
Received: 17 February 2022 Revised: 17 July 2022 Accepted: 19 July 2022

DOI: 10.1002/mma.8598

R E S E A R C H A R T I C L E

A modified Lyapunov method and its applications to ODE

Manuel Gadella1 Luis Pedro Lara2,3

1Departamento de Física Teórica, Atómica
y Optica and IMUVA, Facultad de
Ciencias, Universidad de Valladolid, Paseo
Belén 7, Valladolid, 47011, Spain
2Instituto de Física Rosario,
CONICET-UNR, Bv. 27 de Febrero,
Rosario, S2000EKF, Santa Fe, Argentina
3Departamento de Sistemas, Universidad
del Centro Educativo Latinoamericano,
Av. Pellegrini 1332, Rosario, S2000,
Argentina

Correspondence
Manuel Gadella, Departamento de Física
Teórica, Atómica y Optica and IMUVA,
Facultad de Ciencias, Universidad de
Valladolid, Paseo Belén 7, Valladolid
47011, Spain.
Email: manuelgadella1@gmail.com

Communicated by: P.M. Mariano

Funding information
Consejería de Educación, Junta de Castilla
y León, Grant/Award Number: QCAYLE;
Ministerio de Ciencia e Innovación,
Grant/Award Number: European Union
NextGenerationEU (PRTRC17.I1);
Ministry of Science and Innovation of
Spain, Grant/Award Number:
PID2020-113406GB-I00

Here, we propose a method to obtain local analytic approximate solutions of
ordinary differential equations with variable coefficients, or even some nonlin-
ear equations, inspired in the Lyapunov method, where instead of polynomial
approximations, we use truncated Fourier series with variable coefficients as
approximate solutions. In the case of equations admitting periodic solutions, an
averaging over the coefficients gives global solutions. We show that, under some
restrictive condition, the method is equivalent to the Picard-Lindelöf method.
After some numerical experiments showing the efficiency of the method, we
apply it to equations of interest in physics, in which we show that our method
possesses an excellent precision even with low iterations.
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1 INTRODUCTION

The motivation of the present article is a contribution to the methods for approximate solutions of ordinary differential
equations (ODE) either nonlinear or linear with variable coefficients. These methods have been developed in order to
solve different kinds of problems that arise in physics and that need of these kinds of ODE. Solutions for the vast majority
of ODE, out of trivial cases studied in textbooks, are unknown, and even in the case that an equation has known solutions,
there are either incomplete or of a complexity that makes them inappropriate for a first analysis of the problem given.
For the almost ubiquitous second-order linear equations with variable coefficients, not always a solution a la Frobenius
is possible, a trouble experienced sometimes by theoretical physicists.

It is interesting to mention some methods to obtain approximate solutions to non-trivial ODE, although for obvious
reasons, we may give only a very limited number of references on a field in which the number of publications is really
enormous.1–9 Our point of departure is the search for analytic approximate solutions for given initial values, boundary
conditions, or solving the Sturm-Liouville problem for second-order ODE of the form
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ẅ(t) + p(t) .w(t) + q(t)w(t) = 0. (1)

Here, we propose a modification of the Lyapunov method to obtain approximate solutions of equations of the type (1),
which improves the standard Lyapunov method and which is also based on iterations. We introduce the method, compare
it with the Picard-Lindelöf method, and show the advantages that it may have with respect to the others in terms of
precision, CPU times, etc. The method is also applicable to nonlinear equations.

We support our arguments with some numerical experiments. Applications to second-order differential equations of
interest in physics have been discussed. These equations are either linear with variable coefficients or nonlinear.

The modified Lyapunov method we are introducing in the present article has some important features in common
with the standard Lyapunov method. Both are intended to find local approximate analytic solutions. Both are polynomial
approximations. While in the standard Lyapunov method, they are given by powers, in our approach, they are trun-
cated Fourier series with variable coefficients. This poses a clear advantage with respect to Standard Lyapunov, since
after the numerical recipe of averaging over the coefficients, we obtain a global approximation valid for periodic solu-
tions of equations that admit such solutions. As mentioned, the advantage of reducing computational times makes these
techniques widely accessible using a software such as Mathematica.

This paper has the following organization: In Section 2, we introduced our modified Lyapunov method and discuss
convergence properties and the construction of approximate periodic solutions after non-periodic ones. In Section 3, we
compare our method to the well-established Picard-Lindelöf method and provide of some simple numerical experiments
to show the advantage of our method in terms of smaller CPU times. Section 4 is devoted to the applications of the method
on differential equations of interest in physics. This presentation is continued in Section 5. We pay particular attention to
the precision of the method. It closes with some concluding remarks.

2 A MODIFIED LYAPUNOV METHOD

Let us go back to Equation (1), where the functional coefficients p(t) and q(t) are defined on an interval [0,T], on where
both are continuous and, in addition, p(t) admits a continuous first derivative. Let us perform the following change of
variables to introduce a new indeterminate w(t) as

w(t) = x(t) exp
{
−1

2 ∫
t

0
p(s)ds

}
. (2)

Clearly, w(t) satisfies Equation (1) if and only if x(t) satisfies

ẍ(t) + a(t)x(t) = 0, (3)

with

a(t) = q(t) − 1
4

p2(t) − 1
2

.p(t). (4)

Note that the function a(t) is continuous on the interval [0,T].
The standard Lyapunov method solves Equation (3) by first considering the one parameter family ẍ(t) = 𝜆a(t)x(t),

and, after a procedure similar to what follows, one singles out the value 𝜆 = −1. Our modified Lyapunov method instead
considers the following one parameter family of equations given by

ẍ(t) + 𝜔2 x(t) + 𝜆b(t)x(t) , with b(t) ∶= a(t) − 𝜔2. (5)

Note that we recover the original (3) equation by choosing 𝜆 = 1. However, we shall yield, in principle, certain freedom
in the choice of 𝜔. In fact, if the approximation replaces to a non-periodic solution, the choice is 𝜔 = 1, while if it is
periodic and the period is given, then 𝜔 is well determined. On the other hand, if the solution is periodic and the period
is unknown, we should determine 𝜔 through the periodicity condition.

In the original Lyapunov method,2,3 one considers the one-parameter family ẍ(t) = 𝜆a(t)x(t) and, then, chooses 𝜆 = −1.
Here, we are using an extension of this method in (5).
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Let us consider the particular solution 𝜙𝜆(t) of (5) with the initial conditions given by 𝜙𝜆(0) and
.
𝜙𝜆(0). In order to obtain

such a solution, let us consider the following span into series:

𝜙𝜆(t) =
∞∑

k=0
xk(t)𝜆k. (6)

Next, we replace (6) into (5) so as to obtain

∞∑
k=0

ẍk(t)𝜆k + 𝜔2
∞∑

k=0
xk(t)𝜆k +

∞∑
k=0

b(t)xk(t)𝜆k+1 = 0. (7)

Let us keep arbitrary the value of the parameter 𝜆, so that we may identify the coefficient of 𝜆k for k = 0, 1, 2, … on
both sides of (7). The result is

ẍ0(t) + 𝜔2 x0(t) = 0 (8)

for k = 0 and

ẍk(t) + 𝜔2 xk(t) + b(t)xk−1(t) = 0 (9)

for k = 1, 2, … .
Next, let us impose initial conditions such as x0(0) = A, .x0(0) = B, xk(0) = 0 and .xk(0) = 0, k = 1, 2, … ,n. We obtain

x0(t) = A cos𝜔t + B
𝜔

sin𝜔t. (10)

Also, and after the stated initial condition and using the variation of parameters method, for any k = 1, 2, … , we
have that

xk(t) =
1
𝜔 ∫

t

0
b(s)xk−1(s) sin𝜔(s − t)ds. (11)

Consequently, we have obtained a recurrence relation to obtain the form of the series (6). The series converges if it
converges absolutely. Continuous functions on the compact interval [0,T] are bounded so is b(t). Let us call K to an upper
bound of |b(t)z0(t)| on [0,T]. Hence, for k = 1, 2, … , we have

|xk(t)| ≤ 1
k!

(K
𝜔

t
)k

. (12)

Then, after (6) and (12), we have

∞∑
k=0

|xk(t)| |𝜆|k ≤ K0 +
∞∑

k=1

|𝜆|k
k!

(K
𝜔

t
)k ≤ H0 + exp

{|𝜆|K t
𝜔

}
≤ H0 + exp

{
ΔK 𝛽

𝜔

}
, (13)

where H0 = K0 − 1 and Δ is an upper bound of the possible values of |𝜆|. Recall that t ∈ [0,T]. Thus, the series (6)
converges absolutely and uniformly on the interval [0,T]. The choice 𝜆 = 1 gives the desired solution to Equation (3).

A simple analysis of (11) shows that an approximation of the solution of (3):

𝜓(t) = 𝜙1(t) =
∞∑

k=0
xk(t), (14)

up to order n, has the following form

𝜓n(t) =
m∑

k=0
{pk(t) cos(k𝜔t) + qk(t) sin(k𝜔t)}, (15)

where pk(t) and qk(t) are polynomials and m > n. We should point out that the approximation given by (15) is local.
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We need to determine the value of n in order to control the error produced by the choice of the approximation (15) with
respect to the exact solution. We define this error as

en ∶= ∫
T

0
(�̈�n(t) + a(t)𝜓n(t))2 dt. (16)

Then, we settle a desirable maximal error, 𝛿 > 0, and choose n such that en < 𝛿.
Nevertheless, the approximation given by (15) is not periodic. We propose a global periodic approximation after (15)

constructed as follows: Define

pk ∶= 1
P ∫

P

0
pk(t)dt , qk ∶= 1

P ∫
P

0
qk(t)dt, (17)

where P is the period of the searched periodic solution Then, we propose as the approximate periodic solution as follows:

𝜓n(t) ∶=
m∑

k=1
{pk cos(k𝜔t) + qk sin(k𝜔t)}. (18)

Another possibility is to use pk(0) and qk(0) instead of pk and qk, although this is just a conjecture that may be supported
just by numerical precision.

Henceforth, we shall call this procedure the modified Lyapunov method.

2.1 First order systems
The above method may be extended to first order systems of the form

.x(t) = 𝑓 (t, x, 𝑦) , .
𝑦(t) = g(t, x, 𝑦), (19)

where 𝑓 and g are real and polynomials on the variables x and 𝑦 and continuous with respect all the three variables. In
this case, the system playing the role of Equation (5) has the following form:

.x(t) = 𝑦 + 𝜆( 𝑓 (t, x, 𝑦) − 𝑦) , .
𝑦(t) = −𝜔2x + 𝜆(g(t, x, 𝑦) + 𝜔2x). (20)

By approximation of order n, we mean the choice

xn(t) ∶=
n∑

k=1
𝜆k uk(t) , 𝑦n(t) ∶=

n∑
k=0

𝜆k vk(t). (21)

From here, we repeat the above procedure, we determine the value of 𝜔 as did after (5), and then, we obtain the
approximate periodic solutions.

3 EQUIVALENCE BETWEEN THE MODIFIED LYUAPUNOV AND THE
PICARD-LINDELÖF METHODS

Along the present short section, we show that our proposed modified Lyapunov is equivalent to the Picard-Lindelöf
method provided that we made a particular choice of the seed solution. The Picard-Lindelöf method finds approximate
solutions of equations of the form

z̈(t) + 𝜔2z(t) = 𝑓 (t, z, .z) , z(0) = A ,
.z(0) = B, (22)
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by iteration.10 In Ramos,10 it is shown that if 𝑓 (t, z(t), .z(t)) is Lipschitz continuous on t ∈ [0,T], then a fixed point iterative
approximation method to solve (22) uses the following relation, valid for all k = 1, 2, … :

z̈k+1(t) + 𝜔2zk+1(t) = 𝑓 (t, zk,
.zk) , zk(0) = A ,

.zk(0) = B, (23)

so that (22) admits the following iterative approximate solutions:

zk+1(t) = z0(t) −
1
𝜔 ∫

t

0
𝑓 (s, zk(s),

.zk(s)) sin(𝜔(s − t))ds, (24)

where zk(t) converges uniformly to the exact solution on a compact interval [0,T]. The important point here is that this
method10 relies on the choice of the initial seed z0(t) and that this choice is somehow arbitrary. After n iterations, zn(t) is the
approximation to the order n of the solution of (23).

Observe that (5) with 𝜆 = 1 is a particular case of (22) with 𝑓 (t, z, .z) ≡ −b(t)z(t). Therefore, (24) becomes

zk+1(t) = z0(t) +
1
𝜔 ∫

t

0
b(s)zk(s) sin(𝜔(s − t))ds. (25)

It was proven in Ramos10 that whenever b(t) be continuous on the integration interval [0,T], the sequence of
approximate solutions {zn(t)} converges uniformly to the exact solution on [0,T].

In order to determine the sequence zk(t), let us first construct a sequence of functions {xk(t)} in the following form: The
first term of the sequence is x0(t) defined in (10), and then, write z0(t) ≡ x0(t), so that we choose as seed the function (10).
Then,

x1(t) ∶=
1
𝜔 ∫

t

0
b(s)z0(s) sin(𝜔(s − t))ds. (26)

Thus, z1(t) = x0(t) + x1(t). Note that z0(t) ≡ x0(t). Next, write

x2(t) ∶=
1
𝜔 ∫

t

0
b(s)x1(s) sin(𝜔(s − t))ds, (27)

so that

z2(t) = x0(t) +
1
𝜔 ∫

t

0
b(s)z1(s) sin(𝜔(s − t))ds,

= x0(t) +
1
𝜔 ∫

t

0
b(s) [x0(s) + x1(s)] sin(𝜔(s − t))ds = x0(t) + x1(t) + x2(t).

(28)

We may proceed by induction and, hence,

zk+1(t) = x0(t) + x1(t) + · · · + xk(t), (29)

with

xk(t) ∶=
1
𝜔 ∫

t

0
b(s)xk−1(s) sin(𝜔(s − t))ds. (30)

The exact solution of (22) with the given initial conditions is just10

z(t) = lim
k→∞

zk(t) =
∞∑

k=0
xk(t). (31)

This limit does exist uniformly on compact intervals.10
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Now, let us come back to Section 2, where we shall use 𝜆 = 1 and the initial conditions xk(0) = A and .xk(0) = B, for
k = 0, 1, 2, … . The seed, x0(t), is given by (10). Then, let us go to (6) with 𝜆 = 1 and (11), so as to conclude that the
exact solution is

𝜓(t) ≡ 𝜙1(t) =
∞∑

k=0
xk(t) = x0(t) +

1
𝜔 ∫

t

0
b(s) sin𝜔(s − t)

∞∑
k=1

xk(s)ds, (32)

with x0(t) as in (10), so that

𝜓n(t) = x0(t) +
1
𝜔 ∫

t

0
b(s) sin𝜔(s − t)

n−1∑
k=1

xk(s)ds = x0(t) + x1(t) + · · · + xn(t), (33)

due to (11). A comparison between (33) with (30) and (31) shows that zn(t) and 𝜓n(t) provide of the same approximation
for the solution of (5) with 𝜆 = 1 and the same value of 𝜔 in both approximations.

Nevertheless, this coincidence is a consequence of a particular choice of the seed solution made when using the
Picard-Lindelöf method.10 This seed solution must coincide with the zero-order approximation (10) for the modified Lya-
punov method, so that both methods be equivalent. Nevertheless, Picard-Lindelöf shows a bigger level of complexity than
the modified Lyapunov method, and this fact may imply an advantage in favor of the latter. To begin with, the arbitrary
choice of the seed solution is a factor that has a great influence on the speed of the convergence and, hence, in the pre-
cision of the nth approximation. Another origin of the bigger complexity of Picard-Lindelöf as compared with modified
Lyapunov concerns on the procedure for the construction of each approximation in the first case, which relies on the gen-
eration of a sequence of partial sums, for which its convergence to a infinite series gives the exact solution. The advantage
of the modified Lyapunov with respect to the Picard-Lindelöf may be shown by numerical experiments as we discuss next.

3.1 Two numerical experiments
Numerical experiments show that the modified Lyapunov method requires shorter CPU times that the Picard-Lindelöf
method. We give here two significative and simple examples. The former is just a simple linear oscillator such as

ẍ(t) + 4x(t) = 0, x(0) = .x(0) = 1. (34)

Let us write (34) in the form (5) with 𝜔 = 1. We have

ẍ(t) + x(t) + 3𝜇x(t) = 0. (35)

Let us use the Picard-Lindelöf method, where now (23) has the following form:

ẍk(t) + xk(t) + 3xk−1(t) = 0, k = 1, 2, … ,n, (36)

and initial conditions xk(0) =
.xk(0) = 1. Now, it is possible the choice of the seed solution under the condition that the

same iteration produce the same precision. This can be done with x0(t) = sin t + cos t. We observe the following facts:

a. In order to obtain a reasonable approximation to the exact solution, which is xexact(t) = cos2t+ 1
2

sin 2t, on the interval
[0, 2𝜋], we need a minimum of 15 iterations, so that n ≥ 15. Note that although the exact solution has a period
equal to 𝜋, we have used the interval [0, 2𝜋], in order to evaluate the error. This helps to understand the quality of
the obtained result, since although the solutions are local, they have nevertheless an excellent behavior over two
periods. Then, the norm on L2[0, 2𝜋] of the difference between the approximate solution and the exact solution is of
the order of 10−6. Note that both integration methods are local, i.e., valid on compact intervals.

b. We compare the variation of CPU times with the order n of approximation on both methods in Figure 1. We observe
that the modified Lyapunov is more efficient that the Picard-Lindelöf method.
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FIGURE 1 Comparison of the CPU times of
the Poincaré-Lindelöf method (dashed curve)
with the CPU times of the modified Lyapunov
(continuous curve) for the linear oscillator (34),
with the same number of iterations

FIGURE 2 Comparison of the CPU times of
the Poincaré-Lindelöf method (dashed curve)
with the CPU times of the modified Lyapunov
(continuous curve) for the Mathieu equation,
with the same number of iterations

In the second example, we use the Mathieu equation; see below in (39). We choose as values of the parameters a = 1
and q = 0.05 (these values have been chosen by simplicity in the procedure) and, again, the initial values x(0) = .x(0) = 1.
This equation may be rewritten as

ẍ(t) + x(t) + 𝜆(a − 1 − 2q cos 2t)x(t) = 0. (37)

The implementation of Poincaré-Lindelöf yields to

ẍk(t) + xk(t) + (a − 1 − 2 cos 2t)xk−1(t) = 0, k = 0, 1, 2, … ,n, (38)

with initial conditions xk(0) = .xk(0) = 1. We use x0(t) = sin t + cos t as initial seed. We compare the CPU times in
Figure 2, so as to obtain similar conclusions than in the precedent example. Observe that modified Lyapunov is particularly
advantageous for n > 10.

4 APPLICATIONS OF THE METHOD ON ODE OF INTEREST IN PHYSICS

Along the present section, we test this extended Lyapunov method to some well-known second-order differential
equations of interest in science. These are the Mathieu, which is a first order Hill equation, the Airy, and the Bratu
equations.
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4.1 The Mathieu equation
The Mathieu equation has the following form2,11:

ẍ(t) + (a − 2q cos 2t)x(t) = 0, (39)

with a, q > 0. The general solution is a linear combination of the so called Mathieu special functions, C(a, q, t) and
S(a, q, t). These solutions are not, in general periodic, although periodic solutions may be found for some values of the
parameters a and q. A method to approximate periodic solutions has been proposed in Gadella et al.12

In order to check the extended Lyapunov method, we shall use an exact solution of (39). In this case, a = 1, and q = 0.05
with initial conditions given by x(0) = 1 and .x(0) = 0. The resulting solution is

x(t) = (0.763507 − 0.641316 i)C(1, 0.05, t). (40)

This solution is not periodic.
Let us call w(t) to the function, obtained through the above method, that approximates the solution x(t) on the interval

[0,T] (usually T = 2𝜋), x(t) being either (40) or another periodic exact solution. On this interval, the error produced by
the use of w(t) is defined by

En ∶= ∫
𝛽

0
(x(t) − w(t))2 dt. (41)

We have written En as we have defined on the above procedure the approximate solution by an iterative process. Here,
n would be the order of the iteration necessary to achieve the approximate solution w(t). On (16), we have defined the
error en that may be applied either to our modified Lyapunov (ML) or the standard Lyapunov method (L). We have made
some numerical experiments using both taking (40) as reference solution. We have used n = 2, 4, 6 iterations with both
methods. The results are displayed in Table 1.

The information we obtain from Table 1 is clear: The approximation of non-periodic solutions on the interval [0, 2𝜋] by
the modified Lyapunov method gives a much higher precision than the precision obtained by the traditional Lyapunov
method. We have performed some other numerical experiments leading to the same result. It is already outstanding the
precision obtained with the use of the second iteration.

Needless to say that the method allows finding the explicit form of the approximate solutions. Listing these solutions
makes no sense as they are easily obtainable with the package Mathematica. Just to show the explicit form of one of them,
the approximation to (39) obtained after the second iteration is

x2(t) = (1.00639 + 0.000315 t2) cos 2t − 0.00640625 cos 3t

+ 0.0000130208 cos 5t + 0.0246875 t sin t − 0.00015625 t sin 3t.
(42)

Note that this is an approximation of the type (15) with p2(t) and q2(t) polynomial, so that (42) is not periodic. Thus,
we estimate the error En. The estimation of the error en comes after the use of the averaging (17), which gives periodic
approximations to the solution on the interval [0, 2𝜋].

TABLE 1 Error estimations produced when approaching solution (39) on the
interval [0, 2𝜋] either using the modified Lyapunov method (ML) or the
traditional Lyapunov method (L)

n en ML En ML en L En L
2 6.86 10−7 1.05 10−7 2.72 103 1.15 103

4 1.40 10−12 1.21 10−14 1.17 103 1.26 102

6 1.47 10−20 7.99 10−22 1.34 10 4.81 10−1

Note: We use two different definitions of errors, en as in (16)
and En as in (36). In our numerical tests, en < En in general.
The furthermost left column gives the order of iteration.
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4.1.1 Characteristic values
As is well known, not all solutions of the Mathieu equation are periodic. Periodic solutions are labeled by some values of
a for given q. In particular, for |q| < 1 and solutions with period 𝜋, we may single out the three first characteristic values,
which are11

a1 = 1 − q − 1
8

q2 + 1
64

q3 − 1
1536

q4 + … ,

a2 = 4 + 5
12

q2 − 763
13824

q4 + 10002401
79626240

q6 + … ,

a3 = 9 + 1
16

q2 − 1
64

q3 + 13
20480

q4 + … .

(43)

To apply the modified Lyapunov method, let us go to (15) with 𝜔 = 2, which takes the form

xn(t) =
m(n)∑
k=0

{pk(t) cos 2kt + qk(t) sin 2kt}, (44)

and write the Mathieu equation (39) as

ẍ(t) + 4x(t) + 𝜆(a − 4 − 2q cos 2t)x(t) = 0. (45)

In order to single out a particular solution, we have to choose some initial conditions such as x(0) = 0 and .x(0) = 1.
Note that in (45), we have to determine somehow the characteristic value a, which is not arbitrary and requires some
other conditions. In fact, the values of a are determined as follows: Take a given value of n. The following equation

xn(𝜋) = 0, (46)

where xn(𝜋) is given in (44), is a polynomial equation on the variable a having m(n) solutions.
Take the real roots on a of (46). Then, select those real roots fulfilling the condition .x(𝜋) ≈ 1. This gives a list of

approximate characteristic values for the Mathieu equation. We repeat the procedure with higher values of n until a
change in the value of n does not produce any substantial change on the characteristic values. The percent relative error,
ea, of the values of a is defined as the modulus of

ea ∶= aML − aExact

aExact
, (47)

where aExact corresponds to an exact value of the characteristic value under consideration and aML is the value obtained
by the use of modified Lyapunov. In Table 2, we give the percent errors of the three first characteristic values obtained
with modified Lyapunov as compared to the exact values as appeared in (43). Here, we have used q = 0.1.

Once we have established the approximate characteristic values, we may determine the approximate solutions. On
Table 3, we compare the errors en and En produced as the consequence of applying either Modified Lyapunov of order 10 or
Runge-Kutta on the same interval, once we have fixed certain values of a1, a2, and a3. We recall that for each characteristic
value, we have one solution and that these errors correspond to the solution provided by its characteristic value.

n =10 a1 a2 a3

Exact 0.89876 4.00416 9.00061
ML 0.89876 3.99917 9.00182
ea 0.0 0.12 0.013

Note: In the second row, “Exact” denotes the values
given by (43) with q = 0.1. In the third row “ML”
mean the values obtained by modified Lyapunov. The
values of ea are listed on the last row.

TABLE 2 Percent relative errors ea in the evaluation of the three first characteristic
values of the Mathieu equation
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The approximate explicit solutions have the form (15), where pk(t) and qk(t) are polynomials on the variable t. In order
to obtain a periodic solution on the whole real line R, we should take the mean of these polynomials as defined in (17).
Just an example, take n = 4 and a2 = 3.99917, which yields to the following approximate periodic solution (after having
taken the averages on the values of the polynomials):

x4(t) = 0.508434 sin 2t − 4.2367610−3 sin 4t + 1.3297 sin 6t, (48)

with the errors en = 5.0810−16 and En = 4.4110−15.
The exact solution with q = 0.1 and a = 4.00416 is here given by

x(t) = (0.35921 + 0.20801i)S(4.00416, 0.1, t), (49)

where S(a, q, t) is the second Mathieu special function.11 If we expand (49) into Fourier series, we obtain

x(t) = 1.2237810−5 + 2.493810−4 cos 2t − 2.00187106 cos 4t + 0.508307 sin 2t

− 4.3432810−3 sin 4t − 4.6836 sin 6t.
(50)

This approximation gives an error, e = 9.210−6. Compare to the error given on Table 3, we show that the error produced
by modified Lyapunov is 5.28 10−19, which is much smaller.

4.2 The airy equation
The Airy equation has the following form:

ẍ(t) + tx(t) = 0. (51)

Take the initial conditions x(0) = 1 and .x(0) = 0. Now, we have an exact solution that is known. This is

xexact(t) =
1
2
Γ(2∕3)(32∕3Ai[(−1)1∕3t] + 31∕6Bi[(−1)1∕3t]), (52)

where Γ(z) is the gamma function and Ai(x) and Bi(x) are the Airy functions.11 This solution is obviously not oscillatory.
In order to implement Modified Lyapunov, we first rewrite (49) as

ẍ(t) + x(t) + 𝜆(t − 1)x(t) = 0. (53)

Then, we proceed to its approximate integration on the interval [0, 2] using both modified Lyapunov and Lyapunov.
While with modified Lyapunov one obtains a combination of harmonics with fundamental frequency equal to one, with
Lyapunov, we obtain the truncated Taylor series of xexact(t) on a neighborhood of t = 0. On Table 4, we display the errors
en and En, with respect to the exact solution, produced by both approximate methods for some low values of n.

TABLE 3 Errors en and En produced when choosing the solution for the characteristic
values a1, a2, and a3, both for the Modified Lyapunov of order n = 10 and Runge-Kutta

n =10 a1 a2 a3

en ML 2.67 10−10 5.28 10−19 9.18 10−6

en RK 2.04 10−8 6.81 10−10 1.01 10−9

En ML 1.00 10−13 5.02 10−26 3.37 10−9

En RK 8.34 10−15 4.41 10−15 1.02 10−15

TABLE 4 Errors en and En obtained when we take the approximated
solutions either with modified Lyapunov or Lyapunov, with respect to the exact
solution, for the values n = 2, 4, 6

n en ML En ML en L En L
2 9.14 10−5 2.90 10−17 6.74 10−2 1.48 10−4

4 1.41 10−11 4.06 10−15 1.70 10−6 5.12 10−10

6 4.63 10−20 3.20 10−24 1.17 10−12 9.34 10−17
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Observe that we have gain in precision using modified Lyapunov with respect Lyapunov. Nevertheless, the solutions
are local, so that if we enlarge the domain [0, 2], we need higher values of n so as to obtain similar precision.

4.3 Bratu equation
The modified Lyapunov method may also be used to determine approximate solutions if we replace the initial conditions
by boundary conditions.8 Take, for instance, the Bratu equation:

ẍ(t) = −𝛼 ex(t), 𝛼 > 0. (54)

In this example, we integrate (54) on the interval [0, 1] with the boundary conditions x(0) = 0 and x(1) = 0. Under these
conditions, the exact solution of (54) is known and is

xexact(t) = −2 log
(

cosh(0.5(t − 0.5)𝜃)
cosh(0.25𝜃)

)
, (55)

where 𝜃 satisfies the following transcendental equation:8

𝜃 =
√

2𝛼 cosh(0.25𝜃). (56)

Equation (56) has either zero, one, or two solutions depending if 𝛼 > 𝛼c, 𝛼 = 𝛼c or 𝛼 < 𝛼c, respectively, where the
critical value 𝛼c must satisfy the following relation:8

4 =
√

2𝛼c sinh(0.25𝜃). (57)

By using an expansion of the exponential in (54) on a neighborhood of the origin, we have the following approximation
for (54):

ẍ(t) + 𝛼

(
1 + x(t) + 1

2
x2(t)

)
= 0. (58)

With the goal of testing our method, we make a choice on the parameters, say 𝛼 = 1. This gives 𝜃 = 1.57716459905. In
Hermann and Saravi,8 we may found a calculation to obtain approximate analytic solutions using the Variational Iteration
method, developed in He.6,7 This method also gives approximate solutions by iteration. For instance, if for the solution
on the interval [0, 1], we impose x(0) = 0; we found for the second iteration

H2(t) = kt − t2

2!
− t3

3!
− (k2 − 1)t4

4!
+ 4kt5

5!
+ (5k2 − 3)t6

6!
+ 5k(k2 − 2)t7

7!

− 25k2t8

8!
− 35k32t9

9!
− 35k4t10

10!
.

(59)

Values of k can be obtained using the second boundary condition x(1) = 1. This gives two conjugate complex solutions
and two real solutions. One of these real solutions produces an enormous error on the solution. The other is k = 0.6231399,
which we consider the only admissible.

Let us solve (58) by modified Lyapunov. Let us write

ẍ(t) + x(t) + 𝜆

(
1 + 1

2
x2(t)

)
= 0. (60)

We have used modified Lyapunov with initial conditions, and now, we are interested in extended the method so as to
use boundary conditions instead. Then, we need a slight change of strategy. Assume, for instance, that we want to make
an approximate integration at second order, n = 2, knowing that the boundary conditions are, say, x(0) = 0 and x(1) = 0.
Then, we begin with fixing the initial conditions x(0) = 0 and .x(0) = u, where u is unknown. Thus, the solution, xu(t), that
provides the chosen initial conditions depends on u. To find the solution with the given boundary conditions, we have to
fix u as the real root of xu(1) = 0. Thus, we have the desired approximation with the given boundary conditions.
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TABLE 5 Values of the parameters e and E for second order of iteration and different
methods of approximation of solutions: Modified Lyapunov (ML), Runge-Kutta (RK),
and Variational Iteration (VIM)

n =2 ML RK VIM
e 1.43 10−3 7.55 10−4 4.99 10−2

E 3.16 10−6 5.95 10−6 4.03 10−4

Assume that by whatever method, we have obtained an approximate solution, say z(t). We want to compare the
efficiency of each method in relation to two parameters. One is

e ∶= ∫
1

0

(
z̈(t) + 1 + z(t) + 1

2
z2(t)

)2
dt. (61)

The other one compares the approximate solution to the exact solution xexact(t) in (55):

E ∶= ∫
1

0
(z(t) − xexact(t))2 dt. (62)

Results are gathered on Table 5, where we compare the values of these two parameters obtained either by modified
Lyapunov (ML), Runge-Kutta (RK), and Variational Iteration.

Finally, the approximate solution for n = 2 by modified Lyapunov is given by

zML(t) = − 1.07413 + (1.09885 − 0.289098t) cos t − 0.0247115 cos 2t

+ 0.636714 sin t + 0.0997301 sin 2t − 0.000841047 sin 3t.
(63)

We conclude this section at this point.

5 NON-LINEAR EQUATIONS

It is simple to see how modified Lyapunov works if the first-order system (19) is written in the form of a second-order
nonlinear equation:

ẍ(t) + 𝑓 (t, x, .x) = 0, (64)

where the dot means derivative with respect to the variable t and 𝑓 (t, x, .x) is a polynomial on the variables x and .x, and,
with respect its explicit dependence on t, it is continuous on a neighborhood of the origin. The one parameter family of
equations that replaces to (20) is now

ẍ(t) + 𝜔2x(t) + 𝜆( 𝑓 (t, x(t), .x(t)) − 𝜔2x) = 0, (65)

where 𝜆 is a real parameter. Now, the procedure is essentially identical as in the previous situation. Solutions are written
as in (6), which in the present case gives

n∑
k=0

ẍk(t)𝜆k + 𝜔2
n∑

k=0
xk(t)𝜆k + 𝜆( 𝑓 (t, 𝜙𝜆,

.
𝜙𝜆) − 𝜔2

n∑
k=0

xk(t)𝜆k+1 = 0, (66)

where 𝜙𝜆 was defined in (6). Note that we have truncated the series for some value of n, so that the relation (66) is just
an approximation, the higher the value of n the better. For n = 0, we recover (8). Otherwise, and taking into account that
𝑓 (t, x(t), .x(t)) is a polynomial on x and .x, we have for n = 1, 2, …

ẍk(t) + 𝜔2xk(t) + 𝑓 (t, 𝜙𝜆,
.
𝜙𝜆) = 0. (67)
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Finally, we define the error obtained by some approximate solution, z(t), within the integration interval [0,T] as

en ∶= ∫
T

0
(z̈(t) + 𝑓 (t, z(t), .z(t)))2 dt. (68)

Next, we analyze this procedure in two examples: The Duffing and the van der Pol equations.

5.1 The duffing equation
The Duffing equation has been introduced to study damped oscillators, driven or not by an external force.3,13–15 However,
we search for periodic solutions. Therefore, we have chosen a simplified form of this equation as

ẍ(t) + x(t) + x3(t) = 0, (69)

where we have omitted the damping term, because otherwise we cannot have periodic solutions, and the external force
for simplicity. Recall that the term on .x introduces a “friction,” so that solutions of equations with this term decay.
Equation (69) has the following first integral:

E = .x2(t) + x2(t) + 1
4

x4(t), (70)

so that all its solutions are periodic.
To use modified Lyapunov in (69), let us write

ẍ(t) + 𝜔2x(t) + 𝜆(1 − 𝜔2 + x2(t))x(t) = 0, (71)

where we have introduced an extra term of the form 𝜔2x in order to produce an output with harmonics with fundamental
frequency 𝜔 = 2𝜋∕P, where P is the period to be determined.

In order to determine the period of periodic solutions, we may proceed as follows. Fix some initial conditions. We
establish x(0) = 1 and .x(0) = 0 for simplicity. We are in the position of using Modified Lyapunov as described in Section 2
so as to obtain the approximate solution x(t) ∶= 𝜙𝜆=1(t), see (14). This solution depends on the period P. The periodicity
condition yields to

(x(0) − 1)2 + .x2(0) = 0. (72)

This equation gives the value of P. We wish to compare the precision of our method with the precision given by a eight
order Runge-Kutta. We denote the period and the error as defined by (68) obtained using Runge-Kutta as PRK and eRK,
respectively. We have PRK = 4.768022 and eRK = 1.5010−2.

On Table 6, eP is the percent relative error of P with respect to PRK.
This is the approximate solution for n = 2:

x(t) = 0.981824 cos𝜔t + 1.7857110−2 cos 3𝜔t + 3.1887810−4 cos 3𝜔t

+ 5.0620110−3t sin𝜔t − 8.6694810−10 t sin 3𝜔t.
(73)

Here, en = 2.3910−4.
Next, we average the coefficients on the interval [0,P] and obtain the following periodic approximate solution:

x(t) = 0.981824 cos𝜔t + 1.7857110−2 cos 3𝜔t + 3.1887810−4 cos 3𝜔t

+ 1.2021410−2 sin𝜔t − 1.6419410−9 sin 3𝜔t.
(74)

n P en eP

2 4.749641 2.39 10−4 0.38
3 4.767863 2.74 10−6 4.61 10−3

4 4.768020 2.21 10−7 4.20 10−4

TABLE 6 We give the values of the period P, the percent relative error of P with
respect to PRK, eP, and the error as defined in (16) for the iterations n = 2, 3, 4
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Here, en = 4.1610−4. We see that the averaged periodic solution (74) has a very similar precision to (71). In addition, it
produces the global solution by periodicity, a property that does not have (73).

5.2 The van der Pol equation
The van der Pol equation2,16 is given by

ẍ(t) + 𝜇
.x(t)(x2(t) − 1) + x(t) = 0. (75)

Now, we may apply the modified Lyapunov in order to obtain a function that approximates its unique limit cycle and get
some approximation of the period. In order to express the solution x(t) as a combination of harmonics with fundamental
frequency 𝜔, let us proceed as done in the case of the Duffing equation (69) and write

ẍ(t) + 𝜔2x(t) + 𝜆(𝜇 .x(t)(x2(t) − 1) + (1 − 𝜔2)x(t)) = 0. (76)

As happens with the Duffing equation (69), the frequency 𝜔 = 2𝜋∕P and the position of the limit cycle on the plane
(x, .x) are unknown. The only critical point is the origin and the limit cycle goes around it. Then, we propose the following
initial conditions x(0) = u and .x(0) = 0, where u is unknown. Since P is the period, we may determine the values of u and
P as solutions of

x(0) = x(P), .x(0) = .x(P). (77)

This is an algebraic system for which does not exist a unique solution. With each of the solutions of (77), we construct
a solution of (76). Then, we have a set of solutions, from which we select the desired solution as a critical point (possible
minimum) of the functional

e ∶= ∫
P

0
(ẍ(t) + 𝜇

.x(t)(x2(t) − 1) + x(t))2 dt. (78)

Observe that the expression under the integral sign is given by the left hand side of (75). This suggests that for approxi-
mate solutions e(x) << 1. Nevertheless, the idea of the approximate solution as the critical functions of the functional (78)
is being supported by numerical experiments.

We may compare the solution given by this procedure with the numerical solution given by Runge-Kutta, which gives
a value for the period PRK = 6.38116 and an error eRK = 2.4910−3, for the values 𝜇 = 0.5 and 𝜇 = 0.1. Again, we call eP to
the percent relative error of P with respect to PRK. We give some results on Tables 7 and 8, corresponding to the values of
the parameter 𝜇 = 0.5 and 𝜇 = 0.1, respectively. In both tables, en comes after the definition (16), and the coefficients of
the approximating functions have been averaged according to (17).

TABLE 7 Values of the period, the percent relative error of the period with respect to
the result obtained by using Runge-Kutta, the error en defined in (16), and the given
value of u for the choice 𝜇 = 0.5 for different iterations n = 1, 2, 3, 4

n P eP en u
1 6.28319 1.5 7.50 10−1 2.0000
2 6.39775 2.6 10−1 1.44 10−1 2.0065
3 6.38017 1.6 10−2 3.56 10−2 2.0056
4 6.38787 1.0 10−1 7.04 10−6 2.0084

TABLE 8 Values of the period, the percent relative error of the period with respect to
the result obtained by using Runge-Kutta, the error en defined in (16), and the given
value of u for the choice 𝜇 = 0.1 for different iterations n = 1, 2, 3, 4

n P eP en u
1 6.28319 6.27 10−2 1.21 10−3 2.0000
2 6.28711 3.2 10−4 1.26 10−5 1.9999
3 6.28712 1.6 10−4 1.37 10−7 2.0002
4 6.28711 3.2 10−4 1.25 10−9 2.0001
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Another option to figure out the precision of the method is to compare its solutions to the solutions given by another
well established method; in the present case, we compare the approximate solution obtained by modified Lyapunov, after
the averaging procedure (17), with the approximate solution given by Lindstedt-Poincaré,1,10 which is

xLP(t) = 1.99865 cos𝜔t + 0.001875 cos 3𝜔t − 0.000520833 cos 5𝜔t

+ 0.0749972 sin𝜔t − 0.0249991 sin 3𝜔t.
(79)

If we choose 𝜔 = 1, we obtain for the period PLP = 2𝜋, the error e = 2.9710−5, and the percent error eP = 6.510−2. We
have chosen 𝜇 = 0.1.

As discussed along the present article, modified Lyapunov gives as approximate solution a linear combination of sine
and cosine functions with polynomial coefficients with a small variation within a period. After averaging as in (17), we
obtain the following periodic solution for n = 4:

xML(t) = 1.99876 cos𝜔t + 0.00172964 cos 3𝜔t − 0.000521438 cos 5𝜔t

+ 0.0749972 sin𝜔t − 0.0249991 sin 3𝜔t.
(80)

Here, we have obtained 𝜔 = 0.999375, which is very closed to 𝜔 = 1 as given by Lindelöf-Poincaré. The other resulting
parameters are of a similar order. For the period, we obtain P = 6.28711; for the error, e = 1.2610−5; and for the percent
error, we have eP = 3.210−4, which in fact are of the same order than in Lindelöf-Poincaré.

6 CONCLUDING REMARKS

We have proposed a substantial modification of the Lyapunov method in order to find either periodic or non-periodic
approximate solutions to second-order linear differential equations with variable coefficients. We obtain approximate
solutions by an iteration method, and we show the absolute convergence of the resulting series on compact intervals.
Using a non-periodic approximation, we may find a periodic one using averages on the time dependent coefficients of the
non-periodic approximation. The numerical recipe may be extended to first order systems of two equations.

The range of equations to which our method is applicable also includes non-linear ODE. Thus, we have tested it using
the Bratu, the Duffing, and the van der Pol equations.

We have found that our modified Lyapunov method is equivalent, making a particular choice of the seed solution,
to the widely used Picard-Lindelöf method. The choice of this seed solution is crucial in the approximate integration
by Picard-Lindelöf, although both methods are equivalent only with a particular choice of this seed, choice that has
some ambiguity. We discuss this property with detail. At the same time, we have made a number of numerical exper-
iments that show that, even if we find the right choice for the seed, our modified Lyapunov method is more efficient
than Picard-Lindelöf. We have added two simple examples of these numerical experiments on the text with detailed
explanations.

A method for approximate solutions must be applicable and easily implementable. We believe that our modified Lya-
punov method fulfills these requirements. We apply it on some equations well known by physicists, such as Mathieu, Airy,
Bratu, Duffing, and van der Pol equations. In all cases, we discuss the precision of the method, which is good even if we
use a low number of iterations. CPU times are also quite reasonable, definitively smaller that those needed for standard
Lyapunov, an interesting property for researchers not having a strong computational power.

This paper is a part of a project by the authors intending to study methods to finding approximate solutions of ordinary
differential equations of interest in physics.17
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