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Abstract: We aimed to analyze the relationship between fire regime attributes and the post-fire
greenness recovery of fire-prone pine ecosystems over the short (2-year) and medium (5-year)
term after a large wildfire, using both a single and a combined fire regime attribute approach.
We characterized the spatial (fire size), temporal (number of fires, fire recurrence, and return interval),
and magnitude (burn severity of the last fire) fire regime attributes throughout a 40-year period with a
long-time series of Landsat imagery and ancillary data. The burn severity of the last fire was measured
by the dNBR (difference of the Normalized Burn Ratio) spectral index, and classified according to
the ground reference values of the CBI (Composite Burn Index). Post-fire greenness recovery was
obtained through the difference of the NDVI (Normalized Difference Vegetation Index) between
pre- and post-fire Landsat scenes. The relationship between fire regime attributes (single attributes:
fire recurrence, fire return interval, and burn severity; combined attributes: fire recurrence-burn
severity and fire return interval-burn severity) and post-fire greenness recovery was evaluated using
linear models. The results indicated that all the single and combined attributes significantly affected
greenness recovery. The single attribute approach showed that high recurrence, short return interval
and low severity situations had the highest vegetation greenness recovery. The combined attribute
approach allowed us to identify a wider variety of post-fire greenness recovery situations than the
single attribute one. Over the short term, high recurrence as well as short return interval scenarios
showed the best post-fire greenness recovery independently of burn severity, while over the medium
term, high recurrence combined with low severity was the most recovered scenario. This novel
combined attribute approach (temporal plus magnitude) could be of great value to forest managers
in the development of post-fire restoration strategies to promote vegetation recovery in fire-prone
pine ecosystems in the Mediterranean Basin under complex fire regime scenarios.

Keywords: Pinus pinaster; number of fires; fire size; fire recurrence; fire return interval; burn
severity; dNDVI
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1. Introduction

Forest fires are the predominant disturbance in many regions of the world [1,2]. This is the case
in the Mediterranean Basin, where fire has a significant effect on the functioning and structure of
ecosystems [3,4]. In this area, forests most affected by fire are the fire-prone pine ecosystems [5],
whose species have developed different fire-adaptive strategies to facilitate post-fire survival or
reproduction [6–8].

The role of fire in fire-prone pine ecosystems can be characterized by describing the fire regime [6].
The term fire regime integrates spatial, temporal, and magnitude attributes [9–11]. Among the spatial
attributes, fire size can hinder the regeneration of vegetation, especially in those ecosystems whose
regeneration is not completely dependent on endogenous processes, and therefore depends on seed
dispersal from nearby unburned areas [2]. Temporal attributes include fire recurrence and fire return
interval, which are important driving factors of the structure and composition of Mediterranean
ecosystems [12–14], as well as of their post-fire regeneration capacity. Fire recurrence, is considered as
the number of fires that occurred in a given period [8]. High fire recurrences can reduce the ability
of some species to recover, especially obligate seeders [2,15], such as the endemic pine species of the
Mediterranean Basin [6,7], whereas other species, including resprouter shrubs, can be promoted by
recurrent fires [3,16]. On the contrary, the fire return interval is defined as the time lapse between
fires [10]. In most fire-prone Mediterranean ecosystems, auto-succession is expected when fire return
intervals are longer than the period required by plants for regeneration or maturation [8]. Therefore,
the fire return interval can be a determinant parameter in the recovery of ecosystems that need long
periods to achieve maturity. This is the case of many pine ecosystems in the Mediterranean Basin,
whose dominant tree species need up to 15 years to achieve maturity or to produce a large seed
bank ensuring post-fire recruitment [7,17,18]. The magnitude attributes include burn severity [10],
considered as the loss of or change in ecosystem biomass [19], and linked to the ecosystem response
after disturbances [14,18,20]. Burn severity is a frequently used metric because it can be quantified
after fire [21]. Therefore, the knowledge of the spatial patterns of fire regime attributes in large
wildfires can contribute to understanding the ecosystem structure [10] and post-fire dynamics [20,22,23].
Consequently, this information is of great interest for managers to promote ecosystem resiliency [24],
and to design adequate post-fire restoration strategies.

In the Mediterranean Basin, land use changes that occurred during the last decades have resulted
in increases of fuel continuity, which are facilitating the occurrence of a high number of large wildfires
(>500 ha) [4,25]. As a consequence, burned areas are increasingly larger and highly heterogeneous,
making it difficult to study the spatial patterns of fire regime attributes through field work, and
therefore remote sensing methods are essential [3]. The starting point to define the spatial and temporal
attributes of a fire regime, such as fire size, fire recurrence, and fire-return interval, is the mapping of fire
scars [10,24]. The moderate-resolution sensors on board Landsat satellites have been largely employed
for fire scar mapping [26–28]. Landsat missions have the advantage of providing multispectral imagery
for a long historical period (since 1972) [29]. An easy and reliable way to discriminate burned areas
using Landsat imagery is through a visual analysis of subsequent Landsat scenes [28,30,31]. In addition,
Landsat imagery is the most used source of information to map burn severity [19] through the standard
spectral index dNBR (difference of the Normalized Burn Ratio) [32]. The dNBR uses pre- and post-fire
information provided by the Near Infrared, which is sensitive to changes in canopy density and the
cellular structure of plant leaves, and the information provided by the Short Wave Infrared, which
is primarily related to moisture content [33]. Although the performance of dNBR has been validated
repeatedly in the literature [33–35], it is convenient to calibrate its thresholds in each specific fire to
generate meaningful categorical maps [36,37]. The validation and thresholds calibration of dNBR is
traditionally done through the CBI (Composite Burn Index) [36], a field index that integrates several
burn severity metrics visually estimated of five vertical strata.

To date, there are many studies determining the influence of a single fire regime attribute
on post-fire recovery (e.g., [38,39]), but we did not find studies accomplishing a full approach
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integrating the spatial, temporal, and magnitude fire regime attributes using remote sensing methods.
This integrated approach is of great interest in fire-prone ecosystems, because some fire regime
attributes can interact among them and produce synergistic effects on ecosystems [40,41]. For instance,
field studies have suggested that high severities might hinder post-fire recovery, especially in forest
systems adapted to recurrent, low severity fires [41,42]. Conversely, other authors have suggested
that the most harmful fires could be those with a long-return interval affecting forests prone to high
severity fires [23]. The expected influence of the joint effect of temporal (fire recurrence and fire return
interval) and magnitude (burn severity) fire regime attributes on post-fire vegetation recovery suggests
the need to merge these parameters in more realistic combined fire regime attribute categories. Using
this novel combined attribute approach could therefore be very useful in studies on post-fire recovery
capacity under different real-world fire regime scenarios, allowing the identification of critical burned
areas where regeneration could be endangered and require post-fire management actions.

Beyond the fire regime characterization, Landsat imagery can be used to assess post-fire vegetation
recovery [8,43,44], which is defined as the ecological process aimed at reverting to pre-fire status [23].
Remote sensing methods to quantify post-fire regeneration include the analysis of vegetation greenness
through spectral indices. In this case, the Normalized Difference Vegetation Index (NDVI), proposed
by Rouse [45], has become accepted as the standard index [23,27,38,39,46]. The NDVI index is highly
sensitive to canopy cover and photosynthetic activity by combining Near Infrared reflectance and the
Red reflectance [46]. Thus, on the landscape scale, the NDVI is a reasonable proxy for green biomass,
providing an overall idea of the vegetation greenness recovery independently of the plant species [47].

The aim of this study is to analyze how vegetation greenness responded to fire regime attributes in
pine ecosystems in an area where wildfires are very frequent, both over the short (2 years) and medium
(5 years) term after the most recent large wildfire, using a remote sensing approach. Specifically,
we intend to (I) characterize the spatial, temporal, and magnitude fire regime attributes affecting
the fire-prone pine ecosystems in the study area over a 40-year period, (II) determine the post-fire
recovery of vegetation greenness in pine ecosystems, and (III) analyze the relationship between the
characterized fire regime attributes and greenness recovery over the short and medium term after fire,
using both a single and a combined fire regime attribute approach. We expected that, relative to the
single attribute analysis, the novel combined attribute approach would enable the identification of the
most favorable situations for vegetation greenness recovery under complex fire regime scenarios.

2. Material and Methods

2.1. Study Area

The study was conducted within the perimeter of the large wildfire that occurred on 19 August
2012 in Sierra del Teleno (León Province, NW Iberian Peninsula) (Figure 1), a mountain range largely
affected by wildfires [48].

The wildfire scar is an area of 119 km2, 103 km2 of which were formerly occupied by Pinus pinaster
Ait. ecosystems (Figure 1). The P. pinaster population of Sierra del Teleno is adapted to a severe
crown fire regime, bearing a high percentage of serotinous cones [7]. However, due to increased fire
recurrence in recent decades [48], P. pinaster forests are turning into successional shrublands dominated
by Pterospartum tridentatum (L.) Willk., Halimium lasianthum (Lam.) Spach and Erica australis L. [22],
as in many areas in the Western Mediterranean Basin [14]. The orography is heterogeneous, ranging
from 836 to 1493 m.a.s.l. Soils are acidic (4.86 ± 0.14; mean ± standard error pH), developed over
siliceous lithologies such as quartzite, conglomerate, sandstone, and slate [49]. The study area is on
the limit of the Mediterranean region, whose climate is classified as temperate with dry and temperate
summers [50], and characterized by a mean annual precipitation of between 600 and 800 mm and a
mean annual temperature of 8–11 ◦C [51].
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Figure 1. Location of the study area. The perimeter of the large wildfire that occurred in 2012,
the natural occurrence of Pinus pinaster, and post-fire management actions applied after the large fire of
2012 are indicated.

2.2. Methodology

2.2.1. Landsat Database

In order to characterize (a) the spatial (average fire size), temporal (number of fires, fire recurrence,
and fire return interval), and magnitude (burn severity) attributes of the fire regime, and (b) the
post-fire recovery of vegetation greenness 2 (short term) and 5 (medium term) years after the 2012 large
wildfire, we built a database composed of 80 Landsat images, covering the period 1975–2017 (Figure 2).
The scenes before 1978 were used as a reference to identify the wildfires that occurred between 1978
and 1980. When available, at least one annual image of the study area without clouds was included in
the database, with preference for those taken in late summer. The database encompassed images from
the Landsat 2 (MSS sensor), Landsat 4 (TM sensor), Landsat 5 (TM sensor), Landsat 7 (ETM + sensor),
and Landsat 8 (OLI sensor) satellites. The images for 1975–1990 and 1999–2017 were obtained from the
Earth Explorer server of the U.S. Geological Survey (https://earthexplorer.usgs.gov), whereas those
for 1991–1998 were acquired from the European Space Agency (https://earth.esa.int).

Figure 2. Methodology flowchart.

https://earthexplorer.usgs.gov
https://earth.esa.int
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2.2.2. Fire Regime Characterization

Fire scars from the wildfires that occurred between 1978 and 2017 were identified by visual analysis
of consecutive Landsat false color composites (Figure 2). We displayed the false color composite RGB
564 for the images obtained by the MSS sensor, RGB 541 for the TM and ETM + sensors, and RGB
652 for the OLI sensor. Orthophotography from 1980 taken by the National Institute for Agrarian
Reform and Development flight (1977–1983) was used as ancillary data to identify fire scars during a
period with low availability of Landsat images, as well as to support the MSS imagery, which has a
lower spatial resolution (60 m). The perimeters of every wildfire were manually digitized using a scale
of 1:5000 in ArcMAP 10.6 [52]. The minimum mapping unit used for hand drawing was 0.01 km2,
as this is the limit between an incipient fire and a wildfire according to the Spanish Administration
classification [53], and because it surpasses the minimum identifiable fire size using imagery from TM
sensors and later [54]. In order to ensure that the digitized scars were the consequence of wildfires, and
not the result of other potential land uses (e.g., ploughing, cutting, clearcutting, etc.), we linked every
digitized perimeter to an official wildfire report (1978–2017) provided by the Nature Protection Section
of the Regional Administration, which included information on the fire date, location, extent, and
burned vegetation for the entire study period, and also fire perimeters after 2007. All wildfires recorded
by the official reports were matched with the fire perimeters mapped by the authors. The validated
map of the fire scars from 1978 to 2017 was the source of information to determine the following:
(i) the total number and average size of the wildfires in each decade (1978–1987, 1988–1997, 1998–2007,
and 2008–2017), (ii) wildfire recurrence during the study period by classifying the study area into
low (1 fire), moderate (2 fires), and high (≥ 3 fires) recurrence, and (iii) the fire return interval as the
number of years between the 2012 large wildfire and the preceding fire, by classifying the study area
into short (years ≤ 15), intermediate (15 < years ≤ 30) and long (years > 30) return intervals.

In order to characterize the burn severity of the 2012 large wildfire that occurred in 19 August,
we calculated the dNBR spectral index [32] from the Landsat 7 ETM+ scenes of 20 September 2011
(pre-fire situation) and 6 September 2012 (post-fire). The Landsat 7 ETM+ scenes obtained are a Digital
Numbers (DN) product geometrically rectified and radiometrically corrected (Landsat L1T processing
level). The scenes were subset and optical bands were pre-processed (Figure 2). Pre-processing
included a conversion of DN to radiance values. Then, radiance images were atmospherically corrected
by using the Fast Line-of-sight Atmospheric Analysis (FLAASH) module. To select the appropriate
atmosphere model and input parameters in FLAASH, we used the MODIS water vapor product
(MOD05), meteorological data (NOAA), and mean elevation values according to [33]. A Delaunay
interpolation was applied to fill the gaps of the Scan Line Corrector (SLC) [55]. Corrected bands were
used to calculate the dNBR index according to the following formulas:

NBR = ($4 − $7)/($4 + $7) (1)

dNBR = (1000 (NBRpre − NBRpost)) − offset (2)

where “$” is the reflectance of each specific corrected band and “offset” is the average index value in
unchanged areas outside the fire perimeter, to account for differences in phenology between Landsat
scenes [32]. For the offset calculation, we selected P. pinaster ecosystems unburned for the last 40 years,
and less than 1.5 km from the fire scar, in which we randomly sampled 78 pixels (1% of the area that
met these specifications).

The performance of the burn severity spectral index (dNBR) was field-validated with the ground
reference CBI by performing linear regression models and examining the statistical significance and
coefficient of determination (R2) of the relationship. To determine burn severity in the field we
randomly established 54, 30 m × 30 m plots in the P. pinaster ecosystem within the first three months
after the 2012 large wildfire. The positions of all field plots were GPS recorded. In each field plot we
calculated burn severity following a CBI-based protocol described in [33], in which several variables of
five vertical strata are rated, obtaining a final ground burn severity value ranging from 0 (unburned) to
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3 (high severity). Following [56], we established two burn severity categories: low-moderate (hereafter
low severity) (CBI ≤ 2.25) and high (CBI > 2.25), and used the linear models to calibrate the dNBR
thresholds according to the CBI values obtained in the field.

We then combined the temporal (fire recurrence and fire return interval) and magnitude (burn
severity of the 2012 large wildfire) fire regime attributes and spatially analyzed the extent of each of
the following combinations: (i) fire recurrence (3 classes) and burn severity (2 classes), and (ii) fire
return interval (3 classes) and burn severity (2 classes).

2.2.3. Post-Fire Greenness Characterization

The post-fire recovery of vegetation greenness after the 2012 large wildfire was evaluated as the
difference of the Normalized Difference Vegetation Index (dNDVI) [38,57] 2 (short term) and 5 (medium
term) years after the fire (Figure 2). We selected the Landsat 7 ETM+ scenes from 20 September 2011
(pre-fire situation), 27 August 2014 (short term) and 20 September 2017 (medium term). Optical bands
were subset and pre-processed equally as for dNBR calculation. Corrected bands were used to calculate
the dNDVI index according to the following formulas:

NDVI = ($4 − $3)/($4 + $3) (3)

dNDVI = (NDVIpre − NDVIpost) − offset (4)

where “$” is the reflectance of each specific band, and “offset” is the average index value in unchanged
areas outside the fire perimeter to account for differences in phenology between Landsat scenes [32].
For the offset calculation, we selected P. pinaster ecosystems unburned for the last 40 years, and less
than 1.5 km from the fire scar, in which we randomly sampled 78 pixels (1% of the area that met these
specifications). dNDVI values ≤ 0 indicate the full recovery of vegetation greenness.

2.2.4. Sampling

The categories of fire regime attributes and values of post-fire greenness recovery were extracted
using a random sampling design with a minimum distance between sample points of 60 m (two
Landsat 7 ETM+ pixels). We distributed 932 sample points within the 2012 fire scar, in the area formerly
dominated by P. pinaster ecosystems where no post-fire management actions were accomplished
(Figure 1), excluding paths and the Landsat SLC failure zones. The same procedure was repeated in
unburned areas adjacent (< 1.5 km) to the fire perimeter (i.e., unburned P. pinaster ecosystems for at
least 40 years), distributing 78 sample points. The number of sampling points corresponds to 1% of
Landsat pixels of the burned and unburned areas with the specified characteristics [58].

2.3. Data Analysis

In order to analyze the effects of the single and combined fire regime attributes (fire recurrence,
fire return interval, burn severity, fire recurrence-burn severity, and fire return interval-burn severity;
categorical explanatory variables) on vegetation greenness (dNDVI 2 and 5 years after the fire;
continuous response variables), we performed linear models (LMs) on which we conducted an Analysis
of Variance (ANOVA) with pairwise multiple comparison of means (Tukey HSD). The goodness of
fit of the models was assessed by visual analysis of homoscedasticity and normality of the residuals.
Global spatial autocorrelation in the model residuals was checked using Moran’s index (I), indicating
that it had no effect on the study results (Moran’s I < |0.1|) [59].

All data analyses were carried out with R software, version 3.4.0 [60], using the “spdep”
package [61].
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3. Results

3.1. Fire Regime Attributes

We identified a total of 28 wildfires (size ≥ 0.01 km2) between 1978 and 2017 combining Landsat
imagery and ancillary data (Figure 3). There were no fires subsequent to the 2012 large wildfire. In the
last two decades (1998–2007 and 2008–2017), there was a decrease in the number of fires, and an
increase in fire extent, reaching an average fire size of 29.74 km2 during 2008–2017 (Figure 4).

Figure 3. Fire perimeters and year of wildfire occurrence from 1978 to 2017.

Figure 4. Average (±standard error) size of wildfires by decade from 1978 to 2017 within the study
area (the fire scar of the 2012 large wildfire). Numbers above bars indicate the total number of wildfires
in each period.

The majority of the study area (70.95 km2) has not experienced any other fire prior to the large
wildfire that occurred in 2012, and therefore was classified in the low fire recurrence category (1 wildfire
from 1978 to 2017) (Figure 5a) and long fire return interval (>30 years) (Figure 5b).
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Figure 5. Spatial patterns of fire recurrence (total number of wildfires from 1978 to 2017) (a), fire return
interval (number of years between the 2012 large wildfire and the preceding fire) (b), and burn severity
of the 2012 large wildfire, measured by the difference of the Normalized Burn Ratio (dNBR) and
classified according to the ground reference values of the Composite Burn Index (CBI) (c). The results
of the linear regression between dNBR and CBI values for the 2012 large wildfire are also indicated.
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The correlation between the values of the spectral burn severity index (dNBR) and the ground
burn severity index (CBI) was statistically significant (p < 0.05), with a high coefficient of determination
(R2 = 0.88). For the most part (61.02 km2), the burn severity of the 2012 large wildfire was high
(Figure 5c).

The combined fire regime attribute approach differentiated six fire recurrence-burn severity
scenarios, with the low recurrence-low severity (38.38 km2) and low recurrence-high severity
(32.57 km2) scenarios being the most extensive (Figure 6a). Correspondingly, there were six fire
return interval-burn severity scenarios, with a spatial dominance of the areas with a long time-period
between the 2012 large wildfire and the preceding fire, independently of burn severity (Figure 6b).

Figure 6. Combined fire regime attribute approach identifying the spatial patterns of the different
fire recurrence-burn severity (a) and fire return interval-burn severity (b) scenarios. See Figure 5 for
further information.

3.2. Post-Fire Greenness Recovery

The vegetation greenness over the short term (2 years after the 2012 large wildfire) was not
recovered in any fire regime scenario (i.e., all dNDVI values > 0) (Figure 7a). On average, the short-term
dNDVI value of the fire scar was 0.59 ± 0.11 (mean ± standard deviation), indicating low vegetation
recovery 2 years after fire.

However, the post-fire recovery of vegetation greenness over the medium term (5 years after the
2012 large wildfire) was greater than over the short term (0.10 ± 0.08). It was found that 10.25% of
the burned surface attained the greenness values of the pre-fire situation (dNDVI ≤ 0.00) (Figure 7b)
nonetheless, the remaining 89.75% of the surface had lower greenness values than the pre-fire situation
(dNDVI > 0).
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Figure 7. Spatial patterns of post-fire recovery of vegetation greenness over the short term (2 years) (a)
and medium term (5 years) (b) after the 2012 large wildfire.

3.3. Effects of Fire Regime Attributes on Post-Fire Greenness Recovery

Every single and combined fire regime attribute had a statistically significant effect (p < 0.001) on
the recovery of vegetation greenness (dNDVI), both over the short and medium term after the 2012
large wildfire (Table 1). The combined fire regime attributes always showed higher R2 values than
the single ones, indicating a higher explanatory capacity. In general, greenness recovery was greater
(i.e., lower dNDVI values) over the medium than short term for the single and combined fire regime
attributes (Figures 8 and 9).

The recovery of vegetation greenness was significantly greater in the high fire recurrence scenario
both over the short (Figure 8a) and medium (Figure 8b) term. Nevertheless, during the study period,
none of the fire recurrence categories was completely recovered.

Correspondingly, the short fire-return interval scenario had significantly higher vegetation
greenness recovery over the short term (Figure 8c). This difference among fire-return interval categories
was attenuated over the medium term, as both the short and long fire-return situations had similar
values for greenness recovery (Figure 8d). However, none of the fire return interval categories attained
the dNDVI values of the unburned situation.

Table 1. Results of the linear models [‘anova()’ outputs] showing the effects of the single and
combined fire regime attributes (fire recurrence, fire return interval, burn severity, fire recurrence-burn
severity and fire return interval-burn severity) on post-fire greenness recovery over the short [dNDVI
(2011–2014)] and medium [dNDVI (2011–2017)] term after the 2012 fire. dNDVI = difference of the
Normalized Difference Vegetation Index. Df = degrees of freedom. Significant p-values are in bold face.

Response Variable Predictor Variable Df R2 F-value p-value

dNDVI (2011–2014) Fire recurrence 3 0.348 177.522 <0.001
Fire return interval 3 0.352 180.058 <0.001

Burn severity 2 0.338 254.305 <0.001
Fire recurrence-burn severity 6 0.380 101.405 <0.001

Fire return interval-burn severity 6 0.394 107.361 <0.001
dNDVI (2011–2017) Fire recurrence 3 0.193 79.529 <0.001

Fire return interval 3 0.142 55.070 <0.001
Burn severity 2 0.272 186.045 <0.001

Fire recurrence-burn severity 6 0.313 75.279 <0.001
Fire return interval-burn severity 6 0.287 66.604 <0.001
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Figure 8. Mean (±standard error) vegetation greenness values measured by the difference of the
Normalized Difference Vegetation Index (dNDVI) over the short (2 years) and medium (5 years) term
after the 2012 large wildfire for the different scenarios of fire recurrence (total number of wildfires
from 1978 to 2017) (a,b), fire return interval (number of years between the 2012 large wildfire and the
preceding fire) (c,d), and burn severity of the 2012 large wildfire as the difference of the Normalized
Burn Ratio (dNBR) (e,f). Different letters above the error bars (a, b, c, d) denote statistically significant
differences between mean values (p < 0.05).
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Figure 9. Mean (± standard error) vegetation greenness values measured by the difference of the
Normalized Difference Vegetation Index (dNDVI) over the short (2 years) and medium (5 years)
term after the 2012 large wildfire for the different scenarios identified by the combined fire attribute
approach: fire recurrence-burn severity (a,b), and fire return interval-burn severity (c,d). Lr, Mr, and
Hr indicate low, moderate and high fire recurrence, respectively. Ls and Hs indicate low and high burn
severity, respectively. St, It, and Lt indicate short, intermediate and long fire return interval. Different
letters above the error bars (a, b, c, d, e) denote statistically significant differences between mean values
(p < 0.05). See Figure 8 for further information.

The burn severity of the 2012 large wildfire showed an inverse relationship with the recovery of
vegetation greenness over the short (Figure 8e) and medium (Figure 8f) term after fire (i.e., the low
burn severity category had the greatest greenness recovery). Even so, the dNDVI values of both low
and high burn severity classes were significantly higher than those of the unburned situation.

Generally, the combination of temporal (fire recurrence and fire return interval) and magnitude
(burn severity) fire regime attributes resulted in wider ranges of greenness recovery values (Figure 9)
than those obtained with single fire regime attributes (Figure 8). Also, the differences in greenness
recovery between low and high burn severity categories over the short term were lessened when
combined with either the high fire recurrence or short fire return interval (Figure 9a,c). Consequently,
there were no statistically significant differences (p ≥ 0.05) in greenness recovery between (1) high
recurrence-low severity and high recurrence-high severity combinations (Figure 9a), and (2) short
return interval-low severity and short return interval-high severity combinations (Figure 9c) 2 years
after fire.

Focusing on fire recurrence-burn severity, the highest recovery of the vegetation greenness was
attained at the high recurrence scenarios (high recurrence-low severity and high recurrence-high
severity) over the short term (Figure 9a), and at the high recurrence-low severity scenario over the
medium term (Figure 9b), which reached the closest dNDVI value to the unburned situation among all
the analyzed single and combined fire regime scenarios (Figures 8 and 9).
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Similarly, on analysis of the fire return interval-burn severity, the greatest greenness recovery
corresponded to the short fire-return interval scenarios (short interval-low severity and short
interval-high severity) over the short term (Figure 9c), and to the three low severity combinations
(short interval-low severity, intermediate interval-low severity, and long interval-low severity) over
the medium term (Figure 9d).

4. Discussion

In this work, we have shown the utility of remote sensing tools to analyze fire regime attributes and
their effects on vegetation greenness recovery after large wildfires. Landsat imagery and ancillary data
were used to identify the 28 wildfires that occurred in a 40-year period (1978–2017) in Sierra del Teleno
within the perimeter of the 2012 large fire, resulting in a spatially heterogeneous fire history and a wide
range of post-fire greenness recovery. Our results demonstrated that all the fire regime attributes that
were spatially characterized, whether they followed a single (fire recurrence, fire return interval, burn
severity) or combined approach (fire recurrence-burn severity and fire return interval-burn severity),
were significantly related to the post-fire recovery of vegetation greenness. However, the combination
of fire recurrence or fire return interval with burn severity was able to identify a larger variety of
scenarios of post-fire greenness recovery than the single approach, the combined attributes being the
best predictors of post-fire recovery of vegetation greenness.

The fire scars analysis allowed us to identify the temporal evolution of fire size and number
throughout the four studied decades in our specific study site. The results, which have to be interpreted
considering the limited extent of the studied area and period, indicated a decrease in the number of
fires and an increase in the extent of the burned area during the studied period. This is an opposite
trend to that reported for Southern European countries and for Spain, where, in general, the average
fire size has decreased and the number of fires has increased since the 1980s [62]. However, other
authors have found different trends in particular regions within the Iberian Peninsula. For instance,
Pausas [63] indicated an unclear trend for the size of the area burned in the Eastern Iberian Peninsula
between 1968 and 2000, which was closely related to summer rainfall. The patterns of the increasing
average size of fires in our study area could be explained by the contribution of the large wildfires that
occurred in 1998 and 2012, which burned 31% and 100% of the study area, respectively. Furthermore,
the fuel depletion caused by these two large fires could prevent subsequent wildfires during the
following years, as fire occurrence in Mediterranean ecosystems is fuel-limited [64]. The occurrence
of such large wildfires is increasing in some regions in the world [11,65] and is relatively recent in
Spain [4,25], the study area being a good example.

The fire recurrences found in this study were consistent with those in other fire-prone pine
forests within the Iberian Peninsula [8,66] for a 25-year period or longer. Fire recurrence affected
post-fire greenness recovery over the short and medium term post-fire, the high recurrence scenario
being the most recovered. Recovery in the different fire recurrence scenarios can be explained by the
vegetation composition in the pre-fire situation, because post-fire regeneration in P. pinaster ecosystems
is via auto-succession [14,67]. In this sense, the areas classified as high recurrence were occupied
mainly by shrubs and herbaceous species (4.53% pines, 36.89% shrubs, 38.13% grasses) [68], which are
promoted by high recurrences and additionally, are rapidly recovered after fire [22,67,69]. Conversely,
the low recurrence areas were predominantly covered by pines (57.53% pines, 13.25% shrubs, 19.16%
grasses) [68], which require more time than shrubs to completely recover [70].

The fire return intervals in the study area ranged from < 15 years to > 30 years, being within
the typical intervals reported for Mediterranean ecosystems (varying from 10 to up to more than
120 years) [1]. The areas burned in a short-return interval were more rapidly recovered than those
burned in an intermediate and long interval, probably due to the dominance of shrubs (6.72% pines,
38.80% shrubs, 32.11% grasses) [68]. In this sense, it is expected that shrubs such as those present
in our study area (Ericaceae and Cistaceae) increase their dominance in short fire interval scenarios,
optimal at fire intervals of 5 and 10 years, respectively [71]. Conversely, Mediterranean fire-prone pine
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forests have their optimum conditions at fire return intervals over 40 years, and only disappear when
intervals are shorter than 5 years [71].

The burn severity obtained through the dNBR spectral index indicated that the large wildfire of
2012 was predominantly severe, with the low severity class confined to valleys, areas close to paths,
and limits of the fire scar as previous studies pointed out [56,72]. P. pinaster forest ecosystems are
frequently subjected to high severity fires, because they are highly flammable and prone to crown
fires [14,25,69]. The relationships between burn severity and post-fire greenness recovery indicated
that this fire regime attribute was a crucial factor over the short (2 years) and medium (5 years) term
after the fire [39,44,73]. In low burn severity areas, greenness recovery was higher, because some
pines (between 0 and 80%) remained alive [33], and additionally, their canopy seed bank guaranteed
seed dispersal over the medium term after fire [69]. The understory shrub community is also less
affected in low severity scenarios, with a general survival rate of up to 80% [36]. Conversely, in severely
burned areas, pine and shrub mortality involves a significant canopy change [33,36]. This results in
considerable changes in vegetation greenness after the fire. However, over that span of time (2–5 years),
the ecosystem has shown a large recovery in both low and high severities, as other researchers have
found [44]. This could be related to the high pine seedling establishment that follows crown fires in
Mediterranean fire-prone forests such as those dominated by P. pinaster [4,69], and to the high resiliency
of the present understory community, which can be completely recovered in 9 years even after severe
disturbances [74].

The combined approach merging fire temporal (fire recurrence and fire return interval) and
magnitude (burn severity) attributes represented a large variety of scenarios, being more representative
than the other analyzed products of the high spatial heterogeneity, which is typical after large
wildfires [11]. Among the identified scenarios, the two burn severity classes were well represented
in the three fire recurrence and fire return interval scenarios. This result suggests that under
the Mediterranean climatic conditions of the study site, even the high recurrence (3 or 4 fires in
40 years) and short fire interval (<15 years) scenarios had fuel loads enough to originate high burn
severity scenarios [2]. Moreover, the combined fire regime attributes were the best predictors of
post-fire greenness recovery, and they differentiate more extreme situations than the single approach
over the short and medium term after the fire, apparently due to the cumulative effect of the fire
temporal and magnitude fire regime attributes. Thus, the fire recurrence-burn severity and fire return
interval-burn severity classification showed the most affected scenarios and the closest scenarios to the
unburned situation.

Our study shows the possibility of carrying out integral assessments of fire regime attributes
(spatial, temporal and magnitude) using remote sensing methods, and indicates a high predictive
capacity of fire regime attributes (temporal, magnitude and combined) for post-fire greenness recovery
after large wildfires in fire-prone pine ecosystems. This information can help managers to predict
the post-fire greenness recovery capacity of fire-prone P. pinaster forests according to their specific
fire regime, and therefore could be used to adopt the appropriate management strategies aimed at
reverting to the pre-fire status in each scenario [5].

In order to generalize our results, we encourage conducting future studies analyzing the
relationship between fire regime attributes and post-fire greenness recovery in other wildfires and in
different regions. Studies in other types of ecosystems are also recommendable, because the resilience
of the communities can vary considerably [75]. We also highlight the importance of differentiating the
structure and composition of the vegetation [23] for a better understanding of greenness recovery after
different fire regime scenarios in fire-prone pine forests in the Mediterranean Basin.

5. Conclusions

The spatial, temporal and magnitude attributes of a fire regime are important driving factors in
the post-fire recovery of Mediterranean pine ecosystems, especially in areas subjected to increasingly
more extensive recurrent fires [14,18,76]. Under the growing complexity of wildfire regimes, our
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findings demonstrated that integrating temporal (fire recurrence and return interval) and magnitude
(burn severity) attributes using remote sensing methods allows for a more realistic identification of the
most favorable scenarios for vegetation greenness recovery after fire, relative to the typical single fire
regime attribute analysis of most research. This novel combined attribute approach evidenced that
high fire recurrence and short fire return interval combinations with any category of burn severity
(low or high) attained the greatest recovery of vegetation greenness over the short term (2 years after
the most recent large (> 500 ha) fire). Whereas the high fire recurrence-low burn severity situation,
and the low severity combinations with any category of fire return interval (short, intermediate or
long) were the most propitious scenarios for greenness recovery over the medium term (5 years after
fire). Moreover, the results of the spatial analysis of the different combined scenarios using remote
sensing methods highlighted the outstanding heterogeneity in the post-fire greenness recovery of
pine ecosystems subjected to an intricate reality of fire regimes with varying attributes over vast
burned areas. This information will be highly valuable to forest managers facing the consequences
of even more acute fire regimes, as it will aid the implementation of effective restoration actions in
extensively burned areas when the main restoration goal is the full recovery of vegetation greenness.
Nonetheless, we encourage future remote sensing studies aimed at a better understanding of the
impact of combined fire regime attributes on post-fire greenness recovery in fire-prone pine ecosystems
that further integrate the spatial variation of pre-fire vegetation [23].
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