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Abstract— Network traffic classification is an important task for any current data network. There any many possible classification 

targets for the traffic, but we have considered as especially important the activity state of a connection and the identification of elephant 

flows (few connections carrying most of the traffic). With these detection targets, this work presents a modification of the gaNet 

architecture for classification. gaNet is an additive network model formed by ‘learning blocks’ that are stacked iteratively following the 

principles of boosting models. The original gaNet model is intended for regression, being the purpose of this work to show that it can be 

extended to classification under several adaptations. The resulting architecture is a generic additive network applicable to any supervised 

classification problem (gaNet-C). 

To obtain experimental results, the model is applied to a type-of-traffic forecast problem using real IoT traffic from a mobile operator. 

The paper presents a comprehensive comparison of results between the proposed new model and many alternative algorithms in terms 

of classification and performance metrics. The proposed classifier can perform a k-step ahead detection forecast based exclusively on a 

limited time-series of previous values for each network connection. The results include two very different challenges: detection forecast 

of active connections and elephant flows; showing that, in both cases, the proposed algorithm presents state of the art results. 
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1. INTRODUCTION 

In this work we provide an extension of the gaNet architecture [1] to perform classification on supervised categorical outputs. 

We call this extension as gaNet-C. gaNet was originally intended to perform prediction on continuous output data (regression) 

based on a sequence of additive blocks (learning blocks), with all blocks sharing the same input features and trained end-to-end 

with stochastic gradient descent (SGD). gaNet provides excellent regression performance and can be applied to hard prediction 

problems, such as k-steps ahead forecasting of network-traffic volumes based on a sequence of previous ones [1].   

 

This work shows that the new extension of gaNet for classification (gaNet-C) can be applied in similar terms to accomplish k-

steps ahead forecast of two important states of a data network connection: the state of activity vs non-activity of the network 

connection, and the state of a network connection being an elephant flow.  In both cases, we start from traffic volumes that have 

been aggregated into sequential and discrete time periods. The aggregation interval has to be large enough to avoid unnecessary 

noisy fluctuations and small enough to provide a practical granularity for prediction. Similar to [1] and for the same reasons, in 

this work we have chosen an aggregation time period of 1-hour. Once the aggregation period is established, the active state for a 

particular connection in a certain period consist in determining if there has been any traffic on it, otherwise we assume the state as 

non-active. Likewise, the elephant state for a particular connection in a certain period dictates if the aggregated traffic in that period 

belongs to the 10% quantile of connections with the highest traffic, which are known as elephant flows. 

 

Predicting whether a network flow, in a certain future period, will be active and/or associated with an elephant flow is of great 

practical importance for the operations and management of current networks, for example, in admission control and resource 

management, which focus on the best allocation of shared and limited resources, it is extremely important to predict which 

connections will be active to optimize the allocation of scarce resources [2,3]. Likewise, for the routing and classification of traffic, 
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based on the best allocation of routes to network connections, it is equally important to predict whether a future flow will be an 

outlier in terms of an extremely high volume of traffic i.e. elephant flow [2,4,5,6,7]. It is interesting the importance of detecting 

elephant flows, for which there is a growing need due to the current nature of traffic flows [2]. It is also worth noting that this 

work, which provides a model suitable for k-steps ahead forecasting and traffic classification, is unique, as far as we know, in the 

literature for this field [8,2].  

 

The original gaNet architecture [1] is formed by the aggregation (addition) of the outputs of a series of ‘building blocks’, each 

of them integrated by several neural network (NN) layers. This architecture tries to re-implement original ideas from gradient 

boosting models, such as XGBoost [9] or LightGBM [10], but using these ‘building blocks’ instead of ‘decision stumps’ (trees 

with a single split). An end-to-end training of the complete model (based on SGD) is proposed for gaNet, rather than a separate 

optimization each time a new block is added to the model. The original work [1] presents several variants of the algorithm, each 

of them following an evolutionary process from an architecture closer to gradient boosting ideas to others more connected to 

residual networks [11] and stacked models [12]. It can be said that these latter variants are similar to residual networks where all 

the short-cuts (layer jumps) share the same input (the initial features). 

 

 In this work we have considered all the gaNet-C variants  and chose only two of them, which have proven to be the fastest and 

with the best performance. The two variants chosen are the closest to a residual network.  

 

To accommodate the gaNet architecture, which was initially intended for regression, to perform classification, we propose 

several adaptations of the original model, such as: using tanh (hyperbolic tangent) layers as the final layer of each ‘building block’, 

adding a sigmoid fully connected layer (FC) prior to any network output and applying a log-loss instead of a quadratic-loss as the 

cost function. All these extensions and modifications are presented in detail in section 3.2. 

 

To score the performance of gaNet-C against other ML models, we have evaluated the most appropriate alternative models for 

classification and forecasting, such as: classic models as logistic regression and random forest, FC networks with different numbers 

of layers, recurrent and convolutional neural networks, and combinations of them [13,14], and, finally,  seq2seq models [15] and 

seq2seq with attention models [16,17]. To select alternative models to compare results, we have placed special emphasis on 

choosing other current deep learning models that are suitable for sequence prediction, such as recurrent and seq2seq models. For 

all models, we have based the comparison between them on the usual metrics for classification: accuracy, F1-score, precision and 

score. Another point of interest of the study has been the necessary computational resources in terms of the training and prediction 

times required by the different models. Finally, considering the type-of-traffic forecasting for k-steps ahead that is applied to all 

models, we present how the classification performance is affected by the proximity in prediction time, showing that the evolution 

is not generally a linear decrease in performance with the temporal prediction distance, but a more complex (and unexpected) 

evolution curve.  

 

The contributions of this work are the following: (1) Expand the gaNet architecture to classification, analyzing the possible 

extension alternatives. (2) Apply the new classifier (gaNet-C) to two difficult problems of type-of-traffic forecasting: active and 

elephant connections, each of which presents different challenges. (4) Offer a model that can be deployed in current high-

performance platforms (e.g. Tensorflow). (5) Present a comprehensive comparison of gaNet-C with alternative ML models. (6) 

Introduce a model that offers excellent prediction results with prediction times almost similar to much simpler classic ML models. 

 

The organization of the paper is: Section 2. examines related works. Section 3 presents the work in detail. Section 4 analyzes 

the results and, Section 5 provides discussion and conclusions. 

 

 

2. RELATED WORKS 

Network traffic classification when applied to the forecast of discrete-valued time-series presents more difficulties than its 

continuous counterparts that forecasts real-valued time-series, for which there is a well-established set of algorithms and tools 

based on: (1) statistical analysis methods, such as Auto Regressive Moving Average (ARMA), Auto Regressive Integrated Moving 

Average (ARIMA)...[18] or, (2) Machine Learning (ML) methods, such as Random Forest, Neural Networks, ... [18,19].  

 

The statistical techniques applied to categorical time-series are based on assuming an intermediate latent-space of real-valued 

random variables which are connected by a link function (e.g. sigmoid...) to the expected probability of each of the categories that 

can take the forecasted value. The latent space can be modeled with: a Markov model, a discrete ARMA (DARMA, NDARMA) 

model [20] or a generalized linear model [21]. The resulting models are theoretically sound, but they require a fair amount of 

observed data, they are based on many assumptions on the probability distributions of data and their implementation is 
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computationally demanding and complex. An excellent and updated review of categorical time-series models is presented in [21]. 

For the specific case of binary-valued time-series, [22] provides a solution to daily wet/dry state sequence forecasting  using a 

Discrete ARMA (DARMA) model; it needs to ensure the stationarity of the process which requires separating the days into seasons 

assuming stationarity within the seasons. In [23] it is assumed that the binary data generation process is formed by an underlying 

random continuous-valued state-space which generates the discrete process by a response function (e.g. logistic, probit). Likewise, 

[24] presents a similar model where the binary times-series can exploit time-dependent external covariates in a generalized linear 

model framework. A solution based on an underlying Markov model is presented in [25] for an economic/financial problem. For 

the more general case of discrete/categorical time-series, [21] offers a review of the different techniques available, with the work 

in [26] providing a detailed analysis of different alternatives for the application of generalized linear models for modeling and 

forecasting of categorical time-series. 

 

Network traffic classification, whether within a time-series forecasting problem or within a time-independent prediction 

problem, can be considered as part of the more general problem of network traffic analysis and prediction (NTAP). In the former 

case i.e. time-series forecasting framework, the prediction is based on past categorical values (categorical time-series) and in the 

latter case i.e. time-independent prediction framework, the prediction relies on covariates which are assumed to have a correlation 

or dependence relationship with the predicted values e.g. information contained in the flow of packet headers [27]. There are 

general surveys of machine learning applied to NTAP, which encompasses not only traffic classification and prediction, but also 

traffic routing, congestion control, resource management, fault management, network security and quality of service and 

experience (QoS, QoE) management [28,2,29]. There are also reviews presenting different approaches for type-of-traffic 

classification applied to time-independent prediction problems [30,31], presenting a taxonomy of the different approaches that can 

be taken to obtain the information to assign a type of traffic at the packet, flow or connection level. Similarly, [21] is a recent and 

unique review work of network traffic classification methods within a time-series forecasting framework i.e. classifying future 

traffic using time-series of past type-of-traffic values (categorical); where all techniques are statistics based. The area of network 

traffic classification using ML methods within a time-series forecasting framework, in which the present work is located, is an area 

that, as far as we know, does not have identified works. 

 

There are many works related with type-of-traffic classification applied to the identification of elephant states of a network flow, 

but extremely few related to the identification of active connections. In this area, the work in [32] presents a review of time-series 

classification models applied to the identification of the active state of network flows, the work shows a comparison of several ML 

models adapted to work with time-series data  e.g. Logistic Regression, Random Forest... against alternative classic time-series 

models e.g. Hidden Markov Model (HMM), ARIMA, ARIMAX,... The best results are obtained with the ARIMAX model, but it 

is shown to be extremely demanding in terms of training and prediction times, indicating that alternative ML models are more 

effective from an operational point of view. The area of elephant flows detection is an active research field due to its importance 

for network management, traffic routing, congestion control and intrusion detection [2]. As a non-exhaustive summary of the 

approaches for elephant flow detection, we can classify the methods in ML based, statistics based and ad-hoc algorithm (mainly 

implemented in hardware at the network device level) based. Considering ML based models, in [7] are used decision trees (C4.5) 

for elephant flows detection in a software defined networking (SDN). Neural networks combined with the wavelet transform are 

applied in [4] for the detection of elephant flows in inter-data-center traffic. In [5] is presented a comparison between three ML 

techniques: neural networks, gaussian process regression and gaussian mixture models, for elephant flow prediction using a 

threshold to transform traffic volumes into a binary detection value. Making use of statistics based methods, [33] applies a sampling 

strategy based on statistical assumptions to process a subset of the total traffic while maintaining a specified probability of detecting 

elephant flows. Models based on ad-hoc algorithms can be implemented in software, but they are generally implemented in 

hardware on network devices to increase their efficiency, allowing real-time processing. In this line, [34] employs an iterative 

algorithm based on hash tables for elephant flow detection, which can be implemented in both hardware and software. The work 

in [6] provides an interesting review of different alternatives for the deployment of ad-hoc algorithms on different network elements 

with their impact on accuracy, resources and cost and network solutions available in each case. A combined hardware/software ad-

hoc solution is presented in [35] for real-time elephant flows detection in SDN networks. 

 

It is also interesting to mention the work done in models based on the theory of fuzzy neural networks, such as Takagi–Sugeno 

(T-S) fuzzy delayed neural networks [36,37], adaptive neuro fuzzy inference system (ANFIS) [38,39,40,41], models based on 

random projection with non-linear transforms such as Extreme Learning machines (ELM) [50] and advanced statistical methods 

of time-series analysis [42,43]. All the work mentioned, in these latter areas of research, focuses on regression problems, but they 

can be considered promising areas to investigate their applicability to classification problems. As mentioned earlier, the use of 

statistical analysis methods is well established for time-series forecasting, but their use in the case of categorical outputs is less 

known and could be the matter for additional studies. 
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3. WORK DESCRIPTION 

This section introduces (1) the dataset used for all experiments carried out with all the models for this work, and (2) the gaNet-

C model in detail, showing the similarities and differences with the original gaNet model. 

 

3.1 Dataset 

We will follow the dataset presented in [1] corresponding to real IoT traffic from a mobile operator. The dataset contains 

information on transmitted and received volumes of traffic of 6214 mobile devices for consecutive 632 time periods of 1-hour. 

Details on the dataset structure, data preparation and distribution of network traffic volumes is provided in [1]. 

 

Fig 1 offers a view of the arrangement made for the training dataset used in this work. Unlike [1], that proposes an algorithm to 

predict continuous values, in this work we want to perform a classification of the state of network flows, using categorical values 

instead of continuous ones. More specifically, we establish a binary classification for the state in each time period (e.g. active vs 

non-active state or elephant vs normal state).  

 

Stating from the dataset presented in [1], which contains a time-series per device with volume of traffic aggregated in 1-hour 

slots, we transform it to create a dataset consisting of two time-series (with binary values) per device. One of these time-series is 

associated with the active connection status of each device (with a value of 1 for an active connection in each interval of 1-hour, 

and 0 otherwise), and the other time-series is associated with the elephant traffic status of each device (with a value of 1 for an 

elephant connection in each interval of 1-hour, and 0 otherwise). Since the objective of the experiments is to predict the state of 

the next k time periods based on the state of the n previous periods, we form the training dataset with a sequence of N vectors of 

previous activity (vectors with length n) and their associated vectors of future activity (vectors with length k). We have opted for 

24 and 6 for the values of n and k respectively, which are similar values to those used in [1] and chosen for the same reasons. The 

number of samples for this dataset (value of N) is 130494, which are additionally grouped into a training and test sets with 105638 

and 24856 samples, respectively. It is important to mention that the distribution of traffic volumes for this dataset is quite 

unbalanced [1], which is an additional challenge for any classifier that works with it. 

 

 

 
Fig 1. Structure of the training dataset: where n past categorical values are used to predict k future categorical values. 

 

Once the traffic volumes for each flow have been aggregated and their corresponding states (activity or elephant) have been 

determined, it is possible to extract statistics on their frequency distributions. Fig 2 provides two charts with the frequency 

distribution for connections with active and elephant network traffic, where we can observe how the frequency distribution for the 

state of activity is quite balanced, while the frequencies for elephant traffic are very unbalanced, both corresponding to binary 

values. The opportunity to have these two scenarios is important, as it tests the proposed models under two very different conditions 

(balanced vs unbalanced dataset). 

 

It is interesting to mention that for the elephant flows, the traffic volume in the 10% quantile of the connections that have the 

highest traffic corresponds to 98.67% of the total traffic volume. Therefore, for this particular dataset, the 10% quantile condition 

to define an elephant flow really imposes an even harder requirement, by creating a highly unbalanced dataset with connections 

classified into two traffic categories associated with 98.67% vs 1.33% of the total traffic volume. 
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Fig 2. Distribution of active network traffic connections (left) and elephant connections (right) 

 

 

3.2 gaNet-C model description 

The main purpose of this work is to expand and adapt the gaNet architecture to be applicable to classification problems. We will 

not extend here to present in detail the original gaNet model which is presented in [1], but we will present in detail the modifications 

to gaNet necessary to transform it into a classifier (gaNet-C). 

 

gaNet-C is an additive model formed by the sequential addition of ‘building blocks’. The blocks are formed by independent NN 

architectures that can have a different number of layers and configurations. gaNet-C can have many variants, with all ‘building 

blocks’ sharing similar architectures or with completely different architectures. Common elements among all variants are:  (1) All 

‘building blocks’ have the same input. (2) The output of each block is added to the outputs of the other blocks. (3) The activation 

function for all layers is ReLU, with the exception of the final layer of each block, which has an activation of type: ‘hyperbolic 

tangent’. (4) All blocks are trained together in an end-to-end training using SGD. (5) The joint output of the blocks is formed by 

the sum of the outputs of all the blocks, and serves itself as the input to a final fully connected network (FCN) with a single layer 

and a sigmoid activation. The output from this final FCN is the output of the model (Fig 3) 

 

The gaNet-C variants considered for this work are only two: gaNet-C Type I and II. The original gaNet model presented four 

variants, but in reality, the important ones were only two, which are the two considered here. 

 

gaNet-C Type I architecture assumes that all blocks have the same architecture (Fig 3). This variant is equivalent to the Type III 

variant of the original gaNet. In Fig 3 it is shown how the outputs from the blocks (ℎ𝑘) are added to the sum of outputs of the 

previous blocks (𝐹𝑘) and the final output (𝐹𝑚) is the entry to the one-sigmoid-layer (a single layer with sigmoid output) FCN 

producing the final output (𝐹𝑚
∗ ). This final output is used in a log-loss cost function to implement an end-to-end training with all 

the blocks. The optimization method to find the lowest value of the cost function is SGD.  

The log-loss cost function for gaNet-C Type I is:  

𝐿𝑜𝑠𝑠 =   - 
1

𝑁
∑ ∑ [ 𝑌𝑗,𝑖 log(𝐹(𝑗,𝑚),𝑖

∗ ) + (1 −  𝑌𝑗,𝑖) log(1 − 𝐹(𝑗,𝑚),𝑖
∗ )]𝐶

𝑗=1
𝑁
𝑖=0  = 𝐿𝑜𝑔𝐿𝑜𝑠𝑠(𝑌, 𝐹𝑚

∗ )  (1) 

where 𝑁 is the total number of samples, and C is the number of label outputs (multi-label classification); in our case this number 

is 6, since we forecast the next 6 time-periods. The meaning of the different parts of expression (1) are:  𝑌𝑗,𝑖 is the value of the 

index position j of the true label (the j step ahead true value) for the sample number i. And, 𝐹(𝑗,𝑚),𝑖
∗  is the value of the index position 

j of the final predicted label (the j step ahead predicted value) for the sample number i.  The predicted value 𝐹𝑚
∗  corresponds with 

the final output value of the model after the one-sigmoid-layer FCN (Fig 3). 

 

For the initial input to the model (𝐹0), we use the average value of the ground-truth labels; that is: 𝐹0 =  𝑀𝑒𝑎𝑛(𝑌). This initial 

configuration applies to all gaNet-C variants. 

 

gaNet-C Type I admits two additional variants: gaNet-C Type I-A (Fig 4), is similar to gaNet-C Type I but with a modified cost 

function that consists in adding a cost function similar to expression (1) for each of the intermediate outputs of the model (𝐹𝑘). To 

apply the log-loss cost function to the intermediate output values (𝐹𝑘) it is necessary to add a one-sigmoid-layer FCN to these 

outputs to obtain the 𝐹𝑘
∗ values (Fig 4), which are scaled in the range [0-1] and are suitable for applying the log-loss function. The 

log-loss cost function for gaNet-C Type I-A is: 

𝐿𝑜𝑠𝑠 =   - 
1

𝑁
∑ ∑ ∑ [ 𝑌𝑗,𝑖𝑙𝑜𝑔 (𝐹(𝑗,𝑘),𝑖

∗ ) + (1 −  𝑌𝑗,𝑖)𝑙𝑜𝑔 (1 − 𝐹(𝑗,𝑘),𝑖
∗ ]𝐶

𝑗=1
𝑁
𝑖=0

𝑚
𝑘=1  = ∑ 𝐿𝑜𝑔𝐿𝑜𝑠𝑠(𝑌, 𝐹𝑘

∗)𝑚
𝑘=1  (2) 

Where 𝑁 and C have been previously defined, and m is the total number of blocks. The meaning of the different parts of 
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expression (2) is similar to expression (1) with the difference that now 𝐹(𝑗,𝑚),𝑖
∗  becomes 𝐹(𝑗,𝑘),𝑖

∗  where, instead of having a single 

value for the last output (m), we add all the intermediate outputs (k) of the model. 

 

gaNet-C Type I-B is totally similar to gaNet-C Type I with the only difference that all blocks share their weights, that is, all 

blocks are not only similar but identical. 

 

The gaNet-C Type II variant assumes that the blocks can have different architectures (Fig 5). This variant is equivalent to the 

Type IV variant of the original gaNet. In Fig 5, the difference in the architectures of the different blocks is represented using 

different symbols to identify them (𝑓(𝑋), 𝜑(𝑋), …. 𝜓(𝑋)).  

 

gaNet-C Type II admits a single additional variant: gaNet-C Type II-A, which is identical to gaNet-C Type I-A but formed by 

blocks with different architectures. Type II-B (with all blocks sharing the same weights) is not a feasible variant  because the blocks 

do not have the same architecture, so they cannot share weights. 

 

Some examples of possible architectures for the blocks are presented in Fig. 6. We can observe that there is freedom to choose 

the number of layers and their composition for the blocks, with the only restriction of having a final layer with a tanh (hyperbolic 

tangent) activation and a ReLU activation for all other layers.  It has been proven that the scaling imposed by the final tanh layer 

is beneficial for the prediction performance of the classifier as shown in section 4, where an improvement is seen when using the 

tanh activation instead of a linear activation. 

 
Fig 3. gaNet-C Type I architecture: Each learning block has the same architecture. 

 

 

 
Fig 4. gaNet-C Type I-A architecture: Each learning block has the same architecture, with a loss formed by adding up all the losses of all intermediate outputs. 
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Fig 5. gaNet-C Type II architecture: Each learning block can have a different architecture 

 

 

 

 
Fig 6. Learning block examples 

 

As seen in the previous description of gaNet-C models, these can have many blocks and each block can have many layers. For 

such an architecture, with many layers, it is important to address the difficulties of convergence. gaNet-C handles this situation 

through several techniques: (1) the use of ReLU layers that have proven to be especially useful to prevent the possible vanishing 

or explosion of gradients in a deep network, and (2) using batch normalization, mainly in the architectures that use CNN layers.   

 

gaNet-C architectures can be seen as connected with residual networks and stacked/ensemble models. All these models have 

regularization capabilities built into them (by construction). The highly appreciated regularization effect noted in stacked models 

(a type of ensemble models) is also observed in gaNet-C models [1] . The intrinsic regularization properties of gaNet-C can be 

observed in the results presented in section 4, where we can see that we do not need to apply regularization techniques (e.g. drop-

out or L1/L2 regularization) to the models. 

 

4. RESULTS 

This section presents the results when the dataset presented in section 3.1 is used with different classifiers with the intention of 

rating the performance of gaNet-C against classic and state-of-the-art algorithms. The problem posed by the dataset is to perform 

a multi-label classification where the value of index k of the predicted label corresponds to a binary predicted value (binary 

classification) for the k-step ahead forecast. The binary output for each component of the label (6 components, Fig 1) corresponds 

to a type-of-traffic classification for two different scenarios: (1) detection of activity for a connection in a certain time period or 

(2) detection of an extremely large volume of traffic for that connection (elephant flow) in a certain time period. For each of these 

scenarios, we present separate results (section 4.1 and 4.2). 

 

The different algorithms have been categorized into groups (Fig. 7 and 12): (a) Sequence to sequence. (b) Sequence to sequence 

plus attention. With different encoder and decoder architectures for both groups. (c) NN architectures based on recurrent (LSTM), 

convolutional (CNN), fully connected (FCN) layers, and combinations of them (d) Classic ML models: random forest and logistic 

regression. And, (e) the different gaNet-C models based on their different variants. 
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The metrics used for classification forecast have been accuracy, F1-score, precision and recall. To define these metrics, we have 

considered that the presence of an active connection or an elephant connection is a ‘positive’ result and the opposite state a 

‘negative’ result; with these definitions, a true positive (TP) is a positive prediction corresponding to a real (ground-truth) positive 

state, a true negative (TN) is a negative prediction corresponding to a real negative state, a false positive (FP) is a positive prediction 

corresponding to a real negative state, and a false negative (FN) is a negative prediction corresponding to a real positive state. 

Then, the metrics can be defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑇𝑃 + #𝑇𝑁

#𝑇𝑃 + #𝑇𝑁 + #𝐹𝑃 + #𝐹𝑁
  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
 (4)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
 (5) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
  (6) 

 
Where a ‘#’ sign before a symbol indicates the total number of that symbol e.g. #𝑇𝑃 is the total number of true positives in our 

prediction results. 

 

Fig. 7 and 12 present three groups of columns, with the first group corresponding to the average results for all k-ahead steps 

forecasts, the second group (T0) for the prediction results of the time-period closest to the known past values, and the third group 

(T5) that gives the results for the last time-period, considering that we are providing a forecast of 6 time-periods steps ahead. 

 

The F1-score is more suitable  for an unbalanced dataset, since accuracy in that case is a misleading metric. Precision and recall 

are also important depending on the application and the relative importance of false positives and false negatives. If false negatives 

are important and we need to reduce them (e.g. tumor detector) then we need a high recall, while if false positives are important 

and we need to reduce them (e.g. movie recommender in commercial web) then we need a high precision. The F1-score is the 

geometric mean of both precision and recall and attempts to provide a uniquely significant metric of detection performance. The 

four metrics (accuracy, F1, precision and recall) have the same range of values between 0 and 1, with a value of 0 being the worst 

result and a value of 1 for the best. 

 

The ‘Model’ column in Fig 7 and 12 provides additional information on the corresponding model. For the NN models, describes 

the number of CNN, LSTM and/or FC layers. The additive blocks of the gaNet-C models are described by the list of layers of each 

block included in parenthesis, with an asterisk to the right of the parenthesis and a number that indicates how many times (𝑚) that 

block is repeated. The numbers given within the parenthesis and before a layer type indicate the consecutive number of layers of 

that type. For example, a gaNet-C Type I identified as (2 LSTM + 1 FC)*3 corresponds to a model with three additive blocks, all 

three with the same architecture: two LSTM layers followed by one FC layer. For the gaNet-C Type II variant, which can have 

blocks with different architectures, each block is represented in the manner mentioned previously with a ‘+’ sign to join the different 

architectures. 

 

The implementation of the ML models (random forest and logistic regression) was carried out in python with the scikit-learn 

package [44], using Tensorflow / Keras [45] for the rest of the models.  

 

We have not used any regularization techniques (e.g. L1 or L2) with the exception of drop-out that is clearly indicated in the 

models in which it has been applied. To train the models, we used gradient descent with an Adam optimizer with a learning rate 

of 0.001 and 0.9 and 0.99 for the 𝛽1 and  𝛽2 parameters, which are the default parameters in [46]. 

 

All the results presented in this section have been obtained with the test set described in section 3.1. This test set consists of a 

random sampling of 20% of the full dataset. In addition, in the resulting training set, consisting of the remaining 80%, we have 

detached another 20% as a validation set. This validation set is especially important for training SGD-based models, since the 

validation set is used to know when to stop training. An early-stopping criterion is used to stop training when a chosen performance 

metric applied to the validation set does not improve in a certain number of training cycles (epochs). In our case, we have used 10 

epochs for the early-stopping criterion with an overall result of between 10 to 100 epochs required for training, depending on the 

model and its difficulty to converge.  
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The resulting data scheme used for training comprises three sets: training, validation and test with 64%, 16% and 20% of the 

complete dataset, respectively. The  test set remains fixed for all models, while the validation and training sets contain a random 

distribution of samples for each training epoch. All results presented in this section are obtained using only the test set. 

 

As a summary, the process flow (tasks sequence) followed to obtain the results presented in this section, has been: (1) Data 

acquisition. (2) Data preparation. (3) Validation strategy and dataset partitioning (training, validation, test). (4) Selection of 

performance metrics. (5) Selection of models to perform the comparison of results. (6) Comparison of classification results and 

running times for the different algorithms. (7) Conclusions. 

 

4.1 Classification of active connections 

Fig 7 provides the metrics for the 6-steps ahead forecasting of the ‘activity state’ of each connection in periods of 1-hour, 

following the dataset described in section 3.1 (Fig 1). To perform the training and prediction, we use the previous 24 activity values 

(binary values) for each connection. As mentioned earlier, the Table in Fig 1 provides four performance metrics: accuracy, F1-

score, prediction and recall, for 3 groups of predictions: average (for all time steps), T0 (for the first time-step predicted) and T5 

(for the sixth time-step predicted). Fig 8 and 9 give the same information contained in Fig 7 but in a chart format and focusing only 

on the average F1 (Fig 8) and average accuracy (Fig 9) for the most significant results, to avoid cluttering the diagrams. 

 

The table in Fig 7 is color-coded, with a green color indicating a good result and a red color a bad result; the color palette 

between green and red is used to indicate intermediate results. In summary, the results are coded with the greenest for the best 

result and the reddest for the worst result. 

 

Taking into account the results in Fig 7, we can see that Seq2Seq and Seq2Seq+Attention provide quite bad results, which is 

paradoxical considering that these models are specifically intended for time-series forecasting. Random forest also gives poor 

results, but logistic regression, despite its simplicity, provides quite satisfactory results. For each of these two methods, we need 

to train a different model for each of the 6 output values, since they are not multi-output methods. It is also interesting that for 

gaNet-C the best results are for the Type I variant, with the other variants obtaining quite unsatisfactory scores. 

 

For best results, we can see that these are found with the following models: (1) NN models: mainly with architectures based on 

several CNN layers or based on  several (6 or more) FC layers. The addition of LSTM layers does not provide any advantage for 

these configurations. (2) gaNet-C Type I models: with blocks formed by simple FC layers: (3 FC)*2 and (6 FC)*5, and 

combinations of LSTM and FC layers: (1 LSTM + 1 FC)*2. The configurations with blocks that use CNN layers provide poor 

results. 

 

It is interesting to note the concentration of good results for gaNet-C Type I models, and that in order to obtain the best results 

it is not necessary to add many blocks: in general, a number of blocks between 2 and 6 provides the best results. We can also 

observe how the prediction results for T0 and T5 are also better, in general, for gaNet-C Type I models. This ability of gaNet-C to 

continue offering good results for distant time-ahead predictions can be considered as an explanation for the good average results 

obtained, as explained in more detail in section 4.3. 
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Fig 7. Performance metrics for classification of active connections for all algorithms. 
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Fig 8. Comparison of average 𝐹1results for classification of active connections 

 

 

 
Fig 9. Comparison of average Accuracy for classification of active connections 

 

 

Forecasting the type-of-traffic of network connections requires not only good prediction performance, but also limited training 

and prediction times, due to the real-time nature of the applications (e.g. admission control, routing, resource management...) where 

the classifier will be deployed. 

 

Fig 10 and 11 provide the training and prediction times necessary to perform training and prediction with the dataset described 

in section 3.1 for forecasting active connections. As expected, logistic regression requires the smallest training and prediction 

times, but it is necessary to train a model for each output value because we are performing multi-label classification (i.e. more than 

one positive and concurrent output value) for which logistic regression is not a suitable model. The same problem is found with 

random forest, for which training and prediction times are also small. As expected, Seq2Seq and Seq2Seq+Attention models require 

longer training and prediction times. NN models need different computational times depending on whether they include CNN, 

LSTM and combinations of them.  
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Fig 10. Training times (minutes) for all algorithms for classification of active connections 

 

 

 
Fig 11. Prediction times (minutes) for all algorithms for classification of active connections 

 

 

4.2 Classification of elephant connections 

The structure of this section is similar to section 4.1, but in this case considering the results for the 6-steps ahead forecasting of 

the ‘elephant state’ of each connection in periods of 1-hour (Fig 12). The color-coding, structure and information contained in Fig 

12, 13 and 14 are also similar to those provided in the previous section. In particular, Fig 13 and 14 provide a visual summary of 

the average F1 (Fig 13) and average accuracy (Fig 14) for the most significant results, to avoid cluttering the diagrams. 

 

Analyzing the results in Fig 12 we can observe how Seq2Seq and Seq2Seq + Attention offer again the worst results followed by 

logistic regression. It is interesting how logistic regression obtained some of the best results for the problem of detecting the activity 

of connections (section 4.1) and one of the worst to classify connections as elephant or not. Similar to section 4.1 for the detection 

of active connections, the best results for the detection of elephant flows are found with the following models: (1) NN models: 

with architectures based on combinations of CNN and LSTM layers: 2 CNN + 2 LSTM + 1 FCN. And, (2) gaNet-C Type I models: 

with blocks based only on FC layers: (3 FC)*10, and combinations of LSTM and FC layers: (1 LSTM + 1 FC)*3. Unlike section 

4.1, the other variants of gaNet-C, in addition to Type I, provide good results; some of them comparable with the best results of 

gaNet-C Type I, for example: Type I-A (3 FC)*2, Type II (2 LSTM + 1 FC)*2 + (3 FC)*2, as well as Type II-A (2 LSTM + 1 

FC)*2 + (6 FC)*2. 

 

It is also worth noting that the best gaNet-C Type I models offer the best average results, as well as, in general, the best results 

for the first and last prediction periods (shown in columns T0 and T5 in Fig 12).  
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Fig 12. Performance metrics for classification of elephant connections for all algorithms. 

 

 

 
Fig 13. Comparison of average 𝐹1results for classification of elephant connections 
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Fig 14. Comparison of average Accuracy results for classification of elephant connections 

 

 

Fig 15 and 16 provide the training and prediction times necessary to perform training and prediction with the dataset described 

in section 3.1 to forecast elephant connections. The computational requirements for this scenario are quite similar to those obtained 

in the scenario for forecasting active connections (Fig 10 and 11). Training times (Fig 15) are similar in both scenarios for the 

classic ML algorithms, but with significant fluctuations for the models implemented with gradient descent due to the 

aforementioned early-stopping criterion, which halts training when there is no increase in prediction accuracy after a predefined 

number of training epochs. This is a stochastic criterion that can introduce differences in training times.  

 

Prediction  times (Fig 16) are also similar in both scenarios, being almost identical for all models, with the exception of gaNet-

C Type I models with LSTM layers, where for the scenario of forecasting elephant connections the times are noticeably higher.  

 

 

 
Fig 15. Training times (minutes) for all algorithms for classification of elephant connections 
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Fig 16. Prediction times (minutes) for all algorithms for classification of elephant connections  

 

4.3 Time-ahead predictions details 

The evolution of prediction performance vs prediction time distance (number of time-ahead prediction periods) is usually not a 

monotonic decreasing linear function, but a more complex curve as shown in detail in Fig 17 and 18, which provide this evolution 

for different models and for the two problems posed in this work: the prediction of active connections (Fig 17) and elephant 

connections (Fig 18).  

 

In both cases, the performance metric used has been the F1-score, which is more appropriate for the case of elephant detection 

due to the unbalanced nature of the labels to be predicted, but is used in both cases to facilitate comparison between them. The 

chair-shaped curve followed by prediction performance vs prediction time, which was also observed in gaNet [1], is observed in 

both Fig 17 and 18, and more clearly in the Seq2Seq models. The prediction metric for the detection of active flows follows quite 

well, in general, the chair-shaped curve, with the gaNet-C models approaching a linear decrease. The prediction metric for the 

detection of elephant flows follows a more complex evolution with an abrupt decrease in performance followed by a rebound and 

a subsequent decrease with a smaller slope. Looking at Fig 17 and 18, we can see that gaNet-C models generally exhibit more 

robust and better behavior against the inevitable degradation in prediction performance vs. the prediction time distance. 

 

 
Fig 17. Evolution of 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 metric vs. time-ahead prediction hours (active vs non-active connections) 
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Fig 18. Evolution of 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 metric vs. time-ahead prediction hours (elephant connections) 

 

4.4 Generic results 

To see in one place the forecasting capabilities of the proposed models, in this section all classification performance metrics 

(accuracy, F1, precision and recall) are presented in detail for the forecast of all k-ahead periods (6  hours in total), including an 

additional metric: Area Under the Curve (AUC) [47] (Fig 19 and 20). We also present the Receiver Operating Characteristic (ROC) 

[47] curves for the first and last hour of the forecast, to appreciate the evolution of the metrics depending on the time distance of 

the forecast (Fig 19 and 20).  

 

Both the AUC metric and the ROC curve offer important alternative metrics for binary classification. ROC curve offers a way 

to visually assess the trade-off between precision and recall. The more the ROC curve is adjusted to a rectangular shape in the 

range of values [0,1] for false and true positive rates, the better the classification performance of the classifier. The ROC curve is 

intended for binary classification and explores how good the classifier is over all possible thresholds used to discriminate between 

positive and negative outputs. The AUC, which is the area under the ROC curve, has an important interpretation as the probability 

that the classifier classifies a positive instance chosen at random over a negative instance also chosen at random [47]. Similar to 

the F1-score, the AUC provides a single metric to evaluate the necessary balance between precision and recall. 

 

Due to the large number of metrics and forecast results, we have to select a few models to show the complete metrics information 

in a clear manner. That is the reason for choosing only two of the best models for forecasting active and elephant connections. Fig 

19 presents the results for the best model (gaNet-C Type I: (6 FC)*5) for the forecast scenario for active connections, while Fig 20 

presents similar information for the best model (gaNet-C Type I: (1 LSTM + 1 FC)*3) for the forecast of elephant connections. 

 

We can observe (Fig 19 and 20) that the scenario of forecasting active connections offers better results in all per-hour metrics 

compared to the scenario of forecasting elephant connections. We also see, that the deterioration in forecast quality, with the time 

distance to the prediction, is much slower in the former scenario, as shown by the ROC curves and the evolution of the AUC values 

in Fig 19 and 20. This behavior is due to the unbalanced dataset associated with the elephant connections (section 3.1) which adds 

significant difficulties to the classification task. Nevertheless, we can see that even with a highly unbalanced dataset the proposed 

architecture can provide good performance in a k-ahead forecast. 
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 Fig 19. Detailed results for the best model in the forecast scenario of active connections: (Left) Table with all classification performance metrics for each 
forecast period. (Right) ROC curve for the first (T0) and last (T5) hour forecast. 

  

 
Fig 20. Detailed results for the best model in the forecast scenario of elephant connections: (Left) Table with all classification performance metrics for each 

forecast period. (Right) ROC curve for the first (T0) and last (T5) hour forecast.  

 

 

It is important to appreciate the regularization capabilities of the proposed models. This can be seen in the results of Fig 7 and 

12, where it can be observed that the inclusion of additional regularization (e.g. drop-out) is not necessary to achieve the best 

prediction performance, and is even counterproductive. It is interesting to note the large size of some of the architectures presented 

in Fig 7 and 12. For example, the architecture identified as (6FC)*5 corresponds to 5 additive blocks of 6 layers each, with a total 

of 30 layers, and, the architecture (4FC)*10 corresponds to a total of 40 layers. The fact that such large architectures can provide 

good prediction results with an independent test set can be considered as an indication of the capabilities of the model. 

 

It is interesting how gaNet-C Type I provides a good balance between the computational resources needed for training and 

prediction (Fig 10, 11, 15, 16) and normally requiring no more time than NN models with the same  block configuration. The other 

variants of gaNet-C offer, in general, worse results in terms of training and prediction times. The conclusion from Fig 10, 11, 15 

and 16 is that the gaNet-C Type I  models based on fully connected layers provide excellent training and prediction times, giving 

a perfect balance between prediction performance and computational needs.  

 

The architecture of gaNet-C based on an additive integration of similar structures is a perfect candidate for the distribution and 

parallelism attained by modern decentralized platforms optimized for the deployment of deep learning networks (e.g. Tensorflow) 

[45]. This characteristic makes gaNet-C a candidate algorithm for network traffic analysis and prediction problems with hard 

processing requirements (e.g. real-time, large data volumes...). The generic nature of these models makes them  applicable in 

diverse areas that require an accurate forecast of categorical variables, with an additional requirement of small prediction times. 

Some feasible areas would be: cybersecurity with an emphasis on intrusion detection, manufacturing fault detection, demand 

change forecasting, traffic change forecasting,… 

 
 

 

 

5. CONCLUSION 

The gaNet model [1] is a regression model intended to predict continuous values, in this work we provide an adaptation of this 

original model to be suitable for classification problems. It is shown that the resulting adaptation (gaNet-C) exhibits excellent 

 T0 T1 T2 T3 T4 T5 

Accuracy 0.9463 0.9339 0.9317 0.93 0.9286 0.9218 

F1 0.9517 0.9405 0.9378 0.9351 0.9344 0.9278 

Precision 0.9557 0.9506 0.9489 0.9565 0.9524 0.9569 

Recall 0.9477 0.9305 0.927 0.9146 0.9171 0.9003 

AUC 0.9868 0.9815 0.9774 0.9781 0.9748 0.969 

 T0 T1 T2 T3 T4 T5 

Accuracy 0.9431 0.9379 0.9431 0.9432 0.9425 0.9389 

F1 0.7317 0.6834 0.7027 0.6988 0.6946 0.6687 

Precision 0.8195 0.823 0.8327 0.8305 0.8338 0.834 

Recall 0.6608 0.5842 0.6078 0.6032 0.5952 0.5581 

AUC 0.9561 0.9496 0.9482 0.9442 0.9315 0.9164 
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classification capabilities for two difficult and important problems associated with the detection of the state of a network 

connection. The two classification problems consist of detecting the active state of a connection (connection with some transmitted 

data) and the state associated with an "elephant connection" (connection that carries most of the traffic). The detection is carried 

out considering the traffic volume of the connection for consecutive and fixed time-periods (1-hour). In addition, the initial problem 

of type-of-traffic prediction has been extended to a forecast problem when applied, not to the detection of the current state of the 

connection, but to detect the k future states associated with the immediate k future time-periods. In this way, we are finally faced 

with a problem of multi-label classification [48], where the k predicted labels contain the connection states for each of the k future 

time-periods. The traffic used for training and prediction is real traffic from a Mobile Operator. 

 

We provide a thorough comparison of the results of gaNet-C against many alternative state-of-the-art ML models, for the two 

classification problems mentioned above performing a k-steps ahead forecasting which is handled as a multi-label classification. 

The two scenarios (detection of active and elephant connections) present different requirements (balanced vs unbalanced labels 

distribution) that impose additional difficulties for the models. 

 

 The model incorporates many good properties of other models to which it is connected, such as: residual networks, gradient 

boosting and ensemble models. In particular, the model offers excellent convergence capabilities and built-in regularization 

properties. 

 

This work presents several variants of the gaNet-C architecture in line with the variants in [1]. All adaptations made for gaNet-

C are presented in detail. All the results obtained, with the different gaNet-C variants and the alternative ML models, are presented 

under different points of view: (1) several performance metrics, (2) training and prediction computational times, and (3) evolution 

of prediction performance vs the number of time-ahead prediction steps. Considering the results, we show that gaNet-C provides 

excellent classification capabilities, with better or similar results to the best alternative models.  The good results of gaNet-C are 

maintained for the two classification scenarios considered, while the other models stand out in only one of them. The computational 

times required for training and prediction are also very limited for gaNet-C, which makes the model suitable to be deployed in 

classification problems for highly demanding data networks (e.g. IoT networks) 

 

As future lines of research, it would be interesting to apply gaNet-C to other fields, being cybersecurity and intrusion detection 

of special interest [2]. It would also be interesting to perform additional comparisons of results and explore the application of other 

techniques to the classification problem presented in this work, such as the techniques already mentioned (section 2):  T-S fuzzy 

delayed neural networks, ANFIS and ELM. 
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