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Abstract 

Pine pitch canker (PPC) is a serious disease of Pinus spp. and Pseudotsuga menziesii 

globally. The infection of its causal agent, Fusarium circinatum, causes pitch or resin-

soaked cankers on trunks and lateral branches of mature hosts, which may eventually die 

due to girdling or stem breakage. In nurseries, the main symptoms are damping-off and tip 

dieback of seedlings. However, the pathogen, with a hemibiotrophic nature, can remain 

endophytic in pine seedlings that do not show symptoms of infection and even 

inconspicuous in some herbaceous species. Since the first report in 1945 in North 

America, the presence of F. circinatum has been notified in 14 countries in America, Asia, 

Africa and Europe. Several factors have contributed to the spread of the disease to all 

these continents, the most important being globalization in terms of trade in reproductive 

plant material. Wind, raindrops and forest insects associated with pines contribute to the 
local dispersion of the pathogen. Despite its importance, no effective measures are 

available to eradicate or control PPC disease either in nurseries or in the field. The main 

objective of this doctoral thesis was to shed light on effective regulatory mechanisms for 

the control of PPC disease. For this purpose, firstly, a review focused on collecting current 

information on pathways of pathogen spread and proposing preventive mechanisms to 

avoid its introduction into disease-free areas was elaborated. The multiple pathways of 

spread make F. circinatum challenging to prevent, exacerbated by the recent discovery of 

its endophytic colonization of non-reported host species that illustrates the importance of 

the biological and ecological knowledge for the design of effective intervention strategies. 

In addition, eradication of the disease may be feasible only if its entry is detected at a very 

early stage. In this regard, new methods for detection and diagnosis for the prompt 

detection of F. circinatum in seeds, plants, and vector insects are urgently needed. For that, 

it is essential the collaboration between phytosanitary authorities and researchers 

through interdisciplinary networks that allows increasing knowledge of the disease and 

raising awareness of the risks and mitigation measures among crucial target groups. The 

review also identified weak points in current regulations and provided suggestions for 

implementation.  

Secondly, to understand the molecular mechanisms involving F. circinatum pathogenicity, 

its transcriptome was explored using next generation sequencing technologies. The 

following scientific research aimed to investigate the residual effect on the F. circinatum 

transcriptome of the loss of a putative mycovirus. Our results showed a slight acceleration 

of the host metabolism, possibly due to positive regulation of genes involved in functions 

essential for fungal development. For that, obtaining isogenic lines with and without 

mycovirus infections for an accurate study of virus-fungus interactions, avoiding altered 

isolates that have undergone mycovirus losses or have been subjected to invasive 

treatments to eliminate them is of particular importance. Transfection methods with F. 

circinatum mycoviruses should be tested in order to understand the feasibility of 

virocontrol of this forest pathogen. In the third scientific research, the pathogen 

transcriptome was analysed during the initial phase of infection to Pinus spp. species with 

different degrees of susceptibility. When infecting a relatively resistant species (Pinus 

pinea), F. circinatum genes related to cell wall and lignin degradation were predominantly 

induced. Conversely, the pathogen had an active uptake of nutrients (such as nitrogen) 

during its infection to the highly susceptible species (P. radiata). This could provide F. 

circinatum with a competitive advantage in the plant-pathogen interaction.  

Finally, the regulatory molecular mechanisms involved in the tree defense were examined 

by the study of Pinus spp. transcriptome using the RNA-Seq technology. In the third 
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scientific research, transcriptome profiling of P. pinea four days after the infection by the 

pathogen revealed an early perception of the pathogen infection together with a strong 

and coordinated defense activation through the reinforcement and lignification of the cell 

wall, the antioxidant activity, the induction of PR genes, and the biosynthesis of defense 

hormones. On the contrary, P. radiata had a weaker response, possibly due to impaired 

perception of the fungal infection that led to a reduced downstream defense signaling. As a 

result, highly expressed disease resistance genes in P. pinea that may be candidates with 

applications in breeding programs were identified. Although physiological parameters 

behind PPC susceptible and resistant host phenotypes were also recorded in this work, no 

significant changes were found upon pathogen infection. In the fouth scientific research, 

an in-depth transcriptomic study of P. radiata-F. circinatum interaction was carried out by 

screening of long non-coding RNA (lncRNAs) molecules in the host and identifying those 

responsive to the pathogen infection. Functional analysis of genes nearby these pathogen-

responsive lncRNAs suggested their involvement of important defense processes including 

signal transduction and cell wall reinforcement. These results present a comprehensive 

map of lncRNAs in P. radiata under F. circinatum infection and provide a starting point to 

understand their regulatory mechanisms and functions in conifer defense. Overall, a 

thorough understanding of the mechanism of gene regulation will contribute to the 

improvement of breeding programs for future resistant pine commercialization, one of the 

most promising approaches for PPC management. 
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Resumen 

El chancro resinoso del pino (PPC, por sus siglas en inglés) es una grave enfermedad que 

afecta a Pinus spp. y Pseudotsuga menziesii en todo el mundo. La infección por su agente 

causal, Fusarium circinatum, provoca chancros de resina en los troncos y ramas laterales 

de los huéspedes maduros, que pueden acabar muriendo por anillamiento o rotura del 

tronco. En los viveros, los principales síntomas son el puntisecado, marchitamiento y 

muerte de las plántulas. Sin embargo, el patógeno, de naturaleza hemibiotrófica, puede 

permanecer endofítico en plántulas de pino sin mostrar síntomas de infección e incluso 

ser inadvertido en algunas especies herbáceas. Desde el primer registro en 1945 en 

Norteamérica, se ha notificado la presencia de F. circinatum en 14 países de América, Asia, 

África y Europa. Varios factores han contribuido a la propagación de la enfermedad a 

todos estos continentes, siendo el más importante la globalización en lo que respecta al 
comercio de material vegetal de reproducción. El viento, las gotas de lluvia y los insectos 

forestales asociados a los pinos contribuyen a la dispersión local del patógeno. A pesar de 

su importancia, no se dispone de medidas eficaces para erradicar o controlar la 

enfermedad del PPC ni en los viveros ni en el monte. El objetivo principal de esta tesis 

doctoral fue esclarecer los mecanismos de regulación eficaces para el control de la 

enfermedad PPC. Para ello, en primer lugar, se llevó a cabo una recopilación de 

información actual sobre las vías de propagación del patógeno, proponiendo mecanismos 

preventivos para evitar su introducción en zonas libres de la enfermedad. Las múltiples 

vías de propagación hacen de F. circinatum un reto a prevenir, agravado por el reciente 

descubrimiento de su colonización endofítica de especies no contampladas previamente 

como hospedantes que ilustra la importancia del conocimiento biológico y ecológico para 

el diseño de estrategias de intervención eficaces. Además, la erradicación de la 

enfermedad puede ser factible sólo si se detecta de forma inmediata a su introducción. En 

este sentido, se necesitan urgentemente nuevos métodos de detección y diagnóstico para 

la pronta detección de F. circinatum en semillas, plantas e insectos vectores. Para ello, es 

fundamental la colaboración entre las autoridades fitosanitarias y los investigadores a 

través de redes interdisciplinarias que permitan aumentar el conocimiento de la 

enfermedad y sensibilizar a los agentes implicados sobre los riesgos y las medidas de 

mitigación. En este trabajo también se identificaron los puntos débiles de la normativa 

actual y se aportaron sugerencias para su aplicación.  

En segundo lugar, para entender los mecanismos moleculares implicados en la 

patogenicidad de F. circinatum, su transcriptoma fue explorado utilizando tecnologías de 

secuenciación masiva. Dicho estudio tenía como objetivo investigar el efecto residual en el 

transcriptoma de F. circinatum de la pérdida de un micovirus. Nuestros resultados 

mostraron una ligera aceleración del metabolismo del hospedador, posiblemente debido a 

la regulación positiva de genes implicados en funciones esenciales para el desarrollo del 

hongo. Por ello, cobra especial importancia la obtención de líneas isogénicas con y sin 

infecciones por micovirus para un estudio preciso de las interacciones virus-hongo, 

evitando aislados alterados que hayan sufrido pérdidas de micovirus o hayan sido 

sometidos a tratamientos invasivos para eliminarlos. Los métodos de transfección con 

micovirus de F. circinatum deben ser probados para comprobar la viabilidad del 

virocontrol de este patógeno forestal. En el tercero de los estudios, se analizó el 

transcriptoma del patógeno durante la fase inicial de la infección en especies de Pinus spp. 

con diferentes grados de susceptibilidad. En una especie relativamente resistente (Pinus 

pinea), los genes de F. circinatum relacionados con la degradación de la pared celular y la 

lignina fueron predominantemente inducidos. Por el contrario, el patógeno tuvo una 
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absorción activa de nutrientes (como el nitrógeno) durante su infección en la especie 

altamente susceptible (P. radiata). Esto podría proporcionar a F. circinatum una ventaja 

competitiva en la interacción planta-patógeno.  

Por último, se examinaron los mecanismos moleculares de regulación implicados en la 

defensa del árbol mediante el estudio del transcriptoma de Pinus spp. utilizando la 

tecnología RNA-Seq. En el tercer estudio, el perfil del transcriptoma de P. pinea cuatro días 

después de la inoculación de F. circinatum reveló una percepción temprana de la infección 

del patógeno junto con una fuerte y coordinada activación de la defensa a través del 

refuerzo y lignificación de la pared celular, la actividad antioxidante, la inducción de genes 

PR y la biosíntesis de hormonas de defensa. Por el contrario, P. radiata tuvo una respuesta 

más débil, posiblemente debido a una percepción deficiente de la infección fúngica que 

condujo a una señalización de defensa menor. Como resultado, se identificaron genes de 

resistencia a la enfermedad altamente expresados en P. pinea que pueden ser utilizados 

como indicadores de resistencia en programas de mejora genética. Aunque en este trabajo 

también se evaluaron los parámetros fisiológicos que subyacen a los fenotipos de huésped 

susceptible y resistente a PPC, no se encontraron cambios significativos tras la infección 

del patógeno. En el cuarto estudio, se llevó a cabo un estudio transcriptómico en 

profundidad de la interacción P. radiata-F. circinatum mediante la identificación de 

moléculas de ARN no codificantes de cadena larga (ARNlnc) en el huésped y, 

especificamente, aquellos que responden a la infección del patógeno. El análisis funcional 

de los genes próximos a estos ARNlnc de respuesta al patógeno sugirió su participación en 

importantes procesos de defensa, incluyendo la transducción de señales y el refuerzo de la 

pared celular. Estos resultados presentan un mapa completo de los ARNlnc en P. radiata 

tras la infección de F. circinatum y proporcionan un punto de partida para entender sus 
mecanismos de regulación y funciones en la defensa de las coníferas. En general, una 

comprensión profunda del mecanismo de regulación de los genes contribuirá a la 

optimización de los programas de mejora genética para una futura comercialización de 

pinos resistentes, una de las herramientas más prometedoras para la gestión de PPC. 
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Chapter 1: Introduction 

1.1. Pine pitch canker (PPC) disease: a global concern 

Despite their important contribution to the benefit of all living species on Earth, trees and 

forests are under great threat from a variety of sources, including commodity driven 

deforestation, climate change and alien invasive species (Anderson et al., 2004; Curtis et 

al., 2018). The incidence of forest diseases is increasing at an unprecedented rate through 

globalization (Santini et al., 2013; Wingfield et al., 2015), a scenario aggravated by climate 

change that often improves conditions for the establishment of a pathogen once 

introduced (Sturrock et al., 2011). The introduction of a potential pathogen from its center 

of origin (where it generally causes little or no disease in its plant host due to long-term 

co-evolution) to a new geographical location, where potential hosts become highly 

susceptible as they have not previously been exposed to it, results in new tree disease 

outbreaks (Stenlid and Oliva, 2016). Examples of devastating emerging forest diseases 

include Dutch elm disease (Ophiostoma ulmi (Buisman) Nannf. and O. novo-ulmi Brasier), 

chestnut blight (Cryphonectria parasitica (Murrill) M.E. Barr), sudden oak death 

(Phytophthora ramorum Werres, De Cock & Man in 't Veld), and ash dieback 

(Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz & Hosoya) (Brasier and Buck, 2001; 

Grünwald et al., 2012; Gross et al., 2014; Rigling and Prospero, 2018). Pine pitch canker 

(PPC) is another destructive disease affecting pines (Pinus spp.) and Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco) (Wingfield et al., 2008). The pathogen responsible 

for this disease, the ascomycetous Fusarium circinatum Nirenberg & O’Donnell 

(teleomorph = Gibberella circinata), has been recorded in countries of North and South 

Hemisphere, causing serious problems in nurseries, pine plantations and natural forests 

(Wingfield et al., 2008). Nowadays, F. circinatum is a quarantine organism included in the 
European and Mediterranean Plant Protection Organization (EPPO) A2 list and regulated 

in the European Union (Commission Decision 2007/433/EC). A comprehensive overview 

of the PPC disease is provided in Annex I. 

Since the first record of PPC in 1945 affecting Pinus virginiana Mill. of the South-Eastern 

United States (Hepting and Roth, 1946; Figure 1.1), F. circinatum has spread to 14 states in 

the United States (EPPO, 2021). The pathogen is also present in Haiti since 1953 (Hepting 

and Roth, 1953) and in Mexico since 1989 (Santos and Tovar, 1991), where it is 

widespread with records from at least nine states (Drenkhan et al., 2020). In South 

America, F. circinatum was detected for the first time in Chile in 2001 infecting mother 

plants (hedges) of Pinus radiata D.Don in nurseries (Wingfield et al., 2002). Since then, the 

pathogen has been found in Uruguay (Alonso and Bettucci, 2009), Colombia (Steenkamp et 

al., 2012), and Brazil (Pfenning et al., 2014). In Chile and Brazil, F. circinatum remains 

restricted to nurseries so far, while in Uruguay it has been declared eradicated (EPPO, 

2021). Japan was the first country to report the presence of the pathogen in Asia in 1981 

(Kobayashi and Muramoto, 1989) and later, in the mid-1990s, it was notified in South 

Korea (Lee et al., 2000). In relation to Africa, F. circinatum has only been reported from 

South Africa, where it appeared in 1990 on Pinus patula Schiede ex Schltdl. & Cham. 

seedlings (McCain et al., 1987; Viljoen et al., 1994) and later notified in 2005 affecting P. 

radiata plantations (Coutinho et al., 2007). F. circinatum is considered the most important 

pathogen in forest nurseries in this country (Coutinho et al., 2007). 

In Europe, PPC was detected for the first time in 1995 causing mortality in Pinus halepensis 

Mill. and P. radiata seedlings in a nursery located in Galicia (NW Spain; Collar Urquijo, 

1995). However, the official confirmation of the presence of the pathogen in this country 
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occurred during the winter of 2003-2004 on P. radiata and P. pinaster Aiton in pine 

nurseries in Asturias (North Spain). Later in the year, PPC was detected in a 20-year-old P. 

radiata plantation in Cantabria (North Spain; Landeras et al., 2005). Therefore, the disease 

has presumably been present for a long time in Spain. The pathogen has also been 

reported in Portugal (Braganca et al., 2009), France (EPPO, 2006) and Italy (Carlucci et al., 

2007), but eradication has been confirmed in the latter two countries. In a current study 

carried out in 28 European countries, no evidence of F. circinatum was found in 24 of them 

(http://bit.do/phytoportal). However, although the highest incidence in Europe occurs in 

Mediterranean and sub-tropical climates and temperate regions due to the strong 

dependence of the pathogen on climatic conditions, under future climate change scenarios, 

cooler latitudes with the presence of susceptible hosts would become suitable for the 

disease establishment (Ganley et al., 2009; Watt et al., 2011; Möykkynen et al., 2014). 

 

Figure 1.1. Current (2021) distribution range of Fusarium circinatum and dates of pathogen 

introduction (according to EPPO Global Database). Countries shaded in purple: Disease present, in 

green: Eradicated disease. 

In mature trees, the PPC symptoms can be found in almost all parts of them and at any 

time of the year (EPPO, 2019; Kinkar and Vos, 2020). PPC is characterized by pitch resin-

soaked cankers causing deformations in the trunk and large branches (Figure 1.2), 

sometimes affecting large surfaces of the cortical and subcortical tissue of the trunk 

(Storer et al., 1994). These damages can girdle the trees leading to a uniform loss of color 

in the foliage, from dull green to yellow and finally brown, and dieback of the shoots 

(EPPO, 2005; COST, 2017). Deformations caused by the pathogen drastically reduce the 

value of timber since the logs are rendered unusable for the sawmill industry. When the 
trees are severely attacked, an extensive dieback in the canopy can be observed (Gordon 

et al., 2001). At this point, the breakage of branches and even the stem can often occur due 

to loss of structural integrity or windstorms, and the tree eventually dies (Wingfield et al., 

2008; Martínez-Álvarez et al., 2014). The fungus can also affect reproductive organs of the 

pine such as seeds, female strobili and mature cones that often abort before reaching 

maturity (Barrows-Broaddus, 1990). F. circinatum can cause root rot, visually recognized 

by brown discoloration and cortex disintegration in roots (EPPO, 2019). However, root 

infections are most often observed on seedlings in forest nurseries. Here, F. circinatum 

causes pre- and post-emergence damping-off of seedlings (Storer et al., 1998), infected 

seeds being an important source of inoculum. Main symptoms in young plants and 

http://bit.do/phytoportal
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seedlings are chlorosis, shoot and tip dieback, desiccation, and collar rot and wilting 

(Wingfield et al., 2008; Figure 1.3). 

 

Figure 1.2. Symptoms of the PPC disease: (A) PPC damage in a Pinus radiata plantation; (B) crown 

dieback (P. radiata); (C) resin bleeding on the stem of P. radiata; (D) cross section of main stem 

showing deformation in the trunk due to the presence of a canker; (E) cut in main stem showing 

pathogen colonisation; (F) deformation in the trunk by Fusarium circinatum girdling. 
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Figure 1.3. Pine pitch canker on Pinus radiata seedlings. 

Fusarium circinatum is able to infect 91 different forest tree species, including 67 Pinus 

species, 18 Pinus hybrids, as well as 6 non-pine trees such as P. menziesii and species of 

Picea, Larix, Abies and Libocedrus (Martínez-Álvarez et al., 2014; Martín-García et al., 2017; 

Drenkhan et al., 2020). Hence, the fungus poses a special threat to natural conifer forests, 

nurseries, and commercial plantations (Drenkhan et al., 2020). Particularly, plantations of 

P. radiata have been extensively affected since it is not only the most susceptible species to 

the disease (Hodge and Dvorak, 2000; Gordon, 2006; Iturritxa et al., 2012), but also one of 

the most widely planted pine species for commercial forestry in the world (Mead, 2013). 

Its high productivity and suitability for the construction timber, furniture, pulp and paper 

industries have made P. radiata the predominant species planted in Australia, Chile and 

Spain, and it accounts for 90% of the planted production forest area in New Zealand (MPI, 

2019). Although F. circinatum is considered absent in Oceania, its introduction and 

establishment is of high concern (Ganley, 2007, 2011; Cook and Matheson, 2008). Strict 

border biosecurity regulations in New Zealand are preventing large plantations of P. 

radiata from being infected by the pathogen (Maxwell et al., 2014). In countries where P. 

radiata is a well established species in the timber industry such as Chile and Spain, PPC 

has caused severe economic losses. The introduction of this invasive pathogen leads to 

direct damage to the forestry economy, as well as ecological impacts on the ecosystem 

services on which humans depend (Perrings et al., 2002). However, the environmental and 

recreational impact of forest losses are difficult to quantify accurately. In Spain, the 

negative impact has been a consequence of reducing revenues due to the ban on planting 

susceptible species (Pinus spp. and P. menziesii) in infected areas (MAPAMA, 2006, 2010), 

the high costs invested in monitoring and control, and bans on the export of timber and 

other products. In addition, Eucalyptus spp. plantations that have a shorter rotation 

period, lower social acceptance, and a very narrow genetic pool, have become popular 

after PPC. This, together with the fact that these types of plantations have not coevolved 

with the native insects and fungi increase the probability of appearance of new pests and 

diseases (Branco et al., 2015; Burgess and Wingfield, 2017). 

1.2. Infection biology and dispersal pathways of the PPC pathogen 

Fusarium circinatum can reproduce sexually and asexually. The sexual stage, involving 

perithecia, has never been observed in the field (Wingfield et al., 2008), therefore, the 

pathogen spreads mainly asexually through the production of micro- and macro-conidia 

on infected host tissues (Gordon et al., 1996; Britz et al., 1998, 1999; Berbegal et al., 2013). 

In fact, the local dispersion of the disease occurs by the airborne conidia of the pathogen, 
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driven by wind over midrange distances (Gordon, 2013; Dvorak et al., 2017), raindrops 

(Deacon, 2006) and forest insects associated with pines (Fernández-Fernández et al., 

2019). The airborne conidia can often naturally infect fresh wounds on trees, regardless of 

their natural or artificial origin (Barrows-Broaddus and Dwinell, 1983; Dwinell et al., 

1985), where, if the environmental conditions are suitable for the pathogen development, 

the inoculum germinates. The optimal temperature of F. circinatum germination and 

growth is around 25 ºC, dropping significantly at 10 ºC (Inman et al., 2008). However, the 

viability of the inoculum is highly moisture-dependent (Sakamoto and Gordon, 2006; 

Garbelotto et al., 2008; Gordon, 2013). For this reason, coastal areas represent the most 

suitable climate for disease development (Wikler et al., 2003; Blank et al., 2019; Drenkhan 

et al., 2020). The role of forest insects associated with pines in the dissemination and the 

incidence of the disease is important not only for their capacity to carry and inoculate the 

pathogen to the hosts, but also for their behavior as wounding agents. Several bark beetle 

species damage the pine tissues when bore their breeding or feeding galleries, resulting in 

fresh wounds prone to infection by F. circinatum spores (Bezos et al., 2017). The insect-

PPC association depends on multiple factors such as the feeding habit of the insects, their 

mobility or their ability of transporting the spores on their exoskeletons (Fernández-

Fernández et al., 2019). In Europe, the pine shoot beetle species that has been proven to 

be able to transmit the disease and thus acting as a vector of PPC is Tomicus piniperda L. 

(Bezos et al., 2015). In addition, some other insects considered as carriers (e.g. 

Pityophthorus pubescens Marsham) or wounding agents (e.g. Pissodes validirostris 

Sahlberg) have been associated with the incidence of the disease (Fernández-Fernández et 

al., 2019). 

The disease progress in P. radiata seedlings has been studied under laboratory conditions 
(Martín-Rodrigues et al., 2013). F. circinatum colonizes the aerial tissues of the host, first 

radically towards the pitch of the stem, and then tangentially through the phloem and 

xylem. During its advance into host tissues, F. circinatum produces conidiophores in pith 

cavities that likely leads to the dispersal of conidia throughout different parts of the plant 

(Martín-Rodrigues et al., 2013). The pathogen takes advantage of the formation of 

traumatic resin ducts, a conifer defense mechanism, for vertical colonization. The 

disruption of water flow due to collapse of the xylem by resin accumulation contributes to 

plant death (Gordon, 2011). With root infection, different types of hyphae (e.g., bulbous or 

narrow) are able to penetrate and colonize the root without causing apparent damage and 

switch to an active pathogenic phase when the pathogen colonizes the root collar (Martín-

Rodrigues et al., 2015; Swett et al., 2016). Thus, F. circinatum displays hemibiotrophic 

behavior, since it first establishes a biotrophic interaction with the host plant followed by 

a necrotrophic lifestyle. Then, under certain conditions, infected seedlings can be 

asymptomatic (Swett and Gordon, 2012; Elvira-Recuenco et al., 2015; Martín-García et al., 

2018), rendering visual identification useless. These infected but symptomless seedlings 

can be easily outplanted and, once in field, some of them will develop the disease after the 

stress produced during transplanting (Mitchell et al., 2012; Jones et al., 2014). Recent 

research has also revealed an endophytic behaviour of F. circinatum on alternative hosts 

making the disease more complex. Surveys in California (US), South Africa, and Spain have 

demonstrated natural colonization of 17 herbaceous species belonging to different 

families including Poaceae, Asteraceae, Lamiaceae or Rosaceae, by the PPC pathogen 

(Swett and Gordon, 2012, 2013, 2015; Hernández-Escribano et al., 2018; Carter and 

Gordon, 2020; Herron et al., 2020). The same genotype of the fungus able to colonize 

asymptomatically herbaceous plants was also capable of adopting a pathogenic lifestyle 

infecting Pinus species (Swett and Gordon, 2012; Hernández-Escribano et al., 2018; Carter 



Chapter 1: Introduction 

 

 
11 

and Gordon, 2020; Herron et al., 2020). Most of these plants grew beneath the canopy of 

PPC-affected plantations, which represents a source reservoir of inoculum. 

International trade is the major long-distance dispersal avenue for F. circinatum. In 

particular, the movement of infected seeds is one of the most important (Wingfield et al., 

2008). In fact, first PPC outbreaks in different countries such as South Africa, Chile or 

Spain have been associated with infected seeds (Britz et al., 2001; Carey et al., 2005; 

Coutinho et al., 2007; Berbegal et al., 2013). They also represent the major source of F. 

circinatum introduction into forest nurseries and can result in symptomatic but also 

asymptomatic seedlings. Therefore, the establishment of F. circinatum in nurseries may 

lead to an increasing proportion of asymptomatic seedlings transplanted in the field 

(Wingfield et al., 2008; Elvira-Recuenco et al., 2015).  

1.3. Integrated approach towards PPC management 

Problems arising from the indiscriminate use of pesticides, such as plant pest or pathogen 

resistance, harmful consequences to non-target organisms and adverse effects on humans 

and biodiversity, led scientists to shift the strategy for pest and disease control (Ehler, 

2006). In the early 1970s, the concept ‘Integrated Pest Management (IPM)’ was coined to 

refer to a holistic approach to dealing with pests and pathogens that advocates reduced 

chemical control, increased economic benefits for growers and protection of both the 

environment and human health (Kogan, 1998). IPM uses available information on the 

lifestyle of pests and pathogens and their interaction with the environment to design a 

combination of common-sense control practices. These methods range from prevention of 

future problems to active suppression of current infestations. In addition, an adaptive 

forest management (AFM) strategy, a cyclic process that seeks continuous improvement 

and sustainability through planning, implementation, monitoring, evaluation outcomes 

and reviewing practices (Spittlehouse and Stewart, 2003), would be worthwhile to 

implement under the climate change. 

Contemporary forest protection in the European Union is based on IPM strategy through 

the implementation of new and highly restrictive legislation known as Green Deal, which 

aims to reduce chemical pesticide inputs at least by 50% by 2030 (EU Commission, 2019). 

Although the efficacy of some fungicides to control F. circinatum has already been 

demonstrated (Allen et al., 2004; Mitchell et al., 2004; Carey et al., 2005; Iturritxa et al., 

2011; Berbegal et al., 2015; Serrano et al., 2015), the current European legislative 

situation forces the search for environmentally friendly management methods. A number 

of challenges such as the limited availability of effective bio-based products, lack of 

knowledge of the forest managers and cost-effectiveness maintenance bring with this 

transition (Matyjaszczyk, 2019). Therefore, considerable research effort today is focused 

on seeking safe, eco-friendly, affordable and effective alternatives (Thambugala et al., 

2020). In this context, the European COST (European COoperation in Science and 

Technology) Action FP1406 “Pine pitch canker strategies for management of Gibberella 

circinata in green houses and forests” (PINESTRENGTH) has promoted co-operation and 

communication between research groups across the world in the fight against PPC disease. 

The main aim of this European project was to establish a European-focused network to 

increase knowledge of the biology, ecology and pathways of spread of F. circinatum, to 

examine the potential for the development of effective and environmentally-friendly 
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prevention and mitigation strategies and to transmit these outcomes to stakeholders and 

policy makers through science-based deliverables (COST 100/14, 2014). 

Preventive measures are the key components for an IPM approach, followed by protection 

measures in which priority is given to eco-friendly tactics. Monitoring and correct 

pathogen identification is the first step for determining the best management strategy. In 

this regard, some studies have used spore traps for monitoring the presence of F. 

circinatum spores, as well as means of dispersal and temporal dynamics (Schweigkofler et 

al., 2004; Garbelotto et al., 2008; Fourie et al., 2014; Dvorak et al., 2017; Quesada et al., 

2018). On the other hand, the use of natural products for plant protection, including 

essential oils, propolis or monoterpenes, has been shown to inhibit mycelial growth of F. 

circinatum (Iturritxa et al., 2011, 2017; Slinski et al. 2015; López-López et al., 2016; Silva-

Castro et al., 2018a,b). In addition, chitosan and phosphite have been also tested as 

resistance inducers against F. circinatum, demonstrating their capacity for in vitro 

inhibition of mycelial growth of the fungus and reduction of its pathogenicity in seedlings 

of different Pinus species (Reglinski et al., 2004; Fitza et al., 2013; Silva-Castro et al., 

2018a,b). Biological control, with a presumably higher level of safety and minimal negative 

environmental impacts, implies any reduction in the inoculum or pathogenic activity of the 

causal agent that is achieved through the use of natural enemies or compounds derived 

from its metabolism (Cook and Baker, 1983). The role of biocontrol approaches in 

combating F. circinatum is crucial within a framework of integrated management of PPC 

(Martín-García et al., 2019). Several endophytic fungi and bacteria have demonstrated 

their antagonistic effect against F. circinatum (reviewed in Martín-García et al., 2019). 

Trichoderma species are likely the most promising biological control agent against the PPC 

pathogen (Iturritxa et al., 2011; Moraga-Suazo et al., 2011; Martínez-Álvarez et al., 2012, 

2016; Morales-Rodríguez et al., 2018). Nevertheless, whereas its implementation in 

nurseries could become a reality according to the greenhouse experiments (Lopez-Lopez 

et al., 2016; Martín-García et al., 2017), its application in the field needs further 

experimentation (Martín-García et al., 2019). 

The virocontrol has been recognized as a promising tool to control plant diseases (Nuss, 

2005) and has been successfully implemented to control the chestnut blight fungus C. 

parasitica in the field (Rigling and Prospero, 2018). The infection of the mycovirus 

Cryphonectria hypovirus 1 (CHV1) induces hypovirulence in its hosts by reducing in 

planta virulence and disrupting colony growth and sporulation (Zamora et al., 2017). 

Consequently, a growing body of literature has recently studied a large number of fungal 

viruses with the aim to achieve effective means of virocontrol of fungal diseases (Pearson 

et al., 2009; Muñoz-Adalia et al., 2016; García-Pedrajas et al., 2019). However, besides 

inducing hypovirulence, the successful use of mycoviruses as effective biological control 

agents is dependent on multiple factors such as the ability to be transmitted horizontally 

among isolates in the natural fungal populations and vertically by sporogenesis (Son et al., 

2015). The horizontal transmission is strongly dependent on how efficiently mycoviruses 

are transmitted to uninfected isolates through hyphal anastomosis, converting them from 

virulent to hypovirulent (García-Pedrajas et al., 2019). The anastomosis between fungi is 

determined by the vegetative incompatibility (vic), therefore a low proportion of 

vegetative compatibility groups (VCGs) is required for feasible biological control. Likewise, 

the vertical transmission rate must be high to ensure the viral dispersion to the progeny. 

Three mycoviruses have been reported from F. circinatum (Martínez-Álvarez et al., 2014; 
Vainio et al., 2015). These mycoviruses belong to the genus Mitovirus in the family 

Narnaviridae and are predominantly found in the mitochondria of their hosts (Hillman 
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and Cai, 2013). Some species from this genus have been associated with hypovirulence in 

plant pathogenic fungi such as O. novo-ulmi (Hong et al., 1999), Sclerotinia sclerotiorum 

(Lib.) de Bary (Xu et al., 2015), Fusarium graminearum Schwabe (Darissa et al., 2012) and 

Botrytis cinerea Pers. (Wu et al., 2007, 2010). However, the F. circinatum mitoviruses have 

not showed a clear pattern of hypovirulence to date (Flores-Pacheco et al., 2017; Muñoz-

Adalia et al., 2016). 

1.4. Long-term solution to reduce the impact of PPC by genetic 

resistance 

Development of resistant populations as a part of an IPM approach is essential to preserve 

the long-term value of healthy forests (Showalter et al., 2018). Breeding programmes have 

produced successfully disease-resistant populations such as Pinus monticola Douglas ex 

D.Don. resistant to Cronartium ribicola J.C. Fisch, Chamaecyparis lawsoniana (A. Murray) 

Parl. resistant to Phytophthora lateralis Tucker & Milbrath, Pinus taeda L. resistant to 

fusiform rust, Castanea dentata (Marshall) Borkh. resistant to chestnut blight, and 

Dothistroma pini Hulbary resistance in P. radiata (Sniezko, 2006; Sniezko and Koch, 2017). 

Although genetic resistance may offer a more permanent solution once the pathogen is 

established, the implementation of a resistance program requires a long process, linked to 

long generation times of trees, of decision-making supported by a comprehensive 

knowledge of the full array of resistance mechanisms present in the tree (Woodcock et al., 

2018). Screening for natural resistance is one of the first steps to be taken in resistant tree 

programmes, the aim of which is to inform strategies for large-scale development of 

resistant plants. In this regard, different approaches such as surveying affected 

populations, inoculation trials or examining resistance in related species can be used for 

investigating resistant individuals (Woodcock et al., 2018). In the case of PPC disease, the 

range of susceptibility to F. circinatum varies significantly between species (Gordon et al., 

1998; Iturritxa et al., 2012; Iturritxa et al., 2013; Martín-García et al., 2017), offering an 

excellent opportunity for disease management. Pinus radiata, and to a lesser extent, P. 

patula and P. elliottii Engelm. are the most susceptible species to PPC (Viljoen et al., 1995; 

Hodge and Dvorak, 2000) and, in turn, the most used at large-scale forestry in southern 

hemisphere countries (e.g. Chile, Colombia, South Africa, Uruguay). Their substitution for 

highly resistant Pinus species including Pinus tecunumanii Eguiluz & J.P.Perry, P. densiflora 

Siebold & Zucc., P. oocarpa Schiede ex Schltdl., P. canariensis C.Sm., P. thunbergii Parl. or P. 

pinea L. (Gordon et al., 1998; Hodge and Dvorak, 2000; Kim et al., 2008) could be a suitable 

alternative to manage PPC in these countries where no native pines occur. 

The search for alternative species, however, should consider factors such as the 

environmental conditions and the requirements of the well-established forestry industry 

(Martín-García et al., 2019). For this reason, selection of highly resistant populations 

within species or the use of tolerant hybrids is another promising strategy to reduce the 

impact of PPC. Artificial inoculations are invaluable in reducing the time and expense to 

seek and develop these resistant populations. Accordingly, the susceptibility level of 

provenances of several European conifers to F. circinatum have been recently evaluated 

through controlled inoculation studies (Martín-García et al., 2017, 2018; Davydenko et al., 

2018), pointing out some interspecific genetic resistance. Other studies had also 

demonstrated this interspecific resistance in P. patula, P. leiophylla Schltdl. & Cham., P. 
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tecunumanii, P. oocarpa and P. pinaster to F. circinatum (Dvorak et al., 2007, 2009; Hodge 

and Dvorak, 2007; Iturritxa et al., 2012; Vivas et al., 2012; Elvira-Recuenco et al., 2014), 

being this variation sometimes related to geographical and environmental gradients 

(Hodge and Dvorak, 2007; Dvorak et al., 2009; Steenkamp et al., 2012). In addition, 

hybridizations between P. patula and any other tolerant species, especially low elevation 

P. tecunumanii populations, have shown improved resistance to F. circinatum and 

successfully implemented in South Africa (Roux et al., 2007; Mitchell et al., 2013; Kanzler 

et al., 2014). 

Variation in response to disease within a host population results from a combination of 

genetics, evolved immunity, plasticity and interaction with environmental conditions 

(Naidoo et al., 2014; Telford et al., 2015). However, the extent to which the variation in 

these resistance mechanisms is genetically encoded, and the degree of environmental 

influence are difficult to determine. Genetic variation in F. circinatum resistance appears to 

be quantitative since it is attributed to the integrated action of many genes (Kayihan et al., 

2005; Quesada et al., 2010). This quantitative resistance is caused by relatively small 

contributions of several genes, or by one or two genes with large effects and several 

additional genes with small effects (Flint and Mackay, 2009). Although this complexity can 

pose a challenge for breeding programmes, the multi-gene basis and the weaker selection 

pressure imposed on the pathogen in turn increases the durability of the resistance traits 

(Telford et al., 2015). Thus, the identification of these genes is essential for the process of 

PPC resistance development through selection and breeding. 

Different defense mechanisms have emerged in conifer lineages, but the general strategy 

is the overlap of constitutive mechanical and chemical defenses together with the 

induction of additional defenses (Franceschi et al., 2005). The complex plant immune 

response consists of a two-layered approach: a constitutive or non-specific response and 

an inducible defense mechanism (Jones and Dangl, 2006; Bent and Mackey, 2007). 

Proteins known as pattern recognition receptors (PRRs) detect pathogen-associated 

molecular patterns (PAMPs) and their interaction is called PAMP-triggered immunity 

(PTI). Successful pathogens express a suite of effector proteins that are able to suppress 

PTI but, in turn, plants have evolved other proteins (R) that detect them and activate the 

inducible response called effector-triggered immunity (ETI; Jones and Dangl, 2006; Bent 

and Mackey, 2007). R protein-mediated recognition is faster and stronger defense 

response (Dodds and Rathjen, 2010). Disease resistance is observed if the product of any 

particular R gene has recognition specificity for a particular effector secreted by the 

pathogen (Bent and Mackey, 2007). 

Both PTI and ETI lead to activation of various signaling transduction pathways that 

comprises Ca2+ ion flux across the membrane, ROS production and MAPK phosphorylation 

(Ng et al., 2018). These signaling cascades target proteins involved in cellular protection 

or transcription factors controlling sets of defense-regulated genes in the nucleus (Dodds 

and Rathjen, 2010). The reception of the signal at the nucleus results in a severe 

transcriptional reprogramming that leads to diverse cellular responses, and, consequently, 

physiological alterations in the plant (Pedley and Martín, 2005). F. circinatum infection has 

been shown to induce the expression of genes involved in secondary metabolite synthesis 

and pathogenesis-related genes, as well as changes in antioxidant activity, needle gas 
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exchanges, water status and hormonal dynamics (Vivas et al., 2014; Cerqueira et al., 2017; 

Amaral et al., 2019a,b). However, the response may be dependent on genetic or 

physiological differences among the different Pinus species. In fact, PPC-susceptible 

species such as P. radiata and P. pinaster experience a water obstruction that led to 

stomata closure and abscisic acid (ABA) accumulation, as well as photosynthesis 

impairment, induction of sink metabolism and activation of jasmonic acid-dependent 

signalling pathway (Amaral et al., 2019a,b, 2020; Cerqueira et al., 2017). In contrast, the 

resistant species P. pinea was able to maintain the stomatal opening, the ABA levels and 

the energy production through photosynthesis after inoculation with F. circinatum 

(Amaral et al., 2019a, 2020). Additionally, the jasmonic acid levels decreased in the 

resistant species upon pathogen infection (Amaral et al., 2019a). A recent proteomics 

study has also shown that membrane trafficking, ABA responses and maintenance of redox 

homeostasis seems to play a key role in P. pinea response against PPC (Amaral et al., 

2021). Therefore, studies on the plethora of genes and the physiological traits involved in 

the mechanisms underlying the plant-pathogen interaction in different hosts are crucial to 

understand the disease and to further select resistant genotypes. Furthermore, the 

knowledge gained by studying hormonal responses in the host plant could be applied to 

trigger the induced resistance through pre-treatment of plants with a suitable 

phytohormone prior to pathogen infection, activating their defense mechanisms (Eyles et 

al., 2010). 

1.5. Transcriptomics technologies and PPC management 

Next-generation sequencing (NGS) and bioinformatics tools have revolutionised the 

biological sciences at an unprecedented level. NGS refers to non-Sanger-based high-

throughput nucleic acid sequencing technologies that gives researchers the opportunity to 

address a large number of biological questions at a genome-wide scale (Schuster, 2007). 

Bioinformatics is essential for interpreting these biological queries using computer 

software, since the handling and analysis of the massive amount of data generated by this 

technology requires this interdisciplinary field (Yang et al., 2021). Optimizations in 

protocols and sequencing platforms of NGS have allowed an exponential growth of 

applications reflected in the development of omics technologies such as genomics, 

metagenomics, transcriptomics and proteomics, among others. These omics-based 

approaches have contributed enormously to research in plant pathology disease 

management. The applications in this field are innumerable, including the discovery of 

new resistance and defense-related genes, sensitive and precise pathogen diagnostics, 

identification of pathogen effectors and quantitative trait loci (QTLs) for plant tolerance to 

pathogens, and the development of small molecules that target virulence genes 

(Klosterman et al., 2016). 

The omics approaches with high throughput techniques are playing an important role in 

expediting the understanding of interactions in biocontrol strategies. The interest in the 

microbiome associated with plants to predict the spread and impact of pathogens as a tool 

in biocontrol has increased during recent decades (Gopal et al., 2013; Koskella et al., 

2017). In a recent study, although rhizobiomes of the F. circinatum-susceptible P. radiata 

and the resistant P. pinea species did not show significant changes after the stem 

inoculation of the pathogen, differences in the non-inoculated plants were found. In 

particular, the resistant species hosted higher abundance of bacterial taxa associated to 

disease protection (Leitão et al., 2021). Thus, microbial detection powered by the 
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metagenomics technology could easily be employed to engineer microbiomes to reduce 

disease incidence or biopesticides to control specific pathogens (Klosterman et al., 2016). 

On the other hand, many RNA mycoviruses have been identified by short-read NGS and 

using transcriptomics approaches, which concern the study and quantification of the 

complete set of transcripts (RNA) in a cell (Figure 1.4; Marzano et al., 2016; Muñoz-Adalia 

et al., 2018; Zhang et al., 2018). Virus discovery using these technologies has the 

advantage of detecting them independently of the viral titre of the sample and without the 

need for prior knowledge of the genomic sequences of candidate viruses (Adams and Fox, 

2016). 

 

Figure 1.4. The central dogma of molecular biology and its corresponding omics disciplines. 

The study of host-parasite interaction has also been greatly benefited from NGS and 

associated omics. Transcriptomics not only allows the detection of RNA virus sequences, 

but also the examination of the effect of these viruses on host gene expression by 

analysing their messenger RNA (mRNA). By exploiting the transcriptomics in the study of 

differential gene expression, the interaction of mycoviruses with several pathogenic fungi 

such as F. graminearum (Lee et al., 2014; Bormann et al., 2018), Botryosphaeria dothidea 

(Moug. ex Fr.) Ces. & De Not. (Wang et al., 2018), Phytophthora infestans (Mont.) de Bary 

(Cai et al., 2019) and Heterobasidion annosum (Fr.) Bref. (Vainio et al., 2018) have been 

elucidated using RNA sequencing (RNA-Seq) technology.  

RNA-Seq is a recent and revolutionary technique that uses deep-sequencing technologies 

for sequencing of transcripts and subsequent mapping and quantifying transcriptomes 

(Wang et al., 2009). This technology has clear advantages over previous approaches, such 

as serial analysis of gene expression (SAGE) or microarray methods, which require 

existing knowledge about genome sequence or are unable to analyse the entire set of 

transcripts or distinguish different isoforms (Wang et al., 2009). This made it particularly 

challenging to study non-model organisms without their genome being sequenced, as is 

the case for many forest trees. The RNA-Seq technique overcomes these limitations with 

an improved sensitivity and a steadily decreasing cost, render previous technologies 

obsolete (Figure 1.5). The large amounts of RNA-Seq data generated per run, the protocols 



Chapter 1: Introduction 

 

 
17 

for paired end reads and the low sequencing error rate in the reads obtained enable the 

transcriptome assembly for non-model plants. Likewise, if a genome sequence for the 

studied plant or a closely related species is available, it should be possible to identify 

transcripts by mapping RNA-Seq reads onto the genome (Conesa et al., 2016). However, in 

contrast to the rapid progress in the availability of angiosperm genomes, the number of 

sequenced gymnosperm genomes is increasing slowly. This is mainly due to the fact that 

the most important and widely distributed group of gymnosperm plants, the conifers, has 

extremely large and complex genomes that hinder the sequencing and assembly of a 

reference genome (Zimin et al., 2014). In fact, the genome of Pinus lambertiana Douglas is 

one of the largest ever sequenced at 31.6 Gb, more than ten times larger than the human 

genome (Stevens et al., 2016). The complexity of the conifer genomes is reflected in the 

high representation of repetitive DNA (~75%), with transposable elements and large gene 

families generated by gene duplication (Ahuja and Neale, 2005; Nystedt et al., 2013; 

Wegrzyn et al., 2013, 2014). Other woody plant genomes, such as those of P. taeda (Neale 

et al., 2014), Picea abies (L.) H.Karst. (Nystedt et al., 2013), Picea glauca (Moench) Voss 

(Birol et al., 2013) or Sequoiadendron giganteum (Lindl.) J.Buchholz (Scott et al., 2020), are 

also publicly available to date. 

 

Figure 1.5. Number of articles published according to the transcriptomics method used over time 

(Dan Corlan, n.d.). 

RNA-Seq technology has a wide variety of applications and, consequently, many variations 

in the analysis process. In addition to allowing the discovery of new genes, the detection of 

single nucleotide polymorphisms (SNPs) and the analysis of alternative splicing (synthesis 

of different isoforms), the main application of RNA-Seq is the genome-wide expression 

profile (coding and non-coding transcripts) and functional analysis in different tissues, 
conditions, or time points (Conesa et al., 2016). In general, there are two different 

pipelines to perform a comparative analysis of gene expression data: aligning to a 

reference genome or transcriptome (if available) or de novo assembly without genomic 

sequence to produce a genome-scale transcription map (if the reference genome is 

unavailable or incomplete; Figure 1.6). 
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Figure 1.6. Different strategies of a comparative analysis of gene expression data. 

In a context of science guiding forest pest management, the study of the plant-pathogen 

system helps to accelerate the discovery and understanding of the molecular mechanisms 

underlying disease resistance and offers the opportunity to improve the design of plant 

breeding programmes. The use of RNA-Seq technology together with the availability of 

tree and pathogen genomic resources is contributing to this purpose allowing the 

identification of plant key functional genes in susceptible and resistant responses, and the 

understanding of the molecular basis of compatible interactions during pathogen attack. 

In this regard, the dual-RNA sequencing approach during a pathogen infection provides a 

comprehensive picture of the interaction since it allows the simultaneous analysis of the 

differences in transcript expression of both plant and pathogen (Naidoo et al., 2017; 

Westermann et al., 2017). Therefore, the study of the transcriptional reprogramming for 

defense as response of the host tree and the identification of avirulence effector genes of 

the pathogen can be carried out in the same sample. This approach has been already 

employed in a comparative transcriptomic analysis between two contrasting genotypes of 
Pinus pinaster (Hernández-Escribano et al., 2020) and between the susceptible species P. 

patula and the resistant P. tecunumanii after F. circinatum infection (Visser et al., 2019). 

Moreover, unlike the genomes of conifers, the small and simple genomes (37-75 Mb) of 

fungi have allowed the straightforward sequencing of multiple forest pathogens, as in the 

case of Hymenoscyphus spp. (Stenlid et al., 2017), Phytophthora spp. (Feau et al., 2016), 

Heterobasidion spp. (Choi et al., 2017), C. parasitica (Crouch et al., 2020) or F. circinatum 
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(Wingfield et al., 2012). All this information facilitates the selection of candidate genes for 

disease resistance and may inform strategies for resistance-breeding programmes. 

According to the central dogma of molecular biology, the main role of the RNA is to 

passively convert information stored in DNA into proteins. However, the development of 

transcriptomics technologies has revealed that the vast majority of eukaryotic genomes is 

transcribed into non-coding RNAs (ncRNAs), which have minimal or no protein-coding 

capacity, but are functional (Kapranov et al., 2007; Lander, 2011). Among the ncRNAs, the 

well-known housekeeping RNAs (transfer and ribosomal RNA) or small regulatory 

molecules including microRNAs (miRNAs), small nuclear RNAs (snRNAs) and small 

silencing RNAs (siRNAs) can be found (Bonnet et al., 2006). An heterogeneous class of 

ncRNA, long non-coding RNA (lncRNA), has recently emerged as another eukaryotic non-

coding transcript class that participate in many cellular processes by regulating gene 

expression at the transcriptional and post- transcriptional levels (Quan et al., 2015). These 

transcripts of length above 200 nt have aroused intense interests due to their significant 

roles in many biological processes including the response to biotic stress. For example, in 

Arabidopsis thaliana (L.) Heynh., the lncRNA ELENA1 has been identified as a factor 

enhancing resistance against the pathogen Pseudomonas syringae van Hall by regulating 

positively the expression of the defense-related PR1 gene (Seo et al., 2017). Likewise, 35 

lncRNAs responsive to Fusarium oxysporum Schltdl. infection, some of them associated 

with genes that have a potential function in disease resistance (Zhu et al., 2014). In cotton 

plants, the silencing of two lncRNAs (GhlncNAT- ANX2 and GhlncNAT-RLP7) led to 

increased resistance to Verticillium dahliae Klebahn and B. cinerea, possibly due to the 

transcriptional induction of two lipoxygenases involved in the jasmonic acid defense 

signaling pathway (Zhang et al., 2018). In addition, overexpression of lncRNA ALEX1 in 
rice increased JA levels enhancing resistance to the bacteria Xanthomonas oryzae pv. 

oryzae (Yu et al., 2020). These studies highlight the important role of lncRNAs in plant 

immunity, thus their screening can promote the development of better approaches for 

breeding disease-resistant trees. 
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Chapter 2: Objectives 

The serious economic, social and ecological implications of Fusarium circinatum 

establishment and the lack of effective measures to eradicate or control the PPC disease in 

nurseries or in the field, make the search for viable solutions imperative. New European 

guidelines for the reduction of chemical use generate the need to find sustainable methods 

to prevent and mitigate PPC disease. Promoting the use of environmentally friendly 

mechanisms with the help of intensive knowledge of the F. circinatum lifestyle and the 

molecular interactions of PPC pathosystem using next generation sequencing technologies 

will enhance the development of effective management methods. The overall aim of this 

doctoral research was to shed light on effective regulatory mechanisms for the control of 

PPC disease. In order to achieve this general objective several specific goals were 

proposed: 

1. To collate the published information on feasible preventive mechanisms to 

minimize the risk of new introductions of F. circinatum into disease-free areas 

(Article I). 

2. To understand the molecular mechanisms involved in F. circinatum pathogenicity 

through the study of its mycoviruses and transcriptional responses (Article II & 

III). 

3. To identify defense mechanisms of the hosts by studying their coding and non-

coding transcriptome during F. circinatum infection (Article III & IV). 

 

 

Figure 2.1: Conceptual model of the thesis. 
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Chapter 3: Materials and Methods 

A brief description of materials and methods is given below. For detailed information, 

please refer to the original articles (Roman numerals). 

1. MATERIALS 

1.1. Fusarium isolates 

- Spanish F. circinatum isogenic isolates Fc072v (II & III) and Fc072 (II & IV), 

obtained in the Forest Entomology and Pathology Laboratory (University of 

Valladolid). 

1.2. Plant material 

- Six-month-old seedlings of P. radiata (Provenance: Galicia, Spain) (IV). 

- One-year old seedlings of P. radiata (Provenance: Galicia, Spain) and P. pinea 

(Provenance: Meseta Norte, Spain) (III). 

2. METHODS 

Characterization of Fusarium circinatum isolates 

Cultured isolates 

- Solid medium for colony maintenance (Figure 3.1): PDA medium (3.90% w/v 
potato dextrose agar, Scharlab S.L., Barcelona, Spain) (II, III & IV). 

- Liquid medium for mycelium formation (II) and sporulation (III & IV): PDB 
medium (2.40% w/v potato dextrose broth, Scharlab S.L., Barcelona, Spain). 

 

Figure 3.1. Fusarium circinatum Fc072v colony growing on PDA medium.  

Molecular biology  

a) RNA extraction (II, III & IV) 
 

- Spectrum™ Plant Total RNA Kit (Sigma Aldrich, St. Louis, MO, USA) following the 
manufacturer’s protocols. 

- Genomic DNA removal by on-column DNase Digestion (DNASE10-1SET, Sigma- 
Aldrich, St. Louis, MO, USA). 

- Concentration and purity of the RNA measurement by spectrophotometer. 
 

b) Complementary DNA (cDNA) synthesis 
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- Reverse transcription reactions were performed in order to detect mycoviruses by 
polymerase chain reaction (PCR). 

- Extracted RNA was used as template for cDNA synthesis with PrimeScript™ 
Reverse Transcriptase (TAKARA) using random hexamers (Thermo Scientific™ 
Random Hexamer Primer). 
 

c) Polymerase chain reaction (PCR) 
 

- Amplification of the synthesized cDNA for mycoviruses FcMV1 and FcMV2-1 
detection was performed using specific primers: FMC1F1 (5’-
CGTGGATTAAAACCCACAAA-3′) /FMC1Rev1 (5′-
TGGTAATCTACCATAGCAATTAYTC-3’) and FMC3F1 (5’-
GAYAGAACTTTTACTCAAGATCC -3’)/FMC3Rev1 (5’-
ATTCATCTYTTGGCAAATTCATA-3’). 
 

d) Electrophoresis 
 

- The fragments generated with the primer sets were scored using electrophoresis 
on agarose (1% TAE) gels and visualization was carried out using 0.1 µl ml–1 
GelRed dye (Biotium) and a UV transilluminator. 

- Extracted RNA was checked on agarose (1% TAE) gels for integrity measurement 
of the molecules (II, III & IV). 

Next generation sequencing (NGS)  

- Illumina Stranded RNA library construction and sequencing by Illumina HiSeq 
4000 platform for the generation of 75-bp raw paired-end reads (II). 

- Strand-specific RNA-Seq library construction with TruSeq Stranded mRNA LT 
sample preparation Kit and sequencing by Illumina NovaSeq 6000 platform for the 
generation of 150-bp raw paired-end reads (III & IV). 

Pathogenicity analyses  

Sporal suspensions (III & IV) 

- Preparation of spore suspensions and adjustment of concentration (106 conidia 
mL-1) with a haemocytometer.  

Treatment of plant material (III & IV) 

- Seedlings acclimation and handling. 

Inoculation trial 

- Stem inoculation technique from Martín-García et al., 2017 (Figure 3.2) (III & IV). 
- Seedling mortality was recorded daily (IV) or twice a week (III). 
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Figure 3.2. Stem inoculation method using 10 µL of sporal suspension and an inverted ‘U’ wound. 

Physiological analyses (III) 

Water potential measurements 

- Midday stem water potential (Ψmd, MPa) was measured for every seedling using a 
Scholander-type pressure chamber (PMS Instrument Co., Albany, OR, USA; Figure 
3.3). 

Needle gas exchange-related parameters measurements 

- The apical shoot net CO2 assimilation rate (A), transpiration rate (E), stomatal 
conductance (gs) and sub-stomatal CO2 concentration (Ci) were measured using an 
infra-red gas exchange analyzer (LCpro-SD, ADC BioScientific Limited, Hoddesdon, 
U.K.) with a conifer-type chamber (Figure 3.4). 
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Figure 3.3. Scholander-type pressure chamber. 

   

Figure 3.4. Infra-red gas exchange analyzer with a conifer-type chamber measuring needle gas 
exchange-related parameters of Pinus radiata (left) and P. pinea (right) seedings. 

Bioinformatics analyses 

Pre-processing of raw data  

- Disposal of poor-quality terminal nucleotides using CLC Genomics Workbench 
6.0.1. (II). 

- Quality control of sequenced reads using FastQC v.0.11.9. (III & IV) 
- Trimming of raw reads for Illumina adaptor sequences and low-quality base-calls 

using Trimmomatic v.0.38. (III & IV) 
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Genome mapping 

- Reads were mapped to the F. circinatum FSP 34 annotated genome (provided by 
FABI-UP) with CLC Genomics Workbench 6.0.1. (II). 

- Reads were mapped to the Pinus taeda genome (downloaded from Treegenes 
database) with HiSat2 v.2.0.0 with the default settings (III & IV) and adding 
parameters for further transcript assembly (IV). 

- Reads were mapped to the F. circinatum Fc072v genome (downloaded from NCBI) 
with HiSat2 v.2.0.0 with the default settings (III & IV). 

Transcripts assembly 

- StringTie v.2.1.4 was used to assemble the transcripts from each sample and 
merging all assemblies into an experiment-level reference assembly for the 
pathogen (III) and the P. radiata data (IV). 

- Gffcompare v.0.12.1 and P. taeda GTF file were used for classifying pine-assembled 
transcripts in different class codes according to their nature/origin (IV). 

Annotation of transcripts 

- Annotation of F. circinatum FSP 34 transcripts, prediction of protein domains 
through InterProScan 5, Gene Ontology (GO) and Enzyme Code (EC) mapping were 
performed using the BLAST2GO program (II). 

- The pipeline of EnTAP v.0.9.2 for open reading frame prediction, similarity search, 
and orthologous groups (SMART/Pfam), gene ontology (GO) terms and KEGG 
pathways assignment was used for F. circinatum Fc072v (III) and P. radiata 
assembled transcripts (IV) annotation. 

- The GTF file for the P. taeda genome sequence (downloaded from Treegenes 
database) was used for pine transcripts annotation (III). 

Expression quantification  

- Expression levels were estimated and normalized into RPKM values with CLC 
Genomics Workbench 6.0.1. (II). 

- Expression quantification in pine for gene regions specified in the corresponding 
GTF file for the P. taeda genome sequence (downloaded from Treegenes database) 
(III). 

- The estimation of abundances of the transcripts assembled was performed with 
StringTie v.2.1. by mapping the reads to the experiment-level reference generated 
for the pathogen (III) and the P. radiata data (IV). 

Long non-coding RNA (lncRNA) identification (IV) 

- The pine-assembled transcripts were subjected to the coding potential predictor 
FEELnc v.0.2 tool. 

- Similarity of pine lncRNAs to other plant transcripts recorded in non-coding RNA 
databases was performed using the blastn algorithm (E-value <10-5) of the BLAST 
v.2.9.0 software suite. 

Statistical analyses 

Survival analysis (III & IV) 

- Survival analysis was performed with the “Survival” package based on the 
nonparametric estimator Kaplan–Meier using the software R v.3.6.2. 
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Physiological parameter analysis (III) 

- Shapiro–Wilk’s and Bartlett’s tests to test for data normality and homoscedasticity 
(p ≤ 0.05). 

- When data followed ANOVA’s assumptions: Two-way analysis of variance 
(ANOVA). 

- When data violated ANOVA’s assumptions: heteroscedastic two-way ANOVAs 
using the generalized Welch procedure and a 0.1 trimmed mean transformation. 

Differential expression analysis 

- Comparisons of RPKM values were performed using Baggerley’s Z test (II). 
- The expression quantification of pine and fungal data (III) was analyzed using 

edgeR v.1.3.959 package using the software R v.3.6.2. 
- The expression quantification of pine transcripts (IV) was analyzed using DESeq2 

v.1.24.1 package using the software R v.3.6.2. 
- The identification of differential expression genes was determined using the 

threshold of 2-fold change (II), log2 (|Fold-change|) ≥ 1.5 (III) or log2 (|Fold-
change|) ≥ 1 (IV) at a false discovery rate of (FDR) lower than 0.05 (II, III & IV). 

Functional analysis 

- GO enrichment was performed using Fisher’s exact test (FET) in the BLAST2GO 
program (FDR lower than 0.05) (II). 

- GO and KEGG enrichment analysis were implemented by GOSeq v.1.38.0 based on 
the Wallenius non-central hyper-geometric distribution (FDR lower than 0.05) (III 
& IV). 

Co-expression analysis of transcripts (IV) 

- A weighted gene co-expression network analysis approach implemented in the R-
based Co-Expression Modules Identification Tool (CEMiTool) package v.1.8.3 was 
conducted in R software. 

- Calculation of the correlation coefficients by Spearman’s method. 
- The pairwise comparisons were evaluated using Wald tests. 
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Figure 3.5. Workflow of the raw RNA-Seq reads processing for pine differential expression and 
functional analysis. Bold refers to file formats. Green boxes refer to the software used. 
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Figure 3.6. Workflow of the processing of clean RNA-Seq reads for Fusarium circinatum differential 
expression and functional analysis. Bold refers to file formats. Violet boxes refer to the software 

used. 
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Figure 3.7. Simplified workflow for the identification of pine lncRNAs and those that respond to Fusarium circinatum infection. Bold refers to the software used.
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Chapter 8: General discussion 

Forests and woodland ecosystems are facing an alarming increase in the number of 

invasive pathogens, whose establishment is being accelerated by climate change 

(Anderson et al., 2004). Consequently, the focus of forest pathogen management is shifting 

toward reduction of both the occurrence of new invasions and the impact of established 

diseases using environmentally friendly control methods. In this thesis, four scientific 

studies about PPC, a devastating disease of conifers caused by the invasive pathogen 

Fusarium circinatum, were carried out. The aim of these studies was to identify pathways 

of pathogen spread and proposing preventive measures to avoid its introduction into 

disease-free areas, as well as to unravel the molecular interactions of both mycovirus-

pathogen and pathogen-pine using transcriptomics technologies. 

F. circinatum is spread by multiple pathways, both naturally, which is mainly associated 

with local dissemination, and human-mediated, which involves global dispersal (Figure 

8.1). The natural spread of the PPC pathogen is limited due to the short dispersal distances 

of the spores and the fairly short flight distances of disseminating insects. Most important, 

however, is the long-distance dispersion as a result of globalization, particularly of plant 

trade and movement of inconspicuously infected living plants, wood, bark, soil and seeds, 

which represents the most of introductions of the pathogen into disease-free regions 

(EFSA, 2010). The establishment of the disease in the field is of great concern since no 

viable intervention step aiming at the eradication or control of F. circinatum is available. In 

fact, eradication could be only possible with an early detection of the pathogen, especially 

if its presence is limited to nurseries or urban greeneries, as has been the case in France 

and Italy (Vainio et al., 2019). Therefore, continued vigilance, monitoring and reliable 

diagnosis methods of PPC pathogen are essential to prevent its local establishment, spread 

and movement into disease-free areas. Field and laboratory protocols used for the 

identification and diagnostic of F. circinatum are described in detail in the Annex II. 

 

Figure 8.1. Dissemination pathways and potential sources of inoculum of F. circinatum. 
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Though it is an integral part of pathogen management, visual inspection for disease is not 

fool-proof, as the pathogen may exist at a stage that is not visually identifiable. Several 

studies have described the existence of a latent stage of F. circinatum, being capable of 

living inside the host remaining symptomless even for over a year (Elvira-Recuenco et al., 

2015; Swett et al., 2016; Swett and Gordon, 2017; Martín-García et al., 2018). The possible 

existence of asymptomatic seedlings together with the fact that F. circinatum produces 

similar symptoms to those caused by other pathogenic fungi (Vainio et al., 2019), make 

molecular methods the most rapid and reliable tool for detection. Therefore, the 

development and implementation of robust diagnostic protocols is fundamental for the 

early and accurate detection of F. circinatum (Ioos et al., 2019). 

F. circinatum is a serious problem in forest nurseries, not only because it causes pre- and 

post-emergence damping-off through infection of seeds and roots, but also because 

infected nursery plants represent a source of infection for trees in the field (Drenkhan et 

al., 2020), especially due to the possibility of infected plants remaining symptomless. 

Hence, regular monitoring should be carried out on symptomatic and asymptomatic 

seedlings for early detection of the pathogen. Moreover, sanitation practices, such as 

burning infected seedlings, chlorination or ozone treatment of irrigation water, clean trays 

and containers by immersion in hot water or steam, are critical to avoid new infestations 

and spreading of the disease to the field. Here in field, silvicultural methods such as 

pruning and characteristics in the planting site, including shallow soils, that could 

generate wounds or induce stress to the trees, should be avoided. Mechanical control such 

as the elimination of coarse woody debris colonized by insects before their emergence or 

the avoidance of storage of freshly cut logs have shown effective results in the 

management of insect vectors of PPC (Göthlin et al., 2000; Wermelinger, 2004; Walmsley 
and Godbold, 2010; Torres-Vila et al., 2015). In addition, high sanitary standards and 

common sense should be applied in forestry operations. 

Direct chemical control of forest fungal pathogens has been widely applied in nurseries 

(Prospero et al., 2021), but in the framework of an integrated pest management (IPM) 

strategy, the search for an effective biological control agent (BCA) becomes an imperative 

in these sites where the environment may be more controlled. In this sense, the use of 

Trichoderma species as a preventive formulation are likely the most promising BCA 

against F. circinatum in nurseries (Martín-García et al., 2019). The potential of microbes as 

BCAs is based on their ability to produce toxins, parasitize or compete with the pathogen 

for the nutritional niche inside plants and even the stimulation of the defensive 

metabolism of the tree host (Gao et al., 2010; Blumenstein et al., 2015). The use of the 

microbiome associated with the healthy status of trees to suppress pathogenic fungi is 

gaining considerable interest as a field measure. In a recent study, although rhizobiomes 

of the F. circinatum-susceptible P. radiata and the resistant P. pinea species did not show 

significant changes after the stem inoculation of the pathogen, differences in the non-

inoculated plants were found. In particular, the resistant species hosted higher abundance 

of bacterial taxa associated to disease protection (Leitão et al., 2021). Therefore, further 

investigation about possible direct and indirect effects of microbiome on F. circinatum 

would be needed to assess the ecological importance of these biological populations for 

the disease development, and to evaluate possibilities to support pine resistance by 

microbiome manipulation. 

As noted above, the seed movement has been one of the most important pathways of 

introduction of F. circinatum into new countries (Carey et al., 2005; Coutinho et al., 2007; 

Berbegal et al., 2013) and forest nurseries (Storer et al., 1998; Wingfield et al., 2008). The 
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prevention of seed-borne infections is highly important, thus implementing 

thermotherapy, based on the lethal temperature of the PPC pathogen, could easily be 

implemented as an environmentally sound and affordable standard in commercial 

nurseries (Martín-García et al., 2019). However, since there is no measure to eliminate 

internal infection of seeds (Storer et al., 1998) and the ability of F. circinatum to 

asymptomatically infect seeds of non-host species (Hypochaeris radicata L.) (Hernández-

Escribano et al., 2018), restrictions on seed imports mainly from areas where the 

pathogen is known to occur should be considered. Likewise, avoidance of any movement 

of logs, bark, soil, litter, and wood chips from infested areas would minimize the risk of 

introducing F. circinatum propagules to areas free of disease (EFSA, 2010). Overall, 

science-based legislation considering new findings on the PPC disease such as the 

association between the pathogen and grasses and other non-Pinus plants should be a 

priority.  

Overall, in the article I was reviewed the multiple pathways of spread of F. circinatum that 

make the disease a challenge to prevent. Optimizing the use of the most powerful tools for 

early detection and diagnosis of F. circinatum in seeds, plants, and vector insects are 

urgently required. The recent discovery of the endophytic colonization of non-coniferous 

species by F. circinatum illustrates the importance of biological and ecological knowledge 

for the design of effective intervention strategies. In this regard, further studies covering 

the role of insect vectors or microbiome in the spreading processes of the pathogen are 

needed. To ensure that the new, science-based strategies to suppress PPC comply with 

existing practices, regulations, and policies (Vettraino et al., 2018), it is important that 

these strategies are developed through collaborations between phytosanitary authorities 

and researchers. Opinion-building actions, such as The Montesclaros Declaration (IUFRO, 
2011), advocating the crucial target groups about the risks and measures to mitigate them 

are also needed to suppress the further spread of F. circinatum in nurseries and forests. 

The establishment of global collaborative networks focused on integrating management 

approaches and available knowledge is the only means by which we can realistically deal 

with tree pathogens (Wingfield et al., 2015). In this regard, under the COST Action FP1406 

“PINESTRENGTH” a special issue has been produced, including the article I of this thesis, 

of updated information on the biology, ecology, and spread pathways of F. circinatum. This 

Action represents one of the few examples where groups of forest scientists have joined to 

tackle a large-scale major threat. 

The use of mycoviruses as BCAs in the control of F. circinatum is being explored. Spanish 

isolates of the fungus are commonly infected by three mitoviruses (FcMV1, FcMV2-1 and 

FcMV2-2); however, their effect on the host is still unclear. Mixed infections of single host 

fungi are frequent and can show a virus/virus interplay such as synergism, neutral with no 

effect on each other, or antagonism (Chiba and Suzuki, 2015). Traditionally, obtaining 

different combinations of virus infection in addition to the virus-free isolate on an 

identical genetic background (isogenic isolates) has been considered as the optimal 

approach to explore mitovirus-F. circinatum interactions. This would rely on obtaining 

these strains by curing or introduction of these mycoviruses. The lack of simple methods 

for artificial inoculation of mycoviruses has led many researchers to explore various 

approaches both physical (growing cultures from hyphal-tips, monosporic cultures, 

protoplast isolation) and chemical (exposure to antivirals) to eliminate mycoviruses 

(Kwon et al., 2012; Cao et al., 2019; Tran et al., 2019; Espino-Vázquez et al., 2020). In most 

cases, these methods were ineffective. Consistently, preliminary results of mycovirus 

curing assays of infected strains of F. circinatum using different approaches, such as 

thermal treatments or chemotherapy with antivirals (kanamycin, cycloheximide, cAMP 



Chapter 8: General discussion 

 

 
49 

mixed with rifampicin and ribavirin), showed no success after 5 weeks of treatment 

(unpublished data). However, even when the virus is successfully cured from a virus-

infected fungal cell, impairments caused by the treatment make the cured fungal cell 

inappropriate for reliable investigations (Song et al., 2020). Similarly, the spontaneous loss 

of a mycovirus could have an impact on the transcriptomic machinery of the host fungus. 

The study performed in the article II is, as far as we know, the first time that a residual 

effect on the gene expression of a fungus caused by a past infection of a putative 

mycovirus has been reported. In particular, 12 known genes were identified as 

differentially expressed (DE) in F. circinatum after the spontaneous loss of the mitovirus 

FcMV1 using a RNA-Seq-based genome-wide expression analysis. Although the value 

concurs with the number of DE genes reported in response to the coinfection of four 

mycoviruses (FgV1, FgMV2, FgMV3, and FgMV4) in Fusarium graminearum (Lee et al., 

2014), other studies found a much larger number of DE genes as a result of mycovirus 

infections. For example, a total of 683 and 848 genes were DE in Heterobasidion annosum 

and Phytophthora infectans by the infection of the partitivirus HetPV13-an1 and PiRV-2, 

respectively (Vainio et al., 2015; Cai et al., 2019). Likewise, F. graminearum hypovirus 1 

(FgHV1) caused a significant alteration in a total of 378 genes (Wang et al., 2016). This 

could suggest that the residual effect of a past mycovirus infection is limited to a few genes 

and functions in comparison with those affected in the presence of the mycovirus.  

Despite the reduced number of DE genes, several essential functions such as the 

methionine pathway were presumably upregulated after the loss of FcMV1. Allen et al. 

(2003) found that strains of Cryphonectria parasitica infected by the hypovirus CHV1 

showed transcript accumulation for genes involved in the methionine pathway. Similar 

results were also observed in a study of yeast–totivirus interaction, where a fungal 
response to the viral infection was suggested (Mcbride et al., 2013). Due to its central role 

in metabolism, it could be predicted that the increment in the expression of genes involved 

in the methionine pathway would be affecting many metabolic and physiologic processes, 

such as protein synthesis and membrane integrity (Allen et al., 2003). Moreover, the 

induction of genes involved in the organization and formation of structures that serve as 

tracks for intracellular transport in the process of cytokinesis, suggests that the fungal 

cultures that had lost the virus have a higher cellular development than the virus-free 

isolate. In this sense, it is hypothesized that the oxidative burst represented by the 

upregulated genes involved in the response and regulation of oxidative stress, could be 

related to the development of the colony, inducing hyphae and macroconidium formation. 

This would be consistent with a preliminary study of FcMV1 infection, where the presence 

of the mitovirus caused a slight increase in F. circinatum virulence (Muñoz-Adalia et al., 

2016). Therefore, the use of isolates that have undergone mycovirus loss or have been 

subjected to invasive treatments to eliminate them is not recommended for a proper 

exploration of mycovirus-fungus interactions. This makes it imperative to find a method 

for securing an artificial virus-infected F. circinatum strain. 

The results of the article II have also demonstrated the use of transcriptomics as an 

accurate method for mycovirus detection. This was reflected in the unexpected detection 

of FcMV2-1 in all the sequenced libraries, which was previously undetected using the 

conventional PCR method and its specific primers (Vainio et al., 2015). Similar findings 

also occurred in a study with H. annosum, where cryptic mitovirus infections were not 

detected by dsRNA extraction but by RNA deep sequencing and RNA-Seq analysis (Vainio 

et al., 2015, 2018). If the number of copies of the target molecule is very scarce, the use of 

real-time PCR or NGS technologies is more sensitive and, therefore, recommended (Barba 

et al., 2014; Thekke Veetil et al., 2016; Zhang and Vrient, 2020). In fact, deep sequencing of 
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virus-derived small RNA (resulting from antiviral RNA silencing) and fungal 

metatranscriptomes have allowed to identify the virome of various pathogenic fungi 

(Marzano et al., 2016), including nine RNA viruses in ten strains of four different 

Heterobasidion spp. (Vainio et al., 2015), 14 mycoviruses in four isolates of Entoleuca sp. 

(Velasco et al., 2019) and a large variety of mycovirus species in three isolates of Botrytis 

spp. (Donaire and Ayllón, 2017). Additionally, RNA-Seq technique has been used for the 

efficient discovery of novel mycoviruses, including ten mycoviruses in five Sclerotinia 

sclerotiorum isolates (Khalifa et al., 2016) and 57 viruses in 84 isolates of the same fungal 

species (Mu et al., 2018), as well as 17 viruses in a Fusarium poae isolate (Osaki et al., 

2016), ten mycoviruses in F. sacchari and F. andiyazi strains (Yao et al., 2020) and a large 

number of mycoviruses in Rhizoctonia solani isolates (Picarelli et al., 2019). Therefore, 

virome sequencing can be used to characterize potential mycoviruses for biocontrol of 

fungal diseases in plants. 

As noted above, the study of biological control of plant diseases is gaining interest as an 

important part of an integrated management approach. Since new legislative provisions 

give priority to non-chemical methods of plant protection, the environmentally sensitive 

methods and long-term solutions are clearly needed. In this regard, the most effective and 

eco-friendly approach to disease prevention involves breeding plants for resistance 

(Dodds and Rathjen, 2010). There is a large difference in resistance to F. circinatum among 

its multiple hosts, which provides a useful opportunity for the management of the PPC 

disease. Furthermore, the rapid growth of “omics” technologies and the availability of 

genomic resources for forest trees allow the exploration of different molecular responses 

in hosts with different degrees of susceptibility. Candidate genes associated with tree 

resistance can be inferred using functional genomics, e.g. transcriptomics, if these genes 
are differentially expressed under infection with the disease-causing pathogen. The 

article III aimed to understand the molecular processes that underlie the resistance of P. 

pinea and the susceptibility of P. radiata against F. circinatum using a dual RNA-Seq 

pipeline (Figure 8.2). Thus, the sensitivity of high-throughput sequencing allowed the 

simultaneous detection of both pine and fungus transcripts at the time of infection, 

although fungal RNA contributed to a low percentage of reads (~1.36%). This study was 

carried out at an early stage of the infection (4 dpi), so the relative fungal to pine biomass 

was not expected to be very high according to Martín-Rodrigues et al., (2013) results. 
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Figure 8.2. Simplified pipeline of the dual RNA-Seq experiment of article III. GTF (General Transfer 

Format) refers to the annotated file of a genome. The dashed lines enclose the files that have not 

been generated during this bioinformatics pipeline. 

The early stage of infection is critical since the disease occurs when the pathogen is not 

detected by the plant (or is detected late) and, therefore, defensive responses have not yet 

been induced. Here the number of differentially expressed genes (DEGs) in P. pinea 

(1,822) was vastly higher than in P. radiata (371), a significant difference in 

transcriptional reprogramming by the pathogen infection that could help to find the 

resistance mechanisms in P. pinea. In previous studies, a marked trend has been observed 

in the increase in DEGs as the disease was progressing (Adomas et al., 2007; Carrasco et 

al., 2017; Visser et al., 2019; Hernandez-Escribano et al., 2020). Assuming that the number 

of DEGs is correlated with the phase of the host response to the infection, it could be 

hypothesized that P. radiata presents a delayed induction of defense activation, which 

could facilitate the entrance and spread of the pathogen inside the plant. By contrast, a 

degree of overlap existed between the resistant and susceptible host with regard to the 

enriched GO terms by the defense response mechanisms (Figure 8.3). This suggests a 

similar transcriptional change by F. circinatum infection in both species, but a lower 

number of genes involved in the response of the susceptible species. A closer look at the 

DEGs involved in pathogen perception in P. pinea revealed a large number of PRR 

containing domains such as LRR, lysine motifs (LysM), and lectin domain, as well as 

several R genes that were mainly up-regulated. On the contrary, the near absence of PRR 

induction in P. radiata and the lack of up-regulation of MAPK and CDPK transcripts could 

explain the weak downstream defense signaling. 
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Figure 8.3. Model illustrating the main molecular mechanisms triggered in Pinus spp. infected with 

F. circinatum. The perception of the fungus by pine induce many defense mechanisms, signaling 

cascades, and stress response. LRR-RLKs: leucine-rich repeat receptor-like kinases; STKs: receptor-

like serine/threonine-protein kinases; MAPKs: mitogen-activated protein kinases; CDPKs: Ca2+-

dependent protein kinases; ROS: reactive oxygen species; PR proteins: pathogenesis-related 

proteins; JA: jasmonic acid; COI1: coronatine insensitive 1; ET: ethylene; PAL: phenylalanine 

ammonia-lyase; 4-CL: 4-coumarate; CHS: chalcone synthase; TFs: Transcription factors. 

The phytohormones jasmonic acid (JA) and ethylene (ET) seem to play an important role 

in the defense of pine trees. The PPC pathogen infection could have activated the JMT 

genes that catalyze the formation of methyl jasmonate (MeJA) from JA in both species. The 

pre-treatment of MeJA as an elicitor to induce resistance in young P. pinaster and P. patula 

seedlings was unsuccessful in protection against F. circinatum (Vivas et al., 2012; Fitza et 

al., 2013). In this regard, concentration levels and application strategy remain to be 

optimized, as some positive responses could be observed after MeJa application and, 

according to our results, this component could play an important role in the induction of 

response defenses in pine, such as terpene synthases and lipoxygenases (LOX) 

biosynthesis. However, it should be noted that the exogenous application of MeJA has been 

shown to increase the density of resin ducts in P. pinaster (Vivas et al., 2012). Although 

these structures are considered a defense mechanism of P. radiata in advanced stages of 

PPC (Martín-Rodrigues et al., 2013), their increase could facilitate vertical colonization of 

the stem by F. circinatum resulting in susceptibility (Amaral et al., 2019). In fact, JA levels 

significantly decreased under PPC pathogen infection in the resistant P. pinea (Amaral et 

al., 2019).  In parallel, the down-regulation of coronatine insensitive 1 (COI1) together 

with the high induction of jasmonate ZIM-domain (JAZ) genes in P. pinea could denote a 

suppression of JA signaling at 4 dpi, as observed in P. pinaster infected with F. circinatum 

at 5 and 10 dpi (Hernández-Escribano et al., 2020). Although Hernández-Escribano et al. 

(2020) hypothesized that F. circinatum may target and block JA signaling by COI1 

suppression, the down-regulation of this gene could be a defense mechanism of P. pinaster 

and P. pinea to avoid pathogen spread. On the other hand, genes involved in the ET 

pathway were induced in both species. Notably, the responsive to antagonist 1 (RAN1) 
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gene, whose lack of expression leads to the constitutive expression of ET response 

(Hirayama et al., 1999), was only induced in P. pinea, indicating a coordinated role of ET in 

the defense of this species. 

Remarkably, the gene encoding phenylalanine ammonia-lyase (PAL), the key regulatory 

enzyme in altering the biosynthesis and accumulation of secondary metabolites and lignin, 

was not present in the DEGs of P. radiata at 4 dpi, as previously reported in the susceptible 

species P. patula at one dpi (Visser et al., 2015). In contrast, PAL and downstream genes 

encoding for proteins of the flavonoid pathway were actively and widely induced by the 

pathogen in P. pinea. Interestingly, symptomatic P. radiata and P. pinea (10 dpi) showed an 

inverse pattern; where the change in PAL transcript abundance by F. circinatum infection 

was much lower in P. pinea than in P. radiata (Amaral et al., 2019). Therefore, the prompt 

induction of the gene encoding PAL could be related to a solid defense response and, 

consequently, increased resistance to the PPC pathogen. Recent studies have reported the 

important role of flavonoid pathway components in the resistance of Picea abies to 

Heterobasidion infection (Nemesio-Gorriz et al., 2016; Nemesio-Gorriz et al., 2017; 

Kovalchuk et al., 2019), being one of the main induced pathways in asymptomatic trees. 

Moreover, the moderate resistant P. pinaster challenged with F. circinatum showed that 

the induction of flavonoid biosynthesis was maintained over time (until 10 dpi; 

Hernández-Escribano et al., 2020). Pathogenesis-related (PR) proteins including PR1, PR2, 

PR3, PR5, PR9, PR10, and PR14, which show strong antifungal and other antimicrobial 

properties, were also widely up-regulated in both pine species. However, a gene that 

encodes for β-1,3-endoglucanase (PR2) protein that greatly enhances the antifungal 

properties of chitinases (PR3) (Collinge et al., 1993), was only induced in P. pinea, 

suggesting a less effective response of P. radiata at an early stage of the disease. On the 
other hand, some peroxidases (PR9) were hypothesized to be effector target of F. 

circinatum as previously reported in several Phytophthora species infecting Carica papaya 

(Moy et al., 2004; Restrepo et al., 2005; Porter et al., 2009). Some of these PR9 were down-

regulated in P. pinea in accordance to the results of interactions of P. pinaster-F. circinatum 

at 10 dpi (Hernández-Escribano et al., 2020) and Eucalyptus nitens-Phytophthora 

cinnamomi at 5 dpi (Meyer et al., 2016). 

The results of the article III also revealed an important transcriptional reprogramming 

toward the reinforcement and lignification of the cell walls of P. pinea. Inoculation tests of 

P. pinea seedlings of the same age challenged by F. circinatum showed that the smaller 

plants were highly susceptible to the pathogen, while more developed and therefore more 

lignified plants showed resistance, suggesting that the level of lignification is an important 

mechanism of resistance against PPC (J. Martín-García, personal communication). A strong 

regulation of cell wall modification was shown in P. pinea through inhibition of genes 

associated with wall loosening. Genes encoding for XET enzymes, which are involved in 

the metabolism of xyloglucan, were detected as other potential F. circinatum target genes 

as previously reported in apple fruit infected by Penicillium expansum (Muñoz-Bertomeu 

and Lorences, 2014). The activity of the pectinesterases and their inhibitors (PMEI), 

implicated in the resistance of several plant species (Lionetti et al., 2012), appeared to be 

perfectly coordinated in the resistant species. Additionally, the lignin biosynthesis 

pathway was also induced in P. pinea. Unlike P. radiata, these results suggest a quick P. 

pinea response in the reinforcement of cell walls by lignification. This strong reaction may 

be behind the activation of several genes encoding for cell wall-degrading enzymes 

(CWDE) such as laccases and glycoside hydrolases in F. circinatum when infecting the 

resistant species. Interestingly, F. circinatum showed different behavior depending on the 

infected pine tree. Hence, when the pathogen was infecting P. radiata, a noticeable 
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enrichment of DEGs in nutrient transport, especially of nitrogen sources including 

ammonium and amino acids, was observed in the fungus. Likewise, genes encoding 

proteins with roles in nutrient transport were highly up-regulated at the early stages of F. 

oxysporum colonization of susceptible seedlings of Medicago truncatula (Thatcher et al., 

2016). It has been demonstrated that the nitrogen availability in fungi modulates its 

growth, differentiation, and the biosynthesis of many secondary metabolites (Tudzynski, 

2014); accordingly, pathogens will cause less disease in plants where nitrogen is limiting 

(Snoeijers et al., 2000). Moreover, a general accumulation of amino acids, conceivably 

associated with plant stress response and/or pathogen hijacking of host metabolism, was 

reported in the susceptible P. radiata upon F. circinatum inoculation (Amaral et al., 2019). 

Therefore, the enrichment of genes related to the uptake of nitrogen by F. circinatum 

infecting P. radiata could provide the pathogen a competitive advantage in the plant-

pathogen interaction. 

Additionally, the transcriptomic data was combined with a physiological approach in 

order to further support the results obtained at the transcriptional level, considering the 

post-transcriptional regulation. However, no significant changes in the physiological 

analysis were found upon pathogen infection. This may be because the timing of sampling 

was set too early to observe physiological changes, which are triggered by molecular 

responses. In fact, in similar studies, most significant changes in physiological parameters 

of P. pinea, P. pinaster and P. radiata seedlings infected by F. circinatum occurred once they 

started to develop disease symptoms, at 64, 17 and 10 dpi respectively (Amaral et al., 

2019, 2020).  

The development of NGS technologies has revealed that the transcriptome is more 

complex and extensive than previously appreciated. Transcription, which involves mRNA 

processing, such as splicing and polyadenylation, transport and degradation, is regulated 

by RNA-binding proteins and non-coding RNAs (Buccitelli and Selbach, 2020). Among 

these ncRNAs, lncRNAs are gaining general attention as gene regulatory factors due to 

their participatory roles in important molecular processes including stress responses in 

plants (Waseem et al., 2021). To my knowledge, this thesis includes the first analysis of 

lncRNAs responsive to biotic stress in conifers. The article IV presents a comprehensive 

genome-wide analysis of P. radiata lncRNAs and identifies those lncRNAs involved in 

defense reactions against F. circinatum at an early stage of the disease. For that, a strand-

specific RNA-Seq approach with a high coverage sequencing (up to 84 million reads per 

sample) allowed the identification of 13,312 lncRNA transcripts in P. radiata. This 

methodological strategy was able to cope with the low levels of lncRNAs expression and 

the detection of lncRNAs transcribed from the opposite DNA strand of coding or non-

coding genes, known as long non-coding natural antisense transcripts (lncNATs). P. 

radiata lncRNAs were shorter in terms of overall length, contained fewer exons being also 

shorter in length, and showed lower expression and GC content than the mRNAs, genomic 

features consistent with those previously characterized in other organisms (Cabili et al., 

2011). 

A total of 164 F. circinatum-responsive lncRNAs were identified, which were mainly 

composed of intergenic lncRNAs. This was consistent with previous analyses where the 

number of lncRNAs in response to a biotic stress was comparable, and intergenic lncRNAs 

were also the most abundant responsive transcripts (Joshi et al., 2016; Li et al., 2017; 

Wang et al., 2017; Fan et al., 2018). The pattern appears to follow the same trend in 

conifer trees. Several differentially expressed lncRNAs of P. radiata inoculated by F. 

circinatum seem to function as decoys by sequestering RNA-binding proteins (RBP), 
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miRNAs or chromatin-modifying complexes, a conserved mechanism of action of the 

lncRNAs (Wang and Chang, 2011). Therefore, the reprogramming exerted by the infection 

of F. circinatum on pine transcription affects not only the protein-coding genes, but also 

the non-coding part of the genome.   

As pointed out in article III, F. circinatum infection causes drastic transcriptomic 

reprogramming by inducing genes involved in signal perception and transduction, 

biosynthesis of defense hormone and secondary metabolites, and cell wall reinforcement 

and lignification. The functional analysis also indicated an association of the differentially 

expressed lncRNAs with these functional groups, including biological processes such as 

cell wall modification and signaling of the abscisic acid (ABA), ET and cytokinin hormones. 

Several studies have pointed to lncRNAs as participants in the complex network of 

hormone regulation (Li et al., 2017; Wang et al., 2017; Zhang et al., 2018; Yu et al., 2020; 

Feng et al., 2021). Genes involved in phytohormone pathways have already been reported 

to play an important role in the defense against F. circinatum infection, and the results of 

article IV showed an implication of lncRNAs in these pathways. In particular, 

lncRNAPiRa.85000.6 potentially targets an ET receptor (ETR2) gene involved in the signal 

transduction pathway of ET, and lncRNAPiRa.47042.1 could influence the expression of a 

PP2C gene that negatively regulates ABA responses. Interestingly, both gene targets seem 

to be involved in the susceptibility of P. radiata. ETR2 has been found to be induced by F. 

circinatum infection in the moderate resistant specie P. pinaster at 5 and 10 dpi 

(Hernández-Escribano et al., 2020), but not in P. radiata at 2, 6 or 12 dpi (Carrasco et al., 

2017). These results were supported in P. radiata infected by F. circinatum at 4 dpi by 

article III and IV. On the other hand, the accumulation of PP2C protein in P. radiata has 

found to be positively correlated with ABA biosynthesis (Amaral et al., 2020, 2021), 
network in which the lncRNA identified in the article IV could have a role. Therefore, 

when studying the role of phytohormones in the pine-F. circinatum interaction, in addition 

to gene transcription, the regulatory role of lncRNAs must be addressed. 

Besides phytohormones, plant-signaling molecules such as protein kinases or reactive 

oxygen species (ROS) are essential for an adequate defense response. As reported in rice, 

where a lncNAT (LAIR) induced the expression of a receptor kinase (Wang et al., 2018), 

two genes with predicted functions in receptor-like kinase were predicted to be cis-

regulated by P. radiata lncRNAs, one of them being a lncNAT. A proteomics study of PPC 

interactions revealed an accumulation of chloroplastic redox proteins glutathione S-

transferases (GSTs) in P. radiata (Amaral et al., 2021), which concurs with our 

transcriptomics results that showed an up-regulation of GST-encoded genes after F. 

circinatum inoculation. In addition, lncRNAPiRa.64704.1 was predicted to cis-regulate a 

gene encoding GST. This finding together with the possible interaction between 

lncRNAPiRa.19024.1 with a non-symbiotic hemoglobin 1, seem to indicate that lncRNAs 

could be also involved in the cell detoxification after an oxidative burst provoked by a 

fungal infection. 

As remarked in article III, the reinforcement and lignification of the cell wall is a highly 

important defensive system of pines. The pectinesterase activity, which appeared to be 

fine-tuned in P. pinea as opposed to P. radiata (article III), seems to be potentially 

targeted by two nearby lncRNAs in P. radiata (article IV). Moreover, the pectinesterase 

activity was also enriched in the trans-regulation analysis of lncRNAs and mRNAs. The 

transcriptional regulation of the enzymes involved in pectinesterase activity could be 

related to the susceptibility of P. radiata and would be worth further investigation. Other 

genes involved in cell wall modification, such as a gene encoding for 4CL3, were also 
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predicted to be cis-regulated by lncRNAs. The potential function of these transcripts in 

wood formation, including lignin biosynthesis, has been previously observed in different 

plant species such as Populus (Chen et al., 2015; Shi et al., 2017), cotton (Wang et al., 2015) 

or Paulownia tomentosa (Wang et al., 2017), and confirmed by our results.  

Overall, our results evidenced the necessity for collaboration between phytosanitary 

authorities and researchers in order to develop science-based strategies to suppress PPC. 

Current legislation does not meet the necessary requirements to stop new introductions of 

F. circinatum, since it does not consider new findings on the disease, including the 

presence of the fungus in alternative hosts to pines or the endophytic lifestyle of the 

pathogen. The use of biological control demands a deep knowledge of the ecological 

behavior of the organisms involved and those of the environment, which requires detailed 

investigations in the laboratory and greenhouse. For this reason, it is still rarely used for 

pathogens of forest trees. In the case of the mycoviruses, although the development of NGS 

is allowing a rapid and straightforward detection of the virome of any sample, their 

manipulation in the laboratory results labor-intensive. The optimization of transfection 

experiments to introduce mycoviruses to natively virus-free F. circinatum strains are still 

needed in order to obtain mycovirus-free lines for further studies. Genetic resistance 

potentially provides an invaluable tool within an integrated management framework. The 

use of biotechnological tools in breeding programs, including genetic engineering, requires 

prior genomic and transcriptomic knowledge to identify genes of interest. Highly 

expressed genes in P. pinea associated with disease resistance have been identified in this 

thesis, which may be candidates to be considered in breeding programs. In addition, 

evidence has been provided for the implication of numerous lncRNAs in the defense of P. 

radiata. The experimental validation by using knockouts, RNA interference (if possible) or 
overexpression of these lncRNAs would be needed to support our hypotheses.  
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Chapter 9: Conclusions 

1) Since established PPC disease becomes extremely difficult to eradicate, preventive 

mechanisms to avoid its introduction into disease-free areas become essential. In this 

regard, new methods for detection and diagnosis of F. circinatum at a very early stage 

in seeds, plants, and vector insects are urgently needed. The multiple pathways of 

spread make F. circinatum challenging to prevent, especially with the recent discovery 

of its endophytic colonization of non-reported host species. This illustrates the 

importance of the biological and ecological knowledge for the design of effective 

intervention strategies. To ensure that the new, science-based strategies to suppress 

PPC comply with existing practices, regulations, and policies, it is important that these 

strategies had been developed through collaborations between phytosanitary 

authorities and researchers. Furthermore, opinion-building actions, such as The 
Montesclaros Declaration, as well as interdisciplinary research networks (e.g. COST 

Action FP1406), increasing knowledge of the disease and advocating the crucial target 

groups about the risks and measures to mitigate them, are also needed. 

2) The possibility of combating a forest disease with the interaction mechanisms of the 

pathogen lies in the search for a putative hypovirulence-inducing mycovirus. However, 

the study, manipulation and conservation of mycoviruses within their hosts require 

meticulous endeavors in the laboratory. As a result, there is insufficient information to 

help fully elucidate the effects of viral infection on the fungal fitness. RNA-Seq 

technology was used to analyze the residual effect of the loss of the FcMV1 mycovirus 

on the F. circinatum transcriptome. The fungal isolate that had lost the mycovirus 

experienced a slight acceleration of metabolism through the increment in the 

expression of genes involved in the methionine pathway, which regulates many 

essential metabolic and physiologic processes. This was also reflected in the up-

regulation of genes associated with cellular development as well as oxidative burst that 

could be related to the development of the colony, inducing hyphae and macroconidium 

formation. The residual effect provoked by the loss of a mycovirus in the host 

transcriptome reflects the difficulty in obtaining unaltered isolates for further studies. 

Future research focused on the generation of isogenic lines of F. circinatum with and 

without mycoviruses by transfection methods is required in order to better understand 

the feasibility of virocontrol of this forest pathogen. 

3) Knowing the pathogenicity mechanisms used by F. circinatum during its infection to 

Pinus spp. species with different degrees of susceptibility greatly helps in the 

understanding of PPC disease resistance. The comparative transcriptomic response 

showed a greater focus of F. circinatum on cell wall and lignin degradation when 

infecting the resistant species P. pinea at an early stage of the disease. This may be 

associated with a higher lignin content in this species and, in turn, a stronger barrier 

against pathogen penetration. On the other hand, the pathogen had an active uptake of 

nutrients (such as nitrogen) of the susceptible species P. radiata during its infection, 

which could provide F. circinatum with a competitive advantage in the plant-pathogen 

interaction. 

4) Genetic resistance is one of the most promising approaches for PPC management. The 

improvement of breeding programs for PCC-resistant pine commercialization requires 

a deep understanding of the regulatory mechanisms involved in the defense of the 

hosts. The comparative transcriptomic response showed the lack of a substantial 

response in the susceptible species (P. radiata) contrasted with an advanced 
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transcriptional reprogramming for defense in the resistant one (P. pinea) at an early 

stage of the disease. The weak response of P. radiata could be related to the impaired 

perception of the fungal infection since genes involved in early defense responses, 

including calcium flux, recognition by R proteins, or the activation of mitogen-activated 

protein kinases (MAPKs), were not expressed in this species. The failure during the 

initial infection stage that in turn is involved in signaling intermediate and late 

responses has presumably led to a weaker activation of a diverse array of defense 

pathways, including lignification, phytohormone biosynthesis, and the production of 

non-enzymatic antioxidants such as ascorbate and flavonoids. These findings allowed a 

better understanding of the tree defensive mechanisms and set the foundation for 

future studies for validating the association of these candidate genes with PPC 

resistance traits. 

5) The discovery of new mechanisms regulating plant defence, such as long non-coding 

RNAs, implies their incorporation in decision-making during the generation of PCC-

resistant material. The computational analysis using RNA-Seq data from the interaction 

of P. radiata-F. circinatum allowed to identify 13,312 lncRNAs in the pine. Compared to 

the protein-coding RNAs, the lncRNAs were shorter, with fewer exons and lower 

expression levels. A total of 164 lncRNAs were reported as responsive to F. circinatum 

infection. Functional analysis of genes that either overlap with or are neighbours of 

these pathogen-responsive lncRNAs suggested involvement of important defense 

processes including signal transduction and cell wall reinforcement. These results 

present a comprehensive map of lncRNAs in P. radiata under F. circinatum infection 

and provide a starting point to understand their regulatory mechanisms and functions 

in conifer defense responses to biotic stress. In turn, a thorough understanding of the 
mechanism of gene regulation will contribute to the improvement of breeding 

programs for resistant pine commercialization. 
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Chapter 10: Conclusiones 

1) Dado que la enfermedad del PPC una vez establecida en el monte es extremadamente 

difícil de erradicar, los mecanismos preventivos para evitar su introducción en zonas 

libres de la enfermedad se vuelven esenciales. En este sentido, se necesitan 

urgentemente nuevos métodos que permitan una rápida detección y diagnóstico de F. 

circinatum en semillas, plantas e insectos vectores. Sus múltiples vías de propagación 

hacen de F. circinatum un verdadero reto a la hora de combatirlo, especialmente con el 

reciente descubrimiento de su colonización endofítica no solo en especies de pinos, 

sino también en otras coníferas y herbáceas. Esto pone de manifiesto la importancia del 

conocimiento biológico y ecológico para el diseño de estrategias de intervención 

eficaces. Con el fin de garantizar que las nuevas estrategias de control de PPC basadas 

en el conocimiento científico se ajusten a las prácticas, reglamentos y políticas 
existentes, es importante que estas estrategias se hayan desarrollado mediante la 

colaboración entre las autoridades fitosanitarias y los investigadores. Además, también 

son necesarias acciones de creación de opinión, como la Declaración de Montesclaros, 

así como redes de investigación interdisciplinarias (por ejemplo, la Acción COST 

FP1406), que aumenten el conocimiento de la enfermedad y sensibilicen a los agentes 

implicados sobre los riesgos y las medidas para mitigarlos. 

2) La posibilidad de combatir una enfermedad forestal con los mecanismos de interacción 

del patógeno reside en la búsqueda de un micovirus propio que induzca hipovirulencia. 

Sin embargo, el estudio, la manipulación y la conservación de los micovirus dentro de 

sus hospedadores requieren un esfuerzo meticuloso en el laboratorio. Como resultado, 

no hay suficiente información para ayudar a dilucidar completamente los efectos de la 

infección viral en los hongos. La tecnología RNA-Seq fue utilizada para analizar el efecto 

residual de la pérdida del micovirus FcMV1 en el transcriptoma de F. circinatum. El 

aislado fúngico que había perdido el micovirus experimentó una ligera aceleración del 

metabolismo a través de un incremento en la expresión de genes implicados en la vía 

de la metionina, la cual regula muchos procesos metabólicos y fisiológicos esenciales. 

Esto también se reflejó en la sobreexpresión de genes asociados al desarrollo celular, 

así como a la explosión oxidativa que podría estar relacionada con el desarrollo de la 

colonia, induciendo la formación de hifas y macroconidios. El efecto residual que 

provoca la pérdida de un micovirus en el transcriptoma del hospedador refleja la 

dificultad de obtener aislados inalterados para estudios posteriores. Se requieren 

futuras investigaciones centradas en la generación de líneas isogénicas de F. circinatum 

con y sin micovirus por métodos de transfección para comprender mejor la viabilidad 

del virocontrol de esta patología forestal. 

3) Conocer los mecanismos de patogenicidad utilizados por F. circinatum durante su 

infección en especies de Pinus spp. con diferentes grados de susceptibilidad ayuda en 

gran medida a la comprensión de la resistencia a la enfermedad del PPC. La respuesta 

transcriptómica comparativa mostró una mayor actividad de F. circinatum en degradar 

la pared celular y la lignina cuando infecta a la especie resistente P. pinea en una etapa 

temprana de la enfermedad. Esto puede estar asociado a un mayor contenido de lignina 

en esta especie y, a su vez, a una mayor barrera contra la penetración del patógeno. Por 

otro lado, el patógeno tuvo una absorción activa de los nutrientes (como el nitrógeno) 

de la especie susceptible P. radiata durante su infección, lo que podría proporcionar a F. 

circinatum una ventaja competitiva en la interacción planta-patógeno. 
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4) La resistencia genética es una de las estrategias más prometedoras para el manejo del 

PCC. La optimización de los programas de mejora genética para la comercialización de 

pinos resistentes al PCC requiere un profundo conocimiento de los mecanismos 

reguladores implicados en la defensa de los hospedadores. La respuesta 

transcriptómica comparativa mostró la ausencia de una respuesta sustancial en la 

especie susceptible (P. radiata) en contraste con una amplia reprogramación 

transcripcional para la defensa en la resistente (P. pinea) en una fase inicial de la 

enfermedad. La débil respuesta del P. radiata podría estar relacionada con la falta de 

percepción de la infección fúngica, ya que los genes implicados en las primeras 

respuestas de defensa, incluyendo el flujo de calcio, el reconocimiento por parte de las 

proteínas R, o la activación de las proteínas quinasas activadas por mitógenos (MAPKs), 

no se expresaron en esta especie. El fallo durante la etapa inicial de la infección, que a 

su vez está implicado en la señalización de las respuestas posteriores, llevó 

posiblemente a una activación más débil de un conjunto diverso de vías de defensa, 

incluyendo la lignificación, la biosíntesis de fitohormonas y la producción de 

antioxidantes no enzimáticos como el ascorbato y los flavonoides. Nuestros hallazgos 

permitieron una mejor comprensión de los mecanismos defensivos del árbol y sentaron 

las bases para futuros estudios de validación de la asociación de estos genes candidatos 

con los caracteres de resistencia al PPC. 

5) El descubrimiento de nuevos mecanismos que regulan la defensa de las plantas, como 

los ARN no codificantes de cadena larga (ARNlnc), implica su incorporación en la toma 

de decisiones durante la generación de material resistente al PPC. El análisis 

computacional utilizando datos de RNA-Seq de la interacción P. radiata-F. circinatum 

permitió identificar 13.312 ARNlnc en el pino. En comparación con los ARN que 
codifican proteínas, los ARNlnc eran más cortos, con menos exones y niveles de 

expresión más bajos. Un total de 164 ARNlnc se asociaron a la infección por F. 

circinatum. El análisis funcional de los genes que se solapan o son vecinos de estos 

ARNlnc de respuesta al patógeno predijo su participación en importantes procesos de 

defensa, incluyendo la transducción de señales y el refuerzo de la pared celular. Estos 

resultados presentan un mapa completo de los ARNlnc en P. radiata durante la 

infección de F. circinatum y proporcionan un punto de partida para entender sus 

mecanismos de regulación y funciones en las respuestas de defensa de las coníferas al 

estrés biótico. A su vez, un conocimiento profundo de los mecanismos de regulación de 

los genes contribuirá a la optimización de los programas de mejora genética para la 

comercialización de pinos resistentes. 
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Annex I:  

Chapter 27: Pine pitch canker: an introduction, an overview 

Cristina Zamora-Ballesteros, Jorge Martín-García, M. Milagros Fernández-Fernández and Julio J. 

Diez 

 

Abstract 

Pine pitch canker (PPC) is a serious disease of Pinus spp. and Pseudotsuga menziesii 

globally. The infection of its causal agent, Fusarium circinatum, causes pitch or resin-

soaked cankers on trunks and lateral branches of mature hosts. In nurseries, the main 

symptoms are damping-off and tip dieback of seedlings. However, the pathogen, with a 

hemibiotrophic nature, can remain endophytic in seedlings that do not show symptoms of 

infection. Since the first report in 1946 in North America, the presence of F. circinatum has 

been notified in 14 countries in America, Asia, Africa and Europe. Several factors have 

contributed to the spread of the disease to all these continents, the most important being 

globalization in terms of trade in reproductive plant material. Wind, raindrops and forest 

insects associated with pines contribute to the local dispersion of the pathogen. Therefore, 

the implementation of early diagnostic methods is crucial to prevent the PPC 

establishment in disease-free areas. Worryingly, some herbaceous plants growing under 

the canopy of PPC-affected stands may also act as a source of inoculum for F. circinatum, as 

recent studies have reported. Since the viability of the inoculum is highly moisture-

dependent and needs warm temperatures to germinate, coast areas represent the most 

suitable climate for PPC development. In fact, the highest incidence occurs in 

Mediterranean and sub-tropical climates and temperate regions. Under future climate 

change scenarios, cooler latitudes with the presence of susceptible hosts would become 

suitable for the disease establishment. For this reason, the use of tolerant host conifers 

might reduce outbreaks of PPC in free-disease areas. The range of susceptibility to F. 

circinatum has been found to vary significantly among species and intraspecifically, posing 

as a potential disease management strategy. According to this, the development of massive 

sequencing technologies is allowing a deeper understanding of the plant-pathogen 

interaction of this pathosystem, promoting the improvement of breeding programs to 

obtain resistant pine reproductive material. Eco-friendly methods such as the use of 

endophytic fungi and bacteria with antagonistic effect to F. circinatum, plant essential oils, 

chitosan or phosphite have been also investigated for reducing the impact of the PPC. 

Moreover, thermotherapy to eliminate the pathogen from infected seeds is a simple and 

low-cost method to minimize the risk of introducing contaminated seed into nurseries in 

disease-free areas. However, the lack of effective intervention measures in the field, and 

the difficulties to avoid its transmission to the forest due to asymptomatic nursery plants, 

make PPC an unsolved problem for the coming years. Therefore, great efforts will be 

necessary to address the integrated management of this disease through the use of 

environmental-friendly methods in the near future.

Zamora-Ballesteros, C., Martín-García, J., Fernández-Fernández, M.M. and Diez, J.J. 

(2022) Pine Pitch canker: an introduction, an overview. In: Asiegbu, F.O. and 

Kovalchuk, A. (Eds.) Forest Microbiology. Volume 2: Forest Tree Health. Academic 

Press Inc. (Elsevier), pp. 300. ISBN: 9780323850421 
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Annex II: 

Chapter 3: Field and laboratory procedures for Fusarium 
circinatum identification and diagnosis 

Cristina Zamora-Ballesteros, Reinaldo Pire, Julio J. Diez 

 

Abstract 

Fusarium circinatum is a serious invasive pathogen affecting conifers and causes the 

disease commonly known as pine pitch canker. Due to the outbreak in European countries, 

regulations stipulate that Member States must conduct annual official surveys for the 
fungus on their territory and report the results to the European Commission. Here, we 

describe the field and laboratory protocols used for the identification and diagnostic of the 

pathogen. 

Zamora-Ballesteros, C., Pire, R., Diez, J.J. (2022) Field and laboratory procedures for 

Fusarium circinatum identification and diagnosis. In: Luchi N. (Eds.) Plant 

Pathology: Method and Protocols. Methods in Molecular Biology. Humana, New 

York, NY. (In Press). 


