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Abstract— Network traffic forecasting is an operational and management function that is critical for any data network. It is even 

more important for IoT networks given the number of connected elements and the real-time nature of many connections. This work 

presents a novel deep learning architecture applicable to this supervised regression problem. It is based on an additive network model 

formed by ‘learning blocks’ that are stacked iteratively following, in part, the principles of gradient boosting models. The resulting 

architecture is trained end-to-end using stochastic gradient descent. This new architecture has connections with residual, stacked and 

boosted networks, being different from any of them. Like residual networks, it shows excellent convergence behavior during training 

and allows for deeper models. It has a regularization effect similar to stacked models and presents excellent prediction results as gradient 

boosting models do. The building elements of the architecture are neural network blocks or learning blocks, that can be constituted by 

a sequence of simple fully connected layers or by more elaborate dispositions of recurrent and convolutional layers. The resulting 

architecture is a generic additive network (gaNet) applicable to any supervised regression problem. 

To obtain experimental results on a hard prediction problem, the model is applied to the forecasting of network traffic using IoT 

traffic volume real data from a mobile operator. The paper presents a comprehensive comparison of results between the proposed new 

model and many alternative algorithms, showing important improvements in terms of prediction performance metrics and 

training/prediction processing times. 
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1. INTRODUCTION 

Network traffic prediction is one of the main application areas of Machine Learning (ML) to data networking [1,2,3]. Traffic 

volume prediction can be defined as the forecasting of incoming and outgoing bytes-count at different connections levels in the 

network hierarchy (device, link, routing…). Traffic prediction is a critical element in network operations and management: 

congestion control, routing, resource allocation and management of service level agreements (SLA), among many other network 

responsibilities and functions [1,2]. 

 

Traffic prediction can be performed with statistical analysis methods e.g. Auto Regressive Moving Average (ARMA), Auto 

Regressive Integrated Moving Average (ARIMA)...[4,5,6] or Machine Learning (ML) methods e.g. Neural Networks, Random 

Forest... [6,7]. Additionally, the prediction process can distinguish whether the data used for prediction consist exclusively on past 

traffic volumes (time-series forecasting) or some external (exogenous) information is used to help with the prediction, assuming 

that there is a correlation between this external information and future traffic volumes. For example, we can employ only the past 

n traffic volumes to predict the next one or, in addition, we can use other information related to traffic, such as: device IDs, 

time/date, type of customer, geographical area, etc... In this latter case, the ML methods are more appropriate, since only a few and 

complex time-series forecasting methods use exogenous information e.g. Auto Regressive Integrated Moving Average with 

eXogenous variables (ARIMAX) [8]. 

 

In order to perform the prediction, it is necessary to perform a time discretization, with pre-defined time windows (time-slots) 

used to aggregate traffic. Once the traffic is aggregated and discretized in time-slots, the prediction consists in forecasting the 

traffic volume for the next time-slot (simple forecasting) or the future k nearest time-slots (k-ahead forecasting). Depending on the 

application the time-slots can be seconds, minutes, hours,… 
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Application of statistical analysis methods for traffic prediction has been the usual direction, but the trend has recently moved 

to ML methods [2]. From the point of view of an ML model, traffic volume forecasting can be seen as a regression problem where 

a regression function performs a simple forecasting (one-output regression) or a k-ahead forecasting (multi-output regression), 

using as predictors the past traffic volumes or exogenous variables, all of them considered as model features.   

 

Therefore, in the more complex setting, an ML method applicable to traffic volume prediction for networking should be a multi-

output regression model able to incorporate all kind of features as predictors. Neural networks (NN) are particularly good 

candidates for this task, considering also the possibility to use recent NN architectures specifically suited for sequence data 

(Recurrent Neural Networks (RNN), i.e. Long Short Time Memory (LSTM) networks)[7]. NN models can support multi-output 

regression and can be deployed in high-performance execution environments using current available platforms for deep learning 

(e.g. Tensorflow). Other extremely successful models for regression problems are based on bagging [9] (e.g. Random Forest) and 

boosting [9] (e.g. AdaBoost) algorithms, and particularly gradient boosting (GB)[10,11]. These models present more difficulty to 

address a multi-output regression [12], being the easier solution to train a specific model for each output value. Therefore, 

considering the benefits provided by the different algorithms it seems interesting to explore the possibilities of combining the ideas 

and principles of GB and NN in a single model. This paper shows that, with an adequate combination of GB and NN models, we 

are able to propose a novel architecture that provides better prediction metrics than other models with limited computation times. 

We call this architecture generic additive network (gaNet), being applicable to any supervised regression problem. gaNet is a 

stagewise additive model trained with the residuals between the ground-truth and the predicted outcomes, as gradient boosting 

models do.  

 

gaNet has also connections with residual networks [13] and stacked models [14,9]. A residual network is formed by a sequence 

of layers where the input to the internal layers is built by adding the outputs of more than one previous layer. The architecture of 

gaNet resembles a residual network with different network topology and connections, and shares with residual networks its robust 

convergence behavior during training, even with an extreme number of layers added to the network. It also has a configuration 

similar to a stacked model, which is formed by a succession of stages where the output of a previous stage becomes the input for 

the next stage, and each stage is trained separately, sharing the same ground-truth outcome for all stages. The regularization effect 

observed in stacked models (a type of ensemble models) is also observed in gaNet models. 

 

To evaluate gaNet and compare it with other models, we apply it to the difficult and important problem of k-ahead network 

traffic forecasting at the device level, using only recent and short traffic values. This is a practical problem considering current 

highly demanding networks with a large number of devices and volatile network conditions (e.g. IoT networks), where acquiring 

and storing longer series of traffic volumes per device is costly, and, where the changing conditions of the network make 

information that goes far back in time less useful. Besides, the trend to network services personalization makes it necessary to 

manage traffic at the device level as part of SLA contracts. In our case, we compare all models considering the traffic prediction 

for the next 6 time-slots using the values of the previous 24 time-slots with a time-slot duration of 1-hour. The experiments have 

been performed with real IoT traffic data obtained from a mobile operator [15] (generated specifically for device traffic forecast). 

The data included time-stamped traffic records with dummy (obfuscated) mobile identifiers. Considering the application in an 

operational environment where privacy is paramount, the objective has been to not to use any information other than the time-

stamped traffic volumes. 

In order to evaluate the performance of gaNet, we compare it with alternative ML models applicable to this problem, such as: 

recurrent neural networks in isolation [16] or together with convolutional neural networks[17,18], fully connected neural networks 

with different number of hidden layers, seq2seq models [19] with and without soft attention [20,21] and classic ML models as 

random forest and linear regression.  

The reasons for the good performance of gaNet models are related to their similarities to residual networks, ensemble (stacked) 

models and gradient boosting methods. Each of these models provides different properties to the algorithm. Ensemble models are 

perfect candidates for variance reduction, while gradient boosting models address the bias problem, and residual networks have 

been shown to solve the convergence and training problems associated with deep neural architectures. The combination of these 

different concepts provides the necessary balance to tackle both the problem of underfitting and overfitting, which are present in 

any machine learning algorithm. 

 

The capacity to predict network traffic is crucial in many networking domains: traffic control, network adaptation, congestion 

and admission control, and network management [2,22,23,24]. All of these areas require a network traffic forecasting service that 

is transversal and invoked by many other services as presented in Fig 1. Depending on the time-scale used for the prediction 

(milliseconds, seconds, hours, days, ...), the use of the prediction may be different, being generally the case that the larger time-

scales are associated with information administered by humans while the smaller ones are handled by automated processes. In our 

case, the time-scale used is 1-hour, which is in the middle of the separation of human vs. automatic management and can be useful 
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for both purposes [15]. 

 

 

 
Figure 1. Services framework for an IOT application and position of the traffic forecasting service 

 

 

As a summary, we consider that this work achieves several objectives with the following contributions: (1) To present a novel 

NN architecture for multi-output regression problems based on GB principles, that is easy and fast to train, also fast with prediction 

times and providing excellent prediction results. (2) To show that a lego-like assembly of similar structures which follows a 

stagewise additive model shares many of the good properties observed in residual networks, ensemble models and gradient 

boosting methods. (3) To analyze different architectural alternatives for the new model. (4) To propose a model that can be 

deployed in modern high-performance platforms (e.g. Tensorflow). (5) To provide an extensive comparison of our proposed model 

with alternative ML models for the prediction of volume of traffic for a real IoT network. 

 

The paper is organized as follows: Section 2. identifies related works. Section 3 presents the work performed and the models 

analyzed in the paper. Section 4 shows the results obtained and finally, Section 5 provides discussion and conclusions. 

 

 

2. RELATED WORKS 

As mentioned in the previous section, the model presented in this work (gaNet) has connections with  several other models: 

gradient boosting [10,11], residual networks [13] and stacked models [14,9]. gaNet incorporates ideas from GB models but is 

different from boosting models [9]. Boosting models consist of an additive boosting combination of weak leaners. They assign a 

weight to each sample based on the error obtained by that particular sample. Following the paradigm of boosting models, there is 

a series of works that apply NN architectures as weak learners [25,26]. 

The combination of gradient boosting with trees and neural networks is explored by recent research. In line with the work 

proposed here, [27] proposes an implementation of gradient boosting using Tensorflow, which is a popular deep learning platform. 

They implement a traditional gradient boosting algorithm based on trees as weak learners. Authors in [28] propose a model based 

on gradient boosting with neural decision forest as ‘weak learners’. 

There are several works that establish the connection of residual networks with boosting and gradient boosting models. In [29] 

is presented a theoretical connection between residual networks and boosting theory, where the final layer of a residual network 

can be assimilated to a layer-by-layer boosting method. Similarly, [30] provides a link between gradient boosting and residual 

networks proposing a new gradient boosting algorithm based on the notion of functional gradients.  

Considering that gaNet is an algorithm for multi-output regression, [12]  presents a detailed review of the difficulties inherent 

in multi-output regression algorithms. 

Even when it is not the main topic of this work, we present the results of applying several advanced algorithms for network 

traffic prediction such as: sequence to sequence [19], attention [20,21], convolutional networks (CNN)[31] and recurrent networks 

(LSTM)[32] and, for which there is a good number of previous works on network traffic forecasting [7].  

The literature presenting advancements on network traffic forecasting is extensive, studying many different types of algorithms: 

(1) statistical analysis methods, either linear (ARMA, ARIMA,..) , non-linear (GARCH,..), or based on probabilistic models 
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(Hidden Markov Models), and (2) ML methods, either based on neural networks(CNN, ) or not (Random Forest, …) 

Regarding statistical/probabilistic methods, in [33], an ARIMA model is applied to predict load demands and adjust the 

provisioning of resources for applications in a cloud data center. Authors in [34] study a combination of ARIMA and Generalized 

Auto Regressive Conditional Heteroskedasticity (GARCH) showing that it provides better prediction accuracy than a fractional 

auto-regressive integrated moving average (FARIMA). In this work the goal is to obtain good prediction accuracy under short-

range dependence (SRD) and long-range dependence (LRD) characteristics in the time-series. They propose a model that is able 

to incorporate the LRD in the model by combining ARIMA (linear model) with GARCH (non-linear model), resulting in a model 

with better LRD properties than FARIMA. In [35] a study is made on the deterioration of the prediction accuracy in long-range 

predictions using ARMA and the Markov Modulated Poisson process (MMPP). A hidden Markov model is used in [36] to predict 

traffic volume based on flow statistics. 

All statistical/probabilistic models depend to a large extent on the stationarity of the data used for prediction and the prediction 

time range. They adjust/train the model to a particular time-series, and they are not applicable to models that need to predict a set 

of time-series with a single model training.  

Regarding ML methods, the research presented in [37] uses convolutional neural networks (CNN) to predict short-term changes 

in the amount of traffic that crosses a data center network, the non-linearity provided by CNN surpasses the ARIMA results. A 

recurrent neural network is applied in [38] to the prediction of multivariate time-series when the time-series have missing values. 

In [39] the authors propose an ensemble of a convolutional and a recurrent network, which are trained together end-to-end, and 

where the outputs of the two networks are concatenated and given to a final softmax layer to achieve time-series classification. 

They compare the final model with and without an attention mechanism for the recurrent network. Similarly, [40] presents a 

complex two-stage attention mechanism for the prediction of multivariate time-series with a recurrent neural network. The first 

stage is applied to the signals dimension and the second to the time dimension. They achieve better prediction metrics than with 

simple recurrent networks, other non-linear models and ARIMA. Authors in [15] present a study on time-series classification for 

IoT traffic using several ML methods e.g. Logistic Regression, Random Forest, Gradient Boosting Method (GBM) and Bayesian 

Logistic Regression, comparing them with the results of classical time-series methods e.g. Hidden Markov Model (HMM), 

Exponential Smoothing, ARIMA and ARIMAX. ARIMAX presents the best prediction results but it is extremely expensive in 

terms of training and prediction times. The work shows that the ML methods have better operational results, since their prediction 

accuracy is close to the ARIMAX model with much smaller requirements for training and prediction times. 

The application of ML methods to time-series forecasting is a complex issue, where there is an active research activity [1,2,41] 

in which the work presented here is framed. 

Time-series forecasting in highly demanding environments is a challenging problem, since it is not only necessary to deliver an 

accurate future traffic forecast but also to deliver it in time. In this line, it is important that the data acquisition [42] and forecasting 

algorithms are efficient [22], but also that they can be distributed and deployed in modern computing platforms [43], with the 

ultimate challenge of accommodating network services for real-time analytics of massive IoT data [41]. 

 

 

3. WORK DESCRIPTION 

In this Section we provide details of the dataset used to carry on the experiments and the novel architecture that is proposed to 

perform volume of traffic predictions for data networks.  

The dataset employed and the proposed model are presented on sections 3.1 and 3.2 respectively.  

 

3.1 Selected dataset 

The selected dataset is presented in [15] and corresponds to real IoT traffic from a mobile operator. The data consists of separate 

activity records (bytes transmitted and received) for 6214 mobile devices during a consecutive period of approximately 26 days 

(632 hours). In addition to the traffic volumes, the data included the obfuscated mobile identification (SIM) and the time stamp of 

traffic records. 

The traffic per device has been aggregated in time slots of 1-hour with a total of 4076384 values of traffic in a time-series 

structure per device. This data has been further separated into two datasets: training and test, with no data sharing between both 

datasets. The training dataset corresponds to the activity of all devices for the first 512 hours (21.3 days) and the test dataset for 

the following 120 hours (5 days).  

The objective of the experiment carried out with the datasets is to forecast the volume of network traffic of a device (aggregated 

input and output traffic) for the next 6 hours in time slots of 1-hour, having as predictors the network traffic of the previous 24 

hours, in time slots of 1-hour also. Therefore, the final arrangement of the datasets for this supervised regression problem is a 

training dataset of 105638 samples with 24 real values as predictors and 6 real outcome values (multivariate multiple regression), 

and, a test datset of 24856 samples with the same number of predictors (24) and predicted values (6). 

It is interesting to mention two important challenges of the dataset: a) the unbalanced nature of the distribution of traffic, and, 
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b) the wide value ranges for the traffic volumes, with values extending over several orders of magnitude. The second challenge is 

addressed by applying a log1p transform to the traffic volumes. The log1p transform is based on the following expression: 

log(𝑥 + 1) where  𝑥 is the transformed variable and log is the natural logarithm. The first challenge is more difficult and poses a 

difficulty to the prediction algorithm.   

Fig 2. presents graphically the unbalanced distribution of network traffic for all devices. The chart provides a histogram of traffic 

(log1p transformed) transmitted and/or received by any device in a 1-hour aggregation time-slot. We can observe that most of the 

traffic is associated to devices with zero aggregated activity in 1-hour time slots, with some important peaks of traffic for the ranges 

of a few tens to thousands of bytes and a long tail for extremely large and rare traffic volumes. Fig 2 shows also the mean, median 

and standard deviation for the traffic volume. The transformed median value (4.1109) corresponds to a real traffic volume of 60 

bytes aggregated in 1-hour time-slot. 

 

 
Fig 2. Distribution of network traffic volumes (log1p of the aggregated bytes transmitted in 1-hour time slots). 

 

 

Considering the high number of idle connections in the 1-hour time slot aggregation period, it is also interesting to show the 

distribution of active connections (connections with a non-zero traffic volume in the 1-hour period) considering the day of week 

(Monday to Sunday) and the hour of day (0 to 23 hours). Fig 3 provides these distributions of active connections. We observe the 

expected hour/day cyclic activity corresponding to the distribution of working hour/days. 
 

 
Fig 3. Distribution of network traffic active connections per day of week and hour of day. 

 

 

3.2 Model description 

This section presents the gaNet model at different levels of detail. 

 

3.2.1 gaNet model: introduction 

As mentioned in the Introduction, the initial intention of this work is to implement the ideas proposed by the GB algorithms 

using neural networks (NN) as substitutes to the one-step decision trees (stumps) used in GB. As opposed to decision stumps, an 

NN is not a weak learner implying that some of the properties of GB are expected to be modified. Nevertheless, using NN as the 

learning building blocks of GB may provide many advantages if we could leverage the end-to-end training capabilities given by 

stochastic gradient descent (SGD) that is applied for the most successful deep learning architectures.  A GB model is an iterative 
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stagewise additive model formed by pretrained learning blocks. The learning blocks (‘learners’) try to approximate (regression) an 

output made by the differences between the ground-truth output and the output from the model built so-far, these differences are 

called residuals. An additional multiplicative parameter is optimized in each step of the algorithm. Both the regression learners 

and the multiplicative parameters are fitted once and added to the model which is not fitted end-to-end, requiring two optimizations 

per step. These optimizations can be implemented with two separate NNs per step, one to implement the ‘learner’ and another to 

optimize the multiplicative parameter as a simple linear regression problem. We have implemented this approach in two different 

variants in what we call gaNet Type I and II models (Section 3.2.2). However, this approach is not ideal for many reasons: large 

number of NN models to administer, slow training of separate NNs, no end-to-end training and difficulty in deploying the model 

in high performance environments. 

Therefore, the next objective has been: (a) how to transform the initial step-by-step training into an end-to-end training, with the 

aim of converting an original GB model implemented with NNs into a pure deep learning model that supports end-to-end training 

and prediction, and (b) to study how this important transformation of the original ideas of GB affects the resulting model in terms 

of prediction capabilities and computation times. The resulting architecture following these objectives is called gaNet Type III 

model.  

The last gaNet architecture is the Type IV, which is a Type III generalization where the learning blocks are not all similar, as in 

Type III, but each one can follow a different model. This provides an additional level of flexibility. In Section 4 we show that a 

Type IV model presents the best results considering the performance metrics: MSE, 𝑅2  and NRMSD. The different variants of 

the gaNet architecture obtained by successive refinements are presented in detail in Section 3.2.2. 

In order to facilitate the maintenance and management of the generated models, our  intention has been to create a single model 

to carry out the forecasting for all devices (incoming and outgoing traffic) and all output values (multi-output prediction). As 

mentioned before, considering the usual methods for time-series forecasting: a) time-series models based on statistical analysis 

methods (e.g. ARIMA) that adjust the parameters of a lineal model to the next value of the time-series based on the previous n 

inputs, and, b) machine learning (ML) models (e.g. Random Forest, Linear Regression...), that treat the forecasting problem as a 

multi-output supervised regression problem; in both cases, it is difficult to apply a single model to a multi-output prediction from 

traffic generated by a number of different devices. In the case of ARIMA, we would need to fit the parameters of an ARIMA model 

per device or to build a VARIMA model that is too complex. Moreover, the parameters of an ARIMA model are adjusted to the n 

previous values of the time-series taken as predictors; in our case n is a small value compared with the total length of the time-

series implying the necessity to adjust several ARIMA models for the time-series generated by each device. Similarly, in the case 

of ML solutions, with classical models which produce a single predicted value, it would be necessary to construct a model for each 

predicted value, this being the simplest solution to the difficult problem of multi-output regression in machine learning [12]. To 

solve these difficulties, our proposed model is able to produce a single model that performs k-ahead forecasting  with time-series 

generated by different devices.   

 

3.2.2 gaNet model: details 

This section presents the proposed architecture in detail. In order to arrive to the final model, we provide a description of the 

successive models that were considered from the original ideas of a gradient boosting (GB) model to the different variants of our 

proposed model (gaNet). In this section we will identify all these models as gaNet models, giving them an additional type identifier 

to help in their subsequent reference.  

As mentioned in the introduction, the different gaNet models are formed by the composition of building blocks where all the 

building blocks are made of NN architectures. The main advantage of using NNs is the possibility to use stochastic gradient descent 

to allow an end-to-end training of a complete model with the additional benefits of current research advances in deep learning 

architectures and their implementation platforms (e.g. Tensorflow, Theano… ).  

We will present the different gaNet models in increasing divergence from the initial GB ideas to architectures more similar to 

stacked or residual networks. The ideas behind a GB model [10,11] are presented in Fig 4. The gaNet architectures that follow 

more closely this model will be referenced as Type I models. A GB model is a supervised machine learning model having as inputs 

a set of samples {(𝑥𝑖 , 𝑦𝑖)}, where 𝑥𝑖 is a vector of features used as predictors for training and 𝑦𝑖 is a vector of expected results 

(ground-truth values). We assume to have a number 𝑁 of such samples. In Fig 4. we call the vector of features 𝑥𝑖 as 𝑋 and the 

vector of results 𝑦𝑖  as 𝑌. The algorithm for GB is obtained by repeating iteratively the sequence of 3 steps presented in Fig 4. It 

starts by selecting an initial fixed output value (F0) that we choose as the value that minimize the quadratic error between 𝐹0 and 

our expected values 𝑌. This value corresponds to the mean value of Y. Starting from this initial value: 𝐹0, we obtain the first 

residual: 𝑟1 = 𝑌 − 𝐹0 and we train a learner 𝑓1, with 𝑋 as predictors and 𝑟1 as our ground-truth value. In Fig 4 we identify the 

learner as a learning block (building block of the model). To train the learner 𝑓1 we use the quadratic error loss between 𝑟1 and 

ℎ1,  that is defined as:  𝐿2(𝑟1,  ℎ1) =  ∑ (𝑟1,𝑖 − ℎ1,𝑖  )
2𝑁

𝑖=0 , where ℎ1 is the output of 𝑓1. Once the learner is trained, we calculate the 

value of a multiplicative parameter: 𝛾1, that minimizes the quadratic error loss:  𝐿2(𝑌, 𝐹0 + 𝛾1 ∗ ℎ1) = ∑ (𝑌 − (𝐹0 + 𝛾1 ∗ ℎ1))2
𝑁 , 

where again ℎ1 is the output of 𝑓1 when is trained with the residuals 𝑟1 using 𝑋 as predictors, and the sum is extended to all the 

samples of the dataset. Once the optimum value of 𝛾1 is obtained, we proceed to add the value of 𝛾1 ∗ ℎ1 to 𝐹0, calling the resulting 
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value as 𝐹1. This new value 𝐹1 will be used in place of  𝐹0  in the next iteration of the algorithm until a predefined number 𝑚 of 

building blocks (𝑓𝑚) are added to the model. In each iteration of the algorithm the successive values of 𝐹𝑚, 𝑟𝑚 and 𝛾𝑚 are updated 

following the steps shown in Fig 4. 

The algorithm for the Type I model consists of a forward stagewise additive model of independently trained building blocks 

(𝑓𝑚), and independently optimized parameters (𝛾𝑚). This imply the need to perform two optimization steps for each building block 

that is added to the model. We use a different NN to train/optimize 𝑓𝑚 and 𝛾𝑚 since we perform all optimizations based on SGD. 

Fig. 4 outlines how is implemented the NN to train 𝑓𝑚, using the vector of predictors 𝑋 as the input and the residual 𝑟𝑚 as the 

ground-truth output, but it does not describe the NN that is used to optimize 𝛾. Fig 5 describes this latter NN. As we can see in Fig 

5, the NN used to optimize the parameter 𝛾 is a simple NN with no hidden layers and a linear output layer. Once this NN is trained, 

its weights correspond to the optimized values of the multiplicative parameter 𝛾. As expected, the loss function for this NN is 

𝐿2(𝑌, 𝐹𝑚) =  𝐿2(𝑌, 𝐹𝑚−1 + 𝛾𝑚 ∗ ℎ𝑚), where 𝛾𝑚  are the weights of the NN. Therefore, the weights of the NN in Fig. 5 adjust their 

values during training to perform the optimization sought:  𝛾𝑚 = argmin
𝛾

𝐿2(𝑌, 𝐹𝑚−1 + 𝛾 ∗ ℎ𝑚). It is important to mention that the 

NN used for the optimization of the 𝛾 parameter substitutes the line search methods [10] normally used for this aim by the classic 

GB models  

Just to clarify the connection between the different elements that participate in the gaNet Type I architecture, in Fig. 6 is 

presented an expansion of a generic block of the architecture presented in Fig 4. In this last figure it is easier to differentiate the 

two NNs used and their different purpose. 

 

An important consequence of the implementation of the GB methods, as the gaNet Type I model does, is that it is very easy to 

extend the model to multi-output regression problems. In a multi-output problem, the outcome 𝑌 is not a scalar but a vector of 

values (in our case is a vector of 6 values, but could be any number of values). To perform this extension, it is simply required to 

extend the different loss functions with a sum taken over all the values of the expected result, that is: 𝐿2(𝑌,  �̂�) =

∑ ∑ (𝑌𝑗,𝑖 − �̂�𝑗,𝑖  )
2𝑁

𝑖=0
𝑑
𝑗=0 ,  expanding the addition to all dataset samples (𝑁) and output dimension values (𝑑). This is the approach 

we have for all gaNet models presented here. However, with the intention of simplifying formulas and presentation, we obviate 

the use of the additional sum taken over the output values. 

The possibility to use gaNet for multi-output regression problems is an important property of these models, since the original 

implementation of GB does not support it, at least in its original form, and, in general multi-output regression is a challenging 

problem [12]. 
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Fig 4. gaNet Type I architecture: Training the blocks one by one, optimizing 𝛾 separately. 

 

 

 

 
 

Fig 5. NN used to obtain 𝛾𝑚  

 

 

 
 

 

 
Fig 6. Expansion of one iteration step in gaNet Type I architecture 

 

The two optimization steps (𝑓𝑚 training and 𝛾𝑚optimization) per learning block that is carried out in Type I architectures, can 

be integrated into a single optimization step during the training of each building block, by eliminating the parameter 𝛾 , and 

assuming that the output: ℎ𝑚 can substitute: 𝛾𝑚 ∗ ℎ𝑚. The model obtained following this procedure is depicted in Fig. 7, and it is 

called Type II model. In this case, we end up with a single NN to train, greatly simplifying the entire architecture. The two NNs 

presented in Fig 6 for the gaNet Type I architecture are reduced to a single NN to train exclusively the function 𝑓𝑚 . 
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Fig 7. gaNet Type II architecture: Training the blocks one by one, incorporating the optimization of  𝛾 into the training of each block. 

 

 

Both Type I and II models can be considered as variants of GB models where the simple decision stumps of the original GB 

models are substituted by more complex architectures (learning blocks). In our case, the learning blocks chosen for this work 

consist on architectures based on deep learning models with different combinations of convolutional, recurrent and fully connected 

layers.  

Type I model requires two optimization steps for each learning block added to the model. Type II reduces this burden to a single 

optimization step per building block, but our aim would be to integrate all optimizations (training) in a single end-to-end process, 

not one per build block. Moreover, in Type I and II models, the training of each building block is performed independently, which 

means that, once a learning block is added to the model, its parameters are frozen and will not be adjusted during the successive 

additions of new learning blocks. This approach facilitates the optimization problem per building block but does not provide an 

optimum solution. In Fig. 8 we propose a solution to this problem by performing a single end-to-end training of all building blocks 

together, with a quadratic loss function on the final residuals formed by the difference between the ground-truth outcome values 

and the output values of the last block: 𝐹𝑚. The model proposed in Fig. 8 is called Type III model. 

A Type III model is a single model created by the composition (additive composition) of identical structures (learning blocks). 

It is an end-to-end trained model. All the learning blocks of the model are trained together end-to-end. This model has two inputs 

[𝐹0, 𝑋] and one output 𝐹𝑚. The variable 𝑋 is a single variable although it is internally reused several times. This is very different 

to Type I and II models that are formed as composition of several trained-as-you-progress learning blocks that have one single 

input 𝑋 and output ℎ𝑚. In Type I and II models, each learning block is trained separately and keeps its weights frozen once they 

are trained.  

Type III models deliver several advantages over Type I and II: a) They provide faster training and prediction times. b) They 

show excellent convergence behavior during training which allows for deeper models. c) They have a regularization effect similar 

to stacked models. And, d) they present excellent prediction results, not only compared to Type I and II models but in comparison 

with other state-of-the-art time-series forecasting models (e.g. recurrent neural networks, seq2seq, attention...) (Section 4). 
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Fig 8. gaNet Type III architecture: Training all the blocks together with an end-to-end training. 

 
 

We can define some variants to Type III model. The Type III-A model is a variant of Type III with a similar structure to a Type 

III model but with a different loss function. The loss of a Type III model is 𝐿2(𝑌, 𝐹𝑚) while the loss of a Type III-A is 

∑ 𝐿2(𝑌, 𝐹𝑗)𝑚
𝑗=1 , that is, the sum of quadratic losses between the ground-truth outcome values and each of the intermediate outputs 

of the aggregated model: 𝐹𝑗, where 𝑚 is the total number of learning blocks. The intention of this variant is to try to reproduce the 

logic of Type I and II models that optimize independently the intermediate outputs 𝐹𝑗 of the model. This variant has provided quite 

good prediction results (Section 4). 

Another variant of the Type III model consists in having all the learning blocks sharing their weights. That implies that all 

learning blocks are identical: identical structure and weights. This variant is called Type III-B. The results obtained with this variant 

are worse in terms of prediction performance than with the original Type III with different weights per learning block (Section 4). 

Finally, Fig. 9 presents the Type IV architecture which is an extension of Type III giving freedom to the building blocks to 

choose different structures. This architecture has a nature similar to that of a stacked model, but with the peculiarity that the input 

of each constituent model is not the output of its previous model, but the addition of this output with all the previous aggregate 

outputs. There are endless possibilities to choose the different order and architecture of the learning blocks in Type IV models. 

The last variant of gaNet studied is a variant of the Type IV model with a loss function similar to the loss function provided to 

the Type III-A. We call this model Type IV-A. 

The results obtained for all the above mentioned gaNet types, with different selections of learning blocks architectures, are 

provided in Section 4. 

 

 
 

Fig 9. gaNet Type IV architecture: Training all the blocks together with an end-to-end training and with learning blocks of different architectures. 
 

 

Fig. 10 shows a sample of the various architectures used to create the learning blocks. We can see that there is no restriction to 
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the chosen architectures as far as they comply with the types and dimensions of the input (𝑋) and output (ℎ𝑚) vectors.  
 

 

 
Fig 10. Examples of learning blocks used by gaNet models 

 

 

Considering the results on the different prediction metrics provided in Section 4, in Fig. 11 is presented the best architecture  for 

the mean squared error and 𝑅2
 metrics. It is interesting that, even when the model is quite big, we have not experienced convergence 

problems when training. The loss function used is a simple quadratic error between the model output and the ground-truth values 

(Fig. 11).  

 

 
Fig 11. gaNet Type IV architecture with best results on mean squared error and 𝑅2 metrics. 

 

 

In order to position gaNet in comparison with other alternative regression models that can be used for time-series forecasting, 

we provide a classification of the different models in three groups (Fig. 12). The models in group (a) use a regression algorithm to 

forecast the m future time-slot values using as predictors the past n values. Group (b) models are based in a sequence to sequence 

(se2seq) architecture [19] that is based in encoding all the information provided by the past n values (predictors) in a single state 

vector which is iteratively used by a decoding block. The decoding block produces the m future values one by one using as input 

the previous forecasted value. This group of models can be enriched if we add the information generated by past values, which can 

be considered as a type of memory. This is the strategy followed by group (c) models. Group (c) models introduce an attention 

mechanism to the seq2seq models. The attention mechanism consists of an additional layer that performs a similarity comparison 

between the initial output and the information related to the past history (n previous values used as predictors). The similarity 
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operation can be smooth and differentiable (soft attention) or based on a choice and not differentiable (hard attention). In this work 

we have used soft attention based on a softmax applied to the dot product of the initial output with all the intermediate results 

produced by the n values used as predictors [20]. 

As described in the Introduction, we have not considered the use of classic time-series models (e.g. ARIMA…) because they 

are based on the forecasting of a specific time series and not on a single model that can be used for the forecasting of any time 

series of a dataset of time-series used for training. For the dataset used for this work, that would have implied to have finally 

105638 ARIMA models.  

Group (b) and (c) models are multi-output in nature, that is, they are intended to produce an output with multiple values 

associated to a single input.  Group (a) models are based on different regression algorithms and do not need to support multi-

output. In this case, for group (a) models that are not multi-output we need to create a different model for each output value. gaNet 

belongs to the models in group (a) with multi-output capabilities. Other models in group (a), which are also studied in this work 

(Section 4), belong to the class of models that need to create as many models as the number of output values (e.g. Random Forest, 

Linear Regression…). In these cases, there is an associated toll in terms of the number of models to train and maintain. 

 

 
Fig 12. Different typology of time-series forecasting models studied in this work.  

 

 

 

3.3 Performance for time-ahead prediction  

 

As expected, all the models experience a degradation of performance depending on the time-ahead distance to the specific time-

slot value forecasted. For predictions more distant in time, the degradation of prediction performance is greater. It is interesting 

that this degradation is not linear but follows a chair-shape curve with a strong degradation at the beginning and end of the time-

ahead prediction window with an almost plateau evolution in the middle of this window. It is also interesting that this evolution is 

followed by all algorithms considered in this work, with subtle but important differences in the slopes of the degradation curves 

and length of the middle plateau.  

 

Fig. 13 present the time-ahead prediction curves for different algorithms studied (Section 4). We can see as the gaNet models 

are able to maintain good predictions (𝑅2) for a longer time, which justifies their better performance. 
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Fig 13. Evolution of 𝑅2 metric vs. time-ahead prediction hours. 

 

 

4. RESULTS 

This section presents the results obtained by applying different algorithms to  the dataset described in section 3.1 with the aim 

to compare their forecasting capabilities using different metrics.  We analyze the results from a time-series multi-step ahead 

forecasting problem treated as a multivariate-multiple prediction problem.  

 

We have grouped the different algorithms into different classes (Fig. 14): (a) Sequence to sequence. (b) Sequence to sequence 

plus attention. For both (a) and (b) we have studied various architectures for the encoder/decoder. (c) Neural network architectures 

based on different configurations of recurrent (LSTM), convolutional (CNN) and fully connected (FC) layers. (d) Classic machine 

learning (ML) models such as random forest or linear regression. And, (e) gaNet models of all types described in section 3.2, 

considering different architectures for the learning blocks. 

To measure the forecasting results we have applied regression metrics to assess the prediction capacities of the different 

algorithms to forecast the 6 future values of a time-series considering its past 24 values. The time-series have been arranged in a 

dataset of 24 predictors and 6 outcomes. Each time series correspond to the sequential aggregation of traffic (in time-slots of 1-

hour) for each of the 6214 mobile devices. 

The forecasting metrics used have been mean square error (MSE), mean absolute error (MAE), median absolute error (MAD), 

coefficient of determination (𝑅2) and normalized root mean square deviation (NRMSD). The definition of these metrics is the 

following, considering 𝑌 as the ground-truth values, �̂� the predicted values and �̅� the mean value of 𝑌 [44]: 

𝑀𝑆𝐸 = 𝑀𝑒𝑎𝑛((𝑌 − �̂�)
2

);    𝑀𝐴𝐸 = 𝑀𝑒𝑎𝑛(|𝑌 −  �̂�|);   𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|𝑌 −  �̂�|) 

𝑁𝑅𝑀𝑆𝐷 =
√𝑀𝑒𝑎𝑛((𝑌 −  �̂�)

2
)

𝑟𝑎𝑛𝑔𝑒(𝑌)
 

𝑅2 = 1 − 
∑ (𝑌𝑖  − �̂�𝑖  )

2𝑁
𝑖=0

∑ ( 𝑌𝑖  − �̅�)2𝑁
𝑖=0
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In Fig. 14 are presented all the performance metrics in three groups of columns. The first (average) gives the average value for 

all metrics. This average is performed along the 6 forecasted values. The second group (T0) provides the metrics for the nearest 

predicted value, and the last group (T5) provides the metrics for the last predicted value. 

 

Taking all metrics into account, 𝑅2  and MAD can be considered particularly important since they provide two different views 

of the results. 𝑅2 is more sensitive to extreme prediction errors (due to the quadratic function) and MAD is more sensitive to good 

predictions around central values (mean/median). All metrics have values greater than zero with unbounded upper values, with the 

exception of 𝑅2 that has an upper limit of 1 with unbounded lower limit. Fig. 15 and 16 provide a more detailed view of the results 

for the 𝑅2  and MAD metrics. 

𝑅2 provides an indication of the variance explained by the model. A value of 1 is its best result corresponding to a perfect fit to 

the data, a value of zero indicates that the prediction of the model is as good as that given when choosing the average value as the 

predicted value and a negative value (the smaller the worse) implies that our model is worse than choosing the mean as the predicted 

value. The other metrics (MSE, MAE, MAD and NRMSD) are error metrics. They are always positive by construction, with a 

value of zero corresponding to the best result. 

 

The models in Fig. 14 are grouped by class (Section 3.2) with additional details in the column: ‘Model’. The information 

provided for each model is the number and type of layers used: CNN, LSTM and Fully Connected (FC) layers. For gaNet models 

that are formed by repeating blocks, the configuration of the repeating block is included in parenthesis with and asterisk and a 

number to the right of the parenthesis that indicates the number of repetitions (𝑚) of the block. Inside the parenthesis there is a list 

of layer names preceded with a number that corresponds to the number of repeating layers of that type. For example, a gaNet Type 

III- (4FC)*15 corresponds to a Type III gaNet model with 15 repeated blocks, each of them formed by 4 FC layers; a gaNet Type 

III- (2 LSTM + 4 FC)*5 corresponds to a Type III gaNet model with 5 repeated blocks, each consisting of 2 LSTM and 4 FC 

layers; and, a gaNet Type IV- (2 LSTM + 1 FC)*2 + (6 FC)*2 corresponds to a Type IV gaNet model with 2 repeated blocks, each 

of them formed by 2 LSTM and one FC layers, followed by another sequence of 2 repeated blocks, each consisting of 6 FC layers. 

 

It is interesting that combining CNN and RNN (LSTM) networks does not improve the prediction results, contrary to the 

behavior observed in other forecasting problems related to classification [17,18], where adding a CNN as the first layer 

significatively improves the results. Moreover, for the Seq2Seq and Seq2Seq+Attention models, the results are worsened by the 

addition of a CNN to an LSTM network. In all cases, the CNN network used have been a 1D CNN that performs the convolution 

with a one-dimensional kernel.  

In order to appreciate the excellent convergence behavior during training of the gaNet models, we can compare the training 

results of a NN with 180 hidden layers (Fig. 14) and the training results of a gaNet Type III model with 𝑚=30 and a building block 

formed by 6 FCs that add a total of 180 layers. We can see that the NN with 180 layers provides extremely bad results since it does 

not converge properly, instead the gaNet model with an identical number of layers converges perfectly providing satisfactory 

results. 

 

The values in Fig. 14 are color-coded, where the greenest is better and the redder is worse (comparison of values is applied 

column-wise). We can observe that the models in the classes: Seq2Seq and Seq2Seq+Attention (Section 3.2) have obtained the 

best results considering  the MAE and MAD metrics, while the  models of class: gaNet type IV obtained the best results for the 

𝑅2, MSE and NRMSD. 

Observing Fig. 14 it is easy to appreciate that the best results are concentrated on the following models: (a) gaNet III and IV 

models, (b) Random Forest and (c) Seq2seq/Seq2Seq+Attention models. The Seq2Seq+Att models with 2 LSTM layers provide 

the best results for MAE and MAD metrics but they require and excessive time for training and prediction (Fig. 17 and 18). The 

Random Forest algorithm needs a separate model per forecasted value. It provides good results for MAE and MAD metrics but 

not really good results for the other metrics. The gaNet models provide best results for MSE, NRMSD and 𝑅2 metrics and do not 

require an excessive time for training and prediction, being in a good balanced position between prediction performance and 

required resources. Some of the models in Fig. 14 have not been transferred  to Fig. 15 and 16, since they correspond to models 

that provide extremely bad results with values of  𝑅2 and MAD that are too high compared to the rest of the models. Otherwise 

they would have altered the graphics due to the required change of scale. These models are: Seq2Seq/(2CNN + 1 LSTM + 1FC), 

Seq2Seq+Attention/2 CNN + 1 LSTM + 1 FC and NN/180 FC. 

 

In addition to using traffic volumes as predictors, we have tried to incorporate the time of day and day of the week (of the time-

slots) as additional predictors (exogenous variables). Interestingly, this addition did not significantly improve the prediction results. 

In order to incorporate these exogenous variables, and, depending on the model, a flattening of the input predictors has been 

required.  

 



 15 

 

 
Fig 14. Table of metrics for performance metrics for all algorithms studied in this work. 

 

 
Fig 15. Comparison of  𝑅2results for all algorithms. 
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Fig 16. Comparison of MAD results for all algorithms 

 

 

To check the significance of the results obtained, Table I presents the application of the Wilcoxon signed-rank test for the 

comparison of the prediction results, for each metric, between the best model for each of the performance metrics and the rest of 

the models. The alternative hypothesis used has been that the values for the error metrics produced by the best models  are smaller 

than the rest, and, that they are greater than the rest for the 𝑅2  metric. Considering that the p-values is much smaller than the 

significance threshold (0.01 at 1% significance level) we can conclude that the best values obtained are significantly better than 

the rest. 

Observing Table I we conclude than the gaNet  model: Type IV/(2 LSTM + 1 FC)*2 + (6 FC)*2 is the best model for the MSE, 

𝑅2  and NRMSD metrics and that the model Seq2Seq+Attention with 2 LSTM layers is the best model for MAE and MAD. That 

is, the gaNet model is the best model to reduce extreme values of errors (quadratic errors) and Seq2Seq is the best model to reduce 

more centered errors (absolute value errors). Focusing on the MAE and MAD errors, after Seq2Seq, the best model is Random 

Forest closely followed by an gaNet model: gaNet Type III-A/(2 LSTM + 1 FC)*5, which seems to indicate that the learning block: 

2 LSTM + 1 FC is a good choice in almost any occasion. 

 

We can conclude that gaNet provides better performance if we focus on data with a strong presence of outliers, in line with the 

properties of GB models. 

 

 

 
Table I. Wilcoxon signed-rank test: significance of results for best model vs. performance metrics 

 

 

For the type of problem for which we have applied gaNet (forecast of continuous traffic volumes per device for data network 

applications), it is not only important to achieve good prediction results, but also to require small training and prediction times. 

Linear regression (using either NN or other ML methods) requires the smallest times but does not achieve good prediction results. 

Random forest also requires very small times for training and prediction, but it is necessary to train a model for each output value. 

Type III and IV gaNet models require small training times and even smaller prediction times when compared to other models of 

similar prediction performance, mainly when compared to Seq2Seq and Seq2Seq+Attention. Fig. 17 and 18 provide details on the 

training and prediction (test) times required for all algorithms considering the training and the test data sets described in Section 

3.1. 
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Fig 17. Training times for all algorithms 

 

 

 
Fig 18. Prediction times for all algorithms 

 

 

Considering the deep learning nature of the models proposed for this work, it is important to analyze the results of these models 

from the point of view of computational complexity. One way to measure complexity is through the analysis of training and 

prediction times (Fig 18 and 19); however, this does not provide a complete picture of computational complexity. Therefore, to 

better understand this important aspect, we have also considered the number of parameters (trained parameters) of each model and 

its relation to the training and prediction times. The number of parameters per model is provided in Fig. 19 and the relationship 

between number of parameters and training and prediction times is given in Fig. 20. This integrated view on computational 

complexity is necessary, since deep learning models impose challenges [45] to measure their complexity, since it is based not only 

on the number of parameters of the models but also on the choice of the processor (e.g. CPU, GPU, ..), parallelism and memory 

issues, and in the number of training epochs required to reach a certain state of convergence.  Taking into account these difficulties, 

Fig 19 and 20 try to offer a practical view of the complexity of the different models. 

Each dot in Fig 20 corresponds to a model, but only the best models (Table I) and the outliers (extreme values) are identified. 

Regarding the outliers, it is clear that extreme cases with 180 layers (NN/180 FC and gaNet Type III/(6 FC)*30) will appear as 

outliers. It is interesting that the second best gaNet model (gaNet Type III/(2 LSTM + 1 FC)*10) presents a high training time, but 

its prediction time is very limited. The reason for the extreme training time for gaNet Type III-B/(2 LSTM + 1 FC)*10 is due to 

require more epochs to converge than other models, and for NN/(2 CNN + 2 LSTM + 1 FC) the reason is different, and is due to 

the very long time required for each backpropagation cycle (even with a GPU). Regarding the best models: Seq2Seq+Att/(2 LSTM 

+ 1 FC) and gaNet Type IV/(2 LSTM + 1 FC)*2 + (6 FC)*2, both have comparatively small training and prediction times; smaller 

for the gaNet model, which is interesting considering the much larger number of parameters needed for the gaNet model. 
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Fig 19. Number of parameters used by the different models 

 
 

 
 

Fig 20. Scatterplot for training times (left) and test (right) vs. number of parameters of each model. 

 

The main difficulty found with the gaNet models have been the large number of layer combinations available when choosing a 

particular architecture, implying a large hyper-parameter search space. This is particularly clear with the Type IV variant of the 

gaNet model. Nevertheless, the good results of gaNet Type IV indicate that diversity in the composition of the blocks is the best 

option for the additive structure of gaNet. An explanation to this interesting result can be articulated considering that each block, 

having a different structure, is capable of capturing different patterns of the data, in a similar way to other ensemble models. 

 

gaNet is a deep learning architecture with a possible large number of hidden layers. Some of the models whose results are shown 

in Fig. 14 have from several tens of layers, such as: gaNet Type III-B – (2 LSTM + 1 FC)*10 with 30 layers, up to an extreme case 

of 180 layers:  gaNet Type III – (6 FC)*30. gaNet handles the difficulties incurred by deep learning architectures by using various 

techniques to facilitate the convergence of the algorithm during training: (a) ReLU layers to address the vanishing gradient problem, 

(b) batch normalization layers, used in conjunction with CNN layers, to achieve faster convergence, and (c) the residual network 

properties obtained by a stagewise additive model.  

Considering the gaNet models, it is interesting that to avoid overfitting we did not need to apply specific regularization 

techniques, such as: dropout or L2/L1 regularization, which were used for some of the Seq2Seq and NN models. This fact indicates 

that gaNet has an intrinsic regularization property 

 

The architecture of gaNet, which is based on a lego-like assembly of similar structures, is appropriate for the distribution and 

parallelism provided by modern decentralized platforms designed to handle the processing of deep learning networks (e.g. 

Tensorflow) [41,42,43]. This aspect positions gaNet as an option in networking solutions with demanding processing requirements 

(e.g. large data volumes or real-time response). 

 

In order to guarantee the generalization of results, we have applied all the models of this work to the test set described in section 

3.1. This test set corresponds to a randomly selected 20% of the total number of the available time-series. In addition, considering 
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the large number of training cycles required (backpropagation cycles), we have applied a further validation approach by randomly 

separating another 20% of the remaining training data to form a validation set. This validation set is used to obtain validation 

metrics for each backpropagation cycle. The composition of the validation set is changed in each epoch. An epoch is defined as a 

complete training cycle on all the training data. An epoch may correspond to a large number of backpropagation cycles, depending 

on the size of the batches used for each cycle. To carry out the experiments of this work, we have used between 20 to 100 epochs 

with a batch size of 100 samples (individual time-series). The number of training epochs is not a fixed number but based on an 

early-stopping criterion if the validation error does not improve in 10 cycles. 

The use of a validation set is necessary to avoid overfitting, since during the training of the models we store the weights 

associated with the best performance metrics obtained with the validation set. If we were using the training set to obtain the best 

weights, we would be fitting the model to the training set, avoiding the generalization of results. 

In summary, the final distribution for the test, validation and training data corresponds to 20%, 16% and 64% of the total data, 

respectively. The  test set remains fixed for all models, while the distribution of samples for the validation and training sets changes 

randomly for each training epoch.  

Fig. 21 shows the evolution of the prediction error: MSE, for the training and validation sets during the training of several gaNet 

architectures. We can observe how the validation error reaches its best value quite rapidly: after 5 to 10 epochs, and that even after 

the first epoch the model starts to convergence. 

 

 

 
Fig 21. Evolution of MSE for the training (blue) and validation (green) sets during training for various gaNet architectures 

 

 

It is interesting to analyze the different results of the algorithms. In particular, the good results for the MAE and MAD metrics 

for the Random Forest and Seq2Seq+Attention models, and the good results for MSE and 𝑅2 for gaNet.  Random Forest is an 

ensemble model based on bagging that justifies its best performance with MAD, which is more sensitive to good predictions around 

central values. Meanwhile, 𝑅2 is more sensitive to extreme prediction errors, and it is in this case that gaNet outperforms the rest; 

the reason for that can be understood by applying gradient boosting. Gradient boosting increases the size of the model by adding 

new learning blocks whose objective is to reduce the remaining errors, focusing on the larger ones and, consequently,  improving 

the metrics related to the quadratic errors (e.g. MSE). With respect to the Seq2Seq+Att models, it is more challenging to explain 

their good behavior for metrics related with errors around central values (median/mean). In this case, the attention mechanism 

seems to provide a similar averaging effect in its results to the ensemble models. 

Focusing on the different results of gaNet architectures, we can conclude that Type I and Type II do not provide good results in 

terms of training/prediction times or prediction performance, this is due to having several optimization cycles per iteration without 

end-to-end training. Types III and IV provide good results, due to the incorporation of end-to-end training and the variety of block 

architectures, in the case of Type IV models. Type III models generally have better training times with comparatively similar 

prediction times. As expected, the weight sharing of Type III-B models gives them the best training and prediction times. It is also 

interesting to mention that Type III-A (with a sum of loss functions over all intermediate errors) provides the best MAD results for 

all gaNet models but does not provide the best results in 𝑅2. In this case, the sum of loss functions for Type III-A seems to provide 

an averaging effect similar to that presented above for the cases of Random Forest and Seq2Seq+Attention. 

 

We have implemented all the ML models in python using the scikit-learn package [46] and for all other models we have used 

Tensorflow/Keras [43].   

 

 

5. CONCLUSION 

This work presents a novel NN architecture (called gaNet) for multi-output regression, based on an additive model of 

independent building blocks made of NN layers in a lego-like configuration. The complete architecture is trained end-to-end and 
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can be deployed to high-performance deep learning platforms. 

 

gaNet is based on ideas from gradient boosting models and has connections with residual networks and stacked models, but it 

is different from any of them and still shares many interesting properties with these models. The architecture resembles a residual 

network with different network topology and connections, and shares with residual networks its robust convergence behavior 

during training even with an extreme number of layers added to the network. It has also a similar configuration to a stacked model. 

The regularization effect observed in stacked models is also observed in gaNet models.  

 

The architecture has been applied to the real and difficult problem of k-ahead forecasting of traffic volumes using a real dataset 

from an IoT mobile network. A detailed comparison of results between gaNet and an extensive selection of alternative modern ML 

algorithms demonstrate that gaNet is an excellent alternative to state-of-the-art solutions, such as sequence to sequence models and 

attention models. gaNet requires less resources than these alternative solutions and provides best results for all metrics based on 

quadratic errors. This implies a better performance for data highly unnormalized and with a strong presence of outliers, in line with 

the properties of GB models. 

 

As future lines of research it would be interesting to apply gaNet to classification problems and to study the necessary 

modifications and results. Considering the use of CNN models in the architectures presented in this work, it is appropriate to 

mention the current research works in transfer learning applied to time-series classification and forecasting [47, 48], which, in line 

with the good results in the image classification field [49, 50] could be a promising area to investigate in conjunction with the 

models presented here. An additional research area would be to analyze the impact of using alternative activation functions in the 

network. Finally, since gaNet has a generic nature, it might be useful to study its applicability to other areas, such as language and 

image processing, and to experiment with additional network configurations such as those based on DenseNet [50, 51]. 
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