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Abstract: The replicator-mutator dynamics is a set of differential equations frequently 
used in biological and socioeconomic contexts to model evolutionary processes subject to 
mutation, error or experimentation. The replicator-mutator dynamics generalizes the 
widely used replicator dynamics, which appears in this framework as the extreme case 
where replication is perfectly precise. This paper studies the influence of strictly dominated 
strategies on the location of the rest points of the replicator-mutator dynamics, at the limit 
where the mutation terms become arbitrarily small. It can be proved that such limit rest 
points for small mutation are Nash equilibria, so strictly dominated strategies do not occur 
at limit stationary points. However, we show through a simple case how strictly dominated 
strategies can have an influence on the location of the limit rest points for small mutation. 
Consequently, the characterization of the limit rest points of the replicator-mutator dynamics 
cannot in general proceed safely by readily eliminating strictly dominated strategies. 
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1. Introduction 

The continuous time selection mutation equation [1], usually called Replicator-Mutator Dynamics 
(RMD) [2], is a set of differential equations frequently used in biological and socioeconomic contexts 
to model evolutionary processes subject to mutation or experimentation. Among other applications, the 
replicator-mutator has been used to study molecular reactions [3], the evolution of viral variants [4], 
the evolution of cooperation [5], the evolution of language [6–8], signaling games [9,10] and, with 
some modifications over the standard version, carcinogenesis and tumor progression [11]. Formally, 
the replicator-mutator dynamics reads: 

nifxfxx i

n

j
jijji ,,1,

1
… =−=∑

=

µ   

Here xi represents the fraction of individuals in a large (infinite) population using pure strategy 
i (i = 1,..., n) and µij is the probability that strategy i generates an offspring using strategy j (therefore, 

1=∑ j ijµ ). The payoff or fitness matrix is A = [aij], where aij ≥ 0 is the payoff that an i-strategist 

obtains in an interaction with a j-strategist. The fitness of strategy i is ∑= j ijji axf  and the average 

fitness is ∑= i ii fxf .  

In the replicator-mutator dynamics, the unit simplex ( ){ } 0 and 1:,, 1 ≥=ℜ∈=Δ ∑ ii i
n

nn xxxx …  is 

forward invariant: if the state vector x = (x1,…,xn) starts in the unit simplex, it remains there; existence 
and uniqueness of trajectories can be proved by the Picard-Lindelöf theorem; and the existence of at 
least one stationary point (in the interior of the simplex if µij > 0) can be proved using Brouwer's fixed 
point theorem. Results for the extension of the replicator-mutator to an infinite number of possibly 
mixed strategies are provided by Bomze and Bürger [12]. 

For the particular case of symmetric payoff matrices (which corresponds to the standard  
population-genetic model of natural selection on a large diploid population) and mutation rates µji = µi 
for i ≠ j (an assumption introduced by Kingman [13] in his “house of cards” model), a global 
Lyapunov function can be found which excludes cyclic behavior and guarantees that all orbits 
converge to the set of fixed points [1,9]. However, this “nice” behavior is not the general case [1,3,14].  

A well-known particular instance of the Replicator-Mutator Dynamics is the widely-used replicator 
dynamics. The Replicator Dynamics (RD) appears in this framework as the extreme case where 
replication is perfectly precise, i.e., where i-strategists can only give birth to i-strategists, leaving no 
room for mutation, error or experimentation. A crucial point in this regard is to note the difference 
between an evolutionary process without mutation (i.e., the RD or, equivalently, the RMD with µij = 0 
for i ≠ j) and an evolutionary process subject to arbitrarily rare mutations, which can be studied using 
the limit of the RMD when µij → 0 for i ≠ j. Any property of the RD that does not hold in the small 
mutation limit of the RMD is a property that vanishes if only arbitrarily small departures from the 
perfect model could happen; thus the importance of studying discrepancies between the RD and the 
RMD with small mutation. Bomze and Bürger [12] show that an important difference between the RD 
and the RMD is that, in general, the effect of introducing mutation in the RD is to dissolve continua of 
neutrally stable equilibria into isolated asymptotically stable ones.  
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In this paper we focus on the influence of strictly dominated strategies on the location of the rest 
points of the RMD in the limit of small mutation. Following Samuelson [15], we will refer to the limit 
of the stationary states of the RMD, as the mutation terms become arbitrarily small, as “limit stationary 
states”. The limit stationary states of the RMD constitute a subset of the stationary points of the RD. For 
the sake of completeness, we start by reviewing the results concerning weakly dominated strategies.  

It is well known that weakly dominated strategies in the RD may remain present forever [16–18]. 
While at any point in the interior of the simplex a weakly dominated strategy obtains a strictly lower 
payoff than some alternative (pure or mixed) strategy, the dynamics may lead the process “quickly” 
towards the boundary of the simplex, where the selection pressure over weakly dominated strategies 
may disappear.  

In the RMD with µij > 0, where a persistent form of mutation, migration or noise guarantees that all 
strategies enjoy a minimum inflow into the system (i.e., the process is pushed away from the 
boundaries of the simplex towards its interior), weakly dominated strategies always earn a strictly 
lower payoff than some other strategy. Thus, one could expect that this permanent selection pressure 
against weakly dominated strategies would keep them at minimal levels (i.e., those strictly induced by 
the mutation), and therefore, that in the small mutation limit (i.e., when those minimal levels tend to 
zero) weakly dominated strategies would be asymptotically wiped out. However, rather surprisingly, it 
has been shown that weakly dominated strategies are not wiped out in the limit of the RMD, or in more 
general perturbed selection dynamics [15,19,20].  

Let us now turn to strictly dominated strategies. In the RD, starting from any interior point, strictly 
dominated strategies are asymptotically wiped out [20,21]. This result has been extended to some more 
general selection dynamics [22], but it has also been shown not to hold for many other common 
dynamics [23]. The disappearance of strictly dominated strategies along interior trajectories in the RD 
suggests the (stronger) conjecture that, in order to calculate the set of points to which these trajectories 
converge, strictly dominated strategies can be safely removed from the analysis. In any case, we show 
in this paper that this conjecture does not hold for the limit stationary points of the RMD.  

For the RMD with µij > 0 and aii > 0 nji …,1, =∀ , (from now on we will assume that these 
conditions hold) it can be proved—by the same arguments put forward by Samuelson [15] 
(Proposition 4.7) or Samuelson and Zhang [20] (Theorem 9)—that the limit stationary states for small 
mutation are Nash equilibria, so strictly dominated strategies are also absent from any limit stationary 
state. However, we show in this paper that strictly dominated strategies, even though they disappear at 
the limit stationary states of the RMD, can completely modify their position, thus changing the set of 
limit stationary points that correspond to trajectories that begin in the interior of the simplex. Strictly 
dominated strategies can dramatically alter the position of even asymptotically stable rest points. As a 
result, when analyzing the asymptotic dynamics of this kind of process for low mutation rates, and 
particularly the set of limit points, one should not readily dispose of strictly dominated strategies.  

A biological implication of this result is that, in an evolutionary system in which the flow of 
mutations between behaviors, species or varieties is small, a very poorly fit and very rarely observed 
behavior in an ecosystem can be the main force explaining, predicting or controlling the observed 
proportions of the other behaviors or species. The impact of the poorly fit behavior can be more 
profound than the mere selection of a particular point within a set of neutrally stable equilibria subject 
to random drift (like in the RD): in the RMD with arbitrarily rare mutations, the poorly fit behavior 
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may modify the location of a unique asymptotically stable point. Below, we use an example to show 
that equilibria that, in the RD, would be subject to random drift within a large range of values, can 
actually be stabilized at a precise particular level which is influenced by the scarce appearance of 
strictly dominated strategies or entrants. 

The dependence of limit stationary states of the RMD on strictly dominated strategies is not as 
disheartening as it may seem: there are some cases where one can safely calculate the limit stationary 
states of the RMD with relation to the stationary states of the RD [15,19]. For instance, if we are 
dealing with a hyperbolic stationary state z of the RD, then the RMD has a rest point close to z which 
moves arbitrarily close to z as the mutation term becomes arbitrarily small, and has the same stability 
properties as z [24]. Bomze and Bürger [12,25], Stadler and Nuno [26] and Stadler and Schuster [3] 
provide further results on the relation between stationary states of the RD and the RMD, and some 
particular cases have been studied in detail [27]. 

2. Results  

We study a replicator-mutator system with three strategies, one of which is strictly dominated, and 
we provide an analytical formula for the limit of its stationary state as the mutation rate goes to zero. 
The limit stationary state is shown to depend on the parameters that correspond to the strictly 
dominated strategy. 

Let µ be the total fraction of mutants or entrants in the population, and let mi be the fraction of 
mutants that adopt strategy i, so that µji = µi for j ≠ i, where µi = µ·mi , with mi > 0 and 1=∑i im . Then 

the persistence rate equals µii = 1 − µ (1 − mi). The replicator-mutator equation for this case can be 
written as: 

[ ] fffxx iiii µµ +−−= )1(  (1)  

Assuming aii > 0, Equation (1) is equivalent (via a change in speed) to  

)()1( ii
i

ii xm
f
ffxx −+

−
−= µµ  (2)  

and, considering that, for xi = 0, the first term in the right-hand side of Equation (2) is null, it is 
straightforward to see that, for µi = µ·mi > 0, any stationary state of this system must be interior and a 
solution to 

)·(
1 iiii mxffx µ

µ
−

−
=  (3)  

Let us now consider the payoff matrix 
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where strategy 3 is strictly dominated by the other two strategies: 

0 ≤ a31 < 1; 0 ≤ a32 < 1; 0 < a33 < min(a13, a23)  
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Let ],,[ *
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*
2

*
1

* xxxx = be a stationary state of the replicator-mutator Equation (3) for matrix A. We 
show in the appendix that 0lim *

30 =→ xµ  and that x* satisfies the equation  
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where )( *
3xΟ is a term that goes to zero as 0*

3 →x , more precisely, 

*
3

*
3

*
3 )(:0, xMxΟxM ≤⇒<>∃ δδ   

Consequently, for small µ, x* must be in a small neighborhood of some point l = [l1, 1 − l1, 0]  
which satisfies 

0])][()(1[)1()()( 1121132313211231331 =−+−−−+−−= mlmmlaaallaamlg   

Note that g(l1) is a quadratic function. Given that 0)1()0( 321 <−−= amg  and 0)1()1( 312 >−= amg , 
there is a unique solution to the equation 0)( 1 =lg  in ]1,0[1∈l , which proves that there is a unique 
limit stationary state l. This solution is given by 
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where 

))(()( 32312123133 aammaama −+−−= , 

)()()1)(( 32311231333221 aamaamammb −+−−−+= , and 

)1( 321 amc −−=  

 

Note also that the limit stationary state does not depend on the payoff a33, and the analysis is locally 
valid dropping the constraint a33 < min(a13, a23), as there would still be an ε > 0 such that f3 < f2 and  
f3 < f1, for x3 < ε.  

Finally, notice that, without mutation, the 3-strategy case we have selected presents a connected 
component of critical points along the edge where the strictly dominated strategy is null (x3 = 0). In 
this neutral component the other two strategies are payoff-equivalent (f1 = f2). Thus, the selection of 
one single limit stationary point within this neutral component is necessarily due to the second-order 
forces induced by mutations [28]. Our results show that, at least in such situations where first-order 
selection forces vanish and second-order forces come into play, regardless of the number of strategies 
involved, strictly dominated strategies may influence the location of the limit stationary states of  
the RMD. 

3. Example 

Consider the case  
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with strategy 3 being strictly dominated: 0 ≤ α < 1, 0 ≤ β < 1, and 0 < γ < max(α, β). A is a symmetric 
matrix, so in this case, and with µji = µi  for j ≠ i, all orbits converge to the set of fixed points [1,9]. The 
fixed points are the solutions to 

)(
1 iiii xffx µ

µ
−

−
=

 
 

For small mutation the limit stationary state l = [l1, 1 − l1, 0] can be calculated according to 
Equation (4). In the particular case m1 = m2 = m3 = 1/3, this leads to  
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Figure 1 represents l1 as a function of α and β. It can be seen how the limit stationary state  
l = [l1, 1 − l1, 0] can vary from one extreme to the other with the parameters α and β that correspond to 
the strictly dominated strategy. Figure 2 shows the limit stationary state in the unit simplex 
corresponding to three different combinations of values of α and β. Figure 2 can be reproduced using 
the Mathematica® computer program provided as supplementary material. This program can be run 
with Wolfram CDF Player, which is freely available on the Web. 

Figure 1. Proportion l1 of strategy 1 in the limit stationary state of the RMD for matrix A 
as a function of the payoffs α and β, with mutation fractions m1 = m2 = m3. 

 
Figure 2. The red circle shows the unique stationary state of the RMD for matrix A, with 
mutation fractions m1 = m2 = m3, and mutation rate µ = 10−4, for three different combinations 
of values of the payoffs [α, β, γ]. (a) [α, β, γ] = [0.99, 0.01, 0.4]; (b) [α, β, γ] = [0.5, 0.5, 0.4]; 
(c) [α, β, γ] = [0.01, 0.99, 0.4]. 
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It might be thought that which particular point is selected out of a continua of RD equilibria, such as 
the line x1 + x2 = 1 in this example, is not very relevant, given that strategy 1 and strategy 2 are 
equivalent in the absence of other strategies. Note, however, that the response of this system to shocks 
or perturbations can be very different depending on the proportions of strategy 1 and strategy 2. 
Suppose, for instance, that the model corresponds to the coexistence of three species in an ecosystem, 
and the system is resting at the stationary point where x1 + x2 ≈ 1. If a small fraction x4 of individuals 
of a fourth species arrives at this ecosystem, and this fourth species rates poorly against species 1, but 
well against species 2 and against itself, needing a minimal value of x2 in order to proliferate (i.e., in 
order to obtain enough fitness), it is clear that both the short-run and the long-run behavior of this 
system in response to the potential invasion can be completely different depending on the initial 
proportions of species 1 and 2.  

4. Conclusions 

The limit stationary points of the RMD constitute a subset of the stationary points of the RD. 
Bomze and Bürger [12] show that the effect of introducing mutation in the RD (in a framework which 
admits mixed strategies) is to dissolve continua of neutrally stable equilibria into isolated 
asymptotically stable ones. This paper provides a formula to calculate a limit stationary point of the 
RMD for a simple kind of game and illustrates that, in general, the location of a limit stationary point 
of the RMD depends not only on the surviving strategies at that point and their mutation rates, but it 
can also depend on the non-surviving strategies, including strictly dominated strategies. It also shows 
as a corollary that, in order to calculate the set of limit stationary points of the RMD, strictly 
dominated strategies cannot be readily eliminated. 
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Appendix 

From Equation (2), and considering that 03 ≤− ff  (with the equality holding only at x3 = 1), we 
have 13

*
3 <≤ mx . This, with the strict dominance relation, implies  

δδ −<>∃ 1:0 *

*
3

f
f  (a1)  

From (3), noting that 0* >if  and, consequently, 0·* >− ii mx µ : 
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Equation (a1) together with Equation (a2) imply 0lim *
30 =→ xµ  

Besides, 
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So, from Equation (a2), 
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From the conditions of stationary state Equation (3) for strategies 2 and 3: 
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And, considering that )(1 *
3

*
1

*
2 xΟxx +−= , we finally obtain 
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)()1()()1( *
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 (a4)  

As a consequence of Equations (a3) and (a4), a stationary state ],,[ *
3

*
2

*
1

* xxxx =  must satisfy  

the equation 
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