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Abstract— This paper considers the problem of designing an 
H∞ observer-based controllers for continuous nonlinear systems 
presented by Takagi–Sugeno (T–S) model with the presence 
of parameter uncertainties and external disturbance. Some 
change of variables has been developed to linearize the bilinear 
terms. As a consequence, the bilinear problem conditions are 
converted into a set of Linear Matrix Inequalities (LMIs). 
Sufficient c onditions f or d esign t he o bserver a nd controller 
gains are deduced in terms of LMIs conditions which can 
be practically solved in single step. The four-tank process 
application is used to show the effectiveness of the proposed 
method, revealing a better compromise between the simplicity 
and the conservatism of design method, outperforming in 
respect to previous approaches.

Index Terms— Observer-Based Control, Fuzzy Model, Uncer-
tain Systems, Disturbance, Linear Matrix Inequality (LMIs), 
Quadruple Tank Process.

I. INTRODUCTION

The fuzzy model approach is a very effective tool to 
develop controllers for nonlinear systems [1]. In particular, 
Takagi-Sugeno (T-S) systems have demonstrated the ability 
to accurately represent complex nonlinear systems using
fuzzy sets and membership functions [2], [3]. Therefore, a 
great deal of attention is being paid to the controller and 
observer synthesis for Takagi-Sugeno systems [4], [5]. A 
robust H∞ fuzzy observer-based controller design method 
for uncertain T–S fuzzy systems with unmeasurable premise
variables has been presented in [6]. A less conservative Con-
dition for observer-based controller of one-sided Lipschitz 
nonlinear systems has been proposed in [7], based on the 
Young’s relation and several matrix decompositions. In [8] 
a new two-step observer-based controller design technique 
for large uncertainty Lipschitz nonlinear systems with more
degree of freedom. In [9], [10] the authors investigated the
problem of robust observer–based control for T-S fuzzy mod-
els with parametric uncertainties and disturbances. However,
the bilinear matrix inequality conditions in the cited refer-
ences are solved by using cone-complementary linearization
or two-step approach.
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Based on these previous results, this work proposes a
direct robust and a simple method to designing the H∞

observer-based controller for T-S fuzzy systems with uncer-
tain parameters and external disturbances by using a single
step resolution procedure. Firstly, we have dealt with the
control problem of a very complex system that includes gross
nonlinear coupling by using some notation based on direct
matrix decomposition, which permits to find the conditions
directly in the form of LMIs. Secondly, the observer and
the controller gains are yielded by solving some linear
matrix inequalities in a single step. In the end, the proposed
design method gives less conservative LMI conditions than
those constituted in the literature [9] and [10]. Therefore,
this paper produces some results for the H∞ observer-based
control design devoted to uncertain fuzzy bilinear models.
A comparison of the results obtained with those of [10] is
recommended.

The plan of this paper is structured as follows. In Sect. II,
the description of the system and preliminaries are presented.
In Sect. III, the robust observer-based control design are
obtained through LMI approach. In Sect. IV, an example
of an application of the quadruple tank process is given to
show the need for such controllers. The paper draws to a
close with some conclusions.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Let us consider the continuous-time Takagi-Sugeno model
for nonlinear dynamical system described by:

ẋ(t) =
m

∑
i=1

hi(ξ (t)){(Ai +∆ Ai(t))x(t)+Biu(t)}+ω(t)

y(t) = (C+∆ C(t))x(t)
(1)

where x(t)∈Rn is the state vector, y(t)∈Rp is the output
vector and u(t) ∈ Rr is the input vector. ω(t) ∈ lq

2 is the
unknown exogenous disturbance. Ai ∈ Rn×n, Bi ∈ Rn×r and
Ci ∈ Rp×n (i = 1, · · · ,m), are known constant matrices.
∆ Ai(t) (i = 1, · · · ,m) and ∆ C(t) are unknown matrices
represent model uncertainty.

First, we assume the following assumptions:
Assumption 1: The pairs (Ai,Bi) and (Ai,C) (i =

1, · · · ,m), are respectively stabilizable and detectable.
Assumption 2: Uncertain matrices ∆ Ai(t) (i = 1, · · · ,m)

and ∆ C(t) are unknown matrices represent time-varying
model uncertainties, which are assumed to be,

∆ Ai(t) = MiFi(t)Ni, and ∆ C(t) = Mm+1Fm+1(t)Nm+1
(2)



with

FT
k (t)Fk(t)6 I, ∀k = 1,2, · · · ,(m+1) (3)

The proposed observer-based controller that we are study-
ing in this paper is according to:

˙̂x(t) =
m

∑
i=1

hi(ξ (t)){Aix̂(t)+Biu(t)+Li(y(t)−Cx̂(t))} (4)

u(t) =−
m

∑
j=1

µi(ξ (t))K j x̂(t)

(5)
where Li ∈ Rn×p and K j ∈ Rx×n (i, j = 1, · · · ,m) are the
controller and the observer gains to be resolute respectively,
and x̂(t) ∈ Rn is the estimate of x(t).

Signify that e(t) = x(t)− x̂(t) error estimate and iden-
tifying a vector η(t) =

[
x(t) e(t)

]T , subsequently the
augmented system can be addressed as,

η̇(t) =
m

∑
i=1

m

∑
j=1

hi(ξ (t))h j(ξ (t))
[

Ai−BiK j BiK j
∆Ai−Li∆C Ai−LiC

]
η(t)

+

[
In
In

]
ω(t)

(6)
Next, we prove that for any ω(t)∈ L2[0,∞) of Takagi-Sugeno
fuzzy parametric uncertain system (6) are considered if the
following two provisions are fulfilled:
• The closed loop system (6) is robustly asymptotically

stable when ω(t) = 0.
• Let in µ > 0 to be a fixed, under zero-initial conditions,

the following performance index H∞ holds:

I(η(t),ω(t)) =
∫

∞

0

[
µ
−1

η(t)T
η(t)−µω(t)T

ω(t)
]

dt < 0
(7)

The following lemmas are very helpful for our establish-
ment in this paper.

Lemma 1: [11] ∀σ positive constant, and the real matrices
M,N, and F ∈ R with appropriate dimension, such that
FT (t)F(t)6 I the following inequality holds:

MFN +NT FT MT 6
1
σ

MMT +σNT N (8)

Lemma 2: [12] For matrices R, P, V , and Z with appropriate
dimensions and scalar ζ . Inequality,

R+ZT PT +PZ < 0 (9)

is satisfied if the following condition holds:[
R ζ P+ZTV T

∗ −ζV −ζV T

]
< 0 (10)

III. ROBUST OBSERVER-BASED CONTROL DESIGN

In this section, our goal is to focus on the stability
analysis problem for T-S Fuzzy systems (1) in the presence
of parametric uncertainties and disturbance.

Theorem 1: For given scalars ζ , µ and positive scalars
εk > 0 (k = 1, · · · ,m), the robust observer-based system (6) is
asymptotically stable with the performance attenuation-µ in

(7), if there exist symmetric positive-definite matrices P1 ∈
Rn×n, P2 ∈ Rn×n and V ∈ Rm×m, Q1 j ∈ Rm×n, Q2i ∈ Rn×p,
(i, j = 1, · · · ,m) satisfying the following LMIs:[

Ψi j Σ

∗ Ω

]
< 0, i f i = j (11)

1
2

[
Ψi j Σ

∗ Ω

]
+

1
2

[
Ψi j Σ

∗ Ω

]
< 0, i f i > j (12)

for i, j = 1, · · · ,m, where,

Ψ
(1,1)
i j = P1AT

i +AiP1−QT
1 jB

T
i −BiQ1 j +ρ1NT

1 N1

+ρ2NT
2 N2,

Ψ
(1,2)
i j = BiQ1 j,

Ψ
(2,2)
i j = AT

i P2 +P2Ai−CT QT
2i−QT

2iC,

Σ =

[
P1 ζ (P1Bi−BiV )−QT

1 j P1M1 0 I 0
P2 QT

1 j P2M1 Q2iM2 0 I

]
,

and

Ω = diag
{
−µI,−ζV −ζV T ,−σ1I,−σ2I,−µI,−µI

}
,

The observer-based control gains are given by K j =
V−1Q1 j and Li = P−1

2 Q2i.

Fig. 1. The structural scheme of the fuzzy system

Proof: The following Lyapunov function can be associated
with system dynamics (6):

V (x(t),e(t)) = xT (t)P1x(t)+ eT (t)P2e(t), P1 > 0, P2 > 0

Then, the derivative of V (x(t),e(t)) further the trajectories
of the error dynamics (6), we get,

V̇ (x(t),e(t)) = ẋT (t)P1x(t)+ xT (t)P1ẋ(t)+ ėT (t)P2e(t)
+ eT (t)P2ė(t)

=
m

∑
i=1

m

∑
j=1

hi(ξ (t))h j(ξ (t)) [2P1(Ai−BiK j

+ ∆Ai)x(t)+2xT (t)((∆Ai−Li∆C)T P2
+ P1BiK j)e(t)+2eT (t)P2(Ai−LiC)e(t)

]
+ 2ωT (t)P1x(t)+2ωT (t)P2x(t)

(13)
Under zero initial conditions, the Lyapunov function ful-

fills V (0) = 0 and V (∞)> 0 that lead to:

I=
∫

∞

0

[
V̇ (η(t))+µ

−1
η(t)T

η(t)−µω(t)T Qdω(t)
]

dt−V (∞)



I6
∫

∞

0

[
V̇ (η(t))+µ

−1
η(t)T

η(t)−µω(t)T Qdω(t)
]

dt
(14)

with the above analysis, to satisfy the attenuation level
given in (7), the following conditions should be fulfilled:

V̇ (η)(t))+µ
−1

η(t)T
η(t)−µω(t)T

ω(t)< 0 (15)

Including (13) and (14), then I(η(t),ω(t)) become:

I(η(t),ω(t)) = φ
T
ϒ φ (16)

where
φ

T =
[

xT (t) eT (t) ωT (t)
]
, (17)

and

ϒ =
m

∑
i, j=1

hi(ξ (t))h j(ξ (t))


 Φ

(1,1)
i j 0 P1

∗ Φ
(2,2)
i j P2

∗ ∗ −µI


+

 −P1BiK j−KT BT P1 P1BiK j 0
KT BT P1 0 0

0 0 0



+

 P1∆Ai +∆AT
i P1 (∆Ai−Li∆C)T P2 0

P2(∆Ai−Li∆C) 0 0
0 0 0


︸ ︷︷ ︸

ϒ∆

 .

(18)
where

Φ
(1,1)
i j = P1Ai +AT

i P1 +µ−1I,

Φ
(2,2)
i j = Ψ

(2,2)
i j +µ−1I.

In ϒ presented by (18), we get the presence of bilinear
terms P1BiK j. This problem of bilinearities has been studied
by many researchers [8], [9], [10] to linearize it. These
works, however, based on the cone-complementary lineariza-
tion algorithm to transform the presence of the coupling
terms P1BiK j into a problem optimization of LMI or two-
step design approaches. In this paper, we will establish an
LMI condition based in one step, which is more practical
and easy to apply to the methods proposed by [8], [9], [10].
Thus, to realize this, by setting a nonsingular matrix V and
giving K j =V−1Q1 j, it can be specified that,

P1BiK j = (P1Bi−BiV )V−1Q1 j +BiQ1 j (19)

Then, with the help of the Eq. (19), we can conclude that
inequality ϒ is equivalent to:

ϒ =

R︷ ︸︸ ︷
ϒ1 +ϒ∆

+He


 (P1Bi−BiV )

0
0


︸ ︷︷ ︸

P

V−1 [ −Q1 j 0 Q1 j
]︸ ︷︷ ︸

Z


< 0

(20)

where

ϒ1 =

 Φ̂
(1,1)
i j BiQ1 j P1

∗ Φ
(2,2)
i j P2

∗ ∗ −µI

 (21)

and

Φ̂
(1,1)
i j = He(P1Ai−BiQ1 j)+µ−1I.

By Lemma 2, we can use the following matrix condition
of inequality to check (20):

Ψ =

[
ϒ1 +ϒ∆ ϒ2
∗ −ζV −ζV T

]
< 0 (22)

where

ϒ2 = ζ P+ZTV T =

[
ζ (P1Bi−BiV )−QT

1 j
QT

1 j

]
At this point, we must linear the last inequality, namely,

by taking the uncertain terms apart, using Lemma 1, we have
reformulated the yielded matrix to the sum of the matrix with
the uncertainties and other matrix without the uncertainties,
we obtain,

Ψ =

[
ϒ1 ϒ2
∗ −ζV −ζV T

]

+


P1M1
P2M1

0
0

F1(t)
[

N1 0 0 0
]

+




P1M1
P2M1

0
0

F1(t)
[

N1 0 0 0
]

T

+


0

−Q2iM2
0
0

F2(t)
[

N2 0 0 0
]

+




0
−Q2iM2

0
0

F2(t)
[

N2 0 0 0
]

T

Appling Lemma 1 and using Eq. (3), we have the inequal-
ity:

Ψ 6 Ψ̃ =

[
ϒ1 ϒ2
∗ −ζV −ζV T

]
+ σ1X1XT

1 +σ
−1
1 X2XT

2 +σ2X3XT
3 +σ

−1
2 X4XT

4
(23)

for any σ1 > 0 and σ2 > 0, such that,

XT
1 =

[
N1 0 0 0

]
,

XT
2 =

[
MT

1 P1 MT
1 P2 0 0

]
,

XT
3 =

[
N2 0 0 0

]
,

XT
2 =

[
0 MT

2 Q2i 0 0
]
.

Based on the Schur complement, inequality (11) can be
achieved by inequality (23). Then, for the rest of the proof,
we can see on [13], which complete the proof.



IV. APPLICATION OF THE QUADRUPLE TANK PROCESS

A. Process description

A quadruple tank process studied in [10] is used in this
section to show the performances of the proposed approach.
The quadruple-tank process model described in Figure 1 has
been developed in [14]. Moreover, the process is composed
of four identical cylindrical tanks 1-4, and a reservoir 5,
which constitutes the base of the system. Two pumps are
used to transfer water from a reservoir into four overhead
tanks. These two pumps are aimed to give a well-defined
flow by rotation.

Fig. 2. The Quadruple Tank Process Scheme

B. Modeling and main result

The continuous–time nonlinear dynamical system of four
tanks is represented by the following equations:

ẋ1(t) = −
ap1

Ap1

√
2gx1(t)+

ap3

Ap1

√
2gx3(t)+

µ1(t)kδ1

Ap1
δ1(t)

ẋ2(t) = −
ap2

As2

√
2gx2(t)+

ap4

Ap2

√
2gx4(t)+

µ2(t)kδ2

Ap2
δ2(t)

ẋ3(t) = −
ap3

Ap3

√
2gx3(t)+

(1−µ2(t))kδ2

Ap3
δ2(t)

ẋ4(t) = − as4

Ap4

√
2gx3(t)+

(1−µ1(t))kδ1

Ap4
δ1(t)

(24)
where xk(t) is the liquid level in the tank-k; Apk is the cross

sectional area of the tank-k; apk is the cross-sectional area
of the outlet hole of the tank–k, g is acceleration of gravity,
µ j(t) ∈ [0, 1] is time-varying valve flow proportion; δ j(t) is
the voltage control signal of Pump-j, with the corresponding
coefficient kδ j. Moreover, these Pumps-j are designed to give
a well determined movement of rotation. The description of
the parameters of tank process model, comment on TABLE
I. The measured voltage (V) output signal y(t) ∈ Rp, are
assumed proportional to level measurement (cm) of tank 1
and tank 2.

Remark 1. The valves can be used to introduce distur-
bances and uncertainty parameters. These external unmea-
sured disturbance flows can either complete or incomplete
the level of four tanks. Process variations include uncertain-
ties in the valve and loss of level in the tanks. The objective

of this study is to design a robust controller that makes the
system stable without losing the level in such tanks.

We note that nonlinearity terms Fk(t) =
√

xk(t) of the
liquid level in the tank–k ∀k = 1, · · · ,4 is specified in two
systems based on successive sector rules as follows:

If xk(t) is M1 Then Fk(t) =CFz1xk(t)
If xk(t) is M2 Then Fk(t) =CFz2xk(t)

Thus, the TS-Fuzzy model is proposed as:

Fk(t) = (ξ1(xk)CFz1 +ξ2(xk)CFz2)xk(t) (25)

Note that the membership functions–MFs are given by the
equation:

ξ j(xi) =
ϖ j(xk)

2

∑
j=1

ϖ j(xk)

, j = 1,2, k = 1, · · · ,4 (26)

and fulfilled the properties:
2

∑
j=1

ξ j(xk) = 1, ξ j(xk) ∈ [0, 1] , j = 1,2, k = 1, · · · ,4

(27)
where

ϖ j(xk) =
1[

1+
∣∣∣∣xk− c j

a j

∣∣∣∣]2b j
, j = 1,2, k = 1, · · · ,4

(28)
We found the results mentioned in Table II of the fuzzy

parameters similar to [10].
Remark 2. Using the same fuzzy structure and nonlinear

function characteristics, then the proposed rules (25) are
reducing to calculate only ξ j(x1), j = 1,2. This has reduced
the number of member functions from 8 to 2.

TABLE I
NOMINAL PARAMETERS OF TANK PROCESS.

Parameters Concept (Unit) Values
Ap1,Ap3 Areas of tanks 1.3 (m2) 2,8×10−3

Ap2,Ap4 Areas of tanks 2,4 (m2) 3.2×10−3

ap1,ap3 Areas of outlet in tanks 1,3 (m2) 7.1×10−6

ap2,ap4 Areas of outlet in tanks 2,4 (m2) 5.7×10−6

kδ i Coefficient of pump-i, i = 1,2 (ml V−1s−1) 3.33,3.35
xi The liquid level in tank-i (m)
µi The value scaling of flow at valve-i
δi The voltage control signal at pump-i (V)

Time-varying parameters µi(t), i = 1,2, is given as fol-
lows:

θ1(t) =
µ1(t)

2
, θ2(t) =

(1−µ1(t))
2

,

θ3(t) =
µ2(t)

2
, θ4(t) =

(1−µ2(t))
2

. (29)

then
4

∑
k=1

θk(t) = 1.

The optimal value of the disturbance attenuation level
from the pump to the tanks will be contained in the system,
assuming that disturbance is presented in the following form:



TABLE II
PARAMETERS OF MEMBERSHIP FUNCTIONS.

Parameters Concept Values
a1 The width of MFs 0.0021
a2 0.3078
b1 0.7219
b2 5.3137
c1 The center of MFs –0.1656
c2 0.3155

CFz1 The coefficient of fuzzy set in region M1 2.389×103

CFz2 The coefficient of fuzzy set in region M2 0.8149

ω(t) = 10−2× [2.2sin(30πt) 1.5cos(20πt) · · ·

−4.8sin(26πt) 5.7sin(31πt)]T

The nominal constant matrices are given as follows:

Ai =



−ap1
√

2gCFz j

Ap1
0

ap3
√

2gCFz j

Ap1

0
−ap2

√
2gCFz j

Ap2
0

0 0
−ap3

√
2gCFz j

Ap3
0 0 0

0

ap4
√

2gCFz j

Ap2

0

−ap4
√

2gCFz j

Ap4


If i = 1, · · · ,4 Then j = 1, And i = 5, · · · ,m Then j = 2,

with m = 8.

B1,5 =


2kδ1

Ap1
0

0 0
0 0
0 0

 , B2,6 =


0 0

0
2kδ2

Ap2
0 0
0 0

 ,

B3,7 =


0 0
0 0

0
2kδ2

Ap3
0 0

 , B4,8 =

 0 0 0
2kδ1

Ap4
0 0 0 0

,

and C =

[
1 0 0 0
0 1 0 0

]
.

We consider the uncertain model given by the model
validation approach to compensate for the disparity and the
relative approximation of the error between system states and
measurement outputs.

The uncertainty matrices of the above system are taken,
Mi =

[
0.1 0.1 0.1 0.1

]T ,
Ni = ηi

[
0.1 0.1 0.1 0.1

]T ,
Mm+1 =

[
0.1 0.1

]T ,
Mm+1 = ηm+1

[
0.1 0.1

]T ,
for i = 1, · · · ,8, and m = 8.

For physical or economic reasons of an acceptable exper-
imental model, under which only the liquid level in tanks
1,2 can measure, the other dynamic states will be estimated,
using observer-based control study in this paper.

C. Simulation results

We have taken ηi ∈ [1,150] , i = 1, · · · ,8., m = 8, σ1 =
1, σ2 = 1 and ζ = 10−6. The responses of volume in
such tanks and their estimates starting from the initial
conditions x(0)=

[
0.35 0.15 0.42 0.32

]T , and x̂(0)=[
0.22 0.02 0.23 0.11

]T .
Then, the evolution of the volume in the corresponding

tanks to the measured states (x1,x2) shown in Figure3, and
the evaluation of the unmeasured states (x3,x4) shown in
Figure 4, respectively. It can be witnessed that the observer
estimates adequately the states under the effect of model
uncertainty and disturbance.

Fig. 3. Evolution of measurable states and its estimation

Fig. 4. Evolution of unmeasurable states and its estimation

Using toolbox and the solver [16], the fuzzy controller
gains are given by:

K1 =V−1Q11 =

10−12×
[
−4.1017 −0.1492 6.6598 0.2456
−2.9752 −0.1469 8.1761 0.2511

]
K2 =V−1Q12 =

10−12×
[
−2.2439 −0.1478 7.7373 0.2415
−2.5663 −0.1619 8.1427 0.2510

]
· · ·

K8 =V−1Q18 =

10−11×
[

1.2946 7.5198 −2.9512 −0.1198
1.0082 6.3198 −2.1725 −0.1005

]
and observer gains:



L1 = P−1
2 Q21 =

103×
[
−0.2027 −0.8860 −0.2946 −1.4192
0.3503 1.5258 0.5237 2.4438

]
L2 = P−1

2 Q22 =

103×
[
−0.2027 −0.8859 −0.2946 −1.4191
0.3503 1.5258 0.5237 2.4437

]
· · ·

L8 = P−1
2 Q28 =[

28.1322 122.1351 42.1789 195.4160
130.5573 568.9715 195.7768 910.3424

]
Based on the results of the simulation, the controller

values and the observer gains, we can see that the proposed
design conditions in Theorems 1 of this paper are much less
conservative than in Theorems 1 of [10]. With our results,
we can conclude on the ability to reduce the errors to about
zero of the tank process, even with the existence of parameter
uncertainties and perturbations.

We consider the distribution rate of flows in the tanks
placed in the position of the regulating valve µ1(t) and µ2(t),
that will be adjusted according to the following rules:

If tsim(p) = 0, · · · ,20 Then µ1(t)+µ2(t) ∈ [1,2] , MP
If tsim(p) = 20, · · · ,120 Then µ1(t)+µ2(t) ∈ [0,1] , NMP
If tsim(p) = 120, · · · ,220 Then µ1(t)+µ2(t) ∈ [1,2] ,MP
If tsim(p)= 220, · · · ,300 Then µ1(t)+µ2(t)∈ [0,1] , NMP
where MP is minimum phase setting [15], and NMP is

no– minimum phase setting. In the end, by using the setting
rules, the estimation error of the volume in such tanks is
given in Figure 5.

Fig. 5. Evolution of the estimation errors of such tanks

Finally, Figure 6 gives the stabilized control signal of
the observer-based controller design for the quadruple-tank
process laboratory system.

Fig. 6. Evolution of the pump signal control

V. CONCLUSIONS

A direct robust and a simple method to designing an H∞

observer-based controller for T-S systems with time-varying
parameter uncertainties and admissible external disturbances
is studied in this paper. By using the Lyapunov function,
sufficient conditions for designing simultaneously the con-
troller and the observer gains are achieved in a single step by
solving a set of LMIs. This method gives a less conservative
than the other control methods considered in the literature.
An application of the model of a laboratory process with
four interconnected tanks has been developed to demonstrate
the effectiveness of the proposed methodology. As a future
study, we aim to adapting and expanding our approach for
delayed systems, however, the H∞ observer-based control
design problem for time-delay systems.
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