using the SVA 
for the phonon dynamics. A split-step method [7] has been employed for 
the calculations. The time-step in the discretization has been taken 
sufficiently small such that any effect due to the pole at Ω2 can be 
adequately captured in the simulations. 

We base our numerical survey on the scenario described in Ref. [4] 
that corresponds to a simple Brillouin optical time-domain analysis 
(BOTDA) system. Because of its simplicity, this configuration is partic
ularly adequate to address the validity of our analysis while it does not 
imply any loss of generality. In the setup, the CW pump and Stokes 
signals are first set at the two ends of the measurement fiber. We input 
the pump and Stokes continuous wave (CW) signals at z = 0 and z = L, 
respectively, where L is the length of the fiber. Once the steady-state (SS) 
has been reached, a short Stokes pulse is injected into the fiber. This 
produces a disturbance on the output pump signal that depends on the 
detuning from the Brillouin resonance which, in turn, is a function of the 
measurement variable. We consider an optical fiber with a length of L =

10 m and homogeneous conditions along its length. Typical parameters 
of a single-mode fiber working at λ0 = 1.3 μm are assumed [4]: τph = 10 
ns, FB = ΩB/(2π) = 12.8 GHz, gB = 5 × 10− 11 m/W, Aeff = 50 μm2, and 
v = 0.2 m/ns. 

The Stokes measurement pulse A(t) of duration T is assumed to have 
the same shape as in [4] 

A(t) =
[

1
2

(

tanh
(

t + T/2
a

)

− tanh
(

t − T/2
a

))]1
2

(22)  
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and it is superimposed to the CW Stokes background. In all the cases 
analyzed, the value of a is chosen for setting the rise (and fall) time of the 
pulse to 100 ps, which is of the order of magnitude of the acoustic field 
oscillation period, the pump power is Pp = 5 mW, the Stokes pulse peak 
power is Ps = 10 mW and the extinction ration between the Stokes pulse 
peak power and the CW background is ER = 15 dB. 

The space-time evolution of the pump, Stokes and acoustic field in
tensities for a T = 3 ns Stokes pulse are depicted in Fig. 1 at the left, 
middle and right columns, respectively. The top row shows the results 
obtained from the integration of the full second order model (Eq. 3). The 
middle row displays the results obtained under the SVA and the bottom 
row shows the relative errors of the results of the middle row in relation 
with the results from the top row. The CW pump and Stokes signals are 
injected in the fiber at z = 0 and z = L, respectively. When a steady-state 
(SS) condition is established, a T = 3 ns Stokes pulse is launched at z = L 
on top of the CW Stokes signal. The propagation of the Stokes pulse is 
accompanied by a disturbance of the phonon field intensity and a 
depletion of the pump. After the Stokes pulse has traveled along the 
fiber, the SS situation is recovered after a transient in the pump signal 
that has a maximal duration of the order 2Tr, where Tr = L/v is the 
propagation delay in the fiber, at z = L. The basis of the BOTDA mea
surement is the read-out of this transient response in the pump signal at 
the fiber output. 

As regards the error due to the SVA, the analysis presented in Section 
3.1 predicts a very small error due to the abrupt pulse edges with a 
magnitude that depends on the pump and Stokes CW and pulse in
tensities and the fiber parameters and that is independent from the pulse 
duration. 

By analyzing the relative error in the acoustic field signal under the 

SVA, we find that it is indeed of a very small value, as predicted by the 
theoretical analysis and, certainly, it is localized close to the edges of the 
Stokes optical pulse. Furthermore, the impact of this small error in the 
acoustic field intensity on the pump power results in a relative error that 
is still three orders of magnitude smaller in the read-out signal. It is 
noteworthy that the acoustic field intensity resulting from the propa
gation of the Stokes pulse superimposed to the pump and Stokes CW 
signals is very accurately described, for t > T, by the analytical expres
sion given in Eq. (19). 

Figs. 2 and 3 show the corresponding results for Stokes pulses with 
T = 0.5 ns and T = 0.2 ns, respectively, while all the other parameters 
take the same values in all the simulations. We can observe that the 
intensity of the resulting acoustic field diminishes with the decrease of 
the Stokes pulse energy as it is shortened. Nevertheless, the amplitude of 
the relative error in the acoustic field intensity is kept always at the same 
order of magnitude, as expected from the analysis presented in Section 
3.1, and localized close to the edges of the Stokes pulse. Correspond
ingly, the order of magnitude of its impact on the relative errors found in 
Pp and Ps are, consistently, very similar for all pulse durations. 

Furthermore, in conformity with our previous analysis, the results of 
the simulations show that the peak values of the phonon field intensity 
decrease with the energy in the Stokes pulse, but they display a space- 
time waveform that does not vary significantly with the change of the 
width of the optical pulse and it is determined by the value of Γ therefore 
confirming the validity of the SVA for very short optical pulses. 

Even though the duration of the Stokes pulse is smaller than the 
phonon life-time, the variation of the pump power at the output permits 
to determine the Brillouin gain spectrum [24,3,4]. This is due to the fact 
that the transient generated by this short pulse produces a mensurable 

Fig. 1. Numerical result for a 3 ns pulse. The results displayed at the left, center and right column correspond, respectively, to the pump, Stokes, and phonon signals. 
The top row displays the results obtained using Eq. (3), the middle row those using Eq. (15), and the bottom row the relative errors between the two. 
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effect on the previous steady-state distribution [24,3,4]. Both the DC 
and AC pump fluctuations, αDC = Pp − Pp(z = L, t) and αAC = Pp(z = L,
t = 0) − Pp(z = L,t), respectively, can be used for the measurement, even 
though higher contrast is provided by αAC [4]. 

Fig. 4 shows the AC pump fluctuations at 
z = L,αAC = Pp(z = L, t = 0) − Pp(z = L, t) αAC(t), as a function of the 
frequency detuning Δf of the Stokes field from the Brillouin resonance 
obtained by scanning the full Brillouin response. The results for Stokes 
pulse widths of 3 ns, 0.5 ns and 0.2 ns are displayed. As expected, the 
shapes of the measured responses remain very similar under the varia
tion of the duration of the Stokes pulses whereas the amplitude of the 
measured response diminishes as the energy in the Stokes pulse is 
reduced. Also, the results of the calculations performed with the second 
order model (top row) are almost identical to those obtained under the 
SVA (bottom row), in accordance with the predictions from our analysis. 

For the assessment of the results derived from our analysis, we have 
chosen an implementation of a simple BOTDA system that is well- 
document in the literature [4], relevant to the discussion presented in 
this work, and convenient because of its simplicity. There exist alter
native state-of-the-art Brillouin measurement systems that offer a per
formance largely improved in relation to that of this simple scheme. 
Nevertheless, the aim of this numerical survey is to clearly illustrate that 
the SVA can be applied even in the sub-phonon lifetime transient SBS as 
predicted by our analyses. The results presented are relevant for more 
elaborate and efficient Brillouin sensing systems [5], pulse compression 
[7–11] and amplification[21,22], and fast and slow light systems 
[18–20], whenever short optical pulses are involved. 

5. Conclusion 

We have presented an analysis of the dynamical effects of the 
acoustic fluctuations in stimulated Brillouin scattering in the subphonon 
lifetime regime. Our results show that the phonon dynamics are essen
tially of first order in this regime unless the widths of the optical pulses 
are comparable with half the period of the acoustic oscillations, that is, 
of a few tenths of ps for the parameters used in our simulations. Such 
ultra-short optical pulses are unlikely to be of interest in SBS applica
tions except, possibly, for very high energy implementations. 

This main result arises due to the fact that only one of the poles of the 
full second order evolution equation depicts a resonant interaction with 
the optical fields, whereas the existence of a second pole has a negligible 
effect on the system dynamics, except for a low-order contribution 
arising from the edges of optical pulses with very abrupt transitions. 

The theoretical analyses are supported by detailed numerical cal
culations that have been performed for a fiber optic setup involving a 
Stokes pulse with durations shorter than the phonon lifetime ranging 
from a few ns to a few hundreds of ps. 

The results obtained from the numerical simulations are consistent 
with those derived from our theoretical analyses, confirming the exis
tence of a negligible error in the acoustic field solution that is localized 
at the edges of the optical pulse used in the simulations. As expected, the 
magnitude of this error is independent of the pulse width when this is the 
only parameter that is changed in the calculations. The impact of this 
very small relative error on the measured optical signals is far lesser: the 
magnitude of the relative error in the optical signals resulting from that 
of the acoustic field intensity is three orders of magnitude smaller. 

The pitfall that leads to the inclusion of the second order term in the 

Fig. 2. Numerical result for a 0.5 ns pulse. The results displayed at the left, center and right column correspond, respectively, to the pump, Stokes, and phonon 
signals. The top row displays the results obtained using Eq. (3), the middle row those using Eq. (15), and the bottom row the relative errors between the two. 
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acoustic field dynamics has it origin in a reasoning based on the band
width of the optical pulses involved in the SBS process, but our analysis 
shows that under very broad conditions the waveform of the phonon 

field is independent of the bandwidth of the optical signals and it is 
predominantly determined by the phonon lifetime Γ, with the result that 
the range of applicability of the SVA is far wider than expected. This is 

Fig. 3. Numerical result for a 0.2 ns pulse. The results displayed at the left, center and right column correspond, respectively, to the pump, Stokes, and phonon 
signals. The top row displays the results obtained using Eq. (3), the middle row those using Eq. (15), and the bottom row the relative errors between the two. 

Fig. 4. Numerical results obtained for αAC measurements with a 3 ns pulse (left column), a 0.5 ns pulse (center column), and a 0.2 ns pulse (right column) without 
and with the use of the SVA (top and bottom row, respectively). 
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illustrated in a particularly insightful manner by a complementary 
analysis based on the approximate solutions for SBS using short optical 
pulses. 
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