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Abstract— The evolution of the Internet of Things (IoT) is imposing many distinct challenges, particularly to guarantee both wide 

and global systems communication, and to ensure an optimal execution of services. To that end, IoT services must make the most out of 
both cloud and fog computing (turning into combined fog-cloud scenarios), which indeed requires novel and efficient resource 
management procedures to handle such diversity of resources in a coordinated way. Most of the related works that can be found in the 
literature focus on resource mapping for service-specific execution in fog-cloud; however, those works assume a control and 
management architecture already deployed. Interestingly, few works propose algorithms to set that control architecture, necessary to 
execute the services and effectively implement services and resource mapping. This paper addresses that challenge by solving the 
problem of optimal clustering of devices located at the edge of the network offering their resources to support fog computing while 
defining the control and management role of each of them in the architecture, in order to ensure access to management functions in 
combined fog-cloud scenarios. In particular, we set out the Fog-Cloud Clustering (FCC) problem as an optimization problem, which is 
based on multi-objective optimization, including realistic, novel and stringent constraints; e.g., to improve the architecture’s 
robustness by means of a device acting as a backup in the cluster. We model the FCC problem as a Mixed Integer Linear 
Programming (MILP) formulation, for which a lower and an upper bound on the number of required clusters is derived. We also 
propose a machine learning-based heuristic that provides scalable and near-optimal solutions in realistic scenarios in which, due to the 
high number of connected devices, solving the MILP formulation is not viable. By means of a simulation study, we demonstrate the 
effectiveness of the algorithms comparing its results with those of MILP formulation. 
 

Index Terms—Fog-to-Cloud systems, Fog-to-Cloud management, Clustering, Mixed Integer Linear Programming, Machine 
Learning 

I. INTRODUCTION 
HE explosion of the number of edge devices along with the unstoppable growth of Machine-to-Machine (M2M) connections 
exemplify the current evolution of the Internet of Things (IoT). Indeed, Cisco forecasts that, by 2021, the number of M2M 

connections will reach up to 3.3 billion [1], thus recognizing that future IoT environments will rely on a huge number of 
interconnected devices located at the edge of the network. To satisfy these connectivity requirements, remarkable efforts towards 
exploring novel network technologies and architectures are intensively carried out by the global network community. A prime 
example of those efforts not only include the efforts in 5G (expected to become a reality by 2021 [1]), but also in network 
softwarization, mainly through Software Defined Networking (SDN) and Network Functions Virtualization (NFV) [2]. 

Moreover, the massive data volume and the huge number of IoT devices deployed at the edge, along with some service-
specific requirements (such as mobility and low latency) in IoT scenarios, have revealed the need for a new platform to provide 
cloud-like services to users at the edge of the network. In fact, despite the maturity of cloud computing [3] and its proven 
efficiency, enabling large scale data storage and processing, cloud computing lacks of some of the required capabilities to 
efficiently support the IoT environment. Therefore, early work (e.g., [4]) proposed to extend the cloud computing paradigm 
(mainly, computation, storage and networking services) closer to the edge of the network; where, generally speaking, users are 
located. This idea is named fog computing [4]. However, services required at the edge of the network, impose stringent 
conditions to support, among others, mobility and/or real-time interactions. 

Ideally, considering both cloud and fog computing, computing and data storage services should be able to select any resource 
or a group of resources from the edge of the network up to the cloud, which has been referred to as cloud-to-thing continuum [5], 
[6] or resources continuum [7]. Notwithstanding, effective strategies that can guarantee the desired QoS, while taking advantage 
of the whole stack of resources, are still an open challenge. To this end, significant efforts, most notably in the (former) OpenFog 

Designing an Efficient Clustering Strategy for  
Combined Fog-to-Cloud Scenarios 

T 



 2 

Consortium [8], currently rebranded as the Industrial Internet Consortium, focus on standardizing the whole architecture [6] to 
manage fog resources (usually located at the edge of the network and close to the users) and cloud resources (usually hosted in 
datacenters and located far from the users); as well as in the initiative driven by the European H2020 mF2C project [9], focused 
on designing and implementing the hierarchical Fog-to-Cloud (F2C) management architecture proposed in [10]. A key challenge 
in such combined fog-cloud scenarios is the design of strategies intended to map services into resources while guaranteeing QoS. 
Thus, identifying sets of resources and their relationships, optimizing resource utilization and avoiding the potential degradation 
motivated by changes in the physical topology, are engineering problems of significant interest. In particular, an efficient 
management of the entire set of fog-cloud resources will require a proper clustering strategy that fulfills the constraints of that 
specific problem. Thus, in this paper, the Fog-Cloud Clustering (FCC) problem is defined as the decision about how to group fog 
resources (i.e., resources from edge devices, located at the edge of the network) ensuring access to management functions from 
fog computing to cloud computing. Indeed, fog-cloud constraints jointly with the large number of devices offering their 
resources to the system and the parameters that need to be considered in realistic scenarios, result in a non-trivial problem to 
solve by fog-cloud operators that need to set the architecture to facilitate services deployment. 

In particular, since we face an optimization problem, we formally model the FCC problem as a Mixed Integer Linear 
Programming (MILP) formulation and propose a lower and a higher bound of the number of required clusters. Furthermore, 
since the proposed mathematical model scalability is compromised in scenarios involving large number of devices, we propose a 
machine learning heuristic based on the well-known k-means clustering method [11], complemented with a number of 
procedures to ensure the fulfillment of all the constraints of the FCC problem. The proposed MILP and the heuristic are both 
validated and analyzed, and their performance is compared in terms of the quality of the solutions and scalability. In short, the 
main contribution of this paper is threefold: i) a formal description of the FCC problem, modeled by an MILP formulation, to 
optimally solve the problem of identifying sets of resources and their role to set the F2C architecture presented in [10],  ii) a 
lower and a higher bound of the number of clusters in the FCC problem, and iii) a scalable machine learning-based algorithm 
providing near-optimal solutions to solve the problem in realistic scenarios. 

The remainder of this paper is organized as follows. Section II introduces the background and the FCC problem, and also 
describes related work. Then, Section III formally states and models the FCC problem as an MILP formulation, and analytically 
derives lower and upper bounds on the number of clusters and studies the impact of the ratio between fog and cloud costs on that 
number. Section IV presents the machine learning-based algorithm to solve the FCC problem in a scalable fashion. Section V 
presents numerical results. Finally, Section VI concludes the paper. 

II. BACKGROUND OF THE FOG-CLOUD CLUSTERING PROBLEM AND RELATED WORK 
In this section, the Fog-to-Cloud (F2C) management architecture is described and an introduction to the fog-cloud clustering 

problem is provided. Moreover, related work on the topic is also reviewed. 

A. F2C Management Architecture and Introduction to the FCC Problem 
The need to define a suitable management architecture in F2C systems has been already identified in [10]. Since we consider 

that architecture as the baseline to represent the F2C resources management problem, we will start by briefly describing some 
architectural aspects that we identify as mandatory in order to make reading as smooth as possible. The first relevant idea is that 
the F2C architecture is hierarchical (Fig. 1), and, unlike other resource-combined approaches, the proposed architecture 
introduced in [10] is not static. To set the F2C architecture, different layers are defined, grouping the whole set of resources and 
enabling services to decide, on the fly, the set of resources best suiting services demands, be it at fog, cloud, or both of them. 
Certainly, resource management becomes a key problem to efficiently manage resources and optimize service execution. 

As described in Section I, a first attempt to implement the management architecture introduced in [10], has been done in the 
framework of the European H2020 mF2C project [9]. Indeed, [9] defines an entity referred to as agent, which is deployed in all 
elements participating in the F2C system, and which is responsible for enabling devices to execute the management functions 
required in the architecture. To perform control and management operations, control data is sent between agents at different 
layers through a module named platform manager. In this paper, we assume that an implementation of the aforementioned agent 
is deployed in edge devices and cloud, thus enabling the required control and management functions to set the architecture. 
Moreover, in that architecture, sets of devices are clustered under the control of a single agent, which is referred to as leader, and 
which receives aggregated information from the elements in the layer below. Additionally, another device of the cluster may take 
the role of backup leader in order to enhance the robustness of the system. The role of devices that are neither leaders nor backup 
leaders is referred to as regular. 

Obviously, these roles (necessary to set the architecture) impose additional constraints to the clustering problem in fog-cloud. 
Some are: i) in the south bound, leaders must ensure communication (coverage range) with each device in its cluster; ii) in the 
north bound, leaders must guarantee its access to cloud; and iii) backup leader must ensure connectivity to all devices in the 
cluster. It is worth noting that, although most of the devices may have access to the Internet, there may be some devices having 
none or limited access, thus being not appropriate to act as leaders; e.g., a tablet or a smart watch with WiFi and/or Bluetooth but 
without cellular option. Interestingly, these devices can benefit from the shared resources in fog-cloud, joining to the system as 
regular. Nevertheless, clustering methods as well as leader and backup leader selection strategies are still work in progress. 
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Fig. 1. Example of 3-layers architecture in F2C. 

Fig. 1 reproduces the F2C layered architecture and control data flow proposed in [9], considering a particular example 
presenting three layers: Cloud (top), Fog layer 1 (middle layer hosting leader functionalities) and Fog layer 2 (bottom). It is 
worth highlighting that both Fog layer 1 and 2, interface the IoT layer. The IoT layer may consist, for instance, of Raspberry Pi 
boards running an implementation of the agent and having a set of sensors connected to them. Moreover, to illustrate the backup 
leader role, databases required to manage the architecture have been represented at each layer as well as the elements acting as 
backup leader, which host replicas from the corresponding leaders’ databases. 

In view of the described architecture, it is clear that devices offering their resources to support fog computing (i.e., devices at 
fog layers) need to be grouped into clusters, and that a role (leader, backup leader or regular) needs to be assigned to each of 
them to set the architecture. Such grouping or clustering strategy must ensure that: i) distance, and thus latency, to management 
functions is minimized, ii) transmission power is minimized not only to reduce energy consumption but also to avoid 
interference, iii) associations to groups are not frequently changed, and one device per group is selected to provide management 
functions (i.e., is selected to become the leader of that cluster), and iv) reliability is guaranteed in the case that the cluster leader 
becomes unavailable (by means of a backup leader, which could be promoted to leader if required). 

To meet these high level requirements, the FCC problem needs to focus on optimally mapping devices from a physical 
topology into a logical one in the fog-cloud architecture. This, in turn, results in: i) identifying the role of each device in the 
architecture aimed at efficiently mapping it into the logical topology, i.e., an edge device may be leader, backup leader or 
regular, and ii) optimizing the logical topology to meet the fog-cloud operators’ requirements to manage the networked system. 
Such optimization can be done through the minimization of an objective function with constraints related to latency, transmission 
power, and also to the stability of the connectivity of the leaders, as well as a number of other constraints imposed by the 
location and features of the different devices composing the fog-cloud network. 

In order to clarify these issues, let us consider the following example. Let us assume a small size geographic area, with a 
radius of few tens to hundreds of meters, with a set of devices interfacing the IoT layer (sensors and actuators), along with cloud 
facilities located in a comparably more distant area (typically from hundreds to thousands of kilometers). This is illustrated in 
Fig. 2, which shows a fog-cloud network representing the physical and logical views for a set of (edge) devices and cloud 
resources, including cloud, fog and IoT layers. First, Fig. 2a represents the distribution of the set of devices interfacing the IoT 
layer. For illustrative purposes, let us depict each device by a node (a vertex in the topological graph), numbered from 1 to 9, in 
the physical topology representation, and the objective is to group them into clusters to participate in the fog-cloud system. The 
coverage area for each device is depicted by a dashed circle; except for node 8, where, for completeness, two different coverage 
levels are represented by two concentric circles depicted with solid lines. It is worth noting that for the red circle (low coverage), 
lower transmission power is required (details on discrete power levels and power adaptive control are shown in [12] and [13]). 
Moreover, in this example, we assume that each edge device (also referred to as node) can manage three nodes at most.  

Fig. 2b represents three clusters (colored in green, blue and yellow in the figure) resulting after applying the two following 
cluster rules: i) a cluster consists of a set of edge devices, one of which provides management functions (the leader), and ii) the 
leader is directly managed by the cloud. Therefore, only one device in each cluster is directly connected to cloud (nodes {3, 4, 
8}, i.e., the leaders), thus taking advantage of reduced latency when managing the underlying nodes {1, 2, 5, 7, 6, 9}, compared 
to a cloud computing approach where all nodes would be connected to cloud. Moreover, as it is represented in Fig. 2b, the low 
coverage level of node 8 would be enough to ensure connectivity to all elements in the cluster (thus saving transmission power). 
In addition, an edge device has been chosen in each cluster to guarantee service continuity in the event that the leader node in the 
cluster fails or suddenly disappears, i.e., it acts as a backup leader [9]. In this example, nodes 2 and 6 have been selected as 
backup leaders, since they ensure connectivity to all elements in their cluster and to cloud if required. Finally, Fig. 2c, represents 
the logical topology inferred from the clustering solution shown in Fig. 2b. 
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Fig. 2. Physical topology and coverage (a), clusters (b), and logical topology (c). 

B. Related Work 
Although the fog-cloud architecture presented in [9] proposes to group edge devices into clusters –and also selecting a role for 

each device (leader, backup leader or regular)–, to the best of our knowledge, there is no contribution formally describing this 
clustering problem in the particular fog-cloud architecture, which is the main contribution of this paper. 

Nevertheless, clustering problems are very well known in a wide range of fields, and in particular in fields related to edge 
scenarios, but fulfilling different constraints than those of FCC problem. For instance, a hierarchical approach is adopted in 
Mobile Ad-hoc Networks (MANET) by dividing the network into clusters with certain nodes in each cluster being chosen as 
clusterheads (nodes providing connectivity among clusters). Such a problem is formally stated as an Integer Linear Programming 
(ILP) problem in [14], which minimizes a multi-objective function that includes the cost of connecting nodes as well as a weight 
associated to the clusterheads. However, ILP formulations do not scale properly when addressing large scale networks, so 
different algorithms have also been proposed –a survey of those methods for wireless sensor networks and for MANETs is 
provided, respectively, in [15] [16]. For instance, authors in [17] propose a distributed clustering algorithm for ad-hoc networks, 
relying on a weighted algorithm to identify clusters and clusterheads, determining the topology and its stability. In addition, 
authors in [18] perform a stochastic geometry analysis to formulate the optimal number of fog nodes in a cloud-fog-thing IoT-
based scenario, enhancing signal-to-interference-plus-noise ratio. In the recent study published in [19], an energy-aware and 
delay constrained algorithm is proposed. In that work, authors assume that fog nodes can process requests locally in a Fog-IoT 
network, without requiring the cloud. Moreover, although the scenario described is based on a three-tier Fog-IoT network, their 
proposal focuses on the two bottom layers; that is, the Fog and the IoT layers. 

A different example of the clustering problem in distributed computing paradigms can be found in [20]. That work proposes a 
framework in a 4-layers environment (i.e., from down to top: IoT, edge, fog and cloud), which, by analyzing spatio-temporal 
mobility data and other contextual information, and by means of a machine learning algorithm, the location of IoT and edge 
devices that are on the move can be predicted. The study highlights the importance of a hierarchical infrastructure for critical-
time applications. Interestingly, to model users’ movement patterns, the authors propose a User Movement Graph, which is a 
multi-layer graph. One of the layers of this graph stores frequent movement paths for the user; that information is utilized to 
perform spatio-temporal trajectory clustering aimed at identifying the paths frequently followed by a user. Another approach to 
group resources can be found in [21], where the authors propose a monitoring tool (FogMon) and set the monitoring network 
based on latency between follower nodes (similar to the idea of regular nodes) and leaders. However, differently from our 
manuscript, the role of each element in the architecture is already defined; whereas in our proposal, clustering is utilized not only 
to group resources but to identify the role of each element in the cluster; thus allowing the architecture to be dynamic. 

In addition, several papers can be found in the recent literature focusing on providing an efficient use of resources to satisfy 
applications’ needs in fog-cloud scenarios. Aligned with this topic, in [22], the authors assume a fog-cloud architecture and focus 
on the decision of offloading data received from end-user tasks, to be processed in different fog nodes or in cloud and taking into 
account delay constraints. The authors in [23] propose an algorithmic approach, referred to as Module Mapping Algorithm, to 
map application modules into fog-cloud resources. Focusing on time-critical IoT applications, CPU, RAM and bandwidth are the 
requested attributes considered by each applications’ module. Modules are mapped into fog and cloud resources satisfying 
modules’ requirements. A different approach to map resources to users’ needs is presented in [24]. In that paper, based on a game 
theory approach, each user tries to maximize its Quality of Experience (QoE) by allocating fog resources efficiently. Similarly, as 
in the previously reviewed papers, in [24] authors pay special attention to delay-sensitive IoT applications. Interestingly, in 
addition to time-sensitive applications, authors in [25] also consider a more stringent scenario where user (application) 
requirements can change dynamically and resource allocation needs to consider additional constraints, such as a deadline. 
Moreover, a different approach for application placement in fog-cloud can be found in [26]. In [26], the proposed ILP model 
focuses on enhancing provider’s profit while fulfilling applications’ required QoS. In addition, a pricing model for fog instances 
and a compensation method satisfying both user’s and provider’s interest are presented. However, in these manuscripts, the focus 
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is set into the services, while assuming an underlying control and management architecture that allows implementing their 
proposals. 

As described above, a large number of papers found in the literature do not focus on setting the architecture, but on the service 
allocation. Nevertheless, aligned with proposals in the Industrial Internet Consortium or in the mF2C project, some recent 
manuscripts focusing on the architecture can also be found in the literature. The works in [27] and [28] propose a framework, 
named to as FogFrame, which defines communication mechanisms to instantiate and maintain service execution in the fog 
landscape, and following the notation of OpenFog, assuming: i) fog cells as the representation of virtual resources in IoT devices, 
ii) fog nodes as fog cells with additional functionalities and acting as access points for other fog cells, iii) fog colonies, formed by 
sensors and actuators connected to fog cells, which in turn are connected to a fog node, and iv) fog controllers, acting as a central 
component in charge of discovering new resources. However, the roles of the different elements are already defined; i.e., are 
known in advance, or if, according to the corresponding policy applied when a fog node joins the system, they need to be 
assigned; the decision of defining a new fog node requesting to join the fog landscape as the head of a new colony or as a fog 
node in the lower tier depends on the fact that the new fog node is or it is not on the range of a previously joined fog node. 
Differently, in our proposal, the role of each element is assigned at the clustering definition time and aimed at optimizing the 
whole architecture, without knowing a priori, the clustering elements neither their roles. Moreover, it is worth highlighting that in 
our proposal, two devices within their coverage range may act as leaders of different clusters. 

Interestingly, the authors in [29] propose a strategy based on centrality indices to select fog colony controllers. However, 
cloud is not considered and the metric utilized is based on the distance: i) between the controller device and its subordinated 
devices, and ii) between the colonies’ controllers, while parameters such as power or mobility are not considered. Moreover, no 
backup technique is studied. In the work in [30], it is highlighted the relevance of hierarchical and distributed architectures in 
novel and future IoT-based scenarios, since they improve scalability without compromising stability [30]. Although they 
consider a hierarchical and decentralized architecture, differently from our proposal their proposal is focused on solving the 
specific problem of Data Stream Processing, which is different from the FCC problem tackled in this paper, thus resulting in 
different problem definition, constraints and formulation. Interestingly, similarly as in our proposal, machine-learning is 
considered to set the architecture. Specifically, authors propose a reinforcement learning –based approach. The resource 
management framework proposed in [31] is based on Particle Swarm Optimization to simultaneously optimize performance 
parameters such as energy and latency, among others, and oriented to resource management for smart homes IoT devices. Again, 
this is different from our proposal, which proposes a MILP formulation aimed at identifying, from the entire set of devices, 
which ones act as leaders, and which ones are under its control, forming the cluster aimed at setting the control and management 
fog-cloud architecture proposed in [10] while satisfying the specific constraints imposed. 

In addition, similarly as in our work in this paper, in [32] the authors assume the F2C architecture from [10]. In [32], the 
concept of Area refers to a group of fogs that are located at different layers and that facilitate resource coordination among 
layers. However, areas’ definition and configuration is out of the scope of that manuscript and it is an open research issue. In fact, 
the work presented in this manuscript is aligned with those ideas of grouping resources and map them into different layers to 
facilitate coordination among them. The lack of algorithms or studies covering in a complete manner algorithmic aspects in 
three-tier IoT scenarios considering IoT, fog and cloud layers is remarked in the recent survey in [33], in the related work review. 
Moreover, among the different research areas and opportunities described in the state-of-the-art and future directions sections in 
the survey in [34], we highlight the following ideas because of their direct relationship with the problem that we solve in this 
paper: 

i) Management: in a decentralized management architecture, different devices need to implement similar processes to handle 
management issues. This idea is aligned with the agent definition in [9] and we assume it in this paper as described in Section II 
A. 

ii) Fault tolerance: fault tolerance issues in fog computing need to be investigated; interestingly, in our proposal we study two 
different approaches to set the architecture, with and without backup. 

iii) Standard architecture: with the contribution in this manuscript, the authors believe that their proposal can be considered 
by fog-cloud operators to set the management architecture that facilitates the deployment of fog-cloud services and thus 
contributes to facilitate the opportunity “to explore and gain deeper insight into each layer with proper validation” [34]; 
specifically, our proposal solves the problem of implementing the architecture proposed in [10] to control and manage fog-cloud 
resources. 

To summarize the reviewed literature, clustering problems have been widely studied in different fields; however, in fog-cloud 
scenarios, a large number of works focus on services deployment considering the problem of assigning resources to 
services/applications but assuming a generic fog-cloud control and management architecture. Indeed, these works could take 
advantage of our proposal, since they could benefit from deploying their proposed algorithms while delegating control and 
management issues to the agents to implement the solutions obtained. Moreover, proposals facing architectural aspects, focus on 
service-specific architectures (e.g., the works in [30] and [31]) and/or consider that roles of the devices in the different layers are 
known a priori or are assigned according to a less complex criteria than the one considered in our proposal; e.g., coverage range. 
Aligned with the trends described in the reviewed literature, our work proposes utilizing an optimization technique, i.e., Mixed 
Integer Linear Programming, to minimize a multi-objective function considering relevant parameters such as latency, energy and 
mobility; as well as a machine-learning method; i.e., by means of a k-means based algorithm. Additionally, to add robustness to 
the architecture, the role of the backup leader is also considered, which impose additional constraints in fog-cloud clustering. 
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Finally, our approach first formalizes the FCC problem by means of an MILP formulation, thus explicitly stating the 
objectives and the specific constraints of this particular problem, and then proposes a scalable algorithm providing near-optimal 
solutions. For the latter, we will rely on an unsupervised machine learning approach to solving the FCC problems. A survey of 
clustering algorithms can be found in [35]. Although there is a subset of methods targeted to solve constrained clustering 
problems (i.e., problems which incorporate domain knowledge in the form of constraints) [36], they cannot be directly applied 
here, as the type of constraints considered by those methods are usually related to imposing that two elements must be placed 
into the same cluster, that two elements must be placed into different clusters, or related to imposing limits on the number of 
elements per cluster. However, in general, in the FCC problem, that type of constraints cannot be explicitly posed a priori, since 
the problem does not only involve grouping nodes in a cluster but also selecting the cluster leader (which also has some 
restrictions). For instance, two distant nodes can belong to the same cluster even if they cannot communicate (due to their 
separation) as long as they can communicate with the cluster leader (e.g., nodes 1 and 5 in Fig. 2). Thus, it cannot be enforced a 
priori the need for two nodes to be in the same or in different clusters. Therefore, we use the k-means algorithm, which is a time 
efficient clustering algorithm based on partition [35], but we enrich it with mechanisms to enforce the constraints imposed by the 
FCC problem. 

III. FCC PROBLEM FORMULATION 
In this section, the Fog-Cloud Clustering (FCC) problem is formally stated and a MILP formulation is proposed to model it. 

Then, upper and lower bounds in the number of clusters are obtained, and finally, the impact of the ratio between fog and cloud 
costs on the number of clusters is studied. 

A. Problem Statement 
The FCC problem can be formally stated as follows: 

Given: 
• A network topology represented by the graph G(V, E); being V the set of nodes (representing devices offering resources at 

fog layer) and E the set of edges. Each edge e is characterized by its distance. 
• The tuple {coordinatesv, γv, dvc, Kv, Mv} for each v ∈ V; where coordinatesv defines the node’s position, γv represents a binary 

parameter indicating if v can connect to cloud or not, dvc represents the distance to cloud facilities, Kv represents v’s capacity 
(i.e., the maximum number of underlying devices that v can manage; limited to guarantee certain QoS), and Mv represents a 
binary parameter indicating if v is considered as static or mobile. 

• Parameter 𝑝𝑝𝑖𝑗𝑇𝑋 representing the required transmission power to connect nodes i, j ∈ V. 
• Binary parameter ρ representing whether backup is required or not. 
Output: The definition of each cluster; that is, clusters’ elements and their role. 
Objective: First objective is to minimize average distance (or latency) to management functions. In addition, secondary 
objectives are to minimize required transmission power and the number of mobile nodes acting as leaders. 

B. Definitions and Mathematical Model 
The aim of the FCC problem is to determine how to group edge devices into clusters, allocating one leader in each cluster 

(with connection to cloud and enough capacity to support the rest of the nodes in the cluster), and also a backup leader (if 
required), intended at minimizing latencies and transmission power, prioritizing the selection of static nodes rather than mobile 
nodes to act as leaders, and fulfilling reachability constraints. 

Thus, in order to model the FCC problem, the following parameters have been defined: 
 

V Set of nodes representing devices offering resources at fog layer. 
dic Parameter representing distance from i ∈ V to cloud. 
dij Parameter representing distance between i, j ∈ V. 
λij Binary parameter with value 1 if nodes i and j (j≠i) have potential connectivity (are reachable if operating at full 

transmission power); 0 otherwise. 
γi Binary parameter with value 1 if node i can connect to cloud; 0 otherwise. 
Ki Constant value representing the maximum number of nodes that can be connected to node i; i.e., capacity. 
𝑝𝑝𝑖𝑗𝑇𝑋 Transmission power required for a connection from node i to node j (which depends of the location of the nodes) 
Mi Binary parameter, representing if node i is considered as static (value 0) or mobile (value 1). 
ρ Binary parameter to select if backup leaders need to be considered (value 1) or not (value 0).   
𝑐𝑐𝑖𝑗𝐹  Parameter representing the cost (or the latency) of connecting nodes i and j; proportional to dij 
𝑐𝑐𝑖𝐶  Parameter representing the cost (or the latency) of connecting node i to cloud; proportional to dic. 
bigM Large constant value. 
α Weight for the connectivity cost at fog level. 
β Weight for the connectivity cost to cloud. 
ϕ Weight for the transmission power term. 
σ Weight for the mobility term. 
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In addition, the following variables have been defined, which will provide the solution to the FCC problem: 
 

xij Binary. Value 1 if node i is managed by node j (referred to as leader); 0 otherwise. 
yi Binary. Value 1 if node i is managed by cloud; 0 otherwise. 
zij Binary. Value 1 if node i is the backup leader for node j; 0 otherwise. 
vi Auxiliary continuous variable, accounting transmission power required for node i. 
ni Auxiliary binary variable. Value 1 if node i is leader; 0 otherwise. 

Then, the MILP model for the FCC problem is defined as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝐶𝐶_𝐶𝑜𝑠𝑡 (1) 

where the FCC cost, or objective value, is defined by: 

𝐹𝐶𝐶_𝐶𝑜𝑠𝑡 =  
1

|𝑉| �𝛼� � 𝑐𝑐𝑖𝑗𝐹𝑥𝑖𝑗
𝑗∈𝑉,𝑗≠𝑖𝑖∈𝑉

+ 𝛽�𝑐𝑐𝑖𝐶𝑦𝑖
𝑖∈𝑉

+ 𝜑�𝑣𝑖
𝑖∈𝑉

+ 𝜎�𝑀𝑖𝑛𝑖
𝑖∈𝑉

� (2) 

and subject to: 
�𝑥𝑖𝑗
𝑗∈𝑉

+  𝑦𝑖 = 1    ∀𝑖 ∈ 𝑉 (3) 

𝑥𝑖𝑗 ≤ 𝜆𝑖𝑗     ∀𝑖, 𝑗 ∈ 𝑉 (4) 

� 𝑥𝑖𝑗
𝑖∈𝑉,𝑖≠𝑗

≤ 𝐾𝑗     ∀𝑗 ∈ 𝑉 (5) 

𝑛𝑗 ≥
∑ 𝑥𝑖𝑗𝑖∈𝑉,𝑖≠𝑗

𝑏𝑖𝑔𝑀
    ∀𝑗 ∈ 𝑉 (6) 

𝑛𝑗 ≤ � 𝑥𝑖𝑗
𝑖∈𝑉,𝑖≠𝑗

    ∀𝑗 ∈ 𝑉 (7) 

𝑦𝑖 ≥ 𝑛𝑖    ∀𝑖 ∈ 𝑉 (8) 
𝑦𝑖 ≤ 𝛾𝑖     ∀𝑖 ∈ 𝑉 (9) 

𝑣𝑖 ≥ 𝑝𝑝𝑖𝑗𝑇𝑋 ∙ �𝑥𝑖𝑗 + 𝑥𝑗𝑖�   ∀𝑖, 𝑗 (𝑗 ≠ 𝑖) ∈ 𝑉 (10) 

�𝑧𝑖𝑗
𝑖∈𝑉

=  𝜌 ∙ 𝑛𝑗   ∀𝑗 ∈ 𝑉 (11) 

�𝑧𝑖𝑗
𝑗∈𝑉

≤ 𝜌 ∙ (1 − 𝑛𝑖)    ∀𝑖 ∈ 𝑉 (12) 

𝑧𝑖𝑗 ≤ 𝜌 ∙ 𝛾𝑖 ∙ 𝑥𝑖𝑗    ∀𝑖, 𝑗 ∈ 𝑉 (13) 

� � 𝜆𝑖𝑘 ∙ 𝑥𝑖𝑗
𝑖∈𝑉,𝑖≠𝑗,𝑖≠𝑘

� + 1 ≥ � 𝑥𝑖𝑗
𝑖∈𝑉,𝑖≠𝑗

− 𝑏𝑖𝑔𝑀 ∙ �1 − 𝜌 ∙ 𝑧𝑘𝑗�    ∀𝑗, 𝑘 ∈ 𝑉 (14) 

� 𝑥𝑖𝑗
𝑖∈𝑉,𝑖≠𝑗,𝑖≠𝑘

≤ 𝐾𝑘 + 𝑏𝑖𝑔𝑀 ∙ �1 − 𝜌 ∙ 𝑧𝑘𝑗�    ∀𝑗, 𝑘 ∈ 𝑉 (15) 

The objective function (1)-(2) jointly minimizes distance (or latency) to management functions (main objective, first and 
second terms), and the transmission power required, as well as the number of mobile devices acting as leaders (secondary 
objectives, third and fourth terms). Similarly, as in [17], different weights can be considered for each term in the objective 
function by tuning α, β, ϕ, and σ. In this way, this is a generic formulation that can be tuned to match fog-cloud operators’ 
requirements. For instance, setting σ to a high value enforces static nodes to act as leaders rather than mobile nodes. On the other 
hand, since connectivity costs at fog and cloud layers (𝑐𝑐𝑖𝑗𝐹  and 𝑐𝑐𝑖𝐶) are related to distances between nodes and between nodes and 
the cloud, respectively, setting α = β = 1 and ϕ = σ = 0 minimizes the distance (and thus latency) to management functions 
without any additional considerations. Later, in Section III.D, we analyze the impact of the connectivity costs at fog and cloud 
layers and their associated weights (α and β). It is worth noting that, although 𝑐𝑐𝑖𝑗𝐹  and 𝑐𝑐𝑖𝐶  could be merged into one parameter we 
define them separately for the sake of clarity (similar comment applies to parameters dic and dij). Since the multi-objective cost 
function considers a variety of terms (related to distance, transmission power and mobility), the weighting parameters (α, β, ϕ, 
and σ) are set to have units as the inverse of the units of the term they multiply and, as a result, the FCC cost is dimensionless. It 
is worth noting that the FCC cost in equation (2) should just be interpreted as an optimization metric, but not as an economic 
cost. As previously mentioned, the MILP formulation aims to set a generic framework to solve the FCC problem, but not a 
techno-economic model. That type of model is out of the scope of this work. 



 8 

Constraint (3) ensures that each node is managed either by one and only one leader or by the cloud. Constraints (4)-(8) deal 
with leader-based clusters constraints. Specifically, equation (4) guarantees that only nodes within the coverage range are 
grouped in the cluster; whereas equation (5) guarantees that the capacity of leader nodes is not exceeded. Constraints (6)-(8) 
account for leader nodes and ensure that if node i acts as leader, it is managed by the cloud. Constraint (9) guarantees that nodes 
managed by the cloud can, in fact, access cloud. Constraint (10) accounts for the transmission power required to guarantee 
connectivity. Finally, constraints (11)-(15) deal with backup settings when management service guarantees are required. 
Specifically, constraint (11) ensures that a backup leader is selected to support each leader, while constraint (12) ensures that 
leaders are not selected as backup leaders. Constraint (13) guarantees that the selected backup leader and leader belong to the 
same cluster and that the backup leader can access to cloud; whereas constraints (14) and (15) guarantee intra-clustering 
connectivity (i.e., the backup leader has potential connectivity to all nodes in the cluster) and that the backup leader capacity is 
not exceeded, respectively. 

It is worth recalling that, although in our proposal the selection of mobile devices acting as leaders tends to be minimized, it is 
clear that mobile devices may be selected as leaders in benefit of reducing distance to management functions. However, 
operators may impose stringent constraints with respect to the selection of mobile devices acting as leaders; e.g., in the case that 
the cost of selecting a new leader becomes too high or in the case that the mobility of leaders impacts negatively on the 
performance. Although some specific easy rules may be considered to minimize the effects of topology changes (e.g., fog-cloud 
operators can take advantage of devices’ historical data stored at cloud, and identify whether for a given period of time a device 
can be considered as a static device or not), the proposed mathematical model can be adapted to avoid selecting mobile nodes as 
leaders. In this case, the last term in the objective function (related to mobility), can be removed from the objective function and 
added as a new constraint. For completeness, these changes are formally described in equations (16) and (17). Equation (16) 
represents the new FCC cost to be considered; whereas the new constraint added is shown in equation (17). 

𝐹𝐶𝐶_𝐶𝑜𝑠𝑡 =  
1

|𝑉| �𝛼� � 𝑐𝑐𝑖𝑗𝐹𝑥𝑖𝑗
𝑗∈𝑉,𝑗≠𝑖𝑖∈𝑉

+ 𝛽�𝑐𝑐𝑖𝐶𝑦𝑖
𝑖∈𝑉

+ 𝜑�𝑣𝑖
𝑖∈𝑉

� (16) 

𝑀𝑖 ∙ 𝑛𝑖 = 0   ∀𝑖 ∈ 𝑉 (17) 

Moreover, although it is clear that three layers can be identified (from top to down, each layer mapping: cloud, leaders, rest of 
the nodes, respectively) the model can be easily extended to a different number of layers by executing it iteratively. 

C. Upper and Lower Bound of the Number of Clusters 
A well-known constraint of MILP formulations is the scalability with the size of the problem, which drives the need for 

algorithms that can solve the problem in a feasible time (although possibly suboptimally) when facing scenarios with many 
nodes. Knowing good bounds on some performance parameters is extremely helpful to design and/or evaluate these methods. 
Therefore, we propose an upper and lower bound of the number of clusters required to solve the FCC problem. Indeed, an upper 
bound can be easily computed by equation (18), which just assumes that all nodes with connection to cloud become cluster 
leaders. As we will show later, this is a scenario coming up if connections to cloud have a low cost. 

𝑛𝑢𝑚_𝑐𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠_𝑢𝑝𝑝𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = � γ𝑖
𝑖∈𝑉

 (18) 

On the other hand, regarding the computation of the lower bound, the key idea is as follows. A node i having connectivity to 
cloud (γi=1) is a potential leader, which could serve up to Ki devices (capacity constraint) or up to ∑ λ𝑖𝑗𝑗∈𝑉  devices (i.e., the 
number of reachable devices from it). Then, potential leaders are sorted in descending order according to the maximum number 
of devices they can serve (the minimum of Ki and ∑ λ𝑖𝑗𝑗∈𝑉 ), and by adding those values until the total number of nodes is 
reached, a lower bound of the number of required clusters is determined. Note that since many constraints are omitted in that 
procedure, the value obtained is a lower bound. Nevertheless, as we will show later, in many realistic scenarios the lower bound 
is very tight (in fact, exact). The computation of the lower bound can be done using Algorithm 1 (which follows the key idea 
previously mentioned together with required subtleties for a right computation). 

 

Algorithm 1: Lower bound in the number of clusters 
1: procedure num_clusters_lower_bound(V, λij, γi, Ki) 
2: num_isolated_leaders ← 0 
3: min_number_of_clusters ← 0 
4: for i in 1 to |V| do 
5: num_reachable_devices_from[i] ← ∑ λ𝑖𝑗𝑗∈𝑉  
6: if num_reachable_devices_from[i] == 0 then  
7: if γi == 0 then  

   # A node is isolated (cannot reach any node) and has no connection to cloud 
8: set problem as UNFEASIBLE    
9: go to end procedure 

10: else 
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    # A node is isolated, but it has connection to cloud,  
    # so it must constitute a cluster of a single node (itself) 

11: num_isolated_leaders ← num_isolated_leaders + 1 
12: min_number_of_clusters ← min_number_of_clusters + 1 
13: max_served_devices_by_node[i]  ← 0 
14: end if 
15: else 
16: if γi == 0 then 

   # A node not connected to cloud cannot serve any node; thus, it cannot be a leader 
17: max_served_devices_by_node[i]  ← 0 
18: else 

   # A node connected to cloud can serve other nodes (limited by capacity and reachability); 
   # thus, it can be a leader 

19: max_served_devices_by_node[i]  ← min(Ki, num_reachable_devices_from[i]) +1 
# The +1 is added in the previous line because a leader also serves to itself 

20: end if 
21: end for 
22: num_V_reduced ← |V| - num_isolated_leaders 
23: num_potential_served_devices ← num_isolated_leaders 
24: sorted_max_served_devices_by_node ← sort(max_served_devices_by_node, order = descending) 
25: for i in 1 to num_V_reduced do 
26: # For the bound, assume that the node which can serve more devices (and is not a leader yet)  

# is selected as the leader of a new cluster,  
# and assume that those devices that it can serve were not served by another leader   

num_potential_served_devices ←num_potential_served_devices +sorted_max_served_devices_by_node[i] 
27: min_number_of_clusters ← min_number_of_clusters + 1 
28: if num_potential_served_devices ≥ |V| then 

       # All devices are already leaders or assumed to be served by a leader; so the lower bound is returned 
29:        return min_number_of_clusters 
30:        end if 
31:     end for 
32: set problem as UNFEASIBLE      # Not all nodes can be served  
33: end procedure 

D. Influence of Fog and Cloud Costs 
In this subsection, the influence of the weights of cloud and fog costs in the number of clusters created is analyzed, and those 

numbers are compared with the upper and lower bounds defined in the subsection above. 
Focusing on the main objective of the FCC problem (i.e., reducing the average distance to management functions), in view of 

equation (2), it is clear that, depending on the distance to cloud (dic) and between edge devices (dij), which in turn determine the 
cost of cloud connections (𝑐𝑐𝑖𝐶) and fog connections (𝑐𝑐𝑖𝑗𝐹 ), respectively, as well as on the weights α and β, the number of clusters 
(which is not known in advance) will vary. To evaluate the impact of these parameters, equation (19) shows the average 
weighted cost of a connection from a node to cloud, 𝑐𝑐𝑙𝑜𝑢𝑑𝐶𝑜𝑠𝑡,  while equation (20) shows the average weighted cost of a (fog) 
connection between two nodes 𝑓𝑜𝑔𝐶𝑜𝑠𝑡 as: 

𝑐𝑐𝑙𝑜𝑢𝑑𝐶𝑜𝑠𝑡 = 𝛽 ·  
∑ 𝑐𝑐𝑖𝐶 · γ𝑖𝑖∈𝑉

∑ γ𝑖𝑖∈𝑉
  (19) 

𝑓𝑜𝑔𝐶𝑜𝑠𝑡 =  𝛼 ·
∑ ∑ 𝑐𝑐𝑖𝑗𝐹 · λ𝑖𝑗𝑗∈𝑉,𝑗≠𝑖𝑖∈𝑉

∑ ∑ λ𝑖𝑗𝑗∈𝑉,𝑗≠𝑖𝑖∈𝑉
 (20) 

Then, we define the Cloud/Fog Cost Ratio (CFR) as: 

𝐶𝐹𝑅 =  
𝑐𝑐𝑙𝑜𝑢𝑑𝐶𝑜𝑠𝑡
𝑓𝑜𝑔𝐶𝑜𝑠𝑡

 (21) 

Fig. 3 shows the average number of clusters obtained, as a function of the CFR, when using the MILP formulation to solve the 
FCC problem (therefore, the solutions are the optimal ones). Each point has been obtained by simulating 10 scenarios (with 
different nodes positions, connectivity, values of Ki and values of α resulting in CFR values ranging from 10-4 to 106 for a fixed 
value of β = 1, and setting ϕ = σ = 0) with 20, 40 and 60 nodes randomly distributed in a 100 m × 100 m area, and assuming a 
distance to cloud of approximately 1000 km (the exact distance depends of the location of each node in the 100 m × 100 m area). 

As expected, Fig. 3 shows that if connections to cloud have a higher weighted cost than connections at fog layer (high CFR), 
the best solutions are those that deploy the lowest number of clusters as possible, close or equal to the lower bound (area 
identified as Fog-Cloud in the figure). In contrast, if connections to cloud are not so costly (low CFR), a very high number of 
clusters, close or equal to the maximum bound, will be used (area identified as Cloud in the figure). In these simulations, the 
transition between those two areas (depicted in grey in the figure) takes place when the CFR ranges from 0.05 to 10. Therefore,  
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Fig. 3. Number of clusters against Cloud/Fog Cost Ratio, CFR. 

if the weighted cost of connections to cloud is at least around 10 times higher than that of connections at fog layer, which is 
reasonable, the solutions to the FCC problem will use a number of clusters equal (or very close) to the lower bound. Note that by 
setting α = β = 1, which leads to finding solutions which minimize the distance (and thus latency) to management functions 
without any additional considerations, corresponds to an average CFR of 1.92·104 in this scenario (since the distance to cloud is 
~1000 km, and the average distance between two nodes in a 100 m × 100 m area is 52.14 m). Therefore, that setting implies 
working into the Fog-Cloud region. 

IV. PROPOSED HEURISTIC 
Aimed at solving the scalability issues of the mathematical model proposed in Section III, in this section we propose a 

heuristic to solve the FCC problem. It is based on the unsupervised machine learning k-means clustering method [11], [35] which 
organizes a set of elements into k clusters. This is typically done by means of a repetitive procedure: each cluster is characterized 
by a centroid, the elements are assigned to the closest centroid (and thus to that cluster), and then the centroids are recomputed 
by averaging the elements assigned to it. This procedure is repeated until the assignments no longer change. The k-means method 
may converge to a local optimum rather than to a global one. Therefore, the whole procedure is typically executed several times 
(from now on, iterations), each time starting with a different random initial position of the centroids. As previously explained at 
the end of Section II, k-means is the core or our approach, but it has to be enriched with additional mechanisms to enforce the 
constraints imposed by the FCC problem. Algorithm 2 shows the pseudocode of the proposed heuristic. 

The proposed heuristic receives the input parameters of the FCC problem (as defined in the previous section) and a user-
defined parameter setting the maximum number of iterations for the underlying k-means heuristic (lines 1 and 14 of Algorithm 
2). Then, since the original k-means technique does not take into account the constraints due to the lack of connectivity between 
nodes, the proposed heuristic builds a reachability graph (according to λij values) and finds connected components (subnets), in 
order to run the procedure to create clusters within each of those subnets independently (lines 4-5). 

On the other hand, the k-means method requires, as an input, the number of clusters to be created (k), but, unfortunately, this 
is not known a priori. Nevertheless, as shown in Section III.D, pragmatic scenarios are of high CFR type, and in these scenarios 
the optimal number of clusters is generally equal to the lower bound. Therefore, for each subnet, k is initially set to the lower 
bound for that subnet (line 9), which is computed using Algorithm 1, and then the original k-means method is applied (line 16). 
In this way, the nodes of the subnet are split into k clusters according to their coordinates (the position of the devices). The next 
step consists in executing a procedure to select the leader of each of those clusters (line 17). It consists of three phases. First of 
all, for each of those clusters, it selects as leader to the node with cloud connectivity (γi =1) that can serve a maximum number of 
devices (taking into account reachability, λij, and capacity, Ki, constraints). Those nodes of the cluster which cannot be really 
served by that leader (due to those constraints) are temporally marked as unassigned. Secondly, for those clusters where none of 
the nodes have cloud connectivity, the status of all nodes of that cluster are set to unassigned, the cluster is deleted, and a non-
leader node with cloud connectivity which was initially part of another cluster, is elevated to the role of leader of a new to-be-
formed cluster. Thirdly, all nodes marked as unassigned in the previous two steps are assigned to the closest cluster leader which 
is reachable and has enough capacity to serve it. If the whole procedure is successful (i.e., all nodes are connected to cloud 
directly or via a cluster leader), the procedure returns the set of leaders, otherwise it returns an empty set (lines 17-20). 

Then, three optimization stages (line 21) are applied to feasible solutions: 
1. In each cluster, the leader role will be reassigned to a different node of the cluster if it has connectivity with the rest of 

cluster nodes and reduces the solution cost. 
2. For each non-leader node, it will be assigned to another cluster, if the cost decreases with that change and the cluster 

leader of that cluster has idle capacity to serve that node. 
3. For each pair of non-leader nodes, the clusters assigned to them will be exchanged, if those nodes have connectivity to 

the new leader and the cost is reduced. 
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When the backup flag, ρ, is activated (lines 22-27), the heuristic searches for a backup leader in each cluster (which must 
have cloud connectivity and be able to serve the rest of cluster nodes). The solution is discarded if no backup leader is found for 
each cluster.  

Finally, the cost associated to the subnet is computed using equation (2), line 28, and the lowest cost solution found in all 
iterations of the k-means procedure (line 14) is considered as the solution for that subnet (lines 29-31).  

As previously stated, k (the number of clusters to be created) is initially set to the lower bound for the subnet. Although in fog-
cloud scenarios that number of clusters usually provides the minimum cost, that is not always the case. Then, unless a stopping 
criterion is met (line 34), k will be increased in one unit and thus the algorithm will search for a solution with an additional 
cluster in another execution of the loop (lines 35-36 and 12). There are three stopping criteria: i) k+1 is higher than the higher 
bound; ii) it is mathematically impossible to reduce the FCC cost with an additional cluster (this condition can be checked very 
quickly); iii) if the cost obtained for k-1 clusters is lower than that of k clusters. In cases i) and ii) the solution with k clusters will 
be selected as the final solution for that subnet. In case iii) the solution with k-1 number of clusters is selected as the final 
solution for that subnet. The final clustering solution is obtained by aggregating the solutions obtained for each of the subnets 
(lines 37-44). 

In the next section, the proposed model and algorithm are validated and their performance compared. 
 

Algorithm 2: k-means-Based Heuristic  
1: procedure kmeans_based_heuristic(problem_input_parameters, number_of_iterations) 
2: solution ← ∅ 
3: solution_cost ← 0 
4: subnets ← find_all_connected_components([λij]) 
5: for each subnet S in subnets do 
6: best_subnet_solution ← ∅ 
7: best_subnet_cost ← ∞ 
8: num_clusters_upper_bound ← ∑ γ𝑖𝑖∈𝑆  
9: num_clusters_lower_bound ← num_clusters_lower_bound(S, [λij], [γi], [Ki]) 

10: num_clusters ← num_clusters_lower_bound 
11: finish ← False 
12: while finish = False and num_clusters ≤ num_clusters_upper_bound do 
13: iteration ← 0 
14: while iteration < number_of_iterations do 
15: iteration ← iteration + 1 
16: clusters ← k_means_algorithm(nodes_positions, num_clusters) 
17: clusters_leaders ← select_clusters_leaders(clusters, S, [λij], [γi], [Ki])) 
18: if clusters_leaders =  ∅ then 
19: continue   # Not feasible solution (jump to line 14) 
20: end if 
21: clusters ← solution_optimization(clusters, clusters_leaders) 
22: if ρ = 1 then 
23: clusters_backup_leaders ← select_clusters_backup_leaders(clusters, clusters_leaders, S, [λij], [γi], [Ki])) 
24: if clusters_leaders =  ∅ then 
25: continue   # Not feasible solution (jump to line 14) 
26: end if 
27: end if 
28: subnet_cost ← cost_estimation(clusters, clusters_leaders) 
29: if subnet_cost < best_subnet_cost then  
30: best_subnet_cost ← subnet_cost 
31: best_subnet_solution ← clusters  
32: end if  
33: end while  
34: finish ← check_finish_criteria(best_subnet_solution, best_subnet_cost) 
35: num_clusters ← num_clusters + 1 
36: end while  
37: if best_subnet_solution ≠ ∅ then 
38: solution ← solution ∪ best_subnet_solution 
39: solution_cost ← solution_cost + best_subnet_cost 
40: else 
41: solution ← ∅ 
42: solution_cost ← ∞ 
43: go to end procedure 
44: end if 
45: end for 
46: return solution, solution_cost 
47: end procedure  



 12 

V. VALIDATION AND PERFORMANCE COMPARISON 
In this section, we apply the proposed model and heuristic to pragmatic scenarios to validate their use, and to analyze their 

performance in terms of the quality of the solutions and scalability. 

A. Scenarios Description 
Different scenarios based on a 100 m × 100 m area are considered to represent different density of devices having high 

connectivity among them. Nodes representing edge devices are randomly placed along the area according to a uniform 
distribution. Moreover, 90% of the nodes (randomly selected) can access to cloud and 75% (again, randomly selected) are 
considered as static. Distance to cloud for those nodes with access to cloud is approximately 1000 km (the exact value depends 
on the location of the node in the 100 m × 100 m area). The number of nodes that can be supported by each node is randomly 
selected from 0 to 10. Regarding the transmission power, we assume that each node supports up to three distinct levels of power 
to manage coverage (see [12], [13]). The maximum coverage of a node is set to 100 m and the maximum transmission power to 
100 mW. Regarding weights α, β, ϕ, σ in the objective function, values for ϕ (which controls the importance of minimizing the 
required transmission power of the nodes) and σ (which penalizes the selection of mobile nodes as leaders) are set to 1 and 10, 
respectively, aimed not to impact the main objective of minimizing distance, but prioritizing static nodes to serve as leaders 
instead of minimizing transmission power. Regarding, α and β, setting both of them to 1 would lead to an average value of CFR 
= 1.92·104, well into the high CFR area of Fig. 3, as previously mentioned in Section III.D. However, we have set α = 1000 and 
β  = 1, so that the average value of CFR is 19.2, which still corresponds to the area labeled “fog-cloud” in Fig. 3, but close to the 
grey area in the picture. Therefore, this setting turns into scenarios where the number of clusters is typically minimized 
(pragmatic scenarios), but some of scenarios require more clusters than those determined by the lower bound (which represent a 
good setting to test the performance of the heuristic, as that situation deviates from the optimal context for the use of the 
proposed heuristic). 

The MILP model for each problem instance has been solved using CPLEX [37], while the algorithm has been implemented in 
Python using the scikit-learn [38] implementation of k-means. A 64-bits computer built upon 12 Intel core ES-2620 v2 at 2.1GHz 
and 128 GB RAM has been used in both cases, and the computing time required with each technique to solve the FCC problem 
has been measured. Specifically, for fairness, the computing time for the MILP model accounts the time to solve the formulation, 
while the time to generate the problem is not accounted; in fact, it is much lower and not relevant compared to the time required 
to solve the problem, in the evaluated scenarios. The solving time together with the FCC cost of the solutions obtained are the 
main performance metrics that will be analyzed, although the number of clusters created when using both techniques will also be 
studied. 

B. Mathematical Model and Algorithm Validation 
Before comparing performance of the proposed mathematical model and machine learning-based heuristic for large sets of 

problem instances, let us focus on the results obtained for very small scenarios (i.e., having 10 nodes), aimed at: i) validating the 
mathematical model and the algorithm, and; ii) showing, graphically, illustrative solutions obtained for the sake of a 
comprehensive understanding of the problem and the subsequent results. 

We solved 10 randomly generated problem instances by means of the MILP and the heuristic (20 iterations), assuming both a 
backup leader is and is not required. In nine cases (either requiring or not requiring backup), the solutions obtained when the 
problem instances were solved utilizing the proposed heuristic were optimal (i.e., same solutions as the ones obtained when 
considering the mathematical model). Regarding the instance that resulted in a different solution, Fig. 4 depicts both the optimal 
solution (Fig. 4a) and the pseudo-optimal solution obtained by the heuristic (Fig. 4b). For each figure, the two clusters obtained 
are represented: cluster 1 is represented by triangles, whereas cluster 2 is represented by dots. Moreover, the leader and backup 
leader (selected in scenarios where backup is required) of each cluster are identified. Although two clusters were obtained in both 
cases and the same backup leaders were selected, there is a slight difference in the leader selection in one of the clusters (cluster 
2) and the assignment of an element to cluster 2 instead of cluster 1. Interestingly, despite of this slight difference, the objective 
value for the pseudo-optimal solution is very close to the optimal one; i.e., a gap around 0.3% is shown in the FCC costs. 
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Fig. 4. Optimal (a) and pseudo-optimal (b) solutions. 
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Fig. 5. Average FCC cost against number of nodes, without backup (a) and with backup (b). 
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Fig. 6. Average solving time against number of nodes, without backup (a) and with backup (b). 

Next, we compare the performance of the mathematical model and the algorithm for larger problem instances. 

C. Performance Comparison 
The performance of the MILP model and the heuristic has been compared in the scenarios described in subsection V.A, varying 
the number of nodes from 10 to 200. For each number of nodes, 10 scenarios have been randomly generated and all results are 
presented in average with the 95% confidence interval. Two different cases have been analyzed in each scenario: i) when no 
backup is required (ρ=0), and ii) when backup is required (ρ=1). 

Fig. 5 shows the FCC cost of the solutions provided by MILP and the heuristic depending on the number of nodes. The 
corresponding values of solving time are shown in Fig. 6. In both figures, subfigure (a) shows results without backup and (b) 
with backup. 

When comparing the results in terms of FCC cost (Fig. 5) it can be seen that increasing the number of nodes results in lower 
values of the objective function. The reasoning behind this is that, the higher the number of nodes, the larger are the chances to 
find nodes with higher capacity, thus minimizing the number of clusters. Therefore, the contribution from the cloud cost is 
significantly reduced. According to the results obtained, for instances where 10 nodes are considered, the solutions obtained by 
the algorithm are optimal in terms of cost in most of the cases. For larger number of nodes, and setting the number of iterations 
of the heuristic to 5, the gap against the optimal value is below 1% when backup is not required (Fig. 5a), and around or below 
3% when backup is considered (Fig. 5b). Increasing the number of iterations from 5 to 20 reduces the cost of the solutions 
obtained, but not very significantly. 

Regarding the time required to solve problem instances, Fig. 6 depicts the solving time against the number of nodes when 
using the 64-bit computer described in Section V.A. Although the MILP formulation provides optimal solutions, it can be seen 
that the computing time dramatically increases when the number of nodes grows beyond 90 nodes (80 nodes in case of using 
backup). For instance, it solves the FCC problem in less than 3 minutes (in average) for scenarios with 80 nodes without backup, 
but requires around 80 minutes in average for scenarios with 100 nodes. Moreover, some instances could not be solved to 
optimality after 5 hours. In contrast, the computing time of the heuristic does not increase so drastically when facing scenarios 
with many devices. For instance, when using the configuration which just run one iteration of the k-means method, it solves 
scenarios with 80 nodes in just 10 seconds (in average) and scenarios with 200 nodes in less than 2 minutes, making it suitable 
for networking scenarios with many devices, in contrast with the MILP formulation. 

In addition, Fig. 7 shows the number of clusters obtained in each case, when backup is not required and when it is required 
(Fig. 7a and Fig. 7b, respectively). In view of these figures, it is clear that the number of clusters obtained by the heuristic is very  
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Fig. 7. Average number of clusters against number of nodes, without backup (a) and with backup (b). 
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Fig. 8. Average number of clusters against nodal degree for scenarios without backup (a) and with backup (b). 

similar to that obtained when the MILP formulation is used. Similarly, it can be seen that there is little or none difference in the 
number of clusters obtained by the heuristic when 5 to 20 iterations are executed; therefore, the main difference between 
considering 5 to 20 iterations is in the elements forming each cluster and their role. 

Finally, for completeness, we analyze the solutions obtained for scenarios with a fixed number of nodes (50 nodes) and 
varying connectivity (by increasing the area in which the nodes are distributed). Fig. 8 illustrates the number of clusters against 
the average nodal degree for scenarios without and with backup. It can be observed that, when almost all nodes have connectivity 
among them or when most of the nodes are isolated, the number of clusters obtained by the heuristic is the same or very close to 
the number of clusters in the optimal solutions. For medium-low connectivity scenarios, the average number of clusters is 
slightly increased when the heuristic is considered (as these scenarios have more stringent constraints). 

In summary, the MILP formulation provides the optimal solutions of the FCC problem but suffers from scalability problems 
when the number of nodes is higher than 80 (not a huge number considering the prediction of future IoT scenarios). However, 
the machine learning-based heuristic obtains nearly the same performance in terms of both the number of clusters required and 
FCC cost, but it employs much less computing time than the MILP formulation to solve the FCC problem when the number of 
nodes increases. 

VI. CONCLUSIONS 
The advent of novel fog-cloud architectures (F2C) and the softwarization of the telecommunication industry become crucial 

to facilitate future IoT environments. However, it requires novel and efficient resource management procedures to handle the 
diversity of resources in a coordinated way. 

In this paper, we have formally presented the Fog-Cloud Clustering problem, referred to as the FCC problem, considering a 
hierarchical and distributed F2C management architecture. The FCC problem has been modeled as an MILP formulation, and we 
have also obtained lower and higher bounds to the number of clusters required. Since the proposed mathematical model does not 
scale well with the number of network nodes (i.e., the computing time dramatically increases), a machine learning-based 
algorithm for FCC has also been proposed. 

By means of a simulation study, both the MILP model and the algorithm were validated and their performances were 
compared in different realistic scenarios in terms of quality of solutions and solving time. The results from those studies show 
that the solutions obtained by the machine learning-based algorithm are very close to the optimal ones (the ones provided by 
MILP formulation) while the solving time of the algorithm is much lower than that of the MILP formulation when the number of 
nodes increases. 
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In view of the results obtained, the proposed machine learning-based algorithm could be considered by fog-cloud operators to 
efficiently identify groups of resources and their role (i.e., to map resources) to set the F2C architecture while improving 
scalability, compared to the MILP formulation. 

In our opinion, this work opens at least three research lines. First of all, the MILP formulation proposed in the paper sets a 
generic framework to solve the FCC problem, enabling the operator to establish trade-offs between the importance of minimizing 
latencies between edge devices, latencies between nodes and the cloud, the required transmission power, and the number of 
mobile devices acting as leaders. However, the formulation would greatly benefit from the incorporation of a techno-economic 
model accounting for the previous issues and being used as the driving optimization function. Moreover, a techno-economic 
model would open the opportunity to integrate, in the proposed formulation, the problem of selecting the best cloud 
provider/facilities. It should be noted that there are several works focused on economic models for fog-cloud environments (a 
review of some of these works can be found in [26]). However, they are mainly focused on task scheduling or workload/service 
allocation, so that their mapping to the MILP formulation presented here is not straightforward. Precisely, analyzing the 
operation and performance improvements of task scheduling and service allocation when using an architecture designed with the 
methods proposed in this paper, would be a second research line, and a third research line consists in developing a small testbed 
scenario to demonstrate the operation of the complete system. 
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