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Abstract 

 
Electricity price fluctuations, given by the application of price-based demand 

response programs, provide a big opportunity to reduce the operating costs of 

industries working with on-site cogeneration systems. Thus, they can adapt their 

production to generate and consume energy in the most appropriate moment, 

while trading the electricity surplus/deficit with the external grid.   

Currently, due to the sugar market liberalization, the beet-sugar extraction 

industry is at a delicate moment in Europe. This problem, joint to the fact that 

such industry is a common cogeneration user, makes it an excellent candidate to 

exploit the aforementioned opportunities. However, the problem lies in the   

modification of the operating conditions of industrial processes working with 

simple cogeneration systems, where the electricity generation is determined by 

the main process heat demand, which in turn depends on its operating 

conditions. This means that a coupling between the electricity generation and 

the industrial process operation exists and must be considered. Furthermore, the 

great complexity of such processes, as is the case in the beet-sugar extraction 

process, makes that changes in the operating conditions may cause large 

transition periods between stationary points, which can easily exceed the 

frequency electricity prices change. In addition, to dispose the electricity with 

guarantees, a series of efficiency limits, established by the current legislation 

regarding the efficient use of cogeneration systems, must be respected. These 

features make the electricity trading forecasting difficult to manage, and often 

limits the participation of such companies in demand-response programs. 
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To solve this problem, decision support tools emerge as a possible solution 

to facilitate the simultaneous management of production and cogeneration 

operation, while considering external constraints from sources like the electricity 

market or the current legislation. However, so far, no methodology has been 

found in the literature that adequately considers the big inertia present in such 

industrial processes and its consequences on the electricity trading and, 

therefore, these methods cannot be applied directly on a process like the one 

considered. One of the main reasons for not including dynamic features in 

optimization problems is the higher computational cost they involve.  Therefore, 

in this thesis, the main objective is to develop a new methodology so industrial 

processes with coupled cogeneration systems can be managed in a simultaneous 

way, while taking explicit consideration of its dynamic features. Such 

methodology must be applicable to the beet-sugar industry and extensible to 

others that share similar characteristics. Thus, we propose an approach based on 

dynamic optimization techniques, where industrial process and cogeneration 

system are considered in a simultaneous way (integrated approach), so the effect 

of the energetic coupling is explicitly considered.  

In order to carry out this approach, we need to obtain mathematical models 

that adequately represent the dynamic features of the system as a whole 

(Industrial process-cogeneration plant), but without involving an excessive 

computational load when they are evaluated. Since a nonlinear dynamic 

optimization is posed, the computational time needed to solve the problem 

grows exponentially when the complexity and the size of the model increase. 

Therefore, we propose the use of gray models composed of first-principles 

equations and empirical relationships, which represent the whole system closed-

loop dynamics, and can be obtained in a simple way.  

To validate the proposed methodology, a dynamic simulator was developed 

representing a generic beet-sugar factory, and it has been used to test two 

different electricity tariffs given by price-based demand-response programs: 

Time-off-use (TOU) tariffs and Day-Ahead market prices. In the study, we have 

considered the Spanish electricity market, the current legislation related to the 

efficient operation of cogeneration systems, and the seasonality of the beet-

sugar extraction process in Spain. To solve the optimization problem, a 

simultaneous approach based on orthogonal collocation has been used, in which 

all the equations of the model are discretized and solved using a gradient-based 
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algorithm such as IPOPT. Thus, the accuracy of the model has been reduced in 

the search of a higher computational efficiency.  

As main study results, we have obtained that a reduction of up to 2.55% of 

the operating costs is possible if a typical TOU program is selected, and a 5.41% 

if the electricity market prices are directly used. Of course, this number depends 

on the period selected, but we can conclude that better results are obtained 

when the Day-Ahead market price is considered at a cost of a higher uncertainty 

in the price. In both cases the duration of the campaign has been extended by 3 

days compared to a non-energy awareness approach, typically used nowadays in 

sugar factories, where the production rate has been maintained constantly at 

the maximum possible level.  

Finally, aware of the difficulty that may involve the industrial implementation 

of a tool like the one developed, we propose a software architecture, with three 

different modules, communicated using the OPC UA standard: an optimization 

module developed using the programming language Python™; a simulator 

implemented with Ecosimpro/Proosis® modeling and simulation software; and a 

supervision system developed with Wonderware ® Intouch ®, the latter being the 

link and core of the whole system.  
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Resumen 

 
Las fluctuaciones en el precio de la electricidad, procedentes de la aplicación de 

programas de respuesta de la demanda, son una oportunidad para que las 

industrias que cuenten con sistemas de cogeneración para abastecerse 

energéticamente puedan minimizar los costes variables de producción del 

conjunto, produciendo la energía en el momento más adecuado e 

intercambiando el excedente/déficit de electricidad con la red externa.  

La actual crisis en la industria de extracción de azúcar de remolacha en 

Europa, provocada por la liberalización del mercado azucarero y que ha derivado 

en el cierre de numerosas empresas de este sector, unido a que dicha industria 

es usuaria común de la cogeneración, hace que sea un excelente candidato para 

explotar las mencionadas oportunidades. Sin embargo, la problemática se 

encuentra en la adaptación de la producción de procesos industriales que 

cuentan con sistemas de cogeneración simples, donde la generación de 

electricidad viene marcada por la demanda de calor por parte del proceso 

principal asociado, que a su vez depende de las condiciones de operación del 

mismo. Esto hace que exista un acoplamiento entre la generación de electricidad 

y la operación del proceso industrial. Además, hay que tener en cuenta que 

debido a la gran complejidad que presentan en muchas ocasiones los procesos 

industriales, como es el caso de la industria azucarera, cambios en las 

condiciones de operación provocan largos periodos de transición entre puntos 

de operación estacionarios, los cuales pueden superar fácilmente la frecuencia 

con la que los precios de la electricidad cambian. Además, debe tenerse en 
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cuenta que para poder verter con garantías la energía eléctrica generada en 

sistemas de cogeneración, debe respetarse una serie de límites de eficiencia 

establecidos por la legislación vigente. Todo esto hace que la previsión de 

compraventa de electricidad sea difícil de gestionar, y en muchas ocasiones 

limita la participación en programas de respuesta de la demanda por parte de 

empresas con estas características.  

Para solucionar esta problemática, se pueden utilizar herramientas de ayuda 

a la toma de decisiones, que permitan facilitar la gestión simultánea de la 

producción del proceso industrial y la operación de su planta de cogeneración 

asociada, de forma que, además, tengan en cuenta restricciones externas 

procedentes de fuentes como el mercado eléctrico o la legislación vigente. Sin 

embargo, revisando la literatura relacionada con esta temática, se ha encontrado 

que ninguno de los métodos propuestos hasta ahora permiten considerar 

adecuadamente cómo afecta la gran inercia presente en estos procesos 

industriales a la hora de negociar la cantidad de electricidad intercambiada a lo 

largo del tiempo, lo que lleva a que no puedan ser aplicados a una industria como 

la considerada. Una de las causas más comunes para no incluir las características 

dinámicas de la planta industrial en el problema de optimización es al alto coste 

computacional que ello puede suponer. Por ello, en esta tesis se propone como 

objetivo principal el desarrollo de una nueva metodología para la gestión 

conjunta de procesos industriales con sistemas de cogeneración acoplados, que 

facilite la incorporación de dichas características dinámicas y que pueda ser 

aplicada a las industrias azucareras remanentes tras la crisis del sector. Dicha 

metodología debe ser extensible a otro tipo de industrias que compartan unas 

características dinámicas similares.  

Así, se propone solucionar dicho problema mediante un enfoque basado en 

la optimización dinámica, en el que proceso industrial y sistema de cogeneración 

son considerados de forma simultánea (enfoque integral), de forma que se tiene 

en cuenta el efecto del acoplamiento energético. Para poder llevar a cabo este 

enfoque se necesita obtener modelos matemáticos que representen de forma 

adecuada las características dinámicas del conjunto del sistema (proceso 

principal y sistema de cogeneración), pero que no supongan una excesiva carga 

computacional cuando son evaluados. Y es que, al tratarse de un problema de 

optimización dinámica no lineal, los tiempos de cálculo son rápidamente 

escalables cuando aumenta la complejidad y el tamaño del modelo utilizado. Se 
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propone así la utilización de modelos grises formados por ecuaciones de 

primeros principios y relaciones empíricas que representan las características 

dinámicas en lazo cerrado del conjunto del sistema, y que pueden ser obtenidos 

de una manera sencilla y extrapolable. 

Para validar la metodología desarrollada, se ha desarrollado un simulador 

que representa una fábrica de azúcar de remolacha genérica, y que ha servido 

como banco de pruebas para probar dos políticas de precios dadas por dos 

programas de respuesta a la demanda diferentes: Tarifa por tramos, Precios del 

mercado. En el estudio se ha tenido en cuenta el funcionamiento del mercado 

eléctrico español, la legislación vigente relacionada con la generación eficiente 

de energía por parte de los sistemas de cogeneración, y la estacionalidad del 

proceso de obtención de azúcar de remolacha en España. Para resolver el 

problema de optimización planteado se ha utilizado un enfoque simultáneo 

basado en colocación ortogonal, en el que todas las ecuaciones del modelo 

planteado son discretizadas y resueltas utilizando un algoritmo basado en 

gradientes como IPOPT. De esta forma se ha reducido la precisión del modelo en 

favor de una mayor eficiencia computacional.  

Como principales resultados del estudio, se ha obtenido que cuando se 

utiliza la metodología propuesta los costes variables de producción se pueden 

reducir hasta un 2.55% si se utiliza una tarifa por tramos típica, y en torno a un 

5.41% si se utilizan los precios dados por el mercado eléctrico directamente. Por 

supuesto, este último número depende del periodo de tiempo seleccionado para 

el estudio, pero en general, se puede concluir que cuando se aplica una tarifa 

con los precios del mercado, los costes pueden reducirse más a costa de asumir 

un mayor riesgo en el precio. En ambos casos la duración de la campaña 

propuesta por el optimizador es 3 días mayor respecto a cuando se utiliza un 

enfoque sin concienciación energética en el que se trata de mantener la 

producción constantemente al máximo posible. 

Por último, conscientes de la dificultad que puede suponer la 

implementación industrial de una herramienta como la desarrollada, se propone 

una arquitectura software modular, cuyas comunicaciones están basadas en el 

standard de comunicación OPC UA. Los tres módulos funcionales que componen 

el sistema son: una herramienta de optimización desarrollada usando el lenguaje 

de programación Python™, un simulador del sistema implementado con el 

entorno de modelado y simulación Ecosimpro/Proosis®, y un sistema de 
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supervisión o interfaz de usuario desarrollada con el software Woderware® 

Intouch®, sirviendo esta última como enlace y núcleo del conjunto del sistema. 
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Chapter 1  

Introduction 

1 Introduction  

1.1 Motivation and background 

1.1.1 Optimal operation of industrial processes with energy awareness   

In order to face the present and future environmental problems related to 

Climate Change, the EU has established the aim of being carbon neutral in 2050. 

The path for reaching this objective is focused on three key aspects related to 

energy consumption: 

• Reduction of greenhouse gases like carbon dioxide, methane or nitrous 

oxide. 

• Penetration of renewable energies in the final use of energy.  

• Increase of the energy efficiency.  

Within this framework, the electricity generation system is changing to a 

decentralized scheme, where new ways of generating and consuming power are 

rising, giving the final consumer more possibilities than ever. Nevertheless, 

although this new concept is very convenient from an environmental point of 

view, features like an intermittent supply of renewable energies, the necessity 

of new electricity storage systems, or the possibility of self-consumption and 

dumping to the external grid, may suppose a real challenge to the system 
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operator who must ensure the matching of electricity supply and demand in real 

time. 

In this context smart grids rise, where generation, transport, distribution, 

and consumption are performed in an optimal and coordinated way (Fang et al., 

2012). A major innovation of this concept is the consideration of a flexible 

demand subject to modifications through incentives, topic commonly known as 

Demand Side Management (DSM) (Meyabadi and Deihimi, 2017). Among the 

different activities proposed by DSM programs, two different categories can be 

discerned depending on the pursued objective:  

• Energy Efficiency (EE) programs: Aimed to reduce the total energy 

demand making the same activities more efficient.  

• Demand Response (DR) programs: Their objective is to flatten the 

electricity demand curve changing the end-user electricity pattern. This 

is crucial in order to avoid the necessity of more electricity generation 

plants, and the oversizing of the whole electricity system to deal with 

peak demands.  

With respect to DR programs, they can be classified in three different groups 

attending to the strategy used to modify the consumer behavior (Siano, 2014): 

Price-based programs, incentive-based programs, and demand reduction bids.  

• Price-based programs are composed of non-flat electricity tariffs used to 

incentive end-users to consume their electricity in non-peak hours. 

Examples of these policies are: Time Of Use (TOU) rates, where prices 

are fixed by blocks depending on the time of the day, and Real-Time 

Pricing (RTP) rates, where consumers are charged with prices that vary 

over short time intervals, typically hours, and are quoted one day (Day-

Ahead tariff) or less (Intraday and Real-time tariffs) in advance to reflect 

the real cost of electricity in the wholesale market. 

• Incentive-based programs are based on payments done to consumers in 

exchange of load adjustment capacities given to the grid operator in case 

of necessity, which can be voluntary or mandatory. Some examples are 

Direct load control, where the utility has a certain degree of control over 

some equipment like air conditioning systems, or 

Interruptible/Curtailable programs, where the customer is asked to 

reduce its load to a determined value.  
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• Demand reduction bids consist in programs where participants send bids 

to the utility announcing the amount of load they are willing to reduce 

for a specified price at a certain time. Some examples are Demand 

Bidding or Capacity Market programs.  

Industrial facilities, who require a huge electricity consumption to produce 

goods and services, are natural candidates for participating in this kind of 

programs, reducing their operating cost while making the grid more stable and 

secure. Intuitively, under price-based DR operation, an industrial consumer 

would increase production (and therefore its power consumption) when the 

electricity price is lower, storing products in excess and releasing them later 

when the electricity price is higher. Consequently, in order to participate in such 

programs, an industrial site must be able to store products safely and efficiently 

and be capable of adapting its production rate within a time scale similar to the 

variations in the electricity price. This requires the process to be “flexible”, that 

is, capable of operating in a wide-enough range without incurring in big efficiency 

losses.  Therefore, although at first sight production scheduling and energy 

management may have competing goals, their optimal integration enables the 

participation of industrial sites in price-based DR programs, so they have become 

a topic of interest for a variety of industrial processes in the research community 

(Albadi and El-Saadany, 2008; Merkert et al., 2015; Siano, 2014; Zhang et al., 

2016).  

When industrial processes count with on-site generation systems the 

possibilities are wider, limiting their dependence on the external grid. 

Cogeneration, or Combined Heat and Power (CHP), is one of the most used on-

site generation systems in the process industry. This is mainly because it is a very 

well-known technology, and it provides much higher efficiency values than 

traditional generation systems thanks to the simultaneous production of heat 

and power from only one source of energy (Kehlhofer et al., 2009).  

The operation of industrial processes and their associated cogeneration 

plants is usually coupled at a certain point, meaning that the heat and electricity 

production cannot be considered independently of the main process operation. 

The independent management of both systems will lead in most of the cases to 

suboptimal or even infeasible operation strategies. Thus, in this thesis we 

propose such coordination based on a mathematical optimization approach, 
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obtaining feasible operation policies while exploiting the possibilities raised by 

price-based DR programs.  

1.1.2 Motivating example: Sugar Industry 

In 1968, under the Common Agricultural Policy (CAP), the European countries 

reached an agreement regarding sugar production with two essential principles: 

• Ensuring a preestablished price for agricultures. 

• Self-sufficiency inside the Union.   

Thus, to deal with the high costs related to sugar production, an expensive 

sugar price was fixed, being three times higher than in the international market. 

If the price went below the preestablished one, the European Union was forced 

to buy and, to avoid the excessive importation, big taxes were imposed to foreign 

sugar.  

Given the appeal of this business and the possibility of overproduction, a 

quota system was installed inside the borders. Thus, each European country was 

restricted to produce a determined amount of sugar per year and, if this quantity 

was surpassed, they were forced to save it for the next year or export it to the 

international market. Given that if industries saved the sugar excess, they would 

be forced to reduce their production for the next year, most of the surplus was 

sold. However, instead of selling it for the same price as inside Europe, they did 

it for a price twice or even three times cheaper, what caused a collapse in the 

international price. This practice is known as dumping, and it was supported by 

the high prices paid by European consumers.  

In 2005, Thailand, Australia, and Brazil reported the bad practices of the 

European Union to the World Trade Organization, which sentenced that the 

market inside the EU had to be liberalized. This would be done progressively till 

2017 to enable the sector adaptation. The reforms had three main objectives in 

mind, firstly, to increase the world sugar price, secondly, make it more stable, 

and lastly, to improve the working conditions in growing countries.  

In October 2017, the complete liberalization of the market arrived. The 

consequences varied depending on the countries, for example, in France and 

Germany the production increased, while in others such as Portugal or Ireland it 

disappeared. Regarding the European price, it has experienced a big drop during 
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the last years, which has been the cause of many sugar factory closures and 

dismissals (Castro and Villadiego, 2013).  

In order to survive, beet-sugar companies in countries like Spain have 

realized that they need to be as competitive as possible. However, sugar is a 

commodity, i.e., it is a basic highly spread product. Such industries can hardly 

innovate in its production to differentiate themselves from the competence, and 

therefore, any improvement, even a small one, is an important achievement. 

Hence, many sugar industries have looked for different solutions in order to 

reduce costs or increase profits. Among the different alternatives found, stand 

out: Ethanol generation, animal feed production and electricity generation (Lora 

et al., 2013).  

Cogeneration systems are usually part of the classical configuration of these 

industries, therefore, in this thesis, the coordination of sugar production and 

electricity generation has been researched in order to reduce the sugar-

extraction operating costs. Given the possibilities raised by the price-based DR 

programs, an algorithm that helps to operate the process considering different 

tariffs is proposed in order to reduce the costs related to sugar extraction from 

beet.  

1.2 Scope and Objectives 

MAIN OBJECTIVES: 

• Propose a new methodology, based on dynamic optimization 

techniques, to manage the production of industrial processes and 

cogeneration plants, both coupled from an energetic point of view and 

connected to the external grid. Such management will be guided from 

economic objectives that include the electricity price given by price-

based Demand-Response programs, constraints imposed by the 

production process, and the current legal framework.  

• Specify and apply such methodology into the Spanish beet-sugar 

extraction industry, contributing to its competitiveness and to the 

stability and safety of the power grid.  

 

 

 



1.Introduction  

 

6 

 

SPECIFIC OBJECTIVES:  

• Study the current situation and advances in terms of methodologies and 

techniques used to manage the operation of industrial processes and 

cogeneration plants with energy awareness.  

• Understand and document the functioning of the Spanish electricity 

market and the current legislation regarding the efficient operation of 

cogeneration systems.  

• Propose a generic methodology to obtain and update mathematical 

models of the system formed by industrial process and cogeneration 

plant. Such models must be suitable for dynamic optimization 

techniques, keeping a balance between accuracy and computational 

complexity. 

• Formulate the dynamic optimization problem in an efficient way, so 

sufficient time is available to evaluate the proposed solutions given by 

the optimizer.  

• Develop a dynamic simulator of a generic case study, where the 

proposed methodology can be tested. Specifically, a beet-sugar 

extraction process working with a natural gas cogeneration plant 

connected to the external grid.  

• Validate in silico the proposed methodology using two typical demand 

response programs and compare the results with a strategy without 

energy awareness, where the production is kept at maximum values for 

the whole season. 

• Propose a software architecture for the implementation of the 

developed optimization tool, based on supervision tools used in 

industry. Test its performance in simulation.  

1.3 Thesis Outline 

After Chapter 1, in Chapter 2 the state-of-the-art regarding the optimal 

operation of industrial processes working with and without cogeneration 

systems considering energy awareness is studied. In this chapter we analyze the 

work done regarding this topic so far, and we outline some gaps detected.  

In Chapter 3, we present the Dynamic-Integrated scheduling approach, used 

to solve the optimal operation of industrial processes operating with 
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cogeneration systems when the dynamic features of the system must be 

considered. Also, we expose the assumptions done to apply such methodology, 

and we discuss its limitations. 

Chapter 4 describes the case study framework considered to test the 

methodology described in Chapter 3. First, we give a description of the simulated 

beet-sugar extraction process, then, we analyze the Spanish electricity market, 

and finally, we explain the European legislation regarding the efficient use of 

cogeneration systems. 

In Chapter 5, we apply the first part of the methodology proposed in Chapter 

3, concerning the derivation of gray-box mathematical models of industrial 

processes operating with coupled cogeneration systems, to the case study 

described in Chapter 4. Thus, we obtain a simple but balanced dynamic model of 

the system, ready to be used for optimization.  

Chapter 6 is focused on the optimization stage and describes how to 

formulate the optimization problem for the case study considered. Furthermore, 

in this chapter, we compare the performance of our approach using two different 

price-based demand response programs, with respect to operating with a base 

tariff and a non-energy awareness policy during a whole campaign.  

In Chapter 7, first, we highlight the contributions of this thesis, then we give 

some general conclusions about the work done, and finally, we discuss some 

open issues that could be carried out as future work.   

Finally, in Appendix A we list all the variables and parameters used in this 

work, and in Appendix B we apply the software architecture concept presented 

in Chapter 3 to our case study. 
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Chapter 2  

State of the art 

2 State of the art 
In this chapter, we study the current status of the research related to the optimal 

operation of industrial processes working with cogeneration systems. In the first 

section, we give a vision from the industrial process perspective reviewing the 

optimal scheduling of industrial processes with energy awareness. Thus, we 

explain the concept of scheduling in process industry, and we show the 

importance of considering the system dynamics in the optimal operation 

calculations, reviewing the most important approaches used in the literature. In 

the second section of this chapter, we start taking a different perspective, 

specifically the cogeneration point of view. First, we talk about the sequential 

approach, which is the most extensive solution used in the literature to optimize 

the operation of CHP systems using a master-slave architecture. Later, we review 

the integrated approach, where both systems are considered at the same time, 

and we end the section giving some ideas about the iterative approach.  To 

conclude this chapter, in the third section, we explain the reasons why we 

consider that more research is needed in this area, giving the justification for our 

research.  

2.1 Scheduling of industrial processes with energy awareness  

In the Process System Engineering literature, we can find a variety of works that 

study how to operate chemical processes according to Demand Response 



2. State of the art 

 

10 

 

programs, an extensive review can be found in (Zhang et al., 2016). While this 

study includes all kind of DR programs, we have centered our research in those 

works who study the implementation of price-based DR programs. We have 

found examples of implementation in the following industries: Flour/Pulp 

production (Ashok and Banerjee, 2001), seawater reverse osmosis (Ghobeity and 

Mitsos, 2010), steel (Pan et al., 2019; Zhao et al., 2018), machining (Yusta et al., 

2010), chlor-alkali (Brée et al., 2019), cement (Castro et al., 2011; Mitra et al., 

2012), and air separation (Caspari et al., 2019; Kelley et al., 2018; Mitra et al., 

2012; Pattison et al., 2016; Pattison and Touretzky, 2016; Schäfer et al., 2019; 

Tsay et al., 2019; Zhu et al., 2010).  In Table 2-1 we list the papers reviewed for 

this section, the industry studied, and the price-based DR program implemented 

in each case study.  

The problem posed in all these works can be generally defined as follows: 

Given the electricity price forecast, the product specification, and demand for a 

certain period, determine the best process scheduling that optimizes the 

operating cost or profit, while ensuring some operational constraints. To solve 

this problem first we need to understand the hierarchy of decisions in industrial 

process operation, which is illustrated in Figure 2-1. 

One of the main differences between the different levels of the hierarchy is 

the time scale of the decisions taken. In the planning layer, decisions are taken 

for a period of months. In this layer, the objective is to meet the contractual 

agreements made with clients based on product quantities and specifications. 

This problem is solved by the business department, and yields the demand 

forecast that must be met by the scheduling layer.  
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Table 2-1. List of papers reviewed for this section ordered chronologically. 

 

 

 

 

(Ashok and Banerjee, 2001)    X     X   

(Zhu et al., 2010) X        X   

(Ghobeity and Mitsos, 2010)       X   X  

(Yusta et al., 2010)     X     X  

(Castro et al., 2011)  X       X   

(Mitra et al., 2012) X X       X X  

(Pattison et al., 2016) X         X  

(Pattison and Touretzky, 2016) X         X  

(Kelley et al., 2018) X         X  

(Zhao et al., 2018)      X   X   

(Caspari et al., 2019) X         X  

(Schäfer et al., 2019) X          X 

(Tsay et al., 2019) X         X X 

(Brée et al., 2019)   X       X  

(Pan et al., 2019)      X   X   

 

One of the most usual objectives of the scheduling problem is to find the best 

production plan that maximizes profit while meeting the demand forecasted. 

The plan computed must be consequent with the capacity restrictions and 

inventory levels of a determined factory. This is an optimization problem where 

the time scale goes from hours to days, and gives an answer to the following 

questions (Harjunkoski et al., 2014): 

• Distribution of the production orders? (Batching) 

• What task to execute? 
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• Where to process the production tasks? (Assignment) 

• In which sequence to produce? (Sequencing) 

• When to execute the production tasks? (Timing) 

Depending mainly on the process type (batch vs. continuous) and the 

production environment (sequential vs. network), the output of this layer will be 

a set of continuous and discrete variables that will be sent to the control layer.  

 
Figure 2-1. Decision hierarchy in process operation. 

The goal of the control problem is to find the control law that ensures that 

the process outputs are as close as possible to the desired values imposed by the 

scheduling layer in the presence of potential disturbances while respecting 

different operational constraints. This layer interacts directly with the production 

process equipment and defines the dynamic response of the process. Its time 

scale goes from seconds to hours depending on its complexity, and its key feature 

is the presence of feedback from the operation layer, where the decisions 

computed by the control layer must be executed as fast as possible. It comprises 

the physical devices existing in industry, such as actuators and sensors.  

Traditionally, scheduling problems have been solved manually by plant 

engineers using their experience. However, due to the complexity of this task it 

is very difficult to ensure a profitable production without any mathematical 

optimization support. That is why in recent years, many researchers have been 

working on how to solve these optimization problems in the best possible way, 
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improving things like the formulation, software and solvers employed. A 

complete review about this topic can be found in (Harjunkoski et al., 2014).  

Conventional methods for finding the optimal production schedule use 

stationary mathematical process models, where the transition behavior between 

different operating points and/or modes is neglected or simplified using 

tabulated values or defined functions. Besides, usually, they assume that the 

process is at a steady state before a change in the production target is done, and 

that it reaches a new steady state before a new change is performed. This has 

been the approach taken in (Ashok and Banerjee, 2001; Brée et al., 2019; Castro 

et al., 2011; Ghobeity and Mitsos, 2010; Mitra et al., 2012; Zhu et al., 2010).  

While this approach may be enough for many case studies, depending on the 

process and the DR program selected, the electricity prices may change with a 

frequency that is comparable to the dominant dynamic of the process. If that is 

the case, simplifying transition times may lead to compute a suboptimal or even 

infeasible sequence of transitions in the scheduling layer (Tsay et al., 2019). This 

problem is illustrated in Figure 2-2. 

 
Figure 2-2. Illustrative example of a potential unfeasible solution that may arise from 

not considering dynamics in a scheduling problem. 

In Figure 2-2, on the left side, we can see that if the dynamic of the process 

is not represented correctly in the scheduling layer, the optimizer will try to reach 

the new operating point as fast as possible. This may cause that some important 

variables exceed the limits imposed in the optimization problem without being 

noticed by the optimizer, which will lead to quality or safety production 

problems. On the right side of Figure 2-2, the reader can see that now the 
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optimizer considers the real dynamics of the process, and therefore, to reach the 

same operating point it suggests smaller changes, sufficiently spaced, so the 

bounds are not violated. 

The use of dynamic information for making scheduling calculations falls 

under the category of integrated scheduling and process control. A complete 

review of this topic may be found in (Baldea and Harjunkoski, 2014). Ideally, a 

full integration of the scheduling and control problems would lead to the best 

sequence of operating points that fulfills an economic objective, while the 

dynamic of the plant would not be only known, but also adapted in order to reach 

such points in the shortest possible time.   

Following the discussion about this topic, in (Baldea and Harjunkoski, 2014), 

there are two different ways to deal with this problem: Top-down approaches, 

which  refer to consider dynamics and control elements in a scheduling problem 

formulation, and bottom-up approaches, where the controller layer itself 

accounts for the scheduling problem.  

Regarding top-down approaches, there are three different ways for adding 

dynamic information to the scheduling layer: 

• Control-defined transition times. Transition times are defined based on 

a typically explicit control law. This way, for example, the optimal 

scheduling together with the best parameters of a PID controller may be 

calculated offline, and later, both can be implemented online at the 

same time.  

• Dynamic optimization-based scheduling. In this case, a full-scale dynamic 

model of the process is implemented in the scheduling calculations, and 

typically, a Mixed-Integer Dynamic Optimization (MIDO) problem will 

have to be solved to obtain the best production sequence and the 

optimal control moves.  

• Time-scale bridging. It consists in using a low-order representation of the 

dynamics of the process and its control system, so they can be 

considered in the scheduling problem but not modified. Therefore, a 

closed-loop model that represents the dependence of the process 

outputs with respect to the inputs is used instead of the whole dynamic 

model. This idea comes from multi-scale simulation, and it is a natural 

way for dealing with the different time scales considered in the 

scheduling and control problems (Du et al., 2015).  
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Depending on the complexity of the system considered, each approach has 

its pros and cons. While control-defined transition times are the simplest way to 

introduce control information inside the scheduling layer, sometimes, this is not 

enough to represent all the dynamics needed in the plant, and they depend on 

the use of known explicit control laws, so more sophisticated control options are 

discarded. Dynamic optimization-based scheduling solves both problems, but at 

the expense of introducing an important amount of complexity in the model, 

which in many cases will make the problem very difficult to solve. Both strategies 

have the disadvantage of calculating the control sequence offline, so the process 

operation is subject to disturbances and modeling mismatch. Some authors have 

proposed the possibility of using a rescheduling approach, where the scheduling 

is recalculated periodically (Zhuge and Ierapetritou, 2012). While, in general, this 

solution can be easily implemented when control-defined transition times are 

used, it exacerbates the computational problem found when using full-scale 

dynamic models.  

Time-scale bridging arises as a trade-off solution between detailed solutions 

and computational complexity. Using closed-loop low-order models introduces 

in the scheduling problem enough information of the dynamics of the plant to 

avoid infeasible operation strategies, reducing the complexity of MIDO 

calculations, at the expense of not optimizing the dynamic behavior of the plant, 

which is still managed by an independent control layer. For the optimal 

management of industrial production according to electricity prices, this 

approach has been recently studied and compared to other solutions in (Kelley 

et al., 2018; Pattison et al., 2016; Pattison and Touretzky, 2016; Schäfer et al., 

2019; Tsay et al., 2019). 

On the other hand, the most developed bottom-up approach is Economic 

Model Predictive Control (EMPC), where the typical tracking objective function 

found in a Model Predictive Controller (MPC) is substituted by an economic one 

(Ellis et al., 2014; Rawlings and Amrit, 2009). In this approach, the economic 

optimization problem is solved at the control layer using an open-loop dynamic 

process model, which enables the possibility of solving the scheduling and 

control problem at the same time. Compared to bottom-up approaches, exact 

constraints can be used directly, it presents feedback mechanisms for ensuring 

closed-loop stability in the presence of disturbances, and given that only one 

layer is used, feasibility of the process decisions computed in a higher layer is not 
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an issue. Other important advantage is that extensive theoretical foundation 

about this approach regarding aspects like stability, convergence or performance 

can be easily found in the literature.  

However, with this approach a dynamic optimization problem must be 

solved online. This is an important issue given the mathematical complexity 

needed to represent the full process behavior of many industrial applications. In 

(Schäfer et al., 2019) some model reduction approaches were mentioned, and 

they proposed the use of data-driven models for the optimal operation of an air 

separation process in real-time electricity markets. Although this is a promising 

approach, a lot of work is still needed in this topic to ensure accurate-enough 

real-time solutions when more complicated processes are studied. In the same 

line, given the higher complexity of the formulation proposed, the use of discrete 

decision variables has received little attention in this context so far. Some 

examples of the use of EMPC for electricity consumption management of 

industrial applications can be found in (Caspari et al., 2019; Schäfer et al., 2019). 

The rolling-horizon nature of EMPC makes its application interesting in problems 

where operational decisions can be taken several times within a time horizon. 

This is the case if a real-time tariff is considered, but for other options, like a Day-

Ahead one, decisions can only be taken once a day, so top-down approaches 

become more interesting. 

For a full comparison between the top-down and bottom-up performance, 

the reader is referenced to (Caspari et al., 2020). In Figure 2-3, a scheme of the 

approaches reviewed in this section to deal with the integrated scheduling and 

control problem is presented.  
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Figure 2-3. Scheme of the most-used methodologies used to solve the integrated 

scheduling and control problem. 

2.2 Optimal scheduling of cogeneration systems in the process industry 

In the previous section we reviewed the optimal operation of industrial sites with 

energy awareness. While some of the case studies shown in Table 2-1 counted 

with auxiliary systems to generate their own energy, like cogeneration plants, 

they did not consider them in detail in the optimization problem. Thus, the classic 

strategy is, first, to solve a scheduling problem of the industrial process 

production that generates some energy needs, and later, solve a new 

optimization problem, where the auxiliary plant must optimize its operation to 

fulfill such energy requirements while minimizing the associated operating costs. 

In this section, we put our attention in this problem focusing on the operation of 

cogeneration systems, where decisions can be taken at two different levels: 

1) Cogeneration plant level. Decisions are related to the quantity of 

electricity that must be bought from the external grid or generated on-

site in order to sell a surplus if possible. Here, different price-based 

Demand Response programs are usually considered, and the price of the 

electricity takes on a special relevance. 

2) Equipment level. Once the quantity of electricity to be generated has 

been decided, the next step is to decide which equipment is going to 

produce it; this is known as the Unit-Commitment (UC) problem. Then, 

the load generation of each of the selected pieces of equipment is 

decided (Economic Dispatch (ED) problem) (Conejo and Baringo, 2018).  
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The optimal solution of the CHP short-term scheduling has attracted much 

attention from the research community during the last years. In (Salgado and 

Pedrero, 2008), the authors presented the three main research lines regarding 

this topic (Figure 2-4): Those that focus on new operation strategies, those that 

give importance to the optimization model, and those that present new 

algorithms for solving the ED and UC problem.  

 
Figure 2-4. Optimal CHP operation research lines in the sequential approach. 

Operation strategies 

Between the different operation strategies found in the literature (Salgado and 

Pedrero, 2008), we have put our attention in those works that exploit the 

possibilities given by different electricity tariffs and markets trading power with 

the external grid. This was the case in (Yusta et al., 2008), where the authors 

proposed an optimal strategy for a real combined-cycle cogeneration of an 

industrial factory that sold power in the Spanish Day-Ahead electricity market 

and purchased it through a retailer. (Tina and Passarello, 2012) proposed a 

strategy that aimed to maximize the revenue of large industrial sites that 

counted with cogeneration plants, trading electricity in the day-ahead Italian 

market and heat through long-term contracts. They paid special attention to the 

compliance of the legislative constraints imposed by the Italian Government in 

order to get special advantages. Also focused on the legislation applied to 

cogeneration, we found (Gambini and Vellini, 2014) who explained how to apply 

the European Legislation to CHP plants, and (Gvozdenac et al., 2017) who gave 

some practical procedures to recognize the CHP and non-CHP parts of a 

cogeneration system, showing how to apply them in a particular case study.  
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CHP modeling  

To formulate the optimization problem, a model that describes the CHP system 

is necessary. A good model is key in order to obtain a good accuracy with an 

affordable computational effort. In the literature we can find two main 

approaches for modeling CHP systems (Dvořák and Havel, 2012): Black-box 

models, and first-principles equations. Black-box models are used to simplify the 

relationship between the power and heat generated in a CHP plant. This way, if 

one of them is known, the other one can be obtained directly. This relationship 

has been found in the literature using: Feasibility regions, power-to-heat ratios, 

and data interpolated expressions. Feasibility regions are represented in a power 

vs heat plane, an example obtained from (Salgado and Pedrero, 2008) can be 

found in Figure 2-5. They can be convex (Sashirekha et al., 2013), non-convex 

(Shaabani et al., 2017) or both simultaneously (Kia et al., 2017). Other works used 

a power-to-heat ratio instead. Some researchers have considered it to be 

constant, which depending on the case studied may be a gross approximation 

(Frangopoulos, 2012). In other studies like (MacGregor and Puttgen, 1991), the 

authors presented an approach where the ratio varied between some fixed 

upper and lower bounds, and in (Santos and Uturbey, 2018), it was presented as 

a function of the efficiencies of the equipment. Models based on data 

interpolation with polynomial functions, were used by (Tina and Passarello, 

2012).  

 
Figure 2-5. CHP feasibility region example. 
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Instead of black box models, an alternative is the use of detailed first-

principles models to describe the CHP systems. Some examples are (Bindlish, 

2016; Bruno et al., 1998; Godoy et al., 2011; Kim and Edgar, 2014). (Kim and 

Edgar, 2014) presented the scheduling of a cogeneration plant in the day-ahead 

electricity market using detailed models to describe the CHP plant with different 

operating modes. They tested their approach in a power plant complex at the 

University of Texas. In (Bindlish, 2016), a scheduling application was proposed 

using a steady-state, first principles, nonlinear model. The author in this case 

presented a sequential approach, where first a scheduler computed the power 

that had to be offered in the United States real-time market, and then it was 

implemented using a model predictive control approach. The use of stationary 

models was justified considering that the dynamics of power generation in the 

CHP plants are much faster than changes in the electricity price. In all these cases, 

more precise and general solutions were obtained at the expense of a greater 

computational effort. The main computational problem in first-principles 

equations comes from the nonlinear nature of the equipment efficiencies, which 

depend on changes in the enthalpy. To reduce the computational time while 

maintaining the model complexity, three different approaches were found in the 

literature: Efficiencies were treated as constant in (Marshman et al., 2010), a 

piece-wise linear function was used in (Dvořák and Havel, 2012), and an input-

output estimation based in thermodynamic concepts like the Willans line was 

implemented in (Ashok and Banerjee, 2003). Commonly, each equipment is 

treated independently, so the three approaches can be used simultaneously 

(Agha et al., 2010; Yusta et al., 2008). A summary of the approaches described to 

model a CHP system is given in Figure 2-6. 
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Figure 2-6. Summary of the CHP modeling approaches. 

Solution Methods 

The formulation of the unit commitment problem is usually addressed as a 

mixed-integer programming problem (MIP) (Floudas, 1995), and the economic 

dispatch as a non-linear programming problem (NLP) (Biegler, 2010). When both 

problems are solved at the same time, nonlinearities are usually simplified, and 

a mixed-integer linear programming problem (MILP) is proposed to avoid 

numerical difficulties. This way, the integer values are used to select between 

different operation modes and equipment, and the real variables to evaluate 

costs and decide the energy that must be generated in each unit. For example, 

(Mitra et al., 2013) addressed the scheduling of industrial CHP plants using 

mixed-integer linear programming considering different operating modes and 

transitional behavior. They also used disjunctions to solve the problem faster.  A 

more detailed model was proposed in (Venkatesh and Chankong, 1995), where 

a tool was presented for optimal management of cogenerations in industrial or 

commercial settings. To linearize the model, they used data from physical tables 

to obtain enthalpies, and they assumed that the equipment efficiencies were 

constant. Sometimes a multi-objective formulation is proposed instead, where 

usually, polluting emissions are considered as a second objective. This was the 
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case in (Aghaei and Alizadeh, 2013), where the optimal operation of a CHP-based 

microgrid considering DR programs was presented as a multi-objective problem, 

where the first objective was the minimization of the total operating costs and 

the second referred to emission minimization.  

Traditionally, the optimal scheduling of CHP plants is a mathematical 

problem solved offline, whose solution is sent later to the control layer. For this 

problem, if the electricity is decoupled from the thermal generation using 

technologies like heat storage systems (Christidis et al., 2012), transition times 

are usually neglected, considering that changes in the CHP operating conditions 

are much faster than changes in the electricity prices. Nevertheless, if the 

intraday market is considered, that is not necessarily true, and some recent 

works studied the possibility of solving this problem with an Economic Model 

Predictive approach using a control-based strategy. This was the case in (Diaz C. 

et al., 2019), where the authors solved the optimal operation of a real CHP plant 

participating in the German intraday market. The authors proposed a non-

constant time step to get a better resolution at the beginning of the horizon using 

a shorter step and a larger one for the far instants.  

Furthermore, uncertainty is always present in the operation of CHP systems. 

Given the characteristics of the day-ahead electricity market, a bad prediction of 

the consumers electricity or heat demand may lead to deviations with respect to 

the commitment done and, hence, to high penalties. For example, in (Majidi et 

al., 2019), the optimal operation of CHP systems was studied under the effect of 

the uncertainty brought by Demand Response Programs, and solved with robust 

optimization. The market price uncertainty is also a very important factor when 

bidding in any electricity market. In (Alipour et al., 2016), the authors studied the 

optimal bidding strategy in the day-ahead energy market of industrial 

cogeneration systems using an information gap decision theory.  

Depending on the mathematical formulation selected, different solution 

methods have been used in the bibliography to solve the sequential approach. 

They can be classified as: Classical mathematical programming methods and 

heuristic optimization procedures. Among the classical mathematical methods 

used in the literature we found: Newton’s method (Ashok and Banerjee, 2003), 

Benders decomposition (Sadeghian and Ardehali, 2016), Lagrangian relaxation 

(Sashirekha et al., 2013), branch and bound algorithm (Rong and Lahdelma, 

2007), and mixed-integer nonlinear programming methods (Kim and Edgar, 
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2014). Regarding the heuristic optimization procedures, they are experience-

based optimization methods used when the classical mathematical approaches 

fail to provide a solution in a finite amount of time. Some examples are: Genetic 

algorithms (Subbaraj et al., 2009), particle swarm optimization (Piperagkas et al., 

2011), differential evolution (Jena et al., 2016), group search optimization (Basu, 

2016), etc.  

2.3 Unified scheduling approaches  

In the literature we can see that the most extended approach in the process 

industry to deal with the operation of cogeneration systems is the sequential 

one, where the problem is separated into two subproblems where the solution 

of the first one is sent to the second one. This is the one reviewed in the previous 

section. The main advantage of this approach is that for realistic problem sizes 

the computational cost is relatively low, but the solution usually leads to 

suboptimal or non-feasible points.  

One alternative is the use of a strategy where the solution of both problems 

is considered at the same time. This is the case in the integrated approach, which 

leads to better solutions at the cost of a higher computational effort.  

Furthermore, we can find a trade-off solution in the iterative approach, 

where both problems are optimized independently but exchanging information. 

Thus, the solutions will be better than the obtained in the sequential approach, 

while spending less time that in the integrated approach, and avoiding non-

feasible solutions. A summary illustration of the three approaches obtained from 

(Hadera et al., 2019) is shown in Figure 2-7.  

 
Figure 2-7. Approaches for solving the scheduling of production and cogeneration units. 
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2.3.1 Integrated approach  

As explained in the previous section, the sequential approach considers the 

cogeneration and industrial operation independently. In many cases this will lead 

to suboptimal solutions because of the strong dependency between both 

systems. When the integrated approach is considered, energy generation and 

consumption is optimized at the same time. In this section, we show some 

examples where the integrated approach was taken.  

One of the first works found in the literature where the idea of integrating 

process and utility operation for a better operation appears is in (Moita et al., 

2005). In this work the authors developed a dynamic model of a cogeneration 

system integrated with a salt recovery process and studied its optimal operation 

via simulation. Later in (Zhang and Hua, 2007) an MILP model was developed for 

the production planning of an oil refinery industry coupled with a cogeneration 

unit.  In (Agha et al., 2010) the integrated approach was defined, and the authors 

compared its performance against the sequential approach, concluding that the 

first one leaded  to significant reductions in the energy costs while decreasing 

the emissions of harmful gases for the case studied. 

Later in (Wang et al., 2013) the idea of optimizing the participation of energy 

intensive processes with on-site generation systems in Demand Response 

programs was studied. Thus, the implementation of a TOU tariff along with a load 

tracking problem was proposed. In (Ding et al., 2014) a DR program based on 

day-ahead hourly electricity prices was implemented with a MILP model. On the 

other hand, (Zhang et al., 2013) studied the use of a mixed-integer nonlinear 

programming model to solve the integrated approach in two real refineries 

coupled to cogeneration systems. A similar approach was taken in (Sun et al., 

2015), although in that case an heuristic method (Particle Swarm Optimization) 

was used to solve the optimization problem. A bi-level heuristic problem was 

proposed in (Hadera et al., 2015) to optimize the melt shop section of a stainless 

steel plant. In this study, the authors considered different sources of power and 

the possibility of selling the electricity back to the external grid.  

(Zulkafli and Kopanos, 2016) proposed a model where performance 

degradation and different types of cleaning were considered for the utility 

system. Later in (Zulkafli and Kopanos, 2017) they extend their approach to 

propose a rolling horizon optimization to cope with demand uncertainty. 
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Equipment breakdowns and deviation price uncertainty was considered in (Leo 

and Engell, 2018). In this work the authors presented a stochastic mixed-integer 

linear programming model to simultaneously determine the optimal production 

schedule of a power-intensive plant with on-site generation capabilities and the 

optimal day-ahead electricity commitment.  

2.3.2 Iterative approach 

The main drawback of the integrated approach is the bigger computational effort 

needed to solve the problem with respect to the sequential approach. To deal 

with this problem and take advantage of the problem structure, an iterative 

strategy, also called a decomposition approach, has been recently proposed by 

some researchers. In (Hadera et al., 2019), the authors proposed the use of Mean 

Value Cross Decomposition, and they tested their approach in pulping and steel 

production process. A game theory approach was proposed in (Leenders et al., 

2019), where the Stackelberg game was applied to two literature-based case 

studies. A three-stage mixed-integer  programming based decomposition 

strategy was proposed in (Zulkafli et al., 2020), showing that optimal or near-

optimal solutions can be obtained four times faster than with the integrated 

approach.  

2.4 Remarks 

The most extended approach used in the literature to deal with the optimal 

coordinated operation of cogeneration systems and process industries is the 

sequential one, where both systems are treated independently. When the 

scheduling of process systems under energy awareness is considered, if its main 

dynamics are close to the frequency electricity prices change, they must be 

considered explicitly in the production scheduling problem. Thus, when decisions 

regarding to electricity exchange are taken well in advance, top-down 

approaches are the most recommended strategy. Otherwise, bottom-up 

techniques are more suitable.  

In many situations, when the sequential approach is considered, the results 

obtained can be suboptimal. It may be the case where even both processes 

cannot be treated independently due to the energy coupling existent between 

them. While the integrated approach is able to consider both systems at the 

same time, until now, the incorporation of the industrial process dynamics has 
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not been studied for this problem, probably due to the great computational cost 

that it supposes. Furthermore, it is surprising that despite the need to comply 

with the legislation concerning the efficient operation of cogeneration systems, 

only a few papers consider this topic, being already outdated. 

In this thesis we propose a new methodology based on the integrated 

approach, where the optimal operation, complying with the current legislation, 

of industrial processes and cogeneration units are considered simultaneously, 

being the dynamics of the first one explicitly considered. In this context, this has 

been possible thanks to the concept of time-bridging models, which will be used 

and adapted to obtain a dynamic optimization problem tractable from a 

computational point of view. Thus, we avoid the necessity of dealing with the 

coordination of two different optimization problems (iterative approach), while 

the most important features of the system are preserved.  
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Chapter 3  

Dynamic-Integrated Scheduling 

approach 

3 Dynamic-Integrated Scheduling  
In the previous chapters, first, we showed the benefits that provides the 

operation of industrial processes working with on-site cogeneration systems 

under price-based demand response programs. Then, we reviewed the state of 

the art regarding the optimal operation of such systems to fully exploit the 

possibilities given by these programs. There, we saw that to obtain the best 

results, the integrated approach, which considers the whole system at the same 

time, was the best option in many cases. Nevertheless, despite of the importance 

of considering the industrial process dynamic features in such optimization 

problem, we have not found any research focused on its explicit incorporation.  

In this chapter we present a methodology to apply the integrated approach 

in a systematic way to systems where the main process dynamics cannot be 

neglected. Thus, first, we set the assumptions taken to develop such 

methodology. Later, we have divided the presentation into three different 

sections, one clearly focused on the system modeling, another one on the 

optimization problem formulation, and the last one on the industrial roll-out. 

Finally, we give some remarks, and we describe the methodology limitations and 

possible extensions.  
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3.1 Introduction 

In this work we are focused on those price-based demand response programs 

where the electricity price is given well in advance (Day-Ahead and TOU tariffs). 

For such programs, to operate in the Spanish electricity market, the electricity 

commitment must be communicated to the market operator before noon of the 

day before the price is negotiated and cannot be modified without incurring in 

penalties. In this work, we take some ideas from the top-down approach 

presented in Section 2.1 and we apply them to the integrated technique. Thus, 

we propose a dynamic scheduling approach in a moving-window fashion to 

compute the best operation strategy of the process-CHP system, given the 

electricity price, demand forecast, and raw material input for a predefined 

prediction horizon. The results implementation is carried out by the control 

system, which is responsible for the correct tracking of the set-points given by 

the optimization. The architecture of the solution proposed is shown in Figure 

3-1. 

 
Figure 3-1. Architecture of the process optimizer interaction.  
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To apply the methodology, consider now an industrial process that produces 

a single product in one production line, and whose dominant dynamics are close 

to the frequency of changes in electricity prices. Product storage is assumed not 

to be a problem, considering space, quality and security issues. Furthermore, the 

process has access to a CHP plant where heat and power generation are strongly 

coupled, while, in the integrated system (process + CHP), only continuous 

operating decisions can be taken. Electricity can be imported and exported from 

the external grid through a retailer, and the current legislation related to the 

efficient generation in CHP systems must be met.  

 
Figure 3-2. Methodology Scheme. 

 

System Study

Model 

Formulation

Optimization 

Problem 

Formulation

Solution 

Analysis

Model 

Validation

Roll-out

Yes

No

Yes

No

Software 

Implementation

Successfully 

Validated?

Successfully 

Validated?



3.Dynamic-Integrated Scheduling 

 

30 

 

The methodology consists of a series of stages that begin with a study of the 

system considered. A scheme of the proposed workflow can be found in Figure 

3-2.  Each system is different in many ways, so a good understanding of the 

process itself and its relationship with the utility system is key to an effective 

optimization problem design. In this study, the optimization aim, the decision 

variables, and the operational constraints must be clearly defined. Thus, 

knowledge about the functioning of the local electricity market and legislation 

concerning the efficient operation of cogeneration systems takes on special 

relevance.  

3.2 Model formulation and validation 

To model the integrated system, we recall the Time-Scale Bridging models, 

presented in Chapter 2 as an alternative to the inclusion of the control system 

dynamics in the production scheduling problem. There, a closed-loop model that 

shows the dependency of the process outputs with respect to the inputs was 

used instead of the rigorous plant dynamic model. Now, when we consider the 

implementation of the industrial process dynamics in the integrated approach, 

we have a very close problem. Such models can be understood as gray-box 

representations, where first-principles equations, like mass and energy balances, 

are merged with empirical approximations from plant data (Pitarch et al., 2019). 

In this modeling framework, the amount of first-principles or empirical equations 

must be chosen accordingly to the system complexity and the data available from 

measurements: 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐹𝑃) 

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐹𝑃) = 0 

(3.1a) 

 

𝑑𝑥

𝑑𝑡
= 𝑟( 𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐸𝑋) 

𝑠(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐸𝑋) = 0 

(3.1b) 

In Equation 3.1, we can distinguish between the first-principles equations of 

the model (3.1a), and its empirical equations (3.1b). Here, 𝑥 ∈ ℝ𝑛 is the state 
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vector , 𝑢 ∈ ℝ𝑚 are known process inputs (manipulated variables or measured 

disturbances taking arbitrary values independently of the rest of the variables), 

𝑧 ∈ ℝ𝑞 are algebraic variables, 𝜃𝐹𝑃 are the first-principles model parameters, 

𝜃𝐸𝑋 are the empirical equation parameters, both assumed to be constant, where 

𝜃𝐹𝑃 ⋃𝜃𝐸𝑋 = 𝜃 ∈  𝑅
𝜌, and 𝑓(⋅) ∈ 𝑅𝑗 , ℎ(⋅) ∈ ℝ𝑙, 𝑟(⋅) ∈ 𝑅𝑖, 𝑠(⋅) ∈ 𝑅ℎ can be 

nonlinear functions of their arguments.  

To obtain the model, the first step of this methodology consists in the 

establishment of the model inputs (𝑢(𝑡)) and outputs (𝑦(𝑡)). Previously, we must 

have defined the decision variables of the optimization problem, which can help 

us to define the model inputs, the optimization aim, and operational constraints, 

which will guide us to select the model outputs. As a guide, it is useful to consider 

the electricity, heat, and fuel consumption of the plant, the variables needed to 

compute the legislation indexes, and some other critical process variables for a 

correct plant operation.  

The next step consists in searching relations between the inputs and outputs 

selected. Here, it may be useful to disaggregate the process into smaller pieces 

(control volumes). To do so, it is recommended to count with the help of a 

process expert. With the division made, we must use first-principles equations 

to describe those parts of the system where more details about the physical 

phenomena are needed (Equations (3.1a)). Now, let us assume that by using only 

first-principles equations the model is undetermined, meaning that the outputs 

cannot be completely computed using the inputs u. Therefore, the model has 

more degrees of freedom than the real system. Formally, this means that there 

are n + q – j – l – I – h – m > 0 free variables (𝑥𝐸𝑋 ⊂ 𝑥, 𝑧𝐸𝑋 ⊂ 𝑧), which must be a 

function of other variables representing the not well-known parts of the process. 

Therefore, some additional equations need to be identified from process 

experimental data (Equations (3.1b)).  

To do so, let us assume that enough measurements are available in the 

process plant. Thus, the most usual approach is to set up a certain structure for 

the empirical equations that depends on some parameters 𝜃𝐸𝑋, and obtain them 

using identification techniques (Isermann and Münchhof, 2010; Ljung, 1999). To 

do so, we recommend the use of a specialized software, like the System 

Identification Toolbox for MATLAB® (Ljung, 1988). In this methodology, we 

propose to carry out this step independently for each empirical equation. First, 

it is convenient to perform some experiments to check the correlation between 
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the experimental inputs and outputs. Ideally, to reduce the computational cost 

as much as possible, linear empirical relations are desired. If that is the case, we 

propose the use of the state-space representation (Isermann and Münchhof, 

2010), which can deal with Multiple-Input Multiple-Output (MIMO) systems, 

delays can be easily incorporated, and its structure is very convenient for the 

optimization problem formulation. Otherwise, if a linear structure is not possible, 

other approaches such as Hammerstein-Wiener models (Wills et al., 2013), 

symbolic regression (Cozad and Sahinidis, 2018), Neural Networks, or Fuzzy 

models (Nelles, 2013) could be used.  

Once the empirical equations are found, let us recall that the first-principles 

equations incorporate another set 𝜃𝐹𝑃 of unknown parameters. To find the value 

of such parameters, we propose to solve a least-squares (LS) constrained 

regression with N data samples collected at time instants 𝑡1, 𝑡2, … 𝑡𝑁 (Tan and Li, 

2002), where the model initial condition 𝑥0 is also left as a decision variable: 

 

min
𝜃𝐹𝑃,𝑥0

∑‖
(�̂�(𝑡) − 𝑦(𝑡))

𝜎
‖
2

2𝑡𝑁

𝑡=𝑡1

 

𝑠. 𝑡. :    
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐹𝑃),         𝑥(0) = 𝑥0 

𝑑𝑥

𝑑𝑡
= 𝑟( 𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐸𝑋)              

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐹𝑃) = 0                

𝑠(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃𝐸𝑋) = 0                

(3.2) 

Note the reader that depending on the complexity of the set of Equations 

(3.1b), we could formulate a “centralized” approach where the first-principles 

and empirical parameters were searched at the same time, skipping one step in 

the methodology. Note however, that considering the possible nonlinear nature 

of the total set of Equations (3.1), if the set of total parameters is large enough, 

the resulting optimization problem could be very hard to solve, so this approach 

must be considered carefully.   

Nevertheless, a very common setback for the presented approach is that, 

usually, in process industry, some of the measurements needed may not be 
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available. To solve this problem, we propose a two-step methodology similar to 

the one presented in (de Prada et al., 2018): 

• First, run a dynamic data reconciliation problem (Leibman et al., 1992) 

and obtain an estimation of all the variables and parameters needed to 

complete the set of first-principles equations (3.1a).  

• Second, with a credible set of data, a regression stage is carried out. This 

stage can be performed using the Matlab® system identification toolbox, 

or if the structure of the resulting model is completely unknown, 

techniques like SOS constrained regression (Pitarch et al., 2019) or the 

approach presented by ALAMO (Cozad et al., 2015). 

With this approach, we must be aware that the model obtained is not 

perfect, and it cannot be used to describe the internal physics of the system. 

However, although the values obtained may not be completely precise, they are 

coherent with the physics knowledge and data available, so it should be enough 

for optimization purposes.  

Once the model has been obtained and parametrized, the next step is 

validation. Here, the model outputs are directly compared to the real system 

response. This is known as quantitative validation. In case that not enough data 

is available for this purpose, a qualitative verification can also be performed with 

the help of a process expert, where the transient response and robustness of the 

model is checked for different scenarios.  In any case, the model needs to be 

simulated for this step. To do so, a symbolic manipulation of the gray-box model 

must be performed. We recommend the use of an acausal specialized software, 

like Ecosimpro® (Empresarios Agrupados, 2020), as a modeling and simulation 

environment. With this tool we can perform tasks like a degree of freedom 

analysis, handle algebraic loops, and check the existence of high-index problems. 

Note the reader that before running the simulation, we need a good initialization 

point. A good approach to obtain it is to add the initial condition as an adjustable 

parameter of the data reconciliation problem. 

To sum up, we list the methodology steps previously described: 

1. Set the model inputs and outputs.  

2. Propose a set of first-principles equations where more information 

about the process physics is needed.  
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3. Complete the model with empirical equations.  

a) If enough measures are available, first, identify the black-box parts 

of the model and, later, perform a parameter estimation to obtain 

the first-principles equations parameters.  

b) If not enough measures are available, first, estimate the variables 

and parameters needed running a dynamic data reconciliation 

problem, and later, perform a regression step to find the black-box 

model equations.  

4. Validate the model obtained. 

3.3 Optimization problem formulation 

Once the model has been successfully validated, a dynamic-optimization 

problem in the general form (3.3) is to be formulated. 

 min
𝑢(𝑡)

𝐽 ≔ ∫ 𝐿(𝑥(𝑡), 𝑧(𝑡), 𝑢(𝑡), 𝑝)𝑑𝑡 
𝑡𝑓

𝑡0

+𝑀(𝑥(𝑡0), 𝑧(𝑡0), 𝑥(𝑡𝑓), 𝑧(𝑡𝑓))       (3.3a) 

 𝑠. 𝑡.    𝑓(�̇�(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃) = 0, 𝑥(𝑡0) = 𝑥0 (3.3b) 

  ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡), 𝜃) = 0                              (3.3c) 

  𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡)) ≤ 0                                  (3.3d) 

 𝑥 ∈ 𝒳, 𝑢 ∈ 𝒰, 𝑧 ∈ 𝒵                      (3.3e) 

The Dynamic Algebraic system of Equations (DAE) that model the behavior 

of the plant (3.3b) – (3.3c) together with the initial condition define an Initial-

Value Problem (IVP) which is solved from time 𝑡0 to 𝑡𝑓. The way to obtain such 

model was illustrated in the previous section. In real systems it is common to find 

discontinuities that need to be modeled, nevertheless, it is well known that they 

must be avoided when using gradient-based solvers. If that is the case, a 

reformulation is needed, and one way to deal with this problem is the use of 

complementarity constraints. In (Biegler, 2010), four different formulations for 
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the complementarity conditions were compared, and whether they should be 

implemented as constraints or as additional terms in the objective function was 

discussed. The results showed that the best way to deal with them is using a 

penalty term in the objective function and solving the problem for a penalty 

parameter. The IVP is also subject to additional inequality constraints 𝑔(·) like 

the electricity market interactions and legislation limits. While the main process 

and CHP model depend on each case study, the electricity market and legislation 

constraints can be applied to any other industrial plant with a cogeneration 

facility using the same optimization approach. Other inequality constraints may 

be bounds imposed to the decision and output variables.  

The objective function (3.3a) includes the usual Lagrange (running cost) and 

Mayer (endpoint cost) terms, defined by functions L and M respectively. Typical 

expressions inside the Lagrange term may include the minimization of the 

operating costs, the maximization of the difference between the incomes and 

costs (profit), or the minimization of the cost per unit of product (specific cost). 

Therefore, for the problem considered, the cost related to heat and electricity 

generation, and the inputs obtained by the product and energy sales must 

appear somehow in this expression. In many occasions, when dynamic 

optimization problems are considered, the incorporation of additional terms to 

the objective function is necessary to obtain realistic results. For example, due 

to numerical problems, it is common to obtain highly oscillating solutions for the 

decision variables. Usually, to compensate this behavior, a term that penalizes 

such fluctuations is added to the cost function. Other example is the turnpike 

property (Dorfman et al., 1958; Ellis et al., 2014; Faulwasser et al., 2017), referred 

to the irregular response that appears at the final moments of the control 

horizon in many finite-horizon dynamic optimization problems. This behavior 

appears when the prediction horizon is large enough, so the optimizer “pays” the 

cost of the turnpike (the optimum steady-state) to reach the final point with the 

least possible cost. If the operation continues after the control horizon, this 

behavior is undesired, and one strategy to deal with this problem is the use of a 

penalty term in the cost function in the form of the Mayer term.   

As was mentioned before, a common approach to deal with the 

complementarity constraints is to multiply the complementarity terms by 

adjustable penalty weights used to calibrate the influence that such penalties 

have over the cost function, whose value will depend on each case study. 
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Although the tune of these parameters is key to obtain proper solutions, usually 

the methodology followed is not discussed in many works. Here, we present the 

strategy that has been used in this thesis: 

1) Select some representative scenarios that cover the full operation 

spectrum in one day. It is recommended to have at least 2𝑛 scenarios, 

where 𝑛 is the number of exogeneous input variables, understood as 

those whose value is determined by factors or variables outside the 

casual system under study. Typical examples are the electricity, or the 

raw material prices.  

2) Find the minimum penalty value that affects the solution. For such task, 

the iterative bisection method can be recalled for each scenario with all 

penalty values set to 0, except the one being tuned of course. To 

evaluate if the solution is affected or not, look if values for some relevant 

output variables remain constant between iterations or not. The 

minimum penalty value will be the supreme of the values found for all 

scenarios. 

3) Afterwards, such minimum value can be increased ad-hoc to cope with 

the designer preferences. Note that, for the complementarity penalties, 

an increment from the above minimum values may cause distortions in 

the problem geometry without potential benefits, so we strongly 

recommend keeping such values to the minimum found.  

When a penalty nominal value is found, a local sensitivity test is performed 

to check if small variations around such value have important effects on the 

optimization results. To do so, we followed this procedure:  

a) Numerically evaluate the optimization results for each of the previously 

selected scenarios using the nominal penalty value. 

b) Set a 1% increment w.r.t the candidate value and evaluate numerically 

the solution again for each scenario.  

c) Compute the sensitivity as the percentage ratio of the output variation 

computed for each scenario w.r.t the corresponding nominal value 

obtained in step a). If the highest sensitivity obtained for all scenarios is 

small enough (e.g., <0.1%), the optimization with the proposed penalty 

value appears to be locally robust. Otherwise, a new candidate must be 

found by alternative methods.  
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With this methodology, a trade-off between robustness and computational 

time is found for the tunning of the penalty weights. However, if a more robust 

tunning is desired, the mentioned scenarios can be replaced by others generated 

following a Monte Carlo approach, for example. However, the number of 

scenarios is expected to increase, and therefore, the number of experiments that 

must be run each time the penalty weights are tuned.  

In the literature we can find a wide variety of methods to solve the infinite-

dimensional problem posed in (3.3). In (Biegler, 2010), we find that when the size 

of the problem increases, optimality conditions become increasingly harder to 

apply and, therefore, efficient numerical methods are required. Such methods 

can be classified as shown in Figure 3-3: 

 
Figure 3-3. Summary of the numerical methods most used to solve the DAE 

optimization problem. 

The indirect approach is based on the idea of first optimize and then 

discretize. First, the solution of the first order necessary conditions for optimality 

are obtained using Pontryagin’s Maximum Principle (Pontryagin et al., 1962). 

Thus, for problems without inequality constraints, the optimality conditions can 

be reformulated as a set of differential-algebraic equations, which must be 
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solved. The main advantage of this method is the fact that it reflects the 

theoretical solution of the infinite-dimensional problem, however, one 

important problem are the boundary conditions. Often the state variables are 

given as initial conditions and the adjoint variables as final conditions. This leads 

to a Boundary Value Problem (BVP) that can be solved with different approaches, 

including single shooting, invariant embedding, multiple shooting, or 

discretization methods such as collocation on finite elements.  A review of these 

approaches can be found in (Cervantes and Biegler, 2000). Therefore, the 

difficulties associated when solving the BVP problem and the need of handling 

inequality constraints motivate the formulation of constrained, finite-

dimensional problems that can use the full machinery of large-scale NLP solvers. 

Unlike the indirect approach, when the direct approach is considered, the 

dynamic optimization problem is first discretized and then solved. If the 

discretization is not carried out properly, it may lead to a problem when path 

constrained, and singular problems are considered. Depending on the 

discretization level, we can find three different methods to solve this problem: 

the sequential approach, multiple shooting, and the simultaneous approach.  

In the sequential method, or single-shooting approach, only the control 

profiles are discretized, which are represented as piecewise polynomial 

functions. The problem is solved in an iterative fashion in three sequential steps 

(see Figure 3-4). First, an NLP optimization problem is solved where the optimum 

control profile is found for some initial conditions. Then, the solution is sent to a 

DAE solver where the state profiles are computed, and the objective function is 

evaluated. To close the loop, the gradients of the objective function and 

constraints with respect to the input variables are computed and, finally, they 

are sent to the optimizer along with the objective function value and a new 

iteration starts. Advantages of this approach are the fact that it relies on efficient 

DAE solvers and the optimization problem will be relatively small. However, the 

required repeated numerical integrations of the DAE solver may lead to high 

computational cost. Furthermore, a failure in the solution is fatal for the 

optimization loop, so unstable systems must be avoided. Finally, path constraints 

are difficult to evaluate and usually they must be handled approximately.   
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Figure 3-4. Sketch of the sequential dynamic optimization strategy (Biegler, 2010). 

In the multiple shooting approach, both the control vector and the state 

profile are discretized. It is an evolution of the sequential method that emerges 

to deal with unstable DAE systems. The solution approach is the same as the one 

presented before, but now; the time domain is divided into independent 

elements that are bounded by equality constraints between the adjoint elements 

of the discretization grid to ensure continuity of the states over time. Control 

variables are treated in the same manner as in the previous approach and the 

initial conditions of each element are included as decision variables. As main 

advantage of this method we find that now unstable and ill-conditioned systems 

can be considered. Furthermore, exploiting the problem structure, the 

simulation stage can be accelerated with parallel programming techniques, and 

path constraints can be easier implemented in the discretized points, although 

they cannot be assured between elements. On the contrary, the optimization 

problem complexity increases, the number of iterations may not be reduced, and 

more sensitivity information is needed, since gradients are needed for both the 

control variables and the initial conditions in each element.  

The simultaneous approach deals with a full discretization of the 

optimization problem, discretizing the state and control profiles along with the 

state equations. Typically, such discretization is performed using orthogonal 

collocation. Thus, a large-scale NLP problem is obtained allowing a great deal of 

sparsity and structure, that can be exploited by modern NLP solvers. 

Furthermore, path constraints can be easily implemented, and difficult problems 

can be treated, including unstable and singular control systems. Additionally, the 
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approach is fully simultaneous, so a DAE solver is no longer needed. This avoids 

convergence problems and allows that sensitivities can be directly evaluated 

exploiting automatic differentiation techniques (Tolsma and Barton, 1998). 

However, the adaptive discretization is lost, and care must be taken when 

selecting the number of finite elements and their length.  

Given the difficulties that may be found to solve the two-point boundary 

problem proposed by the indirect methods and to treat inequality constraints, 

we think that to deal with the problem considered, direct methods are the best 

alternative. Among them, when the sequential approach is considered, the use 

of a DAE solver provides accurate time evolutions of the state. However, 

depending on the model size, the computational cost for simulating in each 

iteration of the optimizer can be unacceptable. Hence, this approach is adequate 

when the accuracy of the solution is key. Multiple shooting becomes interesting 

when the system stability is a problem and sufficiently high-quality solutions of 

the state profiles are desired. However, most of the disadvantages of the 

sequential approach may be applied. Finally, with the simultaneous approach the 

whole problem is discretized, and while the solution may not be so accurate and 

the size of the optimization problem increases, the many calls to a numerical 

simulator are avoided and much lower computational times are reached. Since 

computational time is important for our purposes in this application, we decided 

to follow this last approach. The  optimization problem (3.3) can thus be coded 

in any modern programming language for numerical optimization such as Pyomo 

(Hart et al., 2017, 2011), CasADi (Andersson et al., 2018), or GEKKO (Beal et al., 

2018). 

For an optimization problem, the knowledge of the initial conditions is key in 

order to obtain good solutions. However, in the problem considered, the 

optimization problem must be executed several hours before the results are 

implemented. This feature makes the estimation of the initial state necessary. 

The easiest way to do it is running a simulation with the expected inputs, from 

the instant the optimization is launched, until the moment the results are 

implemented. In this context, counting with a digital twin could be extremely 

useful, although the very same optimization model could be used instead. Of 

course, the later the optimization is run, less uncertainty will be found, but still 

some unexpected events may occur between the optimization run and the 

results implementation. To minimize the effect of this problem, an alternative 
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optimization problem, where the electricity commitment is fixed, should be 

launched as close as possible to the implementation moment. 

In order to validate the results obtained from the optimization, first, a 

simulation test for several representative operation days is performed. Here, the 

optimization is launched several times with different electricity prices in a 

preselected operating scenario, and the optimization results are validated by 

experts. Special attention must be put on the results obtained at the end of the 

day, since the turnpike property may cause some problems (Faulwasser et al., 

2017). If the one-day validation is positive and the optimizer provides acceptable 

solutions, a long-term validation should be performed, so the optimizer is tested 

for several days or even months, checking the transition results between 

different days and operating scenarios.  

3.4 Industrial Roll-out Concept  

Once the optimization tool is successfully validated, it is ready for 

implementation. In this section we propose a methodology for the 

implementation and use of such tool in an industrial environment. Since we have 

worked with a simulated factory, we understand that different problems, apart 

from the ones that we have faced, will arise in real environments, so we present 

this methodology as a concept. We have worked in this task because we are 

aware that this topic is usually neglected in the literature, and we consider that 

it is key in order to decide whether an optimization tool is ultimately useful or 

not. We propose an architecture with three different modules, as shown in 

Figure 3-5.  

Optimization module 

The objective of the optimization tool, developed using the methodology shown 

in the previous sections, is to compute the electricity that must be dealt with the 

market considering an operation strategy that can be refined later. The tool acts 

as a server which once per day receives the value of exogeneous variables, like 

the electricity price or the demand forecast, along with the expected initial state 

from the visualization module, and computes the optimal operation strategy, 

together with the electricity commitment, which are sent in return.  

Given that the optimal strategy computed by the optimizer is obtained 

several hours before its implementation, it cannot be applied directly in the 
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industrial process without refining. That is why we propose to separate the 

problem into two different phases. In the first phase, carried out by the 

optimizer, the optimal commitment is computed for an expected industrial 

process operation. Thus, the electricity exchange with the market is fixed, and it 

is set as a hard constraint in the second phase carried out by the MPC module. 

Therefore, the objective of the MPC is to compute the optimal operation strategy 

while meeting the commitment previously fixed. The formulation and 

implementation of the MPC, which is out of the scope of this work, will be similar 

to the one presented for the optimization tool, but with more emphasis on 

control aspects instead of energy.  

 

Figure 3-5. Roll-out architecture concept. 
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Simulation module 

It is a simulation that represents closely the real process behavior, maintaining a 

limited computational cost. Depending on the objective pursued, it can be from 

the model used for optimization, to a much more complex model representing 

with more detail the desired parts of a process system. The main use of this 

model is to estimate the optimization initial state. It acts as a server which 

receives an operation strategy and computes the expected response. If such 

strategy is the one obtained from the optimization, it can be used to analyze its 

consequences before carrying out its implementation in the real system (what-if 

analysis).  

Visualization module  

A common problem when it comes to the implementation of optimization 

algorithms in the process industry, is the lack of programming skills by the end 

user. Furthermore, it does not help how unintuitive the programming 

environments usually are. That is why we proposed the development of a 

visualization module integrated with the process SCADA in order to make the 

experience as user-friendly as possible. This module acts as the core of the 

proposed architecture, it is a client from where optimizations and simulations 

can be run and configured. Therefore, it is communicated with all the other 

modules, and the process control system.   

Operation steps 

Next, we explain the steps that should be followed to work with the proposed 

system in a daily use. Such steps have been remarked with numbers in boxes in 

Figure 3-5.  

1. Each day, before the day-ahead electricity market stops receiving bids, 

the simulation module must be executed from the SCADA to compute 

the expected response until midnight, so the optimization initial state is 

obtained. Thus, the current state of the process is set as the simulation 

initial state and the operation strategy expected for the rest of the day 

until midnight as input.  

2. From the SCADA system, the computed initial state, along with the 

expected exogeneous variables for the next day are sent to the 
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optimizer, and the optimal operation strategy and electricity 

commitment is computed.  

3. The optimization results must be evaluated. To do so, we can send them 

to the simulation module and analyze the implications that its approval 

would have in other parts of the process. Then, a disjunction occurs: 

a. If the results are satisfactory, the electricity commitment is 

stored in the SCADA and sent to the market. 

b. Otherwise, step 2 can be repeated until a valid solution is 

obtained.  

4. From midnight, the commitment results are sent to the MPC system as 

hard constraints where the optimal operation strategy is computed. The 

results are implemented in the industrial process using the basic control 

system.  

3.5 Remarks 

In this chapter, we have presented a methodology to include industrial process 

dynamic features in the integrated scheduling approach for the optimal 

operation of industrial processes working with cogeneration systems. The 

methodology here proposed is valid for the assumptions indicated at the 

beginning of this chapter. The points referred to the process dynamics compared 

to the electricity prices variations are especially relevant. As relevant as the 

straightforward aspect of considering CHP systems where heat and power 

generation are strongly coupled indeed. Note that, if the main process dynamics 

are much faster than the changes in the electricity price, they can be neglected, 

and the optimization problem would be much easier to formulate and solve. 

Furthermore, if no coupling exists in the cogeneration process, its operation can 

be split from the industrial process, and a sequential or iterative approach could 

be taken. Of course, the proposed approach (as other DR programs as well) may 

not be effective in large plants where the electricity price fluctuations have a low 

impact on the plant economics, either because a lack of data on the actual power 

consumption of the equipment inside individual plants, or because the 

contribution of the electricity price is small compared to raw-material costs and 

product revenues. 



3.Dynamic-Integrated Scheduling                                                                                                   

 

45 

 

On the other hand, if discrete operating decisions need to be considered 

during normal operation, the presented approach is not directly applicable 

(unless some suitable reformulation/approximation of these can be done), and 

the optimization problem must be reformulated as a dynamic MINLP problem. 

This would be the case if different products could be produced in the industrial 

plant in one or more operating lines, or the CHP system had the possibility of 

turning on or off some equipment. The efficient formulation of such problems is 

also a relevant research problem nowadays, so future work could be oriented in 

this direction.  Furthermore, uncertainty in diverse aspects like the electricity 

price, demand forecast, or raw material reception could also be considered in 

the formulation. This way, the dynamic optimization problem would have to be 

solved using a robust or stochastic optimization approach, and an efficient 

formulation for such aim could be studied.  
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Chapter 4  

Case Study Framework  

4 Case Study Framework 
From this chapter on, we will apply the methodology proposed in Section 3.2 to 

a simulated sugar factory working with a cogeneration unit. As we showed in 

Section 1.1.2, the sugar industry may take advantage of the possibilities 

presented by the price-based Demand Response programs in order to be more 

competitive in a very saturated market. Thus, this part of the thesis must serve 

as a proof of concept of our methodology, allowing us to test it in a safe 

environment without security and money issues.  

Therefore, in this chapter we apply the first part of such methodology, where 

the case study framework must be analyzed. First, we give a general description 

of the simulated process considered as case study without going into detail, 

considering that more information will be given in the next sections if necessary. 

Then, we introduce the operation and management of the different electricity 

markets in Spain, paying special attention to the Day-Ahead one. Later, we 

review the most important aspects of the legislation applied to the efficient 

operation of cogeneration plants. And finally, we conclude by analyzing the 

system from an optimization perspective, defining the optimization aim, decision 

variables, and operational constraints derived from the study of the other 

subsections.  
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4.1 Process description 

As case study, we have considered a simulated beet-sugar factory that would be 

placed in the north of Spain. Here, the sugar extraction is a seasonal business 

carried out approximately from October to February. One feature of the sugar 

industry is that it can be classified as a hybrid process, meaning that it is 

composed of a continuous part (Beet-end) and a discontinuous one (Sugar-end). 

This has been represented in Figure 4-1. In this scheme, we can also see that to 

obtain sugar, besides of beet, other inputs like water, lime, or CO2 are required. 

Furthermore, some by-products which can be used for secondary purposes are 

obtained like pulp, molasses, and electricity.   

 
Figure 4-1. Scheme of beet-sugar factory considered. 

In such figure, the different process stages can also be observed. In the beet 

reception, the received beet is stored in big piles outside the factory. The time 

the beet spends there is a crucial variable, considering that due to diverse 

problems as rotting or frosts, much of the raw material can be lost if this waiting 

time is extended too much. Therefore, long storage times should be avoided a 

priori. However, beet harvesting can be delayed because of rain, so this 

uncertainty, in many cases, means that industry managers prefer to increase the 

storage time to dissipate the possibility of running out of raw material. The 

importance of such problems varies sharply with the weather and, therefore, 

with the place where the factory is situated. In our case, the north of Spain is 

particularly cold during winter so they cannot be neglected and, ideally, the less 

time beet spends stocked, the better. For the considered factory, the beet 
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processing rate must be established between 8880 t/d (370 t/h) and 10320 t/d 

(430 t/h), considering that reaching a new steady state after changes in the beet 

rate takes around 5 hours.  

Before the diffusion process takes place, beet must be washed and cut into 

thin slices called cossettes. This way, the sugar extraction is maximized. In the 

diffusion stage, the beet is put in contact with hot water in countercurrent, so 

the sugar inside is extracted by mass transfer. As main product of this process, 

the diffusion juice is obtained, which is sent to the purification stage to continue 

the sugar extraction process. Besides, exhausted pulp is obtained as byproduct. 

Given that the pulp still has a big amount of sugar and water inside, it is sent to 

a press process in order to extract as much water as possible, which is later 

recirculated to the diffusion. Finally, the pressed pulp is dried and can be sold as 

cattle feed.  

After diffusion takes place, besides of sugar, many other impurities are 

removed from the beet. Unlike sugar cane, the impurities extracted are not 

desirable, so they must be removed in a purification stage. In this part of the 

process, first, the diffusion juice is preheated using steam obtained from the 

evaporation stage and, next, it is treated with two purification stages in series 

where impurities are precipitated and filtrated. As a result, the purification juice 

is obtained.  

Brix degrees is a unit used in the food and drink industry to measure the 

concentration of solids in a stream. Considering that after the purification almost 

all the solids are sugar, we can say that from this stage on, the brix degrees 

represent the sugar concentration in the juice. The aim of the evaporation 

section is to increase such concentration removing as much water as needed to 

reach a particular brix point for the output stream (syrup). In the evaporation 

section of the considered factory there are six different evaporation effects 

(groups of evaporators working at the same pressure) placed in concurrent. 

There, the less concentrated juice is put in contact with the highest-pressure 

steam obtained from the cogeneration plant. With this arrangement, the steam 

produced in the first effects serves as heat source for the later ones and other 

parts of the factory. Traditionally, sugar processes present an excellent energy 

integration taking advantage of the vapor obtained in the evaporation stage to 

fulfill the heat energy demanded by the rest of the process (Urbaniec, 1989). In 

the plant considered, part of the vapor obtained from the six evaporation effects 



4.Case Study Framework  

 

50 

 

is used to fulfill the steam demand that comes, mainly, from the diffusion, 

purification, and crystallization stages, being the last one the biggest consumer. 

This feature makes the pressure inside each evaporator a critical control variable 

and, hence, the pressure of the steam delivered to the evaporation from the 

cogeneration plant. 

In the sugar-end, the syrup received from the evaporation stage is treated to 

obtain commercial sugar in a batch process. Essentially, this process is carried 

out throughout several crystallization and centrifugation stages, where the 

maximum quantity of sugar is crystallized, obtaining as a by-product an 

exhausted solution of water and sugar that cannot be further treated (molasses). 

The crystallization stage, which is essentially a slow evaporation process 

performed at vacuum conditions, is the biggest steam consumer of the 

evaporation section. Furthermore, crystallizers and centrifuges are important 

electricity consumers. Since it is a batch process, the steam and electricity 

demand are irregular, and consumption valleys or peaks may cause important 

problems in the rest of the process. Thus, the correct synchronization between 

the two parts of the process is key in order to optimize the process operation 

and avoid bottlenecks. This problem has been deeply studied in the literature, 

where the steadiest energy consumption is usually searched (Acebes et al., 2019; 

de Prada et al., 2019). More details about the sugar production process can be 

found in (Asadi, 2005; der Poel, 1998). 

Regarding the cogeneration plant, in the factory considered the installed CHP 

plant counts with three different boilers and three backpressure turbines able to 

produce up to 11 MW of power. A scheme of the cogeneration unit is presented 

in Figure 4-2. Natural gas is used in the boilers to obtain superheated High 

Pressure (HP) steam. The temperature of the steam obtained can be controlled 

using a heat exchanger (ATP), where it is put into contact with a manipulated 

flow of fresh water.  Next, steam is expanded in the turbines or passed through 

a bypass valve if necessary, obtaining superheated Low pressure (LP) steam 

which must be saturated using water before sending it to the evaporation stage. 

The power generated in the turbines can be controlled manipulating the steam 

flow passing through them. During normal process operation, if all the steam 

obtained in boilers is used to obtain electricity, more power than the needed for 

the factory operation is generated. If the connection with the external grid is not 

considered, part of the steam needed by the process must be bypassed to avoid 
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electricity surpluses. As it was mentioned before, controlling the pressure of the 

steam sent to the evaporation stage results key to a correct operation. In the 

case studied, a split range controller is used to control such pressure, 

manipulating the amount of steam that passes through the bypass and the relief 

valve placed before the saturator. 

 
Figure 4-2. Simplified process flow diagram of the considered case study with the main 

existing instrumentation and power connection to the external grid. 

4.2 Electricity trade in Spain 

As mentioned in the previous section, the sugar plant considered in this work 

counts with a cogeneration system capable of filling the heat and electricity 

needs of the main process. However, sometimes, due to a wide variety of factors, 

the electricity generated in the cogeneration plant may differ from the one 

needed in the process. Thus, if the power generated is less than the one 

requested, it is necessary to buy electricity and, otherwise, it can be sold to 

obtain some revenue. Hence, to add this information into the optimization 

problem, it is necessary to know the main alternatives to trade electricity in 

Spain, which are described in this section.  
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Spain participates in the Iberian electricity market (MIBEL), which is 

composed essentially by Spain and Portugal (OMIE, 2020). Furthermore, it can 

exchange electricity with other markets in Europe and Morocco, being the total 

amount of power that can be exchanged around the 3% of the total power 

installed (106.764 MW). The Iberian electricity market is managed by the Market 

Operator (MO) known as Operador del Mercado Ibérico de Energía (OMIE). This 

market, as in other countries, is formed by several markets that take place 

sequentially, where generators and consumers exchange power for different 

time horizons (See Figure 4-3). 
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Figure 4-3. Electricity markets sequence.  

First, the electricity forward markets take place weeks, months, or even 

years before the electricity exchange or the financial clearance between buyers 

and sellers occurs. They are key in order to let agents manage the risk inherent 

to new investments or operation. There are two different forward markets in 

Spain: the regulated-forward electricity market, managed by the Portuguese 

Market Operator (OMIP), and the non-regulated bilateral contracts market, also 

known as Over The Counter (OTC) (Energía y Sociedad, 2014a).   
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Regarding the bilateral contracts, one can distinguish between physical 

contracts and financial contracts: 

• In physical contracts, also known as Power Purchase Agreement (PPA), 

generator and consumer agents agree to exchange actual electricity for 

a determined time period with a fixed financial condition.  

• In financial contracts, generators and consumers reach an agreement 

regarding the electricity price for a predefined amount of time. 

Therefore, they will participate in the Day-Ahead market, but the money 

they receive or pay will be the difference between the price negotiated 

and the clearance market price of each day. 

The OMIE is in charge of two different markets, the Day-Ahead and the 

Intraday market. The main electricity market is the daily one, also known as Day-

Ahead electricity market. Here, supply and demand bids are sent to the Market 

Operator until 10:00 AM of the day before the exchange takes place. At that 

time, after matching electricity supply and demand and, having considered 

different technical constraints, the electricity price is fixed for each hour of the 

next day.  

The intraday electricity markets are designed to let the participants of the 

Day-Ahead one, revise their commitment and adjust their program to the needs 

they expect in real time. In Spain there are two different intraday markets: The 

auction market (operated by the OMIE) and the continuous European cross-

border market. Regarding the intraday auction market, it is divided into 6 

different sessions with different programming horizons that take place with the 

time distribution showed in Table 4-1, and each of them work in the same way 

as the Day-Ahead one. 
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Table 4-1. Intraday market time distribution 

 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

Opening 

time 
14:00 17:00 21:00 01:00 04:00 9:00 

Closing 

time 
15:00 17:50 21:50 01:50 04:50 9:50 

Schedule 

Horizon 

24 Hours 

(1-24 

D+1) 

28 Hours 

(21-24 

and 1-24 

D+1) 

24 Hours 

(1-24 

D+1) 

20 Hours 

(5-24) 

17 Hours 

(8-24) 

12 Hours 

(13-24) 

 

The continuous intraday market was created by the European Union in 2018 

to promote the power exchange between Member States and the use of 

renewable energies, increasing the overall system efficiency. One particularity of 

this market is that adjustments can be made up to one hour before the moment 

of delivery (OMIE, 2020).  

Aside of the mentioned above, in order to ensure the balance between 

generation and electricity consumption with a good level of quality and 

continuous supply, generators and consumers offer some services to the system, 

organized in markets managed by the System Operator (SO) Red Eléctrica 

Española (REE) (REE, 2019). Such markets are known as the Ancillary Service 

Market, and they can be divided into three different groups: Technical 

Restrictions, Complementary Services, and Deviation Management (Lobato 

Miguélez et al., 2008). 

The technical restrictions are solved on three different levels with a market 

mechanism: Restrictions related to the schedule obtained after the Day-Ahead 

market, others that arise after each intraday auction market, and the ones faced 

in real time.  

The deviation management solves almost in real-time the deviations 

between generation and consumption. These markets take place after each 

intraday auction market. During normal operation, the generation agents send 

their deviation forecast to the System Operator, which are added to the 

variations expected in the renewable energy generation. In case that the forecast 

deviations exceed 300 MW in hourly average, the System Operator will call the 
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deviation management market to ask for offers from the generators in the 

opposite direction to the expected deviations (Energía y Sociedad, 2014b).  

Regarding the complementary services, they can be divided into three 

different groups: 

• Frequency-Power regulation is divided into three reserve services 

depending on the time horizon applied: 

o Primary reserve: It is oriented to solve small imbalances, it is 

compulsory for every single generator, and there is not any 

market to manage it, so it is unpaid. It is formed by the speed 

regulators of the generators. It has a time horizon of 30 seconds. 

o Secondary reserve: This market takes place after the Day-Ahead 

technique restrictions one.  Its aim is to correct deviations in the 

frequency and, also, between the Spanish-French connection. If 

an imbalance continues during a certain amount of time, the 

secondary service will take over, releasing the primary resources 

to face new imbalances. This service is composed of a flexible 

reserve of energy that can be used when imbalances are 

important. The time horizon goes from 30 seconds to 15 

minutes, and the dynamic response must be less than 100 

seconds. This service is paid in a marginal way for two different 

concepts: Availability (Power band) and usage (Energy). 

o Tertiary reserve: Its aim is to recover the reserves in case the 

secondary service must be used. This market takes place in the 

last hour of the day before the dispatch.  

• Voltage control can be divided into two parts: one compulsory and not 

paid for all the service providers (big generators, qualified consumers, 

carriers and distribution operators), and another one voluntary and paid 

according to the regulation.  

• Restoration service is provided by groups of generators able to start 

their operation in a determined amount of time without external power 

after a zero in the general voltage of the facility occurs and keep their 

generation stable while the supply is restored.    

Due to the features of the process considered, in this work we are going to 

consider only the participation in the Day-Ahead electricity market. Therefore, a 



4.Case Study Framework  

 

56 

 

deeper explanation of the functioning of this market is given in the next 

subsection.  

4.2.1 Day-Ahead Market 

The Day-Ahead market is the most important electricity market in Spain. There, 

generators and consumers bid on a determined amount of electricity for each 

hour of the next day. Bids can be presented to the market operator until 10:00 

AM. The selling or purchase offers (Energy and price) can be composed of 1 to 

25 sections for each of the 24 hours of the day. Once the agents have presented 

their bids, the MO will aggregate them and form the offer and demand curve for 

each hour. The price is determined following a marginal procedure, where the 

final electricity price will be obtained by matching both curves. This means that 

regardless of the bid sent, every single seller receives the same amount of money 

for the electricity sold, and all the buyers must pay the same price (See Figure 

4-4).  

 
Figure 4-4. Day-Ahead Market description. Source: (Energía y Sociedad, 2014c).  

It must be outlined that generators place their bids attending not only to the 

operating cost, but also to the opportunity cost. The opportunity cost is the 

income that generators are renouncing to, because of selling electricity in a 

certain moment. For example, hydropower companies can change their bid 

depending on the amount of water remaining in their reservoirs. If it was raining 
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a lot, and reservoirs were almost full, they would be forced to release water, so 

their bid would be close to 0 €/ Wh. However, if reservoirs were at mid 

capacity, they could wait for another moment to sell the electricity at a higher 

value, so they would offer the electricity at a very high price. Other technologies, 

like renewable energies, usually bid their production at a price 0€/ Wh because 

for them is very difficult to store energy (Energía y Sociedad, 2014c).  

Aside from the mentioned above, it should be considered that generators 

can only make one offer for each physical unit they dispose of. Only for low 

power installations, they can present many physical units packed in one offer. 

Sometimes, the bids are accompanied by some complex conditions, such as the 

“minimum incomes constraint”, which evaluates the generator incomes, and if 

they are less than a determined amount, all the bids are withdrawn (Gallego and 

Victoria, 2012).  

Consumers are mainly composed of retailer companies and large industries. 

Retailers will bid on the electricity at the highest allowed value (180€/ Wh), this 

way, they will ensure their participation in the bid and the obtention of the 

expected electricity demanded by their customers. Other consumers will try to 

purchase the electricity at a much lower value. As some of them are not forced 

to purchase it, they will only do it if the electricity price is convenient. Once all 

the bids are received and curves are obtained, an optimization algorithm is run 

(Euphemia) (NEMO Commitee, 2019), and the electricity prices for each hour are 

obtained matching the offer and demand curves.  

4.2.2 Price formation 

Only considering the Day-Ahead market, in Spain, there are essentially two ways 

for accessing such market: Directly as market trader, or through a retailer. 

Regarding the selling price, if generators go directly as traders to the market, the 

price will be the one fixed by the market minus some penalties that may be 

applied in case the production differs in excess from their commitment. If they 

participate through a retailer, the price obtained will be the market price minus 

a commission (the deviation penalty is assumed by the retailer). Other options 

where generators and retailers accord some price that can be fixed or segmented 

per hours may also exist. This way, generators look for covering from the risk of 

the market. 
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In relation to the buying price, it is composed of an energy and a taxes term 

(Gallego and Victoria, 2012).  

𝑃𝐵𝑢𝑦 = 𝑃𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑃𝑇𝑎𝑥𝑒𝑠 

The energy concept is the price paid for the electricity consumed. If the 

consumer participates directly in the market, the price paid for the electricity will 

be the one obtained in the market plus a penalty term regarding deviations from 

his consumption commitment. If he goes through a retailer, the deviation term 

will be assumed by the retailer. In this context, the price-based Demand 

Response programs appear as offered tariffs. The three most common tariffs are: 

• Fixed price: The price is fixed and it is the same for every hour.  

• Time Of Use (TOU): The price is fixed in hour segments. They may be 

composed of two or three segments. 

• Real-Time Pricing: The price depends directly on the price established in 

the Day-Ahead market. It can be seen as the price of the market plus a 

commission.  

With respect to the taxes term, it is mainly composed of the following 

concepts: 

• Access tolls paid to the power distributor and carrier.  

• VAT. 

• Electrical tax fixed by the government.  

• Meter rent.  

4.3 Legislation about cogeneration plants efficiency 

Directive 2012/27/UE (Official Journal of the European Union, 2012), is one of 

the tools used by the European Commission to achieve the objectives fixed 

towards 2050, related to energy efficiency and carbon emissions reduction. It 

establishes rules designed to remove barriers in the energy market and 

overcome market failures that hinder efficiency in the supply and use of energy. 

The requirements laid down in such Directive are minimum requirements for the 

Member States, which must transpose them adapting specific measures for each 

state. Among the different rules provided by the Directive, it establishes a 
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method for measuring the efficiency of cogeneration plants and defines the 

concept of high-efficiency cogeneration.  

In Spain, Directive 2012/27/UE was transposed by Royal Decree 56/2016 of 

February 12th, 2016, related to energy efficiency. It dedicates Chapter IV and, 

specifically, Article 13, to promote the efficiency in the production of energy used 

in heating and cooling. Furthermore, it modifies Royal Decree 616/2007 of May 

11th, 2007, which provides a framework for promoting high-efficiency 

cogeneration in Spain and defines a method for calculating the Primary Energy 

Savings (PES) in its annex III. Law 24/2013 of December 2013 on the electricity 

sector, regulates electricity production from renewable sources, cogeneration, 

and waste. To encourage cogeneration, it establishes that high-efficiency 

cogeneration systems will benefit from a different remuneration system and 

priority in the dispatch, access, and connection to the grid.  

Currently, Royal Decree 413/2014 of June 6th, 2014, establishes a framework 

based on the fundamental principle that the remuneration system must allow 

facilities of this type to cover the necessary costs to compete fairly with the other 

technologies available on the market, generating a reasonable return. Therefore, 

it defines that in addition to the remuneration obtained for the sale of electricity 

at the market price, the facilities will receive during the regulatory lifespan (25 

years in the case of cogeneration plants) a specific payment comprising two 

additional compensatory components: 

• Investment subsidy: Remuneration per unit of capacity to offset the cost 

of investment (reviewed every 3 years). 

• Operating subsidy: Remuneration per unit of energy, which together 

with estimated operating income, meets the estimated operating costs 

(reviewed every 6 months). 
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Methodology for determining the efficiency of cogeneration processes 

To measure the efficiency of cogeneration processes, Directive 2012/27/UE 

defines in Annex II the Primary Energy Savings (PES) index, which represents the 

savings of a cogeneration unit with respect to the production of heat and 

electricity separately in a reference plant. As mentioned before, this index is also 

defined in the Spanish Royal Decree 616/2007 of May 11th, 2007. It is evaluated 

once per year, and any cogeneration system with an installed capacity of more 

than 1 MWe will be considered as highly efficient if the Primary Energy Savings 

are at least the 10% with respect to the separate generation. 

 𝑃𝐸𝑆 = (1 −
1

𝜇𝑄𝐶𝐻𝑃
𝜇𝑄𝑅𝑒𝑓

+
𝜇𝐸𝐶𝐻𝑃
𝜇𝐸𝑅𝐸𝑓

) · 100 (4.1) 

Where: 

• 𝜇𝑄𝐶𝐻𝑃 is the cogeneration heat efficiency, defined as the annual useful 

heat output (𝑄𝐶𝐻𝑃) divided by the fuel input (𝐹𝐶𝐻𝑃), used to produce 

the sum of useful heat and electricity from cogeneration.  

 𝜇𝑄𝐶𝐻𝑃 =
𝑄𝐶𝐻𝑃
𝐹𝐶𝐻𝑃

 (4.2) 

• 𝜇𝑄𝑅𝑒𝑓 is the efficiency reference value for separate heat production. 

This value can be obtained from Regulation 2015/2402, and it depends 

on the cogeneration unit construction date and on the fuel type used. 

For the system considered in this work the value is 0.87. 

• 𝜇𝐸𝐶𝐻𝑃 is the cogeneration electrical efficiency, defined as the annual 

electricity from cogeneration (𝐸𝐶𝐻𝑃) divided by the fuel input (𝐹𝐶𝐻𝑃), 

used to produce the sum of useful heat and electricity from 

cogeneration.  

 𝜇𝐸𝐶𝐻𝑃 =
𝐸𝐶𝐻𝑃
𝐹𝐶𝐻𝑃

 (4.3) 
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• 𝜇𝐸𝑅𝑒𝑓 is the efficiency reference value for separate electricity 

production. It can also be obtained from Regulation 2015/2402, and for 

the cogeneration plant considered has a value of 0.53.   

To obtain the PES index, Directive 2012/27/UE suggests using Decision 

2008/952/EC, which establishes detailed guidelines for the implementation and 

application of Annex II. In the Directive considered, heat and electricity can be 

generated in CHP or non-CHP mode. According to Decision 2008/952/EC, Non-

CHP electricity means the electrical energy generated by a cogeneration unit in 

a reporting period when no related heat is produced by the cogeneration 

process, or part of the heat produced cannot be considered as useful heat.  

On the other hand, a cogeneration unit is said to be operating in full 

cogeneration mode when it is operating with the maximum heat recovery 

technically possible from the cogeneration unit itself. The heat must be produced 

at the pressure and temperature levels required for the specific useful heat 

demand or market. In such case, all the heat and electricity would be generated 

in cogeneration mode (QCHP and ECHP).  In cases where the plant does not 

operate in full cogeneration mode it is necessary to identify the electricity and 

heat not produced in cogeneration mode (QNon-CHP and ENon-CHP), to 

separate it from the generated in CHP mode (see Figure 4-5).  

 
Figure 4-5. Parts of a cogeneration unit. 

To obtain the electricity from cogeneration mode the first step is to calculate 

the overall efficiency (𝜇𝐺) of the cogeneration unit, which is defined as the CHP 

energy output (total electricity (E) and useful heat (𝑄𝐶𝐻𝑃)) divided by the fuel 

input to the cogeneration unit. Such index is evaluated in a yearly basis.  

 𝜇𝐺 =
𝐸 + 𝑄𝐶𝐻𝑃

𝐹
 (4.4) 

Considering the case study features, if the global efficiency of the plant is 

equal or greater than 75%, then it will be considered that all the electrical power 
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is generated in the CHP part. However, if the efficiency goes below 75%, then the 

cogeneration unit will be split into two virtual parts (CHP and non-CHP part). 

 𝐸𝐶𝐻𝑃 = {
𝐸 − 𝐸𝑛𝑜𝑛−𝐶𝐻𝑃 , 𝜇𝐺 < 75%

𝐸, 𝜇𝐺 ≥ 75%
 (4.5) 

 𝐹𝐶𝐻𝑃 = {
𝐹 − 𝐹𝑛𝑜𝑛−𝐶𝐻𝑃, 𝜇𝐺 < 75%

𝐹, 𝜇𝐺 ≥ 75%
 (4.6) 

When the overall efficiency goes below 75%, plant operators must check 

whether the plant works in full cogeneration mode during certain periods of time 

evaluating the system efficiency for such periods. Thus, they must measure the 

useful heat and electrical energy during such periods to obtain the actual 

“power-to-heat ratio” (𝐶𝑎𝑐𝑡𝑢𝑎𝑙). 

 𝐶𝐴𝑐𝑡𝑢𝑎𝑙 =
𝐸

𝑄𝐶𝐻𝑃
 (4.7) 

With this value, it is possible to compute which part of the electricity 

generated during the reporting period is recognized as CHP electricity. If the 

actual ‘power-to-heat ratio’ cannot be calculated for some reason, the design 

‘power-to-heat ratio’ given by Directive 2012/27/UE can be used instead. For the 

cogeneration plant considered the value is 0.45.  

 𝐸𝐶𝐻𝑃 = 𝐶𝐴𝑐𝑡𝑢𝑎𝑙 · 𝑄𝐶𝐻𝑃 (4.8) 

With the CHP electricity computed, the non-CHP electricity can be obtained 

directly and, with this value and the “plant specific efficiency value for electricity 

production” (𝜇𝐸), the non-CHP fuel consumption can be computed, which is 

necessary to obtain the Primary Energy Savings. 

 𝐹𝑁𝑜𝑛−𝐶𝐻𝑃 =
𝐸𝑁𝑜𝑛−𝐶𝐻𝑃
𝜇𝐸

 (4.9) 

Where: 

 𝐸𝑁𝑜𝑛−𝐶𝐻𝑃 = 𝐸 − 𝐸𝐶𝐻𝑃                    𝜇𝐸 =
𝐸

𝐹
 (4.10) 



4.Case Study Framework                                                                                                   

 

63 

 

4.4 Optimization remarks 

The overall system description presented in the first part of this chapter, reveals 

the strong coupling existing between the proposed sugar extraction process and 

its cogeneration unit. Thus, in this case, an independent sequential study is not 

advisable. Furthermore, the slow process inertia when changes in the 

operational conditions are performed suggests that dynamic features must be 

considered in order to optimize the whole system operation. Therefore, this case 

study can be considered as a perfect candidate to test the methodology 

proposed in Chapter 3. 

Having reviewed the Spanish electricity market and the legislation regarding 

the efficient use of cogeneration systems, we have done some assumptions to 

implement such information in the optimization problem. Regarding the 

electricity market: 

• Given that accessing directly to the market requires an expert in the 

staff, which is something very difficult to find in a medium-size company 

not dedicated to trade electricity, we have assumed that the company 

can operate in the market only through a retailer. Thus, one optimization 

objective is the computation of the electricity commitment for a certain 

day that will be provided to the retailer.  

• We have an accurate forecast of the market electricity price for the next 

day to the one considered. 

• Given that we have a cogeneration unit, we can send bids for buying and 

selling electricity in the market for each hour. However, we cannot sell 

and buy electricity at the same time.   

• In the buying price, the taxes term will be neglected in comparison to the 

energy term. 

With respect to the legislation, due to its complexity, and to make the work 

comparable to other studies in the field, we have ignored the subsidies that 

would correspond to the considered plant, considering only the electricity 

market price. However, given that being a high-efficiency cogeneration plant 

gives priority in the dispatch and helps to improve the energy efficiency of the 

whole system, we have included the Primary Energy Savings index in the 

optimization problem as a measurement of the plant efficiency. 
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Furthermore, following the methodology proposed in Chapter 3, after having 

studied the case study framework, we are ready to define the optimization aim, 

decision variables and operational constraints (please, see Figure 4-2 to facilitate 

the follow-up of the discussion).  

Regarding the optimization aim, as it was mentioned before, the sugar 

extraction process is a seasonal business in Spain. A common way of working is 

fixing the sugar production objective before starting the campaign, and 

consequently, the beet needed, considering an average Brix and purity values 

during the whole campaign. If profit is defined as the difference between the 

incomes from sugar sales and the costs expended to produce it, having fixed the 

total amount of sugar that will be produced; the only way to increase profit is by 

reducing costs, which can be divided into operating and fixed costs. If we focus 

on minimizing the operating costs, such strategy may lead to a sharp beet 

processing rate reduction, and therefore, to an extension of the campaign 

duration and an increment of the fixed costs. Thus, to compensate such 

behavior, we propose the minimization of the specific operating cost over an 

accumulated time 𝑇  instead, which can be defined as the cost of the energy 

needed to process a certain amount of beet during that time. From a 

mathematical point of view, the dynamic optimization problem will be defined 

for a prediction horizon 𝑇, and therefore, the minimization of the integral of such 

function will be considered.  

 min
𝑢
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑜𝑠𝑡 ∶=  ∫

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠(𝑡)

𝐵𝑒𝑒𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒(𝑡)
𝑑𝑡

𝑇

0

 (4.11) 

To minimize the proposed objective function, one variable that we can 

clearly modify is the beet processing rate (𝑊𝐵𝑆𝑡𝑂𝑢𝑡), which indirectly refers to 

the sugar production rate. Furthermore, as we saw in Section 4.1, we can 

manipulate the power generated in the turbines (𝐸𝑇𝑢), therefore, the difference 

between such power and the beet-sugar process electricity demand (𝐸𝑃), can be 

traded on the electricity market. This is the definition of the electricity 

committed (𝐸𝐶), and it has been proposed as another decision variable. 

Furthermore, manipulating the thermodynamic conditions of the steam 

generated in the cogeneration unit can considerably modify the energy efficiency 

of the system, and for that purpose, the overheated steam temperature 
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obtained in boilers, and the pressure of the saturated steam sent to the 

evaporation stage have been included as decision variables too (𝑇𝑆𝐵𝑜 , 𝑃𝑆𝐵𝑜).  

With respect to the operating constraints, according to the description made 

in Section 4.1, the time beet spends stocked before being treated is a key variable 

to the system productivity (𝜏𝑆𝑇), and therefore, it must be included in the 

optimization problem. Besides, as it was also mentioned in such section, the 

steam generated in the evaporation stage is used to feed many other parts of 

the sugar extraction process, being the crystallization section the most 

consuming stage. In our particular case, that section uses the steam provided by 

the fourth evaporation stage, and hence, maintaining its operating pressure 

above a desired bound is key to the correct functioning of the whole system 

(𝑃𝐼𝑉). Finally, the legislation compliance will be added ensuring that the Primary 

Energy Savings index is always above the lower established bound (PES).  
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Chapter 5  

Integral System Model of a Beet-

Sugar Factory 
5 Integral System Model of a Beet-Sugar Factory 
 

In this chapter, we apply the methodology discussed in Chapter 3 to obtain a 

model that is suitable for dynamic optimization using the simultaneous 

approach. To do so, we will take advantage of a much highly detailed simulator 

obtained previously, referenced as simulation module in Section 3.4, which will 

be used as “real plant” to obtain all the necessary data to build the optimization 

model and to test its performance. Details of the simulation module can be found 

in Appendix B. 

5.1 Inputs and outputs selection 

Following the discussion set in Section 3.2, the first thing to do to obtain the 

model, is to select its inputs and outputs. In the last section of the previous 

chapter, we set the optimization decision variables which can now be defined as 

the model inputs: 

1. Beet processing rate (𝑊𝐵𝑆𝑡𝑂𝑢𝑡) [370 – 430 T/h]. 

2. Electricity power generation in turbines (𝐸𝑇𝑢) [5 – 11 MW]. 

3. Evaporation working pressure (𝑃𝑆𝑆𝑎𝑂𝑢𝑡) [2.2 – 3.0 barA]. 
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4. Superheated steam temperature obtained in boilers (𝑇𝑆𝐵𝑜) [360 – 420 

°C]. 

Note the reader that we have chosen the electricity generated in turbines as 

input variable instead of the electricity commitment. Both variables are tightly 

related, and we have made this change to improve the clarity of the discussion.  

Now, to select the model outputs, we need to have previously defined the 

optimization aim and the operational constraints. The optimization aim was 

defined as the minimization of the process specific energy cost for a period T, 

which mathematically can be described as follows: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑜𝑠𝑡 = ∫

(

 
 

𝑊𝐺(𝑡)
𝑑𝐺

· 𝐻𝐻𝑉𝐺 · 𝑃𝑟𝐺 − (
𝐸𝐶(𝑡)
3600 · 𝑃𝑟𝑒

(𝑡))

𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑡)

)

 
 
𝑑𝑡

𝑇

0

 (5.1) 

In (5.1), the numerator represents the difference between the natural gas 

cost used in the boilers and the incomes obtained by selling the electricity surplus 

to the external grid. In the first term, since the natural gas cost must be expressed 

in [€/kWh], the natural gas flow (𝑊𝐺) is divided by its density (𝑑𝐺) and multiplied 

by its Higher Heating Value (𝐻𝐻𝑉𝐺) and the natural gas Price (𝑃𝑟𝐺).  

In the second term, the electricity committed with the market is represented 

(𝐸𝑐), which will be the difference between the electricity generated in turbines 

(𝐸𝑇𝑢) and the electricity consumed by the main process (𝐸𝑝). If electricity is sold 

to the market, this term will be positive, and since it means a cost reduction, the 

whole term will represent a negative contribution to the cost function. 

Otherwise, if the electricity is bought, the cost will increase. To express 

everything normalized with the same time scale [€/s], the electricity 

commitment term is divided by 3600.  

In the denominator, the beet processing rate is found (𝑊𝐵𝑆𝑡𝑂𝑢𝑡). Finally, the 

integral of this quantity is computed along the whole prediction horizon 𝑇. A full 

description of the model variables and parameters can be found in Appendix A. 

Therefore, from this expression we can conclude that we need to obtain the 

value of the natural gas mass flow (𝑊𝐺), and the electricity consumed in the 

factory (𝐸𝑃).  

With respect to the operational constraints, we must: 
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• Meet the legislation related to the efficient operation of cogeneration 

plants. To do so, we need to compute the Primary Energy Savings (PES).  

• Ensure a stock of beet between limits. This can be measured in two 

different ways: One is measuring the remaining beet in the storage zone 

(𝑚𝑆𝑡); and the other is computing the average residence time the beet 

spends inside the storage zone (𝜏𝑠𝑡). The last is defined as the 

accumulated beet over the beet processing rate, and if it is too high, the 

beet can rot. On the other hand, it shows how long the process can be 

operated at a specified production rate without running out of beet, if 

the beet input drops to zero. Since the residence time gives more 

information about the beet storage, and it is easier to constrain, it will 

be used in the optimization problem and, therefore, it will be an output 

of the model. 

• Maintain the pressure of the 4th evaporation effect (𝑃𝐼𝑉) above the 

desired limit to ensure that enough steam is available for other parts of 

the process.  

Finally, since one of the objectives of any CHP system is to generate the 

amount of heat energy demanded by the main process, the heat energy 

consumed by the sugar factory (𝑄𝑃) is also considered as an output of the model. 

To sum up, a list of the desired output variables is shown below: 

1. Electricity consumption of the sugar factory (𝐸𝑃). 

2. Natural gas mass flow rate needed to operate the whole process (𝑊𝐺). 

3. Primary Energy Savings index (PES). 

4. Average time beet spends in the storage zone (𝜏𝑆𝑡). 

5. Steam pressure inside the fourth effect of the evaporation (𝑃𝐼𝑉). 

6. Heat energy consumption of the sugar factory (𝑄𝑃). 

In the previous chapter we reviewed the framework of the case study 

presented in this thesis. Now, in this chapter, we will look for a model tractable 

from a computational point of view that represents the closed-loop behavior of 

the integrated main process-CHP system. To do so, we will apply step by step the 

methodology depicted in Section 3.2, obtaining as a result a DAE model that 

combines first-principles equations with empirical relationships. Once validated, 

this model will be used in the following chapter, where the implementation of 
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the dynamic optimization problem will be detailed. The contributions showed in 

this chapter were published in (Pablos et al., 2019).    

 

5.2 First-principles equations 

Once the model inputs and outputs have been specified, equations that relates 

them are sought. As direct relations are sometimes very difficult or even 

impossible to find, the whole system is divided into different control volumes in 

order to make the modeling process easier. The selection of such control 

volumes depends on the equations available, the knowledge of the relationships 

between variables, and the availability of process measurements. The division 

taken is shown in Figure 5-1, where control volumes are emphasized with black 

lines. However, this is not the only possibility, and other control volumes could 

have been chosen.  

 
Figure 5-1. Control volumes selected for the purposed case study. 
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Now, we need to analyze each control volume as a separated model with its 

own inputs and outputs. In this phase, the empirical equations are remarked but 

not yet defined.  

Main Process 

In this control volume, we include the storage area, where beet is piled up until 

is processed, and the beet-sugar industrial process. The aim is to obtain the heat 

and power energy consumption, the pressure inside the fourth evaporation 

effect, and the beet available in the storage zone.  

 
Figure 5-2. Main process control volume scheme. 

Regarding the main process heat consumption (𝑄𝑝), although it depends on 

many variables, it has been assumed that the most influential ones are the 

evaporation working pressure (𝑃𝑆𝑆𝑎𝑂𝑢𝑡), because of its implication in the 

performance of the evaporators (Urbaniec, 1989), and the production rate 

(𝑊𝐵𝑆𝑡𝑂𝑢𝑡). To avoid modeling the whole process, an empirical relationship 

between these variables will be searched. Given that, a priori, we ignore the 

nature of such relationship, but we know that its dynamics must be considered, 

we pose a general dynamic implicit equation to describe its behavior: 

 𝑓 ( 
𝑑𝑄𝑝

𝑛(𝑡)

𝑑𝑡𝑛
,
𝑑𝑄𝑝

𝑛−1(𝑡)

𝑑𝑡𝑛−1
, … ,

𝑑𝑄𝑝(𝑡)

𝑑𝑡
, 𝑄𝑝(𝑡),𝑊𝐵𝑆𝑡𝑜𝑢𝑡(𝑡), 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)) = 0 (5.2) 

On the other hand, according to (Frankenfeld and Voss, 2004), it can be 

assumed that for the operational range considered, among all the process 

variables, electricity power consumption (𝐸𝑝) depends mainly on the beet 

processing rate: 
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 𝑓 ( 
𝑑𝐸𝑝

𝑛(𝑡)

𝑑𝑡𝑛
,
𝑑𝐸𝑝

𝑛−1(𝑡)

𝑑𝑡𝑛−1
, … ,

𝑑𝐸𝑝(𝑡)

𝑑𝑡
, 𝐸𝑝(𝑡),𝑊𝐵𝑆𝑡𝑜𝑢𝑡(𝑡)) = 0 (5.3) 

In the same fashion, a simple expression is sought based on experimental 

data that represents how pressure inside the fourth evaporation effect varies 

during the process operation. In the factory studied, the beet processing rate and 

the evaporation working pressure are the variables that most affect this 

pressure. If production is increased and the evaporation working pressure is 

maintained constant, the water removed from the juice will not be enough to 

cope with the process steam demand, and eventually the pressure of every 

evaporation effect will drop. Instead, if the working pressure is increased, but 

the evaporation input juice flow remains constant, more water than necessary 

will be removed, and the pressure of the evaporators will increase. Other 

variables may affect pressure inside the evaporators, but they are rarely changed 

during normal process operation and their effect is not that significant, so they 

have not been considered: 

 𝑓 ( 
𝑑𝑃𝐼𝑉

𝑛 (𝑡)

𝑑𝑡𝑛
,
𝑑𝑃𝐼𝑉

𝑛−1(𝑡)

𝑑𝑡𝑛−1
, … ,

𝑑𝑃𝐼𝑉(𝑡)

𝑑𝑡
, 𝑃𝐼𝑉(𝑡),𝑊𝐵𝑆𝑡𝑜𝑢𝑡(𝑡), 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)) = 0 (5.4) 

With respect to the beet available in the storage zone, as it was mentioned 

before, instead of the accumulated beet, the average residence time beet spends 

there is the desired output (𝜏𝑆𝑡), which has been defined as follows: 

 𝜏𝑆𝑡(𝑡) =
𝑚𝑆𝑡(𝑡)

𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑡)
 (5.5) 

where the accumulated beet (𝑚𝑆𝑡) can be obtained with a mass balance 

between the storage area input and output. Since the beet input and output flow 

are measured in [T/h] and the rest of the model variables are in seconds, a 

change of units must be done dividing the difference by 3600: 

 
𝑑𝑚𝑆𝑡(𝑡)

𝑑𝑡
=
𝑊𝐵𝑆𝑡𝐼𝑛(𝑡) −𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑡)

3600
 (5.6) 
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Looking at equations (5.2) - (5.6), performing a degree of freedom analysis, 

and considering that the beet arrival (𝑊𝐵𝑆𝑡𝐼𝑛) is a known parameter, there are 

two degrees of freedom. Beet processing rate is a known input that can be fixed 

as an input, and the other one can be the evaporation working pressure, which 

must be computed using other control volumes.  

Saturator 

The saturator control volume (see Figure 5-3), includes the saturator itself and 

the split-range pressure control system used to control the evaporation working 

pressure.   

 
Figure 5-3. Saturator control volume scheme.  

Here are listed the equations that describe its functioning: 

 𝑒(𝑡) = 𝑃𝑆𝑆𝑎𝑂𝑢𝑡𝑅𝑒𝑓(𝑡) − 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) (5.7) 

 𝑣(𝑡) = 𝑘𝑝 · 𝑒(𝑡) + 𝑣𝑖(𝑡) (5.8) 

 
𝑑𝑣𝑖(𝑡)

𝑑𝑡
=
𝑘𝑝

𝑇𝑖
· 𝑒(𝑡) (5.9) 
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 𝑂𝑝𝐵𝑦(𝑡) = max(0,𝑚𝑖𝑛 (100,
𝑣𝑚𝑎𝑥

𝑣𝑚𝑎𝑥 − 45
· (𝑣(𝑡) − 45))) (5.10) 

 𝑂𝑝𝑅𝑒(𝑡) = max(0,𝑚𝑖𝑛 (100,
−𝑣𝑚𝑎𝑥
45

· (𝑣(𝑡) − 45))) (5.11) 

where: 

0 ≤ 𝑣(𝑡) ≤ 100 

The split-range controller must decide the opening of the bypass and relief 

valves, considering that only one of them can be opened at the same time, or 

both must be closed. Equations (5.10) and (5.11) are used to find the opening of 

such valves as a function of 𝑣(𝑡), which is obtained as the output of the PI 

controller equation (5.8). Therefore, if the value of 𝑣(𝑡) is greater than 45 the 

bypass will be opened, and the relief valve will be closed. If the value of 𝑣(𝑡) is 

45, both will be closed, and if it is less than 45 the relief valve will be the only 

valve opened. 

Regarding the saturator equipment, there, the expanded steam obtained 

from the turbines is saturated with a water flow before it is used in the 

evaporation section. This unit can be easily modeled using first-principles 

equations: 

 𝑊𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) = 𝑊𝑆𝑆𝑎𝐼𝑛(𝑡) +𝑊𝑊𝑆𝑎(𝑡) (5.12) 

 𝑊𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) · 𝐻𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) = 𝑊𝑆𝑆𝑎𝐼𝑛(𝑡) · 𝐻𝑆𝑆𝑎𝐼𝑛(𝑡) +𝑊𝑊𝑆𝑎(𝑡) · 𝐻𝑊𝑆𝑎 (5.13) 

 𝑊𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) =
𝑄𝑝(𝑡)

𝐻𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)
 (5.14) 

Finally, in this control volume, we can also consider the relationship between 

the steam pressure and specific enthalpy at the saturator output, which can be 

interpolated using data extracted from thermodynamic tables (Perry et al., 

2015), and it is valid for a pressure interval from 1 to 3 bar.  
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 𝐻𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) = 24.350 · 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) + 2656 (5.15) 

In this control volume we have thirteen variables and nine equations, which 

gives us 4 degrees of freedom. Naturally, the reference of the split-range 

controller can be fixed as a known input (𝑃𝑆𝑆𝑎𝑂𝑢𝑡𝑅𝑒𝑓). Furthermore, the heat 

consumed by the process (𝑄𝑝) can be computed using the equations listed for 

the main process. For the other two degrees of freedom, we have selected as 

inputs the mass flow and the specific enthalpy of the steam that enters in the 

saturator (𝑊𝑆𝑆𝑎𝐼𝑛, 𝐻𝑆𝑆𝑎𝐼𝑛). These variables must be computed using the relief 

valve control volume.  

Relief valve 

This control volume includes the relief valve itself, which is used for reducing an 

excess of pressure in the system, and the bifurcation that leads the expanded 

steam to the saturator or to the relief valve.  

 
Figure 5-4. Relief valve control volume scheme.  

It has been modeled as shown below: 

 𝑊𝑆𝑅𝑒(𝑡) = 𝐾𝑉𝑅𝑒 ·
𝑂𝑝𝑅𝑒(𝑡)

100
· √𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)

2 − 𝑃𝑎𝑡𝑚(𝑡)
2 (5.16) 
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 𝑊𝑆𝐵𝑦(𝑡) +𝑊𝑆𝑇𝑢𝐼𝑛(𝑡) = 𝑊𝑆𝑅𝑒(𝑡) +𝑊𝑆𝑆𝑎𝐼𝑛(𝑡) (5.17) 

 
𝑊𝑆𝐵𝑦(𝑡) · 𝐻𝑆𝐵𝑦(𝑡) +𝑊𝑆𝑇𝑢𝐼𝑛(𝑡) · 𝐻𝑆𝑇𝑢𝑂𝑢𝑡(𝑡)

= 𝑊𝑆𝑅𝑒(𝑡) · 𝐻𝑆𝑅𝑒(𝑡) +𝑊𝑆𝑆𝑎𝐼𝑛(𝑡) · 𝐻𝑆𝑆𝑎𝐼𝑛(𝑡) 
(5.18) 

 𝐻𝑆𝑅𝑒(𝑡) = 𝐻𝑆𝑆𝑎𝐼𝑛(𝑡) (5.19) 

It has been assumed that the pressure drop due to the pipes and the 

saturator is negligible, so the steam pressure at the output of the turbines is 

assumed to be equal to the evaporation working pressure: 

 𝑃𝑆𝑇𝑢𝑂𝑢𝑡(𝑡) = 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) (5.20) 

On the other hand, in equation (5.17) the steam mass flow at the turbines 

input (𝑊𝑆𝑇𝑢𝐼𝑛) is used instead of the steam mass flow at the turbines output 

(𝑊𝑆𝑇𝑢𝑂𝑢𝑡) because it has been assumed to be equal through the turbine.  

 𝑊𝑆𝑇𝑢𝐼𝑛(𝑡) = 𝑊𝑆𝑇𝑢𝑂𝑢𝑡(𝑡) (5.21) 

Here, we have four equations for nine variables, therefore, we need to fix 

the value of five of them. The opening of the relief valve can be computed using 

Equation (5.11). The other four are the mass flow and specific enthalpy of the 

steam that leaves the boilers and the bypass valve in the expansion zone.  

Expansion zone 

It contains three identical turbines working in parallel and a bypass recirculation 

for steam (see Figure 5-5). To simplify the problem, only one large steam turbine 

has been modeled, in such a way that it will consume the same amount of steam 

to generate the same amount of power as the sum of the other three. 
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Figure 5-5. Expansion zone control volume scheme. 

The first equation considered in this control volume is a mass balance, where 

the steam mass flow generated in the boilers must be equal to the steam mass 

flow that goes through the turbine and the bypass valve: 

 𝑊𝑆𝐵𝑜(𝑡) = 𝑊𝑆𝐵𝑦(𝑡) +𝑊𝑆𝑇𝑢𝐼𝑛(𝑡) (5.22) 

The bypass valve can be modeled using a similar expression as in (5.16), 

where the boilers steam pressure (𝑃𝑆𝐵𝑜) is assumed to be constant during normal 

process operation and, given that it can be controlled using a PI controller, 

known: 

 𝑊𝑆𝐵𝑦(𝑡) = 𝐾𝑣𝐵𝑦 ·
𝑂𝑝𝐵𝑦(𝑡)

100
· √𝑃𝑆𝐵𝑜

2 − 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)
2 (5.23) 

With respect to the turbines, the steam mass flow passing through (𝑊𝑆𝑇𝑢𝐼𝑛) 

can be calculated using the expression obtained from (Chaibakhsh and Ghaffari, 

2008), where 𝐾𝑇𝑢 is a parameter that must be adjusted from experimental data. 

 𝑊𝑆𝑇𝑢𝐼𝑛(𝑡) =
𝐾𝑇𝑢

√𝑇𝑆𝑇𝑢𝐼𝑛(𝑡)
√𝑃𝑆𝑇𝑢𝐼𝑛(𝑡)

2 − 𝑃𝑆𝑇𝑢𝑂𝑢𝑡(𝑡)
2 (5.24) 

In the same fashion as in (5.15), the specific enthalpy of the turbine input 

and output steam can be obtained interpolating the thermodynamic tables 

Boilers

ATP

TURB

SA
T

WATER

NG

STEAM

WATER

TT

TC

PT

PC

JC

STORAGE 
AREA

MAIN PROCESSBEET

WC

WT

External 
Grid

SUGAR

BStIn BStOut

STuIn

STuOut

SSaIn

WSa

WBo

WBStOut

TSBo
PSSaOutRef

ETu

Qp Ep

SSaOut

SBy

BOILERS

MAIN PROCESS

SRe

EXPANSION ZONE



5.Integral System Model of a Beet-Sugar Factory  

 

78 

 

found in the literature. The obtained function is valid for every pressure when 

the temperature is higher than 283 °C.  

 𝐻𝑆𝑇𝑢𝐼𝑛(𝑡) = 2355 − 1.490 · 𝑃𝑆𝑇𝑢𝐼𝑛(𝑡) + 2.291 · 𝑇𝑆𝑇𝑢𝐼𝑛(𝑡) (5.25) 

 𝐻𝑆𝑇𝑢𝑂𝑢𝑡(𝑡) = 2355 − 1.490 · 𝑃𝑆𝑇𝑢𝑂𝑢𝑡(𝑡) + 2.291𝑇𝑆𝑇𝑢𝑂𝑢𝑡(𝑡) (5.26) 

Let us now assume that the steam expansion through the turbines is 

isentropic and adiabatic, the following expression can be used therefore to 

model the turbine thermodynamics, where k is the polytrophic expansion factor 

for steam: 

 𝑇𝑆𝑇𝑢𝑂𝑢𝑡(𝑡)

𝑇𝑆𝑇𝑢𝐼𝑛(𝑡)
= (

𝑃𝑆𝑇𝑢𝑂𝑢𝑡(𝑡)

𝑃𝑆𝑇𝑢𝐼𝑛(𝑡)
)

𝑘−1
𝑘

 (5.27) 

And the power generated can be obtained using the following equation: 

 𝐸𝑇𝑢(𝑡) = 𝜇𝑇𝑢 · 𝑊𝑆𝑇𝑢𝐼𝑛(𝑡) · (𝐻𝑆𝑇𝑢𝐼𝑛(𝑡) − 𝐻𝑆𝑇𝑢𝑂𝑢𝑡(𝑡)) (5.28) 

Finally, valves have been assumed to be completely insulated, so they can be 

considered as adiabatic. If so, the enthalpy before and after the bypass valve and 

the turbine control valve must remain constant, and both must be equal to the 

specific enthalpy of the steam produced in boilers.  

 𝐻𝑆𝑇𝑢𝐼𝑛(𝑡) = 𝐻𝑆𝐵𝑜(𝑡) (5.29) 

 𝐻𝑆𝐵𝑦(𝑡) = 𝐻𝑆𝐵𝑜(𝑡) (5.30) 

To sum up, in the expansion zone model, we have thirteen variables and nine 

equations which yields four degrees of freedom. The electricity generated in the 

turbines (𝐸𝑇𝑢) can be clearly fixed as an input as it is a set-point. On the other 

hand, the opening of the bypass valve (𝑂𝑝𝐵𝑦), and the saturator outlet pressure 

(𝑃𝑆𝑆𝑎𝑂𝑢𝑡), can be computed using the saturator control volume. Hence, only one 

more equation must be fixed, and we have selected the boilers steam specific 

enthalpy (𝐻𝑆𝐵𝑜), which can be obtained from the boilers control volume.  
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Boilers 

This control volume includes the preheating water system, the boilers 

themselves, and the overheating steam system, where a PI controls the 

overheated steam temperature providing a water flow into a heat exchanger 

called attemperator (ATP).  

 

 
Figure 5-6. Boilers control volume scheme.  

To obtain the specific enthalpy needed, we can use the same expression 

proposed in (5.25) and (5.26): 

 𝐻𝑆𝐵𝑜(𝑡) = 2355 − 1.490 · 𝑃𝑆𝐵𝑜 + 2.291 ·  𝑇𝑆𝐵𝑜(𝑡) (5.31) 

Considering that the boilers steam temperature is a set-point, with this 

expression we can close the model and obtain the desired outputs mentioned 

for the main process control volume. Nevertheless, we still need to compute the 

natural gas needed to run the whole process (𝑊𝐺), and the Primary Energy 

Savings (PES). 

The former can be obtained modeling the boilers, however, including a 

detailed model can be unsuitable for the optimization problem, so given that we 

can compute the steam demanded from the whole system and its 

thermodynamic properties, we can search for an empirical model that links the 

steam produced and the natural gas used in boilers.  
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 𝑓 ( 
𝑑𝑊𝐺

𝑛(𝑡)

𝑑𝑡𝑛
,
𝑑𝑊𝐺

𝑛−1(𝑡)

𝑑𝑡𝑛−1
, … ,

𝑑𝑊𝐺(𝑡)

𝑑𝑡
,𝑊𝐺(𝑡),𝑊𝑆𝐵𝑜(𝑡), 𝐻𝑆𝐵𝑜(𝑡)) = 0 (5.32) 

 

 

Directive 2012/27/UE 

To compute the PES index, we have used Equation (4.1) assuming that the 

efficiency of our cogeneration plant is always above 75% (see Equation (4.4)). 

This can be easily forced in the optimization problem as a constraint. Therefore, 

we can consider that all the heat, electricity, and fuel is generated in “CHP 

mode”.  The reference values needed in (4.1) were obtained from Regulation 

2015/2402. Following Decision 2008/952/EC, we have computed the heat 

obtained in the cogeneration system as the difference between the steam heat 

at the inlet of the saturator and the water heat used in the boilers, assuming that 

water losses are negligible.  

 𝑄𝐶𝐻𝑃(𝑡) = 𝑊𝑆𝑆𝑎𝐼𝑛(𝑡) · (𝐻𝑆𝑆𝑎𝐼𝑛(𝑡) − 𝐻𝑊𝐵𝑜) (5.33) 

On the other hand, the fuel energy can be obtained using Equation (5.34), 

and the electricity generated in the plant can be considered to be the one fixed 

in the turbines: 

 𝐹𝐶𝐻𝑃(𝑡) = 𝑊𝐺(𝑡) · 𝐿𝐻𝑉𝐺  (5.34) 

 𝐸𝐶𝐻𝑃(𝑡) = 𝐸𝑇𝑢(𝑡) (5.35) 

Note the reader that all the variables needed have been already computed 

in the previous sections. 

5.3 Black-box models identification 

Following the methodology described in Section 3.2, and considering that our 

plant is simulated, we can assume that all the process variables needed for 

identification are measured, trusty, and available. Therefore, after having dealt 

with the first-principles equations of the model, now, we must identify each of 
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the black-box equations that were remarked in Section 5.2, specifically, 

equations (5.2-5.4 and 5.32). To do so, first, we must run some experiments to 

check the linearity of each relationship, analyze its dynamic response, and later, 

we need to select a structure for each equation and perform a regression 

analysis.  

Beet-sugar factory heat demand (𝑄𝑝) 

It was defined in equation (5.2) as a dynamic equation which depends on the 

beet processing rate and the evaporation working pressure. To check linearity, 

some experiments were carried out trying different values for both input 

variables throughout its working range and measuring the heat demand in the 

stationary state. The experiments were performed independently for each input 

variable, maintaining the other one constant. The results of such experiments 

are shown in Figure 5-7. As the reader can see, the relationship of pressure and 

production with heat consumption can be assumed to be linear in the steady 

state for the operational point considered. Based on that conclusion, we have 

assumed that this condition holds for other points, and it will be tested later in 

the validation step.  

 
Figure 5-7. Experiments carried out to show linearity dependence between 𝑄𝑝 and 

𝑊𝐵𝑆𝑡𝑂𝑢𝑡  (left) and 𝑃𝑆𝑆𝑎𝑂𝑢𝑡 (right). 

Once linearity has been studied, the step response for both inputs is shown 

in Figure 5-8. A second order dynamic response with a delay of almost one hour 

and a settling time of three hours can be discerned for 𝑊𝐵𝑆𝑡𝑂𝑢𝑡. Regarding 

𝑃𝑆𝑆𝑎𝑂𝑢𝑡, things are more complicated to deduct considering the step response 
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during the first instants of the transitory period. Such behavior is due to the 

aggressive tuning of the split-range pressure controller, which tries to take the 

pressure to the new set-point in the shortest possible time. This is done in order 

to send steam to the system as quickly as possible if required. A settling time of 

one hour can be observed, and there is no delay in the response. If the first part 

of the transient is ignored, the step response behavior is close to a typical linear 

first order system, with no delay and a settling time of one hour. For the 

optimization problem considered, capturing the steady state is essential, but 

transients are also important if they expand in time. In the case of the heat 

energy consumption with respect to the evaporation working pressure, the 

transient overshoot is damped relatively quickly, so the model proposed for its 

identification should not be focused on this short response. 

 
Figure 5-8. Dynamic response of 𝑄𝑝 for a step in 𝑊𝐵𝑆𝑡𝑂𝑢𝑡 (left); Dynamic response of 𝑄𝑝 

for a step in 𝑃𝑆𝑆𝑎𝑂𝑢𝑡 (right). 

With all this information, a fourth order state-space model is proposed. For 

simplicity we have assumed the coefficients to be constant. This assumption will 

be validated during the validation step. To obtain the model, the MATLAB® 

system identification toolbox was used, and the resulting model is shown in 

equation (5.36).  



5.Integral System Model of a Beet-Sugar Factory                                                                                                   

 

83 

 

 

𝑄𝑝(𝑡) = 𝑄𝑃𝑒𝑞 + Δ𝑄𝑃(𝑡) 

�̇�𝑄𝑃(𝑡) = [

−1.077 −8.815 · 10−2

6.250 · 10−2 0.000
0.000             0.000
0.000             0.000

0.000               0.000
0.000               0.000

−5.521 · 10−4 −3.252 · 10−4

4.883 · 10−4 0.000

] 𝑥𝑄𝑃(𝑡) 

+[

256.000    
0.000
0.000
0.000

0.000
0.000
0.250
0.000

] [
Δ𝑊𝐵𝑆𝑡𝑜𝑢𝑡(𝑡 − 3600)

Δ𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)
] 

Δ𝑄𝑃(𝑡) = [172.400 1.744     5.629 · 10−5 0.231] 𝑥𝑄𝑃(𝑡) 

(5.36) 

Beet-Sugar factory electricity power demand (𝐸𝑝) 

In the previous section, the factory electricity power consumption was defined 

as a dynamic function of the beet processing rate (equation (5.3)). According to 

(Frankenfeld and Voss, 2004; Urbaniec, 1989), it has been assumed that for the 

operational range considered, its dependency can be considered as linear. Note 

that in the same fashion as the beet-sugar factory heat demand, this assumption 

will be tested in the validation section. The step response is shown in Figure 5-9. 

From such Figure 5-9, a second order dynamic response can be inferred. 

Again, a delay of almost one hour appears between the input and the output, 

and a settling time of approximately three hours can be discerned. A state-space 

second order dynamic system is proposed, and the final model obtained is shown 

in Equation (5.37). 

 

𝐸𝑝(𝑡) = 𝐸𝑃𝑒𝑞 + Δ𝐸𝑃(𝑡) 

�̇�𝐸𝑃(𝑡) = [
−1.021 · 10−3 −8.359 · 10−4

4.883 · 10−4 0
] 𝑥𝐸𝑃(𝑡) 

+[
0.125
0
] [Δ𝑊𝐵𝑆𝑡𝑜𝑢𝑡(𝑡 − 3600)]   

Δ𝐸𝑃(𝑡) = [2.423 · 10−2 0.127]𝑥𝐸𝑃(𝑡) 

(5.37) 
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Figure 5-9. Dynamic response of 𝐸𝑝 for a step in 𝑊𝐵𝑆𝑡𝑂𝑢𝑡. 

Pressure inside the evaporation fourth effect (𝑃𝐼𝑉)  

In equation (5.4), the pressure inside the evaporation fourth effect was defined 

as a dynamic function of the evaporation working pressure (𝑃𝑆𝑆𝑎𝑂𝑢𝑡), and the 

beet processing rate (𝑊𝐵𝑆𝑡𝑂𝑢𝑡). To study the linearity of 𝑃𝐼𝑉  with respect to both 

inputs, different experiments were carried out changing the values of each input 

while the other remains constant and waiting until the stationary was reached. 

The results of these experiments are shown in Figure 5-10.  

Again, considering the results shown in Figure 5-10 we have assumed that 

linearity holds for other points inside the operational range. In Figure 5-11, the 

dynamic response of 𝑃𝐼𝑉  when step changes are introduced in 𝑊𝐵𝑆𝑡𝑂𝑢𝑡 and 

𝑃𝑆𝑆𝑎𝑂𝑢𝑡  is shown. As it can be observed, when the beet processing rate is 

increased, the pressure inside the fourth effect rises following a typical linear 

second order response. The delay and the settling time are the same as before 

with 𝑄𝑝 and 𝐸𝑝. With respect to 𝑃𝑆𝑆𝑎𝑂𝑢𝑡, a very similar response to the one seen 

for 𝑄𝑝 is found. Again, if the first part of the transient state is ignored, the 

response of the system is close to a first order dynamic, there is no delay, and 
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the settling time is one hour. Thus, with the same reasoning as the one used for 

the identification of 𝑄𝑝, a MIMO fourth order state-space model is obtained 

using identification techniques: 

 
Figure 5-10. Results of the experiments carried out to show linearity dependence 

between 𝑃𝐼𝑉 and 𝑊𝐵𝑆𝑡𝑂𝑢𝑡 (left) and 𝑃𝑆𝑆𝑎𝑂𝑢𝑡 (right). 

 

𝑃𝐼𝑉(𝑡) = 𝑃𝐼𝑉𝑒𝑞 + Δ𝑃𝐼𝑉(𝑡) 

�̇�𝑃𝐼𝑉(𝑡) = [

−0.309 −5.434 · 10−2

6.250 · 10−2 0.000
0.000 0.000
0.000 0.000

−7.163 · 10−4 −3.915 · 10−4

4.883 · 10−4 0.000
0.000 0.000
0.000 0.000

] 𝑥𝑃𝐼𝑉(𝑡) 

+[

0.250             0.000
0.000             0.000
0.000 9.766 · 10−4

0.000              0.000

] [
Δ𝑊𝐵𝑆𝑡𝑜𝑢𝑡(𝑡 − 3600)

Δ𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡)
] 

Δ𝑃𝐼𝑉(𝑡) = [9.397 · 10−2 0.122     −1.449 · 10−7 −5.935 · 10−4]𝑥𝑃𝐼𝑉(𝑡) 

(5.38) 
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Figure 5-11. Dynamic response of PIV for step changes. WBStOut (Left); PSSaOut (Right). 

Natural gas consumption (𝑊𝐺) 

In Equation (5.32) we defined the boilers natural gas consumption as a function 

of the mass flow and the specific enthalpy of the overheated steam produced. 

However, doing some experiments, we reached the conclusion that considering 

both inputs separately they were not linearly related to 𝑊𝐺. However, things 

changed when we used the heat (𝑄𝑆𝐵𝑜) instead. The problem was that we could 

not measure the heat of such stream, therefore, we used the mass flow, 

temperature and pressure measures to compute it using equation (5.39). 

 𝑄𝑆𝐵𝑜 = 𝑊𝑆𝐵𝑜 · 𝐻𝑆𝐵𝑜 (5.39) 

In this case, to test linearity, since the heat of a current cannot be directly 

manipulated, we made some experiments in the stationary, changing the beet 

processing rate (𝑊𝐵𝑆𝑡𝑂𝑢𝑡) and the power generated in the turbines (𝐸𝑇𝑢), which 

are the most influential variables. From the results shown in Figure 5-12, it can 

be inferred that the relation between the superheated steam heat and the 

natural gas flow is almost linear in the stationary state. Note the reader that we 

are using a simulation, such a good regression would not be expected in real 

systems.  
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Figure 5-12. Linearity between QSBo and WG. 

Regarding the dynamic relation between 𝑄𝑆𝐵𝑜 and 𝑊𝐺, since a proper step 

cannot be carried out, apart from the lack of delay between them, little more 

information could be gathered from the results shown in Figure 5-13, so we 

proposed a second order state-space which will be evaluated in validation, and 

we identified the following model:  

 

𝑊𝐺(𝑡) = 𝑊𝐺𝑒𝑞 + Δ𝑊𝐺(𝑡) 

�̇�𝑊𝐺(𝑡) = [
−7.528 · 10−2 −2.828 · 10−2

−1.563 · 10−2 0
] 𝑥𝑊𝐺(𝑡) 

+[1.953 · 10
−3

0
] [Δ𝑄𝑆𝐵𝑜 (𝑡)]   

Δ𝑊𝐺(𝑡) = [1.038 · 10−3 2.308 · 10−4]𝑥𝑊𝐺(𝑡) + [2.101 · 10
−6]𝑢𝑊𝐺(𝑡) 

(5.40) 
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Figure 5-13. Dynamic response of WG for changes in QSBo. 

Note that although the black-box equations of the model have been 

obtained, still, the first-principles equations parameters must be found to 

complete the model. To do so, following the methodology presented in Section 

3.2, the black-box equations obtained must be added to the first-principles 

equations, and a least-squares constrained regression problem must be solved. 

However, considering that our plant is simulated, we already know the actual 

values, which can be found in Appendix A, and for the sake of briefness, we have 

skipped directly to the validation section.  

5.4 Validation 

To carry on with the validation step, first, we need to make a symbolic 

manipulation of the model obtained in order to simulate it. To do so, we have 

used Ecosimpro® as modeling and simulation environment, which supports 

acausal equations, giving more freedom to the modeler. Thus, after introducing 

the equations in any order and the boundary variables, the program itself finds 

the model causality, alerting about possible algebraic or high-index problems 

that can be treated with a setup assistant (Cellier, 1991). Table 5-1 shows the 

principal features of the resulting optimization model and compares them with 

the simulator model used as real plant. 

 

 



5.Integral System Model of a Beet-Sugar Factory                                                                                                   

 

89 

 

Table 5-1. Main features of the optimization and simulator models. 

 
Simulator 

model 

Optimization 

model 

Number of equations  6485 52 

    - Static 

    - Dynamic 

6036 

449 

38 

14 

Parameters 2131 23 

Variables 6456 48 

Inputs 29 4 

Non-linear algebraic loops 8 3 

 

The size of the resulting dynamic model accomplishes the objectives 

searched in the modeling stage. It has four inputs (𝑊𝐵𝑆𝑡𝑂𝑢𝑡, 𝐸𝐺 , 𝑇𝑆𝐵𝑜, 𝑃𝑆𝑆𝑎𝑂𝑢𝑡), 

the same as the real system, and a reduced number of variables and parameters, 

which makes it appropriate for our optimization purposes.  Furthermore, to run 

the simulation, we need a good starting point, which as it was explained in 

section 3.2, can be obtained from the dynamic data reconciliation. With the 

optimization model ready for simulation, the inputs shown in Figure 5-14 were 

introduced to both the simulator and the optimization model.   

Their response have been analyzed in two different ways: First, both 

responses were compared graphically in Figure 5-15; and later, the Root Mean 

Squared Error (RMSE) (see Equation (5.41)) was computed to show the error of 

the model numerically, which are shown in Table 5-2. This index is one of the 

most used in the literature and calculates the error of the model with respect to 

the measurements, weighing the farthest predictions. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (5.41) 



5.Integral System Model of a Beet-Sugar Factory  

 

90 

 

 
Figure 5-14. Input sequence for validation. (A) Beet processing rate (𝑊𝐵𝑆𝑡𝑂𝑢𝑡); (B) 

Electricity power generation (𝐸𝑇𝑢); (C) Evaporation working pressure (𝑃𝑆𝑆𝑎𝑂𝑢𝑡); (D) 

Superheated steam temperature obtained in boilers (𝑇𝑆𝐵𝑜). 

 

Table 5-2. Analytical model validation results 

Output Variable RMSE [Ud] Output Mean [Ud] Relative Error [%] 

𝑄𝑝 0.566 MW 67.61 MW 0.84 

𝐸𝑝 0.037 MW 7.79 MW 0.47 

𝑊𝐺 0.018 kg/s 1.47 kg/s 1.24 

𝜏𝑆𝑡 0.52 h 45.96 h 1.12 

𝑃𝐸𝑆 0.01 0.13 6.31 

𝑃𝐼𝑉 0.01 barA 1.22 barA 0.52 
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Figure 5-15. Outputs from data validation (blue simulator, orange optimization model). 

(A) Heat energy consumption (Qp); (B) Electricity consumption (Ep); (C) Natural gas 

mass flow rate; (D) Beet residence time stocked (τSt); (E) PES index; (F) Steam pressure 

inside the evaporation fourth effect. 

Results discussion  

Figure 5-15 shows that, for almost all the time, the output of the optimization 

model follows the shape of the output of the simulator. For every output 

variable, it can be seen how the stationary state is captured reasonably well. The 

transient state is clearly affected by the linear assumptions made when obtaining 
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the model. Here, the behavior of the model during slow and quick transients can 

be differentiated. For slow transients, caused by changes in production, the 

dynamic of the real plant is approximated by a straight line. This can be observed, 

for example, in 𝑊𝐺  from 10 to 13 h approximately. Although this response is not 

perfect, for the purpose of the model, it is sufficiently close to the real value of 

the plant. On the other hand, when quick transients are considered, in most 

cases, the model can predict such changes, but that fails when computing the 

amplitude. This is especially relevant in the prediction of the PES. However, since 

those transients are too short and this index is evaluated yearly, it is enough for 

the desired purpose. 

The graphic results can be corroborated in Table 5-2. Here, for every variable 

except PES, the relative error is below 2%. This means that the response of the 

model is very close to the response of the simulated plant. In the case of the PES, 

the quick transients, and a bias from hour 3 to hour 7, make the relative error 

move to 6.31. Traditionally, an error below 5% is considered sufficiently good. In 

our case, this value is slightly exceeded because of the reasons stated above.  

With these results, we can conclude that the model accuracy is good enough 

to substitute the simulation module in the operational range considered and use 

it inside the optimization. This is key in order to use dynamic optimization with 

an industrial approach. The big number of dynamic equations joined to several 

hundreds of parameters needed make the simulation module not suitable for 

industrial dynamic optimization, since it would involve enormous computational 

times which would make difficult to perform tests and to obtain and maintain 

such model.  
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Chapter 6  

Optimal operation of a beet-sugar 

factory working with a CHP unit 
6 Optimal operation of a beet-sugar factory working with a CHP unit 

 

In this chapter we address the formulation of the dynamic-integrated 

optimization problem applied to the simulated sugar factory case study depicted 

in Chapter 4. Such work has been done based on the model of the system 

previously obtained in Chapter 5.1. To solve the resulting non-linear dynamic 

optimization problem, following the methodology described in Chapter 3, we will 

use a simultaneous approach with a gradient-based solver like IPOPT. All the 

model equations will be discretized using orthogonal collocation, so no external 

simulator will be needed.  

The chapter is structured in the following way. In the first section, we present 

the formulation of the optimization problem solved. Since part of the 

formulation has already been presented in the previous chapter, first, we focus 

on the reformulation of part of such model to make it suitable for using a 

gradient-based solver. Later, some specific constraints that deal with the 

legislation applied and the electricity market are explained, and finally, the 

objective function is presented. Considering that weights must be applied in the 

different terms of the objective function, once the whole optimization model is 

defined, the tuning of such parameters is addressed in the second section. Lastly, 



6.   

 

94 

 

in the third section of this chapter, the results of the optimization are shown in 

two different ways. First, the optimizer response is analyzed for some isolated 

days to analyze in detail the tool performance. Later, the results for a whole 

campaign are presented and discussed.  

6.1 Optimization problem formulation  

6.1.1 Model reformulation 

As it was mentioned before, note the reader that the strategy that will be 

followed to solve the dynamic optimization problem is the simultaneous 

approach using a gradient-based solver. It is well known that discontinuous 

equations must be avoided when using this kind of algorithms, however, 

sometimes such discontinuous expressions cannot be avoided, and must be 

addressed somehow. In the following subsections we will address the solution 

adopted to deal with discontinuities in several points of the process. 

Split-range Controller 

In the previous chapter the split-range controller was modeled using max and 

min clauses (Equations (5.10) and (5.11)). This was done to simulate the 

discontinuous behavior of the controller, but now a reformulation is needed. To 

introduce such equations in the optimization problem, complementarity 

constraints have been used, where complementarity refers to the relationship 

between variables where one (or either both) must be at its bound. More 

information about them can be found in (Biegler, 2010).   

 𝑂𝑝𝐵𝑦(𝑡) =
𝑣𝑚𝑎𝑥

𝑣𝑚𝑎𝑥 − 45
· (𝑣(𝑡) − 45) · 𝑦(𝑡) (6.1) 

 𝑂𝑝𝑅𝑒(𝑡) =
−𝑣𝑚𝑎𝑥
45

· (𝑣(𝑡) − 45) · (1 − 𝑦(𝑡)) (6.2) 

 45 − 𝑣(𝑡) = 𝑆0 − 𝑆1 (6.3) 

where: 

0 ≤ 𝑦 ⊥ 𝑆0 ≥ 0 
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0 ≤ (1 − 𝑦) ⊥ 𝑆1 ≥ 0 

𝑆0(𝑡) ≥ 0,    𝑆1(𝑡) ≥ 0,    0 ≤ 𝑦(𝑡) ≤ 1 

0 ≤ 𝑂𝑝𝐵𝑦(𝑡) ≤ 100,    0 ≤ 𝑂𝑝𝑅𝑒(𝑡) ≤ 100 

and ⊥ is the complementarity operator, enforcing at least one of the bounds 

to be active. In (Biegler, 2010), four different formulations for the 

complementarity conditions were compared, and whether they should be 

implemented as constraints or as additional terms in the objective function was 

discussed. The results in that work showed that the best way to deal with them 

is using a penalty term in the objective function and solving the problem for a 

penalty parameter ρ. Therefore, this approach has been followed, and the 

implementation of these conditions will be addressed in the objective function 

section. 

Storage zone 

In the previous chapter, the storage zone was modeled using equations (5.5) and 

(5.6). With such equations, respectively, the beet residence time (𝜏𝑆𝑡) and the 

mass accumulation in the storage zone (𝑚𝑆𝑡) were computed. Now, for the 

optimization problem, we define two new variables to estimate if the residence 

time exceeds or falls below some limits given by the process knowledge. The 

upper bound has been established in 120 hours to avoid sugar losses because of 

potential beet degradation. The lower bound has been set in 15 hours to protect 

the process from running out of beet. In the objective function, these variables 

will be used to penalize undesired behaviors.  

 𝑆𝑡𝑜𝑃𝑒𝑛𝑈𝑝(𝑡) = max(𝜏𝑆𝑡(𝑡) − 120,   0) (6.4) 

 𝑆𝑡𝑜𝑃𝑒𝑛𝐿𝑜(𝑡) = max(15 − 𝜏𝑆𝑡(𝑡),   0) (6.5) 

Analogous to equations (5.10) and (5.11), since they involve the use of max 

and min terms, they have been reformulated using complementarity conditions, 

which will be enforced including an extra penalty in the objective function: 
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 𝑆𝑡𝑜𝑃𝑒𝑛𝑈𝑝(𝑡) =  𝜏𝑆𝑡(𝑡) − 120 + 𝑆3(𝑡) (6.6) 

 𝑆𝑡𝑜𝑃𝑒𝑛𝐿𝑜(𝑡) = 15 − 𝜏𝑆𝑡(𝑡) + 𝑆5(𝑡) (6.7) 

 𝜏𝑆𝑡(𝑡) − 120 = 𝑆2(𝑡) − 𝑆3(𝑡) (6.8) 

 15 − 𝜏𝑆𝑡(𝑡) = 𝑆4(𝑡) − 𝑆5(𝑡) (6.9) 

where: 

0 ≤ 𝑆2(𝑡) ⊥ 𝑆3(𝑡) ≥ 0 

0 ≤ 𝑆4(𝑡) ⊥ 𝑆5(𝑡) ≥ 0 

𝑆2(𝑡) ≥ 0,    𝑆3(𝑡) ≥ 0,    𝑆4(𝑡) ≥ 0,    𝑆5(𝑡) ≥ 0 

6.1.2 Specific constraints  

In this section, first, we will explain the formulation of the legislation referred to 

the efficient use of cogeneration systems in our optimization problem. Later, we 

will consider the interaction between the beet-sugar factory and the external 

grid. While the system model is process dependent, these constraints must 

always appear adapted for each case study.  

Directive 2012/27/UE: Application 

As it was explained in Section 4.3, to measure the efficiency of cogeneration 

processes, we recall that Directive 2012/27/UE defines that any cogeneration 

system with an installed capacity of more than 1 MWe is considered as highly 

efficient if the Primary Energy Savings (see Equation (4.1)) are at least 10% with 

respect to the separate generation. The PES index is evaluated yearly, so its 

enforcement within optimization routines with shorter prediction horizons can 

be a challenge. To make sure the legislation is respected, the index is calculated 

for each instant (t), and the integral of the index throughout the prediction 

horizon must be greater than the minimum accepted value (0.10) times the 
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prediction horizon. Thus, the optimizer has freedom to find solutions which can 

eventually go below the lower bound.  

 ∫ 𝑃𝐸𝑆(𝑡)𝑑𝑡 ≥ 0.1 · 𝑇
𝑇

0

 (6.10) 

According to Directive 2012/27/UE, a cogeneration plant can be divided into 

two different parts, CHP and non-CHP. For the case studied, if the global 

efficiency of the plant (𝜇𝐺) is equal to or greater than 75%, then it is considered 

that all the fuel, heat, and electrical energy is generated in the CHP part (see 

Equation (4.4)). However, if the efficiency goes below 75%, then part of the fuel 

and electrical energy is obtained in the non-CHP part. Again, the global efficiency 

of the plant is evaluated annually so, in order to ensure that this efficiency is 

always above 75%, the same approach carried out for the PES index has been 

used. 

 ∫ 𝜇𝐺(𝑡)𝑑𝑡 ≥ 0.75 · 𝑇
𝑇

0

 (6.11) 

Electricity market 

For the electricity market, it has been assumed that the electricity bids sent to 

the market operator are always accepted. This assumption has been done based 

on the idea of the retailer bidding for the electricity needed or the remnant with 

a sufficiently low price with respect to the expected matching value (or even 

zero). Since the electricity market is marginalist, the final market price will be the 

same for every agent, and the price paid or obtained for the electricity 

negotiated will depend on the tariff used and the exact conditions negotiated. 

Therefore, in this work, three different possibilities have been considered. Two 

are based on tariffs with fixed prices, and the last one is directly based on the 

market electricity prices. These options cannot be combined, so only one of them 

will be used at a time: 

• Base Load Contract (BL) 

• Time of Use (TOU) 

• Day-Ahead Market  
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One of the main features of the optimization problem presented in this work 

is its capability to calculate the amount of electricity that the intermediary should 

bid on in the market based on the predictions made regarding the electricity 

price and beet availability. The electricity generated in the turbines must always 

be equal to the beet-sugar process demand (𝐸𝑝) plus the power committed with 

the external grid (𝐸𝐶), which considering that the market bids are hourly based, 

must always remain constant within an hour:  

 𝐸𝑇𝑢(𝑡) = 𝐸𝑝(𝑡) + 𝐸𝑐(𝑡) (6.12) 

Considering the big process inertia, and the sharpness of changes in the 

electricity commitment, the split-range pressure control system is used to absorb 

the oscillations in the steam generation caused by the perfect matching of 

electricity generation and demand. Note the reader that in the simulation model, 

the electricity committed to the external grid was not considered and the power 

generated in turbines was a boundary value. In the optimization problem, with 

Equation (6.12), 𝐸𝑇𝑢 is computed from 𝐸𝐶 , which is a decision variable, and 𝐸𝑝, 

which is computed using Equation (5.3).  

6.1.3 Objective function  

In the objective function, apart from the specific energy cost, which was defined 

in Equation (5.1), four more different terms have been added with diverse aims. 

Each one of them is fully explained next. 

 
𝐽 ≔ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦 𝑡𝑒𝑟𝑚 +𝑀𝑜𝑣𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 

+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 + 𝑇𝑢𝑟𝑛𝑝𝑖𝑘𝑒 𝐶𝑜𝑠𝑡 

(6.13) 

Complementarity term 

In order to model the split-range controller and the storage penalties, 

complementarity conditions have been used, as previously described. Hence, to 

implement such constraints in the optimization problem, a penalty term has 

been added to the cost function. Thus, the problem feasibility is not 

compromised, avoiding the inclusion of tight equality constraints into the 
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optimization problem. Therefore, two different terms have been added, each 

one with a different weight 𝜌.  

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦 𝑡𝑒𝑟𝑚 = 

1

𝑇
∫ (𝜌𝑆𝑅 (𝑦(𝑡) · 𝑆0(𝑡) + (1 − 𝑦(𝑡)) · 𝑆1(𝑡))
𝑇

0

+ 𝜌𝑆𝑃(𝑆2(𝑡) · 𝑆3(𝑡) + 𝑆4(𝑡) · 𝑆5(𝑡))) 𝑑𝑡 

(6.14) 

Smoothing Term 

To avoid high frequency oscillations in the solution, a penalty term on the 

variation of the decision variables is added to the objective function. The weights 

of this term must be used carefully, since very high values deeply affect the 

original solution given by the optimizer. 

 

𝑀𝑜𝑣𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 

1

𝑇
∫ (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑡) −𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑡 − Δt))

2
𝑇

0

+ 𝜌𝑇𝑆𝐵𝑜(𝑇𝑆𝐵𝑜(𝑡) − 𝑇𝑆𝐵𝑜(𝑡 − Δt))
2

+ 𝜌𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡) − 𝑃𝑆𝑆𝑎𝑂𝑢𝑡(𝑡 − Δt))
2
) 𝑑𝑡  

(6.15) 

Where 𝑡 is the instant when the control input is evaluated and 𝑡 − Δt is the 

current instant minus a preselected time-step.   

Storage Penalty 

This term is added to penalize values of the beet residence time outside the pre-

established bounds. Remember that with equations (6.6) - (6.7), high or low 

residence time (𝜏𝑆𝑡) is calculated for each time t. Then, the integral of that term 

is computed, so the longer the residence time is out of bounds, the higher the 

penalty applied, allowing a small violation of the limits if necessary. 

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜌𝑆𝑡∫ (𝑆𝑡𝑜𝑃𝑒𝑛𝑈𝑝(𝑡) + 𝑆𝑡𝑜𝑃𝑒𝑛𝐿𝑜(𝑡))𝑑𝑡
𝑇

0

 (6.16) 
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Turnpike cost 

The turnpike property (Dorfman et al., 1958; Ellis et al., 2014; Faulwasser et 

al., 2017) is used to describe the response that appears in many finite-horizon 

dynamic optimization problems, where the solution is forced to pass through the 

optimal steady-state before reaching the final point, which gives a better 

economic result. This behavior appears when the prediction horizon is large 

enough, so the optimizer “pays” the cost of the turnpike (the optimum steady-

state) to reach the final point with the least possible cost. Thus, if the predicted 

trajectory stayed at the final point for too long, the overall cost would be higher 

than passing through the optimal steady-state point for some time.  

In this case study, the prediction horizon is one day, which is long enough to 

let the turnpike property appear and, at the end of the predicted state trajectory, 

the optimizer moves the plant away from the optimum steady-state point. The 

problem with this behavior is that the optimizer does not know that another 

optimization will be run the next day, so it moves the plant to a point that is 

hardly convenient to be the starting point for that day. To deal with this problem, 

two complementary strategies are proposed. The first one aims to assure that 

the final point suggested by the optimizer is a stationary point. Thus, the solution 

can be bad, but at least it is not a transient to an unknown destination. The 

implementation has been performed using terminal constraints on the end state, 

which ensure that the gradient w.r.t the decision variables is zero. Next, the 

steady state achieved is desired to be the best possible one. To do so, a final term 

is added to the objective function which represents the cost of maintaining the 

process at such a state during the first five hours of the next day, assuming the 

electricity price and beet arrival to be the ones already used for the first five 

hours of the current day. Five hours have been used because that is the slowest 

plant dynamics (𝜏𝑚𝑖𝑛). 

 𝑇𝑢𝑟𝑛𝑝𝑖𝑘𝑒 𝐶𝑜𝑠𝑡 = 𝜌𝑇𝑝∫ (

𝑊𝐺(𝑇)
𝑑𝐺

· 𝐻𝐻𝑉𝐺 · 𝑃𝑟𝐺 −
𝐸𝐶(𝑇)
3600 · 𝑃𝑟𝑒

(𝑡)

𝑊𝐵𝑆𝑡𝑂𝑢𝑡(𝑇)
)𝑑𝑡

𝜏𝑚𝑖𝑛

0

 (6.17) 
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6.2 Penalty weights tuning 

Note that a good selection of the penalty weights for (6.14) – (6.17) is essential 

for the performance of the described methodology. A wrong choice could lead 

to suboptimal or infeasible solutions. This is critical in the case of the 

complementarity terms since, otherwise, the split range would not be correctly 

modeled, and the compliance of the storage penalty could not be ensured. In 

Section 3.3, we described a methodology to find such values, and in this section, 

we apply it to our case study. In Appendix A the selected values for our case study 

can be found. 

The first stage of the methodology consists in selecting representative 

scenarios that cover the full operation spectrum for one operation day. The 

number of representative scenarios that must be chosen depends on the number 

of exogeneous input variables. In our case, we have 2 exogeneous variables, the 

electricity price and the beet arrival, so we need four scenarios, which will 

correspond to extreme cases:   

1. High electricity price and low beet arrival (PHBL). 

2. High electricity price and high beet arrival (PHBH). 

3. Low electricity price and low beet arrival (PLBL). 

4. Low electricity price and high beet arrival (PLBH). 

 
Figure 6-1. Values selected for the exogeneous input variables of our model. High 

electricity price (solid blue); Low electricity price (dashed-dotted green); High beet 

arrival (solid red); Low beet arrival (dashed cyan).  
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Now, we need to find the minimum penalty weight that affects the solution, 

which is the supreme of the values found for each scenario, and then, increase it 

to cope with the design preferences. Note the reader, that for our case study, 

this task has been performed in a sequential way, that is, starting with the most 

critical weight, we set to 0 the rest of the weights, we obtained a tuned value, 

we fixed it, and then we followed with the rest of the penalties. The followed 

order is shown below: 

1) Complementarity split-range controller term (𝜌𝑆𝑅). 

2) Turnpike term (𝜌𝑇𝑃). 

3) Smoothing terms (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡
, 𝜌𝑇𝑆𝐵𝑜 , 𝜌𝑃𝑆𝑆𝑎𝑂𝑢𝑡). 

4) Complementarity storage penalty term (𝜌𝑆𝑃). 

5) Storage penalty (𝜌𝑆𝑡). 

For such a task, following the methodology, we have used the bisection 

method, and to evaluate whether the solution is affected or not, for each penalty 

weight, we have looked if the values of the following outputs remained constant 

between iterations: 

• 𝜌𝑆𝑅: Opening of the bypass and relief valves (𝑂𝑝𝐵𝑦 , 𝑂𝑝𝑅𝑒). 

• 𝜌𝑇𝑝: Decision variables at the end of the prediction horizon 

(𝑊𝑆𝑡𝑢𝑂𝑢𝑡 , 𝑇𝑆𝐵𝑜 , 𝑃𝑆𝑆𝑎𝑂𝑢𝑡 , 𝐸𝑇𝑢). 

• 𝜌𝑊𝐵𝑆𝑡𝑢𝑂𝑢𝑡
: Beet mass flow leaving the storage zone (𝑊𝑆𝑡𝑢𝑂𝑢𝑡). 

• 𝜌𝑇𝑆𝐵𝑜: Temperature of the steam leaving the boilers (𝑇𝑆𝐵𝑜). 

• 𝜌𝑃𝑆𝑆𝑎𝑂𝑢𝑡 : Pressure of the steam leaving the saturator (𝑃𝑆𝑆𝑎𝑂𝑢𝑡). 

• 𝜌𝑆𝑃: Computation of the variables 𝑆𝑡𝑜𝑃𝑒𝑛𝑈𝑝 and 𝑆𝑡𝑜𝑃𝑒𝑛𝐿𝑜. 

• 𝜌𝑆𝑡: Storage residence time (𝜏𝑆𝑡). 

We recall that for the complementarity penalty weights, an increment from 

the above minimum values may cause distortions in the problem geometry 

without potential benefits, so we have kept the weight equal to the minimum 

found. In Figure 6-2 and Figure 6-3 we show the influence of the penalty weights 

on the solution for the PHBH scenario. To keep it short, we only show the results 
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for the turnpike penalty weight (𝜌𝑇𝑃) and the beet storage output smoothing 

weight (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡
).  

 
Figure 6-2. Beet production rate suggested by the optimizer in the PHBH scenario for 

different 𝜌𝑇𝑃 values. In blue (𝜌𝑇𝑃=0); In green (𝜌𝑇𝑃=0.05); In red (𝜌𝑇𝑃=0.1); In cyan 

(𝜌𝑇𝑃=0.2); In magenta (𝜌𝑇𝑃=1). 

As Figure 6-2 shows, the beet processing rate can change significantly for the 

late hours of the day depending on the value of 𝜌𝑇𝑃. We recall that to deal with 

the turnpike property we count with two different strategies. In Figure 6-2, we 

see that independently of the value of 𝜌𝑇𝑃 the optimization end-point is always 

a stationary point. This was enforced with terminal constraints as explained in 

the previous section. Furthermore, we count with an expression that adds to the 

cost function the cost of maintaining the process in such steady state for five 

hours assuming that the electricity price and the beet input are the same as the 

day before. Such expression is the one multiplied by 𝜌𝑇𝑃, and we see that if we 

increase the penalty weight value, the final stationary point changes. Of course, 

the behavior of the optimizer makes sense in the last hours of the prediction 

horizon. Considering that the electricity price of the early hours is reasonably 

lower than for the late hours, the optimizer suggests moving the production 

upwards in order to sell less electricity and produce more sugar in the early hours 

of the next day. The higher the penalty weight value is, the more importance the 

end-point has over the cost function, so the penalty weight must be chosen 
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carefully to not affect in excess the rest of the solution. We can see that if the 

weight value is too high (magenta), the solution for the rest of the day starts to 

change significantly in order to benefit the last point. We can also observe that 

starting from a value of zero, if we increase just a little the penalty weight, the 

optimization end-point changes significantly. However, as we approach to 𝜌𝑇𝑃 =

1, the changes are smaller.   

 
Figure 6-3. Beet production rate suggested by the optimizer in the PHBH scenario for 

different 𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡 values. In blue (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡=0); In green (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡=0.1); In red 

(𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡=0.5); In cyan (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡=1); In magenta (𝜌𝑊𝐵𝑆𝑡𝑂𝑢𝑡=5). 

In Figure 6-3, we see the influence of 𝜌𝑊𝐵𝑆𝑜𝑂𝑢𝑡  over the beet production 

rate, when the rest of the weights are fixed at their nominal values. We recall 

that such penalty is part of the smoothing term added to the cost function. In 

this case, we see that for small values of the penalty weight, the solution is highly 

oscillating, which could never be applied to a real system. As we increase the 

penalty weight, we see how the solution starts to smoothen, however, if the 

penalty weight is too high (magenta), the penalty over movements in the beet 

production rate is too high with respect to the rest of the cost function, and the 

optimizer prefers to keep the process far from the lower limit bound, strategy 

that considering the convenient electricity prices at noon is clearly not optimal. 

In the extreme case, if the penalty value is increased a lot, the optimizer would 

suggest not moving the production rate at all.  
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Once we had a set of penalty weight candidates, we performed a local 

sensitivity analysis to check whether small variations in the penalty weights 

found caused important effects on the optimization results. For this purpose, 

first, we evaluated the energy cost for each of the selected scenarios using the 

nominal penalty weight values. Then, we set a 1% increment for each candidate 

and each scenario independently, and we evaluated the energy cost again. 

Finally, we computed the sensitivity as the percentage ratio of the energy cost 

variation w.r.t the nominal value.  The results obtained can be found in Table 6-1. 

 

Table 6-1. Local sensitivity analysis results. The absolute values in the even columns are 

the energy costs, nominal and with penalties numerically disturbed, for each scenario. 

 PHBL (€) Sensitivity 

(%) 

PHBH (€) Sensitivity PLBL  

(€) 

Sensitivity 

(%) 

PLBH (€) Sensitivity 

(%) 

Nominal 11668,43 - 12026,69 - 15106,35 - 16776,30 - 

𝜌𝑆𝑅 11668,30 <0.01 12027,84 0,01 15106,35 <0.01 16776,30 <0.01 

𝜌𝑆𝑃 11668,43 <0.01 12025,70 -0,01 15106,35 <0.01 16775,15 -0,01 

𝜌𝑊𝐵𝑆𝑡𝑢𝑂𝑢𝑡
 11668,43 <0.01 12026,77 <0.01 15106,35 <0.01 16776,30 <0.01 

𝜌𝑇𝑆𝐵𝑜 11668,43 <0.01 12026,91 <0.01 15106,35 <0.01 16776,31 <0.01 

𝜌𝑃𝑆𝑆𝑎𝑂𝑢𝑡 11668,43 <0.01 12025,25 -0,01 15106,35 <0.01 16776,31 <0.01 

𝜌𝑆𝑡 11668,41 <0.01 12025,74 -0,01 15106,39 <0.01 16775,59 <0.01 

𝜌𝑇𝑝 11668,07 <0.01 12027,03 <0.01 15106,35 <0.01 16776,31 <0.01 

 

6.3 Results  

This section has been divided into two different parts. In the first subsection, the 

results obtained for a single-day operation are presented. These will be useful to 

analyze in detail the behavior of the optimizer for different scenarios, where the 

electricity prices and the beet input vary within usual ranges. In the second 

subsection, the results using the optimizer for a whole campaign are presented 

and compared to the scenario traditionally used in sugar factories, where the 

production rate is kept at its maximum, and the electricity excess is exported to 

the grid under a BL tariff with fixed prices. 
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6.3.1 Single-day response 

As mentioned before, in the considered case study, there are two exogenous 

parameters: the electricity price and the raw material received in the sugar 

factory (beet input). The price of the electricity is key to determine the 

convenience of selling or buying electricity from the external grid. Furthermore, 

monitoring the arrival of raw material is also essential, in order to maintain the 

beet residence time between limits, thus, minimizing the sugar losses and 

preventing the situation where no raw material is available for production.  

To test the behavior of the optimizer, some scenarios with different 

electricity prices and beet inputs were selected. Different experiments were 

carried out by fixing either the price profile or the beet-input profile, in order to 

evaluate the optimizer solutions with respect to each non-influential factor. The 

starting point was the same for all the cases, which corresponds to the classical 

policy where production is carried out at the maximum rate in order to finish the 

campaign as soon as possible to reduce fixed expenses. 

 
Figure 6-4. Scenarios used to test the response of the optimizer against different 

electricity prices. TOU rate (dashed-dotted green), Market high (solid blue) and Market 

low (dashed orange). 

First, the beet input was fixed. As Figure 6-4 shows, trucks only deliver beet 

from 6 AM to 9 PM. The corresponding graph represents the total amount of 

beet received each hour. Three different electricity-price scenarios, obtained 

from the considered DR programs, were tested: 
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• Time of  se tariff: with three different price zones [ 0,  5, 65] €/ Wh 

depending on the hour. 

• Spanish DA market prices for two different days: One with higher prices 

(10/12/2017), and another with much lower prices (30/12/2017).  

Due to the large number of variables defined in the optimization problem, 

only the most important ones are shown here to present the results. Among 

them, the beet processing rate and the electricity commitment are key, of 

course. Moreover, as the way to deal with the legislation is one of the 

contributions of this work, the value of the Primary Energy Saving index is also 

presented. Yet, importantly, the policy followed to store the raw material is 

analyzed, given that a lack or an excess of stocked beet can invalidate the 

proposed management policies. Note the reader that to show the influence of 

the residence time boundaries in the solution, in this section we have changed 

the residence time upper limit to 30 hours instead of 120 hours presented in 

Section 6.1.1.  

 
Figure 6-5. Summary of the results obtained for different electricity price scenarios. 

TOU (dashdot green), Market high (solid blue), Market low (dashed orange). 
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From the results shown in Figure 6-5, it is observed that the computed 

response varies significantly, depending on the price policy. For example, if the 

market case with the highest electricity prices is taken, it can be noticed that the 

production rate goes for some hours to the minimum allowed. This is done to 

sell as much electricity as possible to the external grid (almost 4 MW) during that 

period, which makes sense considering its high price. Note that the PES value 

goes to the 0.1 limit from approximately the 10th until the 14th hour of the day; 

however, the integral of the index is above 0.10, so equation (4.1) is not violated. 

Concerning the residence time, despite the aggressive policy suggested, it is 

easily kept between the bounds. From the 15th hour, the optimizer suggests 

increasing the production in order to be prepared for the next day. Recall the 

turnpike cost, which considers the five hours of the next day for the optimization 

final point using the electricity price and beet input of the current day. In this 

case the electricity price is considerably smaller for the first hours of the day, so 

the optimizer moves the process to an intermedium point.  

In the lowest price scenario, the results are quite the opposite, and the 

production rate is maintained closer to its upper limit. Furthermore, the 

electricity price is so cheap that until the 18th hour the algorithm suggests 

importing power from the external grid and operate the boilers at a lower rate. 

Note that the beet processing rate is lowered until the 6th hour approximately, 

when new beet arrives to the plant (Figure 6-4), in order to keep the residence 

time above the lower limit of 15 hours. Then, production is kept nearly constant 

during some hours to regain stock for the next day, until, in the last hours, when 

enough stock is accumulated, the optimizer suggests increasing the production 

to an upper value. This analysis is key in order to understand that the optimizer 

suggests the highest possible production rate without violating the residence 

time constraint.  

Regarding the TOU tariff, despite the price variations in the considered 

scenario, the optimizer suggests moving the plant to a stationary point. This can 

be justified considering that the process needs almost five hours to reach a 

steady state when operational changes are made in the production rate, so the 

algorithm needs the price to be maintained close to one point for several hours 

to consider the change of operating point worthwhile. This is observed in the 

market cases where the price is maintained high and low, respectively, almost 

the whole day. However, in the case of the TOU tariff, the price is only kept for a 
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few hours and then suddenly changes, making the optimizer suggest an 

intermediate operational point. Nevertheless, note that the selected point is not 

just any random one, as it corresponds to the case where the bypass and relief 

valves are both closed, and the turbines are generating the maximum power. 

Intuitively, this is the point where less energy is wasted and, given that it can be 

considered as the optimum stationary operation from an energy point of view, 

the optimizer exploits it in several scenarios. From this operating point, if the 

optimizer suggested a lower production rate maintaining the electricity 

production, the relief valve would have to be opened and, if the production rate 

was suggested to be increased, the bypass valve would have to be opened, which 

is the case in the “market high” scenario.  

In the second set of scenarios, the electricity price is fixed to the values of 

the “market high” scenario, and variations are made in the expected beet input. 

This price profile was selected to show the response of the optimizer when the 

electricity price is very convenient, but the beet storage is close to its limits. 

Again, all the tests started with the plant at the same operating point, and three 

different scenarios were considered (Figure 6-6): 

• Standard input: the beet input profile is the same as in the previous test.  

• High input: the input profile is higher because of the good weather 

conditions.  

• Low input: due to adverse weather conditions, a small quantity of beet 

could be harvested and not many trucks arrived with raw material.  

 
Figure 6-6. Scenarios used to test different beet inputs. Standard input (solid blue), High 

input (dashed-dotted green), Low input (dashed orange). 
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The predicted optimal policies for these scenarios are shown in Figure 6-7. 

Again, the same variables have been selected to evaluate the solutions suggested 

by the optimizer. 

 
Figure 6-7. Results obtained for the beet-arrival test. Standard input (solid blue), High 

input (dashdot green), Low input (dashed orange). 

From the results, several interesting conclusions can be extracted. Firstly, let 

us recall that the blue evolution in Figure 6-7 is the same as the response seen in 

the previous test for the market high scenario. This case serves as reference, 

since it is the free response of the optimizer when the residence-time constraints 

are not active. If we look at the high beet-input scenario, the reader can note 

how, despite the convenient electricity price, the production rate is much higher 

than for the nominal beet-input case. Of course, since less electricity is being 

sold, the cost function is penalized, but this is done to maintain the residence 

time just below its upper limit. It must be noticed in this case that, if only the 

electricity prices were considered, the storage area would be overwhelmed. In 

the opposite case, due to the low input of beet, the optimizer suggests going to 

the minimum operational point as fast as possible to keep the residence time 

above the lower limit. Despite all efforts, due to the extreme low input of beet, 

surpassing the minimum value set for the residence time cannot be avoided, but 

at least the least bad possible operation is suggested. 
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6.3.2 Multi-day response  

In this section we present and discuss some results for a multi-day scenario 

to show the response of the optimizer between days. We have considered five 

days using the Spanish market prices from 04/12/2017 to 08/12/2017. In Figure 

6-8, the electricity price and the beet-input range selected are shown.  

 
Figure 6-8. Electricity price and beet input for a simulated week.  

From the results shown in Figure 6-9 and Figure 6-10, we can extract that 

when the electricity price is higher (the first 72 hours), the beet production rate 

is moved to a value close to the allowed lower bound of 370 t/h. Thus, a higher 

excess of electricity can be generated, and more power is committed to the 

external grid. Nevertheless, the results are quite the opposite when the 

electricity price goes down, specially, around hour 100, when the price is very 

close to 0 €/ Wh. In such scenario, the optimizer suggests increasing the 

production considering that little benefit can be extracted from selling electricity. 

However, instead of establishing the operating point around the permitted 

upper bound, it moves the process to the optimum steady-state, seeing that for 

the rest of the hours the price is not cheap enough. Besides, looking at the 

electricity commitment chart, for the last 48h, we can observe that only for hour 

100, the optimizer decides buying electricity, while for the rest of the time it sells 

a smaller amount of electricity compared to the first 72 hours. In the rest of the 

charts, we can see that the constrained variables are always kept between 

bounds, and the evolution of some interesting variables.  
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Figure 6-9. Results for some interesting variables obtained for a multi-day scenario (1) 

 
Figure 6-10. Results for some interesting variables obtained for a multi-day scenario (1) 
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6.3.3 Campaign results 

The sugar extraction is a seasonal business which, in the north of Spain, is 

typically carried out from approximately October to February. A common way of 

working is to fix the sugar production before starting the campaign, so in this 

work an objective of 138000 t of sugar has been established. For an average 

polarization of 16° and 90% of purity, it has been assumed that 959760 t of beet 

are necessary to obtain the sugar target. The minimization of the operating costs 

may lead to an extension of the campaign duration, and therefore, an increment 

in the fixed cost. Given that the difference between the minimum and maximum 

production rate in the factory is 1440 t/d, for 959760 t of beet, the maximum 

increase in the campaign duration can be 15 days. For this short period of time, 

it has been assumed that the rise of the fixed cost would come essentially from 

the extension of the workers’ salary, which will be considered in the results.  

First, a comparison between the different selected tariffs was carried out. 

This helped us to discern between the benefits provided by the optimizer 

suggested policy and the ones obtained by the tariff itself. To do so, the 

maximum rate strategy was applied using the following electricity rates: 

• Base load: Beet processing rate is set to the maximum, and the 

electricity surplus generated is sold under a Base Load tariff with a fixed 

price of 50 €/ Wh for the whole day.  

• TOU: The electricity prices are set by a TOU tariff with three different 

price zones [ 0,  5, 65] €/ Wh depending on the hour. 

• DA Market: The electricity prices are taken from the Spanish DA market, 

including from 30/09/2017 to 17/01/2018. 

From the results shown in Table 6-2 we can conclude that both of the tariffs 

considered provide an important reduction in the energy cost without changing 

the operation strategy. It can be noted that the results show a commonly 

accepted trend, where the base load tariff gives the lowest gains with its 

conservative electricity prices, the TOU tariff gives intermediate results, and the 

spot market yields the greatest benefits at the expense of assuming a greater risk 

in the price. 
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Table 6-2. Campaign results when the maximum rate strategy is used with the three 

different rates considered. The percentages show the difference with respect to the 

base load case. 

Tariff Energy Cost  €  

Base Load 1,442,645 

TOU 
1,433,989 

(-0.6%) 

DA Market 
1,400,086 

(-2.95%) 

 

Next, we gave freedom to the optimizer so it could extend the campaign a 

maximum of 5 days (120 hours). This is the upper limit that was stablished in the 

storage zone in Section 6.1.1, so the beet did not lose an important amount of 

sugar because of rotting or other problems. In this case, the energy cost could 

no longer be a representation of the overall cost of the campaign, and then, total 

expenses had to be considered to compare each strategy. For that purpose, it 

was considered that, since the maximum campaign extension was 5 days, the 

most important increase that the fixed costs may suffer came essentially from 

the salary that had to be paid to the workers during that period (as was 

previously indicated). During the campaign season in a traditional sugar factory 

of the size considered in this work, around 100 temporary workers are hired for 

the operation of the plant. If it is assumed that the company must pay 

1710€/month for each worker, corresponding to a typical net salary of 

1000€/month, the wage for the total temporary staff per day can be established 

at 5700 €. Note that salaries for permanent personnel were not included in this 

computation, because these remain as fixed expenses. Therefore, in order to 

compare which strategy is the most convenient, the possible reduction in the 

energy cost is balanced with the extra salaries that should be paid with respect 

to ending the campaign in 94 days (the shortest possible). 

Note the reader that our approach is implemented in a moving-window 

fashion with a prediction horizon of 1 day, and no rescheduling is performed 

during the whole operation. Apart from the energy cost, the following indicators 

are also presented to analyze the suitability of each solution: the campaign 
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duration, the natural gas consumption, and the incomes provided by the 

electricity sale.  

From Table 6-3, if we take a look to the results obtained for Case 1, where 

the TOU tariff is selected, we can observe that although the campaign duration 

has been increased in three days with respect to the base case, the energy cost 

including the salary increase has been reduced a 2.55 %. Of course, part of this 

increase is due to the change of tariff, that since we saw in Table 6-2 can be 

estimated as a 0.6%, leaving the improvement due to the use of the optimizer in 

a 1.95%. This has mainly been achieved by a reduction in the natural gas 

consumption (0.21%), and an increase in the profit obtained by selling electricity 

to the external grid (16.45%), which can be justified by the smarter use of the 

cogeneration system suggested by the optimizer, which is able to propose 

solutions where the energy is fully leveraged, as shown in the previous 

subsection. 

 

Table 6-3. Campaign results with the upper storage constraint set to 5 days. 

Percentages show the difference with respect to the base case. 

Tariff 

Energy cost + 

salary inc. 

 €  

Campaign length 

(d) 

Natural Gas 

(m3) 

Electricity sale 

 €  

Base Case 

Base Load 1,442,645 94 3,426,901 300,009 

Case 1 

TOU 
1,406,698 

(-2.55%) 

97 

(+3.19%) 

3,419,649 

(-0.21%) 

349,366 

(+16.45%) 

Case 2 

DA Market 
1,368,622 

(-5.41%) 

97 

(+3.19%) 

3,416,265 

(-0.31%) 

385,722 

(+28.57%) 
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However, the best results are obtained when the Day-Ahead tariff is used. In 

this case, again, the campaign length is extended by 3 days, and the energy cost 

is reduced by a 5.41% with respect to the base case. Considering a contribution 

of a 2.95% for the change of tariff, we conclude that approximately, the 

reduction due to the optimizer operation is a 2.46%. Again, such results have 

been achieved thanks to a reduction in the natural gas consumption and an 

increase in the electricity profit obtained by selling electricity, which in this case 

is increased by a 28.57%. This increase with respect to not only the base case, 

but also Case 1, can be explained considering the difference in the electricity 

price, and the more aggressive policy taken by the optimizer when the electricity 

prices are more convenient. We recall that for Case 1, the solution given by the 

optimizer, which is shown in Figure 6-5, is always the same if the storage limits 

are not threatened, as the electricity price is always the same. However, for Case 

2, this is no longer true, and the optimizer changes its operation strategy each 

day depending on the electricity price and the beet stocked.  

6.3.4 Computational features 

In this case study, the optimization with a prediction horizon of a single day 

involves 25127 variables and 23671 equality constraints, which gives a total of 

1456 degrees of freedom. To discretize the optimization model, the orthogonal 

collocation method (Biegler, 2010) was chosen, using Radau roots for 

collocation, and 97 finite elements with 3 collocation points per element. Thus, 

a total of 289 collocation points with a finite element of 15-minutes in length was 

considered enough to obtain a good solution in a reasonable time, given the slow 

dynamics of the system. 

The solver IPOPT was used in Pyomo 5.5.2 under Python 3.7.3 on an Intel i7-

7700 (3.60 GHz) CPU, with 32 GB RAM and Windows 10. The CPU time for solving 

this optimization varies greatly, depending on the scenario and the initial guess. 

The average CPU time in case 2 was 123.4 s, the maximum being 1633 s 

corresponding to day 73, and the minimum 15 s for day 17. The optimizer must 

be run at least once per day before 10 AM. The electricity price and beet 

reception forecast must be introduced by the operator, so the optimizer 

computes the production and energy generation policy that must be followed 

during the next day. Hence, the computational time is not a limitation for the 

case study considered. 
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Chapter 7 

Final conclusions and outlook 

7 Final conclusions and outlook 

7.1 Contributions 

The achievement of the proposed objectives for this thesis has resulted in the 

following contributions: 

• Study of the current situation and progress of the methodologies used 

to manage the production of industrial processes with and without 

cogeneration systems considering energy awareness. This topic has been 

covered in Chapter 2.  

• Study of the Spanish electricity market and the current legislation 

concerning the efficient operation of cogeneration systems, and its 

application to a beet-sugar extraction process. All the details can be 

found in Sections 4.2  and 4.3. 

• Methodology to obtain gray-box dynamic models to represent the 

closed-loop dynamic features of systems formed by industrial processes 

and cogeneration plants. Such methodology has been applied in silico to 

the case study considered. For more information, see Section 3.2 and 

Chapter 5.1 of this thesis. The results have been published in the journal 

Processes, which in the moment of publication was Q2 in the field of 

Chemical Engineering  (Pablos et al., 2019).  
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• Efficient formulation of the optimization problem using a dynamic 

approach based on the use of models representing the closed-loop 

dynamic features of the systems considered. Application to a simulated 

beet-sugar extraction plant under a Spanish legislative and economic 

framework. Study and comparison of the obtained results using two 

typical price-based demand response programs (TOU and Day-Ahead 

prices) with respect to operating with a base tariff and a non-energy 

awareness politic. The generic formulation of the problem can be found 

in Section 3.3, and its application in Chapter 6.  The results have been 

published in the journal Computers And Chemical Engineering, which in 

the moment of publication was Q1 in the field of Chemical Engineering 

and Computer Science (Pablos et al., 2021).  

• Software architecture concept to facilitate the industrial implementation 

of the proposed system based on the use of three interconnected 

modules. The architecture can be found in Section 3.4, and its 

application on the case study considered in Appendix B. The study of 

such implementation has resulted in several congress publications 

(Hernández et al., 2019; Pablos et al., 2017; Zamarreño et al., 2017). 

7.2 Conclusions 

In this thesis, we have developed a methodology to optimize the management 

of the production of industrial processes working with coupled cogeneration 

plants. Such methodology has been successfully applied to a simulated beet-

sugar extraction plant within a Spanish legislative and economic framework. The 

main conclusions drawn from this work, as well as some limitations that still need 

to be covered, are presented below: 

• The formulation presented in this work is based on simultaneous 

dynamic optimization techniques that are able to provide results to the 

problem considered in short periods of time. This is positive not only 

from an implementation point of view, where results must be obtained 

faster than the frequency of use of the tool, but also from a usability 

point of view, since end-users will be more willing to use it if they do not 

have to wait for long time periods to obtain results.  
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• The proposed methodology has been successfully tested in silico on an 

industrial process with a seasonal production, such as the beet-sugar 

extraction industry. Thus, despite increasing the duration of the 

campaign by 3 days, it has been found that operating costs can be 

reduced by 2.55% if the TOU tariff is used, and by 5.41% if the Day-Ahead 

tariff is used instead. These results reflect the fact that lower operating 

costs can be obtained assuming a higher risk in the electricity price. In 

any case, the results have always been better when compared to the 

case without energy awareness and constant maximum production.  

• The proposed prototype software architecture presented in Section 3.4 

and applied in Appendix B serves as an example to illustrate a possible 

industrial implementation. Of course, we are aware that many problems 

have been neglected due to the simulated nature of the system, but still, 

we have shown some of the complications that must be faced during the 

industrial implementation of a tool like the one developed and their 

solutions. In addition, we consider that being able to implement and 

update this and any other optimization tool in an easy way is vital for its 

approval in the industry. That is why we think that more attention should 

be paid to this issue, and studies of this kind should be carried out more 

frequently when new methodologies are proposed for industrial use.  

• The methodology proposed in this thesis, like any other based on the use 

of price-based demand response programs, may not be valid in industrial 

processes where changes in the electricity price have a low impact on 

their economic results compared to other factors such as the raw 

material cost or the profits obtained from the processed products. 

Furthermore, we recall that it is only valid for industrial processes that 

meet the assumptions made in Chapter 3. Particularly relevant are the 

points concerning the dynamic features of the main process and the 

existing coupling between thermal and electrical energy. Note that, if the 

dominant dynamics of the main process are much faster than the 

changes in the electricity price, they could be neglected, and the 

optimization problem would be much simpler to solve. Furthermore, if 

there is no coupling, the operation of both systems could be treated 

independently, and sequential or iterative approaches would make more 

sense. Such decoupling could be achieved aggregating several types of 

technologies to the cogeneration unit (steam, gas, combined cycle…) or 
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with the use of thermal and/or electrical energy storage systems. Both 

strategies have already been extensively studied in the literature.  

• In this work we have studied the industrial application of the Spanish 

electricity market and the legislation associated with the efficient 

operation of cogeneration systems as generically as possible. However, 

the complexity in its application to each case study means that, although 

the bulk of the mathematical formulation of the constraints related can 

be directly extrapolated, certain details have to be adapted to each 

particular case.  

• As a final conclusion, it should be noted that, although the results 

regarding the implementation of the developed methodology in the 

simulated case study have been satisfactory, we think that the 

seasonality of the process, as well as the beet storage policy, limit too 

much the degrees of freedom of the optimization problem and,  

therefore, the possible benefits of the methodology proposed. That is 

why, we think that better results could be obtained if this approach were 

used in other industries with higher flexibility in their production and 

storage policy.  

7.3 Open issues  

Currently, the development of decision support tools that lead to optimum 

energy-aware industrial production scheduling is becoming significantly 

important in the Process Systems Engineering community. Thus, the 

competitiveness of industrial process, and the stability of the power grid can be 

achieved at the same time. We have observed that to avoid possible suboptimal 

results if auxiliary generation systems are available, like cogeneration plants, it is 

important to consider the system as a whole, instead of a master-slave 

interaction. However, on many occasions, the high computational cost of this 

strategy when dynamic features are incorporated, limits its practical application 

and, therefore, future research should be aimed at reducing this cost, either by 

reducing the complexity of the mathematical formulation, or by improving the 

solvers efficiency.   

Focusing on the optimization problem complexity, in this thesis we have 

successfully developed a methodology to efficiently formulate dynamic 

mathematical models of systems formed by industrial processes operating with 
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on-site cogeneration plants. Such methodology can be extrapolated to a large 

number of cases in the process industry, but special attention must be paid when 

selecting the structure of the black-box part of the model, having to be adapted 

for each individual case. Future work can be directed towards new 

methodologies that helps to find the optimal structure of such black-box part for 

each individual case. In this direction (Cozad et al., 2015) and more recently, 

(Pitarch et al., 2019), proposed alternative ways for dealing with this semi-

infinite programming problem. However, such methodologies are focused on 

static models, and its scalability is limited when the size of the problem increases, 

therefore, more work needs to be done in this field.  

Furthermore, note that neither discrete decisions nor the effect of 

uncertainty has been included in the problem formulation. Of course, both 

features are present in the process industry in one way or another, but their 

implementation in dynamic optimization problems is still an open issue in the 

literature. Discrete decisions must be included if, for example, several products 

can be obtained simultaneously in the process plant considered, or if the unit 

commitment problem is considered in the cogeneration plant. The complexity 

lies in the formulation and solution of a mixed-integer dynamic optimization 

problem in a reasonable time and with certain optimality guarantees.  

Regarding uncertainty, in the case study, it clearly appears in the electricity 

price and beet reception predictions. In order deal with it, a robust or stochastic 

approach can be used, but again, a high impact in the solution time is expected 

(Lucia, 2015). In addition, there is the structural uncertainty of the model (Navia 

López, 2013), which of course, is not perfect. In the literature, we can find several 

approaches that treat this problem, such as the two-step approach, modifier 

adaptation, or extremum seeking control among others (Rodríguez-Blanco, 

2017). However, in our case, the fact that the process is not necessarily operating 

in steady state, as well as the dynamic nature of the model, will complicate its 

application and, therefore, a thorough research in this sense should be carried 

out in this field.  

The future electricity markets can be expected as a challenge for our 

methodology. In the coming years, in Spain, historical differences are expected 

between the maximum and minimum prices with respect to the average daily 

price in the spot electricity market. This is due to the renewable policies applied 

on the generation side, which will imply: 
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• An important increase in the solar photovoltaic installed 

capacity, which will reduce the electricity price in the central 

hours of the day.  

• A boost in the price of CO2 emissions, which will make less 

profitable the carbon-based technologies, increasing the 

marginal price when less renewable energy is available.  

In this scenario, our methodology, and all those related to price-based 

demand response programs aimed at flattening the demand curve by consuming 

more when the electricity price is cheaper, will stand out even more thanks to 

the bigger differences between the electricity price along the day.  

Nevertheless, a higher volatility in the short-time electricity price is also 

expected due to the intermittency in the availability of renewable energy 

sources, which will affect, specially, to the intraday and the deviation 

management market, both managed during the dispatched day.   

In this thesis, aware of the high inertia found in the industrial processes, we 

have based our study in the Day-Ahead electricity market, where the electricity 

price changes with a frequency that can be followed by such systems. 

Considering that in our approach decisions related to electricity sales are taken 

a day in advance, these changes in the final electricity price were not considered, 

but they could have been implemented as uncertainty in the final price, and, 

therefore, we propose it as future work.  
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Appendix A 

Variables and Parameters 

A. Variables and parameters 

Here, we list the variables and parameters needed for the application of the 

methodology developed on the simulated case study.  

 

Table A-1. Variables notation. 

Variable Description Units 

Δ𝑉𝑎𝑟 Increase in the value of the variable Var w.r.t the 

equilibrium point (identification models) 

 

𝑒 Split-range controller error barA 

𝐸𝐶  Electricity commitment kW 

𝐸𝐶𝐻𝑃 Power generated in cogeneration mode kW 

𝐸𝑝 Electricity consumption of the sugar factory kW 

𝐸𝑠 Electricity surplus kW 

𝐸𝑇𝑢 Power generated in turbines kW 

𝑚𝑆𝑡 Accumulated mass beet in the storage zone T 

𝐹𝐶𝐻𝑃 Energy obtained from fuel in cogeneration mode kJ/s 

𝐹𝑝𝑙𝑎𝑛𝑡  Energy obtained from fuel  kJ/s 
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𝐻𝑆𝐵𝑜 Enthalpy of the steam leaving the boilers kJ/kg 

𝐻𝑆𝐵𝑦 Enthalpy of the steam at bypass valve kJ/kg 

𝐻𝑆𝑅𝑒  Enthalpy of the steam at relief valve kJ/kg 

𝐻𝑆𝑆𝑎𝐼𝑛 Steam enthalpy at saturator input kJ/kg 

𝐻𝑆𝑆𝑎𝑂𝑢𝑡  Steam enthalpy at saturator output kJ/kg 

𝐻𝑆𝑇𝑢𝐼𝑛 Enthalpy of the steam that enters in the turbines. kJ/kg 

𝐻𝑆𝑇𝑢𝑂𝑢𝑡  Enthalpy of the steam that leaves the turbines. kJ/kg 

𝐻𝑊𝐵𝑜 Boiler water enthalpy  kJ/kg 

𝑚𝑆𝑡 Beet mass accumulated in the storage area kg 

𝜇𝐸𝐶𝐻𝑃 Power efficiency of the CHP  % 

𝜇𝐺  Global efficiency % 

𝜇𝑄𝐶𝐻𝑃 Heat efficiency of the CHP % 

𝑂𝑝𝐵𝑦  Opening of the bypass valve % 

𝑂𝑝𝑅𝑒 Opening of the relief valve % 

𝑃𝐼𝑉  Pressure inside the 4th evaporation effect barA 

PES Primary Saving Energy index  

𝑃𝑆𝑆𝑎𝑂𝑢𝑡  Pressure of the steam leaving the saturator  barA 

𝑃𝑆𝑆𝑎𝑂𝑢𝑡𝑅𝑒𝑓  Split-range controller reference barA 

𝑃𝑆𝑇𝑢𝐼𝑛 Steam pressure at turbines input  barA 

𝑃𝑆𝑇𝑢𝑂𝑢𝑡  Steam pressure at turbines output barA 

𝑇𝑆𝐵𝑜 Temperature of the steam leaving the boilers °C 

𝑇𝑆𝑇𝑢𝐼𝑛 Steam temperature at turbines input °C 

𝑇𝑆𝑇𝑢𝑂𝑢𝑡  Steam temperature at turbines output  

𝑄𝐶𝐻𝑃 Heat generated in cogeneration mode kW 

𝑄𝑝 Sugar factory heat energy consumption kW 

𝑄𝑆𝐵𝑜 Heat of the steam current leaving the boilers kW 

𝑆0, … , 𝑆5  Auxiliary variables for complementarity constraints  

𝑆𝑡𝑜𝑃𝑒𝑛𝑈𝑝 Measures the residence time excess w.r.t the 

maximum value  
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𝑆𝑡𝑜𝑃𝑒𝑛𝐿𝑜 Measures the residence time defect w.r.t the 

minimum value 

 

𝜏𝑆𝑡 Storage residence time h 

𝑢𝑉𝑎𝑟  Input vector w.r.t variable Var (Identification models)  

𝑣 Split-range controller output signal  % 

𝑣𝑖 Split-range controller integral action % 

𝑊𝐵𝑆𝑡𝐼𝑛 Beet mass flow entering in the storage zone kg/s 

𝑊𝐵𝑆𝑡𝑂𝑢𝑡 Beet mass flow leaving the storage zone kg/s 

𝑊𝐺  Natural gas mass flow entering in boilers kg/s 

𝑊𝑆𝐵𝑜 Steam mass flow leaving the boilers  kg/s 

𝑊𝑆𝐵𝑦 Steam mass flow at bypass valve kg/s 

𝑊𝑆𝑅𝑒 Steam mass flow at relief valve  kg/s 

𝑊𝑆𝑆𝑎𝐼𝑛 Steam mass flow at saturator input kg/s 

𝑊𝑆𝑆𝑎𝑂𝑢𝑡 Steam mass flow at saturator output kg/s 

𝑊𝑆𝑇𝑢𝐼𝑛 Steam mass flow entering in the turbines kg/s 

𝑊𝑆𝑇𝑢𝑂𝑢𝑡 Steam mass flow leaving the turbines kg/s 

𝑊𝑊𝑆𝑎 Water mass flow entering in the saturator kg/s 

𝑥𝑉𝑎𝑟  Internal state vector of Var variable (identification 

models) 

 

𝑦 Binary variable used for complementarity  
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Table A- 2. Parameter values and notation. 

Name Description Value Units 

𝑑𝐺  
Natural Gas density for the input 

conditions 
3.65 kg/m3 

𝐸𝑃𝑒𝑞  𝐸𝑃 value at the identification point 7,769.26 kW 

𝐻𝑊𝐵𝑜 
Specific enthalpy of the water used in 

the boilers 
550.52 kJ/kg 

𝐻𝑊𝑆𝑎 Water enthalpy at saturator input 125.8 kJ/kg 

𝑘𝑝 
Split-range controller proportional 

gain 
140 %/bar 

𝑘 Polytropic index 1.20  

𝐾𝑣𝐵𝑦 Bypass rated valve coefficient 0.50 kg/(s·bar) 

𝐾𝑣𝑅𝑒 Relief rated valve coefficient 5.00 kg/(s·bar) 

𝐾𝑇𝑢 Turbines experimental parameter 23.35 (kg/s·°C)/bar 

𝜇𝐸𝑅𝑒𝑓 
Reference cogeneration power 

efficiency 
0.53  

𝜇𝑄𝑅𝑒𝑓 
Reference cogeneration heat 

efficiency 
0.87  

𝜇𝑇𝑢 Efficiency of the steam turbine 0.95  

𝐿𝐻𝑉𝐺  Natural Gas Lower Heating Value  47,100.00 kJ/kg 

𝐻𝐻𝑉𝐺  Natural Gas Higher Heating Value  52,200.00 kJ/kg 

𝑃𝐼𝑉𝑒𝑞 𝑃𝐼𝑉  value at the identification point 1.28 barA 

𝑃𝑎𝑡𝑚 Atmospheric pressure  1.00 barA 

𝑃𝑆𝐵𝑜 Boilers operating pressure 37.30 barA 

𝑃𝑟𝐺   Natural Gas Price N/A €/kWh 

𝑃𝑟𝐸  Electricity Price N/A €/kWh 
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𝑄𝑃𝑒𝑞  𝑄𝑝 value at the identification point 67,779.55 kW 

𝜌𝑆𝑅 
Split range controller 

complementarity weight 
1  

𝜌𝑆𝑃 
Storage penalty complementarity 

weight 
250  

𝜌𝑊𝐵𝑆𝑡𝑢𝑂𝑢𝑡
 Production rate moving weight  1  

𝜌𝑇𝑆𝐵𝑜  
Steam boilers temperature moving 

weight  
1  

𝜌𝑃𝑆𝑆𝑎𝑂𝑢𝑡  
Evaporation working pressure moving 

weight 
1000  

𝜌𝐸𝑇𝑢  
Power generated in turbines moving 

weight 
0.01  

𝜌𝑆𝑡 Storage penalty weight 0.5  

𝜌𝑇𝑝 Turnpike penalty weight  0.2  

𝑇 Prediction horizon time 86400 s 

𝑇𝑖 Split-range controller integral gain 10.00 s 

𝜏𝑚𝑖𝑛 Slowest time dynamic of the plant 18000 s 

𝑣𝑚𝑎𝑥  
Maximum output signal of the split 

range controller 
100.00 % 

𝑊𝐵𝑆𝑡𝐼𝑛 Arrival of beet to the storage zone N/A T/h 

𝑊𝐺𝑒𝑞  𝑊𝐺  value at the identification point 1.39 kg/s 
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Appendix B 

Industrial roll-out concept applied 

to a beet-sugar process 

B. Industrial roll-out concept applied to a beet-sugar process 

 

In chapter 5.1 and 6, we have explained the implementation of the dynamic-

integrated approach in the simulated beet-sugar factory presented in chapter 4. 

First, we have described the modeling process and, later, the optimization 

formulation and results. After knowing that the optimization module works in a 

simulated environment, it would be time to consider its roll-out in the real plant, 

topic introduced in Section 3.4. Unfortunately, in this thesis, we have only 

worked in silico, but, given the importance of the matter, we have considered 

convenient to reflect in this appendix about some important concepts related to 

the industrial roll-out, and present two additional tools that are not essential, 

but advisable to count with, to deploy the optimization tool developed. 

Furthermore, we explain the way that we consider these add-ons should 

communicate with each other in the industrial field, considering that, of course, 

in a real roll-out we would have to face additional problems. Therefore, the 

content of this appendix must not be seen as a guide or a methodology, but as a 

concept for the industrial roll-out of the optimization tool developed.   
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B.1 Architecture 

The architecture developed here is the application of the one presented in 

Section 3.4 to our simulated beet-sugar factory. Given that we do not count with 

a real process plant, we have limited the implementation to the development of 

the simulation and visualization modules, and its communication with the 

optimization tool. The real plant has been replaced by the simulation module. All 

the modules have been connected using the standard OPC Unified Architecture 

(OPC UA), which nowadays is widely implemented in the industry, and allows the 

exchange of great amount of data of different classes at high speed (OPC 

Foundation, 2014).  

 
Figure B-1. Communication architecture between the software used. 

                           

            
     

  
 
  

  
 
  

  
  

  

           
        

    

           

              

                          

             

1

 

2

 

             
      

           
      

              
      

                       



Appendix B. Industrial roll-out concept applied to a beet-sugar process                                                                                                  

 

143 

 

The simulation module has been implemented using EcosimPro®, and it has 

been provided with an OPC UA server layer. It receives the current state of the 

process, an operation strategy, and the required simulation parameters from the 

visualization module, and returns the estimated response of the real process, 

which is used to predict the initial state for the optimizer or perform a what-if 

analysis. More information about the building process of the simulation module 

is given in the next section.  

Regarding the optimization module, as mentioned in Section 6.3.4, it has 

been implemented using the Pyomo library under a Python environment. The 

optimization receives the estimated initial state, the expected beet input and 

electricity price, and some optimization parameters introduced by the operator 

from the visualization module and returns the optimal operation strategy. To 

communicate the optimization with the visualization and simulation module, a 

server layer has been added to this module using the Python library freeOPCUA.  

With respect to the visualization module, it has been implemented using the 

Wonderware® Intouch® System Platform (Wonderware, 2017), which in an 

industrial environment is used to manage infrastructures and real-time data 

from process plants. This software counts with a high-quality engine to create 

Human-Machine Interfaces attractive to the end-user. Specifically, the version 

used in this work is 2014 R2 SP1, which operates under the architecture 

ArchestrA, used as an interconnection platform between the internal modules. 

Such modules are used for the graphical interface design, to establish 

communication protocols, and for the management of historical data, among 

others.  

With Intouch®, several OPC UA clients can be created and communicated 

with different OPC UA servers simultaneously. In our case, we have created two 

different OPC UA clients, one to connect with the optimization module, and 

another one to connect with the simulation module. Such connections are 

managed by a gateway, where the different variables, methods, and objects 

exchanged are stocked. Furthermore, once stocked, the gateway uses internal 

protocols to establish the connection with the different Intouch® internal 

modules. However, due to the difficulties of Intouch® to deal with arrays and 

handle XY graphics, we have needed to use Microsoft® Excel®, which is natively 

compatible with Python and Intouch®, to exchange such information with the 

optimizer and present some of the optimization results.  
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B.2 Simulation module 

The objective of this module is to have a dynamic and realistic model able to 

simulate the whole system behavior (Beet-sugar factory and CHP unit) depicted 

in Section 4.1 to estimate the initial conditions of the dynamic optimization 

problem, and test different operation strategies before being implemented 

(What-if analysis). Furthermore, in our particular case, along with the 

optimization process design, such simulator has been used to test the 

optimization module performance, and as the source of all data used in the 

model identification stage. Of course, with a real process the needed data would 

be collected from historical data instead.  

As different strategies may be necessary to be tested in a relatively small 

amount of time, a simulator simple enough is necessary to carry out a lot of 

experiments without excessive computing time. However, an excessive model 

simplification could reduce the model accuracy in excess, so it is necessary to 

keep an equilibrium between accuracy and computation time. Thus, we decided 

that the mathematical model should be a first-principles dynamic one, but in 

case the model complexity exceeded the intended use, sufficiently validated 

empirical relations would be used. This implied that the formulation of the model 

should be based on ODEs, DAEs, algebraic equations, tables and events. 

Given the magnitude of the system to be simulated, we decided to build the 

mathematical model in an incremental way, using models that could be 

instantiated from a library and composed in a hierarchical way. A further 

requirement for the simulation tool was the capacity to develop model libraries 

from scratch. Although using commercial libraries, which provide already 

validated model libraries, sometimes can be helpful, they frequently limit the 

characterization of the simulated process, and in certain cases, like the sugar 

industry, such libraries are very hard to find or non-existent. Another 

requirement was that the modeling tool should help in the task of symbolic 

manipulation of the global mathematical model to obtain the simulation model 

based on the input variables in an easier way.  

These requirements implied to choose a modeling environment that 

implements an equation object-oriented modeling language (EOOBML), and a 

graphical interface that allowed the modeling based on the connection of 

components. The modeling tool should be linked to a simulation environment 
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that facilitates the model execution, changes in parameter and input signals, and 

visualization of output signals. Also, it had to allow the recording of the results, 

so the data could be exploited with other tools like, for example, MATLAB®. 

Furthermore, the simulation had to be able to be used as standalone from the 

modeling and simulation environment. In particular, it was desired to run the 

simulation with OPC UA connectivity, since OPC UA is supported by many 

industrial control systems and by optimization tools such as Pyomo. So, with all 

this in mind, the modeling and simulation environment selected was 

EcosimPro®.  

Model description  

The simulator presented in this section is based on a previous project developed 

by the Sugar Technology Center and the University of Valladolid, where a 

complete sugar simulator was modeled to train control room operators of sugar 

factories (Acebes et al., 2011; Mazaeda, 2010; Merino, 2008). The problem with 

this simulator (training simulator from now on) is that because of the complexity 

of the models used, the simulation can hardly run faster than real time. 

Furthermore, it counts with features, like its capability to provoke failures in 

different parts of the plant, that increase the computational load and are not 

useful for this work purposes. Therefore, considering that such simulator was 

also modeled using EcosimPro®, we decided to use part of the libraries already 

created and complement them with new models where necessary.  

Thus, considering our modeling aims, and to simplify the model as much as 

possible, we decided to create a simulator mainly focused on the energy 

management (heat and electricity) of the beet-sugar process. The resulting 

mathematical model does not represent any concrete sugar factory, but a 

general one. A scheme of the process considered is presented in Figure 4-1. We 

used first-principles equations where more accuracy was needed (the 

evaporation stage and the cogeneration plant), and empirical expressions when 

it was only necessary to compute the heat and power demand (beet storage, 

diffusion, purification and crystallization stages). We used the EcosimPro® 

graphical interface to create a final model composed of many smaller ones, 

which is shown in Figure B-2.  
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Figure B-2. Schematic model of the beet-sugar factory considered. 

In Figure B-2, we can see that the different stages of the process have been 

encapsulated under smaller models with its own inputs and outputs. EcosimPro® 

exchanges the information of such input/output variables using Ports. In the 

schematic we can see different types of ports with different lines and colors 

depending on the variables exchanged. For example, the steam related variables 

have been communicated with steam ports (in red); the electricity related ones 

with electricity ports (in yellow); information about control signals with analog 

signal ports (in dashed-dotted black); and variables related to sugar juice with 

juice ports (in green). Furthermore, we can see the symbols of some modeled 

control items, like valves, transmitters, or controllers.  

The objective of this section is to give some insights about the developed 

model without giving much detail. To do so, in the next sections we will cover 

the main aspects of each plant stage model. We recall that almost all the 

elemental models used to build the final model have been obtained from 

previous work that has already been validated. Therefore, for more details about 

the original models, the reader is referenced to such previous work.  

Beet reception and storage 

As mentioned in Section 4.1, the beet is transported from the beet fields to the 

factory by trucks and it is discharged into storage areas, with a limited capacity. 

The residence time beet spends there is a very important variable, as the 
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percentage of sucrose in the beet decreases with this time. Unlike the 

optimization model, in this case this factor has been modeled explicitly to predict 

the consequences that any operation strategy could have on such matter. Thus, 

the model of this stage is a DAE system, where the mass stocked in the storage 

zone (𝑚𝐵𝑆𝑡) and its solids concentration (𝐵𝑟𝑖𝑥𝑆𝑡) were computed using mass 

balances (B.1) and (B.2). To obtain the brix of the flow that leaves the storage 

zone (𝐵𝑟𝑖𝑥𝐵𝑜), we used an empirical equation that depends on the time the beet 

spends stocked (B.4).  

 
𝑑𝑚𝐵𝑆𝑡(𝑡)

𝑑𝑡
= 𝑊𝐵𝑖(𝑡)−𝑊𝐵𝑜(𝑡) (B.1) 

 
𝑑𝐵𝑟𝑖𝑥𝐵𝑆𝑡(𝑡)

𝑑𝑡
=
𝑊𝐵𝑖(𝑡)(𝐵𝑟𝑖𝑥𝐵𝑖(𝑡) − 𝐵𝑟𝑖𝑥𝐵𝑆𝑡(𝑡))

𝑚𝐵𝑆𝑡(𝑡)
 (B.2) 

 𝑇𝑟(𝑡) =
𝑚𝐵𝑆𝑡(𝑡)

𝑊𝐵𝑜(𝑡)
 (B.3) 

 𝐵𝑟𝑖𝑥𝐵𝑜(𝑡) = 𝐵𝑟𝑖𝑥𝐵𝑆𝑡(𝑡) · (1 − 𝑓(𝑇𝑟(𝑡))) (B.4) 

The arrival of trucks, 𝑊𝐵𝑖 was modeled with a pulse function with a random 

frequency to represent problems in beet-sugar crops (Acebes et al., 1999). 

Diffusion stage 

In this stage, the most important equipment is the diffuser, where many internal 

complex processes are carried out. It is the largest process unit of a sugar factory 

and, strictly, it should be modeled as a distributed parameter system, which 

requires the use of Partial Differential Equations (PDEs), which involves an 

important computational cost. A complete dynamic simulator of a DDS extractor 

was developed by (Merino and Acebes, 2003). Using this simulator, it was 

estimated that, for our purposes, the diffusion operation performed within the 

diffuser could be replaced by a delayed first order system, which depends on the 

beet-input flow and brix, without much loss of information.  

With respect to the steam demand of this stage, it was assumed that it is 

mainly due to the action of some heat exchangers used to reheat part of the juice 
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recirculated from the diffuser (Merino, 2008). Therefore, such heat exchangers, 

that use part of the steam provided by the evaporation, were modeled using 

first-principles equations to compute the steam demand with accuracy. 

Purification 

In this stage, impurities contained in the juice obtained from the diffusion are 

removed using chemical processes like liming or carbonation. Although such 

processes are not relevant for our operation, as they do not demand steam nor 

an important electricity power, their dynamics cannot be neglected, and they 

have been approximated using first order systems with delay. Again, the 

presence of the training simulator was key in order to obtain and parametrize 

such models.  

The main steam consumption of this stage comes from heating the juice 

before being treated in the chemical operations mentioned before. This step is 

critical in order to optimize the chemical processes performance. As we did in 

the diffusion stage, such heat exchangers were modeled using first-principles 

equations, where the steam demand depends on the juice mass flow and the 

temperature desired. The controllers related to such system were also modeled 

in detail.  

Evaporation stage 

The objective of the evaporation stage is to remove water from the purification 

juice until the sugar concentration is the one selected by the operator. The water 

is removed in the form of steam which is used as main heat source for the other 

parts of the factory. Considering that the evaporation stage is the main steam 

consumer and producer of the factory, we modeled it using detailed first-

principles equations of the process units (evaporators, heat exchangers, tanks, 

pumps, valves and tubes) and we included a complete control structure. The 

model was built from a library of model components developed in (Merino A. 

2008) using the graphical capabilities of the modeling tool in the same fashion as 

the CHP plant. 

The model counts with a tank to store the clear juice obtained from the 

purification stage, four heat exchangers to rise the temperature of the juice, and 

six evaporators to increase the sugar concentration. Besides, there are valves, 

pumps, and controllers to manage the level of the tank and the evaporators, the 
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input and output steam pressure, and the sugar concentration of the output 

syrup. The steam economy of the factory falls on how the evaporation and the 

crystallization stages work. In particular, the steam demand of the crystallization 

mainly depends on the sugar concentration of the syrup produced in the 

evaporation and the pressure used to operate the crystallizers. So, the modeled 

control structure allows the consideration of the set-points of the mentioned 

controlled variables as input variables. 

Crystallization stage 

According to the description of the sugar production process made in section 4.1, 

the crystallization stage is a very complicated set of processes, where continuous 

and batch operations are performed in a sequential way to first crystallize, and 

later, separate the sugar from the syrup obtained in the evaporation stage. A 

detailed model of the process of sugar crystals formation, along with the 

separation stage based on a centrifugation process can be quite complicated. In 

(Mazaeda, 2010), both problems were studied, and an approach based on 

population balances was proposed to model the crystals formation yielding a 

model with an important computational cost.  

According to the aims of the simulation module, and based on the 

crystallization model previously mentioned, we developed a simple model that 

describes the average steam demand from this stage as a function of the syrup 

mass flow, its sugar concentration, and the pressure used to operate the 

crystallizers: 

 𝑊𝑆𝐶𝑟(𝑡) = 𝐾𝐶𝑟 · 𝑊𝑆𝑦𝐶𝑟(𝑡) ·
100 − 𝐵𝑟𝑖𝑥𝑆𝑦

100
·

𝐻𝑆𝑎𝑡(1.5)

𝐻𝑆𝑎𝑡(𝐵𝑜𝑖𝑙𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
 (B.5) 

Where: 

• 𝑊𝑆𝑐𝑟: Average steam mass flow demanded by the crystallization stage. 

• 𝑊𝑆𝑦𝐶𝑟: Syrup mass flow entering the crystallization stage.  

• 𝐵𝑟𝑖𝑥𝑆𝑦: Brix (sugar concentration) of the input syrup.  

• 𝐻𝑆𝑎𝑡: Enthalpy of saturated steam at a determined pressure.  

• 𝐾𝐶𝑟: Constant to be obtained by experimentation. 
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Additionally, a first order dynamic was added to the previous calculated 

average value. It is important to emphasize that with this model we are assuming 

that the crystallizers are perfectly synchronized, and the steam is demanded 

without oscillations of any kind. This is not how the real process works, so, to 

make a more realistic approach, we added some negative and positive pulses to 

the average value, whose magnitude and frequency can be selected by the user.  

Power consumption 

So far, we have only described how we have modeled the heat energy 

consumption of each part of the beet-sugar factory, however, we are also 

interested in the electricity consumption of each section. A typical sugar factory 

is composed of many pieces of equipment which need power supply to work. 

However, modeling the individual power consumption of each component would 

require a degree of complexity that is not necessary for the intended purpose of 

this simulator. Thus, to reduce the complexity of the model, the power 

consumption was calculated as an average of each of the main stages of the 

plant, being the overall energy consumption the sum of the consumption of each 

stage. To parametrize the consumption of each section, first, we took as an 

approximation the data found in (Urbaniec, 1989), which relates the electricity 

demand of a typical beet-sugar factory with its processing capability, yielding the 

curve shown in Figure B-3. 

 
Figure B-3. Specific power consumption of a typical beet-sugar factory. 
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As Figure B-3 shows, when the processing rate is increased, the specific 

power demand is reduced. The consumption of the main stages of the plant was 

estimated applying typical percentage values over the global consumption 

obtained from (Frankenfeld and Voss, 2004). Thus, it was possible to compute 

the power consumption of each stage depending on the processing rate, which 

is a natural way to incorporate the dynamic in the total electricity demand. 

Therefore, when the beet processing rate is increased, first we see that the 

power consumption of the diffusion increases, later the purification, and so on. 

Cogeneration plant 

In the cogeneration plant is where the steam and power demanded by the 

factory are produced. Due to its importance, the CHP plant has also been 

modeled using first-principles equations in a similar fashion to the evaporation 

stage (see Figure B-4). The modeled CHP plant mainly consists of boilers where 

steam is produced by boiling water using the energy obtained from the 

combustion of natural gas, and turbines where the steam is expanded to obtain 

electricity. As shown in Figure B-4, in our process, the cogeneration plant is 

composed of three boilers and three different backpressure steam turbines. 

Besides of being expanded in the turbines, the steam can also be bypassed 

directly to the evaporation section, and to protect the evaporation from high 

steam pressures, a relief valve has been modeled too.  

The model used to represent the behavior of the boilers was described in 

(Pelayo, 1999). Apart from the steam generator, it considers the preheating of 

the feed water, the superheating of the steam obtained using heat exchangers 

fed by the combustion fumes, and a boilers typical control system. Regarding the 

turbines, the objective of this model is to simulate the steam expansion and the 

conversion of its thermal energy into electric power. Furthermore, it is necessary 

to simulate the connection with the external grid, being able to send and receive 

electricity, and the possibility of operating in island mode, i.e., disconnected from 

the grid and generating exactly the electricity demanded by the factory. This 

concept is key, given that depending on the operation mode, the controlled 

variable will be the generated power or the turbine axis rotational speed. 

Therefore, the turbine model obtained, which is based on (Chaibakhsh and 

Ghaffari, 2008; Thomas, 1999), represents both, the power generation, and the 

axis rotational speed.  
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Simulation size 

The order of magnitude of the simulation module can be estimated considering 

that it is composed of 6485 equations, being 449 of them dynamic. Furthermore, 

it counts with 2131 parameters and 29 boundary variables (see Table B-1). As 

model inputs, changes in the production specs and in the most important set-

points were considered. As outputs, besides the different operational variables 

related to the process, others associated with energy consumption were 

selected, like heat and power demand, cogeneration performance, fuel 

consumption, etc. 

 

Table B-1. Summary of the simulation model specs. 

Number of equations  6485 

    - Static 

    - Dynamic 

6036 

449 

Parameters 2131 

Variables 6456 

Inputs 29 

Non-linear algebraic loops 7 

 

To measure the simulation speed, a test was performed where 48 h 

(172,000s) of production were simulated, changing between different 

operational points. The real time used by the simulation was 274 s, so the time 

ratio between simulation and real time is approximately 628. 
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B.3 Visualization module  

The final aim of the visualization module in the presented architecture (Figure B-

1), is to give the final user a simple interface to interact with the simulation and 

the optimization module. To do so, we have used the SCADA software 

Wonderware® Intouch®, which is one of the most used in the process industry. 

The final HMI developed is presented in Figure B-5. 

 
Figure B-5. Visualization module interface. 

In the left side of Figure B-5, we find two different panels used to interact 

with the simulation and optimization modules. In the center, we see a big 

schematic where the most relevant variables of the system are displayed, giving 

a compact summary of the actual state of the plant to the end user. At the top, 

we show a counter that indicates the day that is being simulated, and two 

performance indexes: The Primary Energy Savings and the global efficiency of the 

process. We recall that we do not count with a real process in our architecture, 

however, in such case, this interface should be integrated with the rest of the 

SCADA, so the user could interact with the real process variables and test 

different operational strategies in simulation using the same software. This work 

was the product of an undergraduate thesis project, where the reader is 

referenced for more information (Sánchez, 2019). 
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B.4 Application example 

In this section, we follow the steps presented in Section 3.4 applied to our case 

study.  

1-Computation of the optimization initial condition.  

We recall that the first step consists in running a simulation from the actual state 

of the plant until midnight using the expected strategy until such time. To do so, 

in the lower panel, we find a module where the simulator path can be specified 

(see Figure B-6). In our case, the operation strategy is sent to the simulator 

through a file previously prepared with the expected inputs during time, so to 

run the simulation, we only have to press on the ON button. We can also check 

the status of the connection pressing on the OPC client button. 

 
Figure B-6. Activating the simulation OPC UA server. 

When the simulation is done, a new file with the simulation results is 

generated. In this stage we are only interested in the state of the process at the 

end of the simulation. Since Wonderware® Intouch® is a software prepared to 

work with real systems in real time, we have not been able to plot the simulation 

results in an XY graphic, so if the evolution of the plant up to that state would 

like to be consulted, it could be plotted using Python or other software like 

Matlab®.  
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2-Computation of the optimization results.  

With the initial condition computed in the previous step, before running an 

optimization, we need to specify the electricity price and the beet input expected 

for the next day. To do so, we must click on the upper panel in the option named 

Optimizing prices (see Figure B-7), and a new pop-up windows appears. Here, 

two different columns are visible where the user can manually set the desired 

values. In case that we only wanted to test operational strategies; we provide a 

data base with some interesting scenarios. To access to such data base, we only 

must click on the load data base button and select the desired scenario.  

Since we found some incompatibilities when sending this information to the 

optimizer in a vector format, we have used Microsoft® Excel® to send the 

exogeneous variables to the optimizer.  

 
Figure B-7. Setting the expected electricity market price and beet arrival. 

To activate the optimizer, first, we need to establish a connection with the 

optimization OPC UA server. To do so, we must press on the Open optimizer 

button. We can check the status of the connection looking at the optimization 

server panel shown in Figure B-8. During the optimization, the optimization 

status shown in Figure B-8, will change from not solution to calculating results, 

and finally, to solution found. The results are stored in a file ready to be plotted.  

 
Figure B-8. Optimization server panel. 

 



Appendix B. Industrial roll-out concept applied to a beet-sugar process                                                                                                  

 

157 

 

3-Optimization results evaluation 

The resulting file obtained in the previous step contains the optimal input and 

the prediction computed by the optimizer using its internal model. Considering 

that this model is much simpler than the one used in the simulation module, we 

can run a simulation using the optimization results and obtain a better 

approximation of the expected process response. An example of some of the 

variables that would see an operator is shown below.   

 
Figure B-9. Optimal inputs computed by the optimizer 

 
Figure B-10. Comparison between optimizer prediction and simulation module (1). 
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Figure B-11. Comparison between optimizer prediction and simulation module (2). 

 
Figure B-12. Comparison between optimizer prediction and simulation module (3). 
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4-Results implementation 

After evaluating the optimization results, the user can decide to implement them 

manually, automatically, or neither and repeat the optimization with other 

inputs. To its automatic implementation, once we have found the solution, we 

have to press on the On button found in Figure B-8, which will change the control 

optimizer status from off to wait until midnight. In that moment the optimization 

results will be sent to the control layer, which, ideally, will be commanded by an 

MPC as discussed in Section 3.4. We recall that the user can stop the 

communication between the optimizer and the control system in any moment 

just pressing on the Off button. However, from that moment on, the user will 

have to give manually the inputs required.  

Given that we are working with a simulated plant that is the same as the 

simulation module and we have not developed an MPC, the implemented results 

match exactly the ones shown in the figures shown in the previous section.  


