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Purpose: The aim of this paper is to show that geometrical criteria for designing
multishell q-space sampling procedures do not necessarily translate into recon-
struction matrices with high figures of merit commonly used in the compressed
sensing theory. In addition, we show that a well-known method for visiting
k-space in radial three-dimensional acquisitions, namely, the Spiral Phyllotaxis,
is a competitive initialization for the optimization of our nonconvex objective
function.
Theory and Methods: We propose the gradient design method WISH (WeIght-
ing SHells) which uses an objective function that accounts for weighted dis-
tances between gradients within M-tuples of consecutive shells, with M ranging
between 1 and the maximum number of shells S. All the M-tuples share the
same weight 𝜔M . The objective function is optimized for a sample of these
weights, using Spiral Phyllotaxis as initialization. State-of-the-art General Elec-
trostatic Energy Minimization (GEEM) and Spherical Codes (SC) were used for
comparison. For the three methods, reconstruction matrices of the attenuation
signal using MAP-MRI were tested using figures of merit borrowed from the
Compressed Sensing theory (namely, Restricted Isometry Property —RIP— and
Coherence); we also tested the gradient design using a geometric criterion based
on Voronoi cells.
Results: For RIP and Coherence, WISH got better results in at least one com-
bination of weights, whilst the criterion based on Voronoi cells showed an
unrelated pattern.
Conclusion: The versatility provided by WISH is supported by better results.
Optimization in the weight parameter space is likely to provide additional
improvements. For a practical design with an intermediate number of gradients,
our results recommend to carry out the methodology here used to determine the
appropriate gradient table.
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1 INTRODUCTION

Within the last decades, the trends in Diffusion MRI
(dMRI) have moved from the Gaussian assumption under-
neath Diffusion Tensor Imaging toward sophisticated bio-
logical models or sparse signal representations. The field
has evolved in parallel with the widespread adoption of
advanced acquisition protocols for Diffusion Weighted
Images, comprising several tens to hundreds of gradient
diffusion directions with variable strengths (the so-called
b-value, measured in [s∕mm2]) so that the “q-space” is
covered. Actually, as maximum reachable b-values have
increased, non-Gaussian diffusion patterns have been evi-
denced and hence the need of more involved models has
arisen. Although several arrangements are possible (Carte-
sian, randomized, etc.), multishell samplings have become
the de facto standard: with this approach, the samples are
distributed among a pre-defined set of so-called shells, that
is, spheres with a fixed b-value. At each shell, a predefined
number of gradient directions are evenly spaced covering
(half the) orientations space.

To completely describe the sampling, however, it is
necessary to determine how different shells are inter-
leaved, that is, whether the samples in one shell should
fill the gaps between those in other shells or they should
replicate the same locations, see Figure 1. Several popular
approaches advocate for the former: both the General Elec-
trostatic Energy Minimization (GEEM)1 and the Spherical
Codes (SC)2 pursue schemes where not only the directions
at each shell, but also the whole set of gradients when they
are collapsed in a single sphere, remain evenly spaced. This
design, sketched in Figure 1A, is optimal under the point
of view of orientations space coverage, and it is typically
sought by optimizing a cost function that accounts for both
the within-shell and the “collapsed” gradient distances.

However, it is not clear if a geometrically optimal sam-
pling will be equally optimal with regard to the numerical
behavior of reconstruction problems within dMRI. For
example, the interleaving model sketched in Figure 1B
might be a reasonable choice, but it is banned by construc-
tion with the aforementioned approaches.1,2

Here, we propose a more flexible design by systemat-
ically defining weighted cost functions for each possible
combination of M consecutive shells. This way, we can
pursue the design in Figure 1A by penalizing the one-
fold and the threefold combinations of shells; or we can
pursue Figure 1B by penalizing onefold and twofold com-
binations; or we can pursue any intermediate solution
by properly weighting all one-, two-, and threefold com-
binations. In order to test the potential benefit of this
approach, we define performance figures not grounded on
geometrical considerations, but instead on the properties
of resulting reconstruction matrices. They serve to draw

counterexamples demonstrating that raw geometrical con-
straints might be suboptimal for the design of multishell
sampling schemes.

Finally, we notice that the definition of a rather com-
plex cost function to optimize turns the problem heavily
nonconvex. To cope with convergence issues, we pro-
pose the use of Spiral Phyllotaxis3 as a suitable and effi-
cient initialization for Newton–Raphson’s iterations. Up
to our knowledge, this is also a novel contribution of our
work. In practical terms, our methodology lets us find an
appropriate weighting for the one-, two-, and threefold
combinations referred to above that optimizes a figure of
merit related to the quality of the reconstruction matrix.
This search is facilitated by the initialization just men-
tioned, as opposed to a random initialization since, on
average, the former overcomes the latter. This will also be
quantified.

2 THEORY

2.1 State-of-the-art q-space methods

We have categorized q-space sampling scheme methods in
three stages:

a. First attempts were characterized by the use of regular
polyhedra and Archimedes’ solidus vertices to locate
gradients, taking advantage of their natural distribu-
tion.4 This method was refined by interlacing of poly-
hedra on different layers for multishell approaches.5

b. An alternative approached stemmed from considering
gradients as electrons, and optimizing their distribu-
tion by EEM.6 One of these methods was selected for
the Human Connectome Project (HCP).7 This method,
referred to as General EEM (GEEM),1 pursues to min-
imize this energy by defining a two-term cost function

V = 𝛼V1 + (1 − 𝛼)V2, (1)

where V1 models the energy of the gradient distribu-
tion over one shell and V2 the energy of the interaction
between every two shells. Specifically:

V1 =
1
S

S∑

s=1

1
K2

s

∑

i<𝑗
v(us,i,us,𝑗), (1a)

V2 =
1

K2

∑

s,t
s≠t

Ks∑

i=1

Kt∑

𝑗=1
v(us,i,ut,𝑗), (1b)

with S the number of shells, K the number of gra-
dients, Ki, with i ∈ {s, t} the number of gradients in
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RODRÍGUEZ-GALVÁN et al. 3

F I G U R E 1 A two-dimensional sketch of two possible designs for 3 shells (solid-line circumferences) with two gradient directions each
(filled forms). The symmetric antipodes are also represented (empty forms). The outermost, dashed circumference represents the overall
distribution of sampled directions with all shells collapsed. In both cases, the samples at each shell are expected to be evenly spaced,
however: (A) the three shells are linked altogether in the cost function pursuing an overall even distribution in the collapsed shell; (B) only
twofold subsets are linked together, so that consecutive shells are better interleaved at the expense of a worse overall distribution.

shell i, K =
∑S

i=1Ki, and ut,𝑗 the jth gradient in shell
t. Throughout this note, gradients are considered as
directions, that is, their moduli equal 1, regardless of
the shell they belong to. Function v(u, v) defined the
electrostatic repulsion force

v(u, v) = 1
||u − v||2 +

1
||u+ v||2 . (2)

Notice that in Equation (1a) shells are inversely
weighted by K2

s so that no shell is privileged.
c. A more recent alternative uses SC to locate gradients

in multishell problems. It is based on the concept of
covering radius, which applies both to one and to all
the samples in the same shell, and are respectively
defined as:

di({ul}K
l=1) = min

𝑗≠i, ∀𝑗
arccos |uT

i u𝑗|, (3a)

d({ul}K
l=1) = min

i
di({ul}K

l=1) = min
𝑗≠i, ∀i, ∀𝑗

arccos |uT
i u𝑗|,

(3b)

with {ui ∈ S2}K
i=1 and S2 stands for a continuous

sphere of some radius. For the monoshell problem, the

function to optimize is Equation (3b). For the multi-
shell case, the target function is

max
{us,i∈D}

𝜔S−1
S∑

s=1
d
(
{us,i}

Ks
i=1

)

+ (1 − 𝜔)d({us,i}i=1,… ,Ks;s=1,… ,S), (4)

with D ⊆ S2 the solution domain. In our case of inter-
est —referred to in Reference 2 as the continuous
problem— D = S2. Notice that Equation (4) contains
interactions (i.e., the covering radius) of gradients
within the same shell as well as interaction between
pairs of gradients from every two shells.

As previously described in (b) and (c), both meth-
ods have weighting parameters 𝛼 and 𝜔, respectively,
in Equations (1) and (4), which are hardwired to the
value 0.5.

2.2 Reconstruction matrix

A central problem to dMRI is that of fitting the diffu-
sion profile E(q) as the superposition of a set of N basis
functions up from K measurements within the q-space.
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4 RODRÍGUEZ-GALVÁN et al.

This can be cast into a linear problem:

E ≃ A c ⇒ c∗ = arg min
c

‖E −A c‖2 + 𝜆 P(c), (5)

where the K × 1 vector E stacks the q-space measure-
ments: [E]k = E(qk) = E(qkuk), k = 1, … ,K; qk is related
to the kth b-value through the effective diffusion time 𝜏 as
bk = 4𝜋2

𝜏q2
k; the rightmost addend, weighted by the pos-

itive constant 𝜆, is a penalty defined by a function P(⋅)
that prevents irregular solutions; A is the K × N recon-
struction matrix, so that [A]k,n = Φn(qk) for some func-
tional basis {Φn(⋅)}N

n=1 and c is the coefficient vector that
locally adapts the signal model to the observed diffusion
pattern. Owing to its widespread use by the dMRI commu-
nity, we will consider here the Mean Apparent Propagator
approach.8 In brief: let D be the diffusion tensor com-
puted at each voxel, and let B′ = 2𝜏D = R B RT be the
eigen-decomposition of B′, with R orthonormal so that
[qx, qy, qz] = RTq rotates the q-vector to the anatomical
frame, and B = diag([𝛽x, 𝛽y, 𝛽z]). Then:

Φn1,n2,n3(q;D) = 𝜙n1(𝛽x, qx) ⋅ 𝜙n2(𝛽y, qy) ⋅ 𝜙n3(𝛽z, qz);

with 𝜙n(𝛽, q) =
i−n

√
2nn!

e−2𝜋2q2
𝛽

2 Hn(2𝜋𝛽q), (6)

where Hn(⋅) stands for the nth Hermite polynomial. The
three indices {n1,n2,n3} fulfill n1 + n2 + n3 = L for each L
from 0 to a predefined maximum order Lmax, so that N =
(Lmax + 1)(Lmax + 2)∕2.

2.3 Figures of merit

The method described in Section 2.2 provides reconstruc-
tion matrices, the quality of which in terms of reconstruc-
tion capabilities can be measured by borrowing figures
from the Compressive (or Compressed) Sensing theory,9
specifically, Coherence and Restricted Isometry Property
(see Reference 10 for a high-level description of these
metrics and section 1.3 of Reference 9 for a deeper and
math-oriented insight).

We depart from matrix A ∈ Cm×L. Let P denote the set
of indices P = {1, … ,L} and let Q ⊂ P. In addition, we
define ‖x‖p , x ∈ Cm =

(∑m
i=1|xi|p

) 1
p . This operation will

be referred to as p-norm of vector x, or 𝓁p for short. For
matrices, ‖A‖2→2 = 𝜎max (A), with 𝜎max (A) the maximum
singular value of matrix A. In addition, let AQ denote the
submatrix of A with columns indexed by Q.

2.3.1 Coherence

Let matrix A have 𝓁2 normalized columns, that is, ‖ai‖2 =
1, 1 ≤ i ≤ L. Then the 𝓁1 coherence function 𝜇1(s) of this

matrix is defined as

𝜇1(s) ∶=

max
i∈P

max

{
∑

𝑗∈Q
|aT

i a𝑗|,Q ∈ P,Card(Q) = s, i ∉ Q

}
. (7)

This function generalizes the coherence of matrix A,
defined as 𝜇 = max

1≤i≠𝑗≤N
|||a

T
i a𝑗

|||, since 𝜇 = 𝜇1(s = 1). Gener-
ally speaking, the lower the coherence, the better behaved
the reconstruction problem.

2.3.2 Restricted isometry property

The sth restricted isometry constant 𝛿(s) is defined as

𝛿(s) ∶= max
Q⊂P,Card(Q)≤s

‖‖‖AH
Q AQ − I‖‖‖2→2

, (8)

with 1 ≤ s ≤ L − 1. In this case, no 𝓁2 normalized columns
are mandatory. Once again, the smaller the Restricted
Isometry Property (RIP), the better behaved the recon-
struction problem.

2.3.3 Voronoi cells

The Voronoi cell11 of a site is defined as the polygo-
nal region which encloses the nearest points to that site.
Regions boundaries are made by equidistant points of the
closest sites. The related figure of merit to this measure-
ment is the distribution of the areas of each region. In
geometrical terms, better gradient distribution would be
those that give rise to Voronoi cells with large areas as well
as small variability in their values. Notice that this third
measure does not make use of reconstruction matrix A and
it is a purely geometric measure.

3 METHODS

3.1 Cost function

Let G = {gi}K
i=1 be an arbitrary set of K gradient directions.

We first define the average distance associated to G as:

Q(G) =
K∑

i=1

K∑

𝑗=i+1

1
sin(∠ui,u𝑗)

,

for: sin(∠ui,u𝑗) =
√

1 − (uT
i u𝑗)2, (9)

so that the smaller Q(G) the more evenly spaced the gradi-
ents in G become. This function uses, in essence, the same
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RODRÍGUEZ-GALVÁN et al. 5

trigonometric information as SC uses, and allows us to deal
with antipodal gradients by means of a single expression,
while GEEM requires the two terms in Equation (2). Next,
let {Gs}S

s=1 be the S shells to design, with numbers of gra-
dients Card(Gs) = Ks each. After Figure 1, we pursue even
distributions of M-fold combinations of consecutive shells,
with M = 1, 2, … , S. Hence, for each M, we define:

M
m=

m+M−1⋃

s=m
Gs, for: m = 1, … , S −M + 1. (10)

In Figure 1A, only M = 1 (each shell individually) and
M = 3 (all shells together) are used. On the contrary, in
Figure 1B M = 1 and M = 2 are used, that is, individual
shells plus the two interactions between shells 1 and 2
and 2 and 3. This way, we can explicitly drop down the
interaction between shells 1 and 3 to attain a different
interleaving. This rationale can be generalized by setting
up a cost function where each M-fold combination can be
weighted at will:

 =
S∑

M=1
𝜔M

S−M+1∑

m=1

1
𝜌

(
KM

m
)Q

(
M

m
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

qM

=
S∑

M=1
𝜔M qM , (11)

where KM
m = Card(M

m ) and 𝜌(K) = Q
(

Gopt,K
)

for a set
Gopt,K of K gradients optimized in isolation, that is,
𝜌

(
KM

m
)

is the minimum attainable value of Q
(
M

m
)
. The

weights {𝜔M}S
M=1 are the design parameters that endow

our method with an improved flexibility.

3.2 Initialization

Initialization to optimize Equation (11) is made by the Spi-
ral Phyllotaxis:3 let 1 ≤ ks ≤ Ks index the gradients within
the sth shell; let 1 ≤ k ≤ K, K =

∑S
s=1Ks, index the whole

set of gradients obtained by placing all S shells in a row; let
𝜓[s, ks] =

∑s−1
t=1Kt + ks be the function that maps the ksth

gradient of the sth shell to its global index k. Then:

𝜑k = k ⋅ 𝜑gold, with: 𝜑gold = 𝜋(3 −
√

5); (12)

𝜃k ≡ 𝜃𝜓[s,ks] = 𝛼ks , with: 𝛼ks =
𝜋

2
⋅

√
ks

Ks
, (13)

are the elevation and azimuth of the kth gradient direction.
Our method, based on the minimization of Equation (11)
with regular Newton–Raphson’s iterations from the pre-
vious initialization, will be hereafter referred to as WISH
(WeIghting SHells).

3.3 Experimentation

The first experiment is intended to check the consistency
of the cost function postulated in Section 3.1. The bench-
mark will be the design of three shells with 90 gradient
directions each. The three (unweighted) addends {qM}3

M=1
of the outermost sum in Equation (11) are then evalu-
ated after (G) has been optimized, and this procedure is
repeated for all possible combinations of the three weights
{𝜔M}3

M=1. Note that multiplying these weights by a con-
stant will just lead to a scaled version of the cost function,
so that without any loss of generality we can probe only
those combinations fulfilling 𝜔1 + 𝜔2 + 𝜔3 = 1. Accord-
ingly, for each probed value of 𝜔1, we will sweep 𝜔2 ∈
[0, 1 − 𝜔1] and fix 𝜔3 = 1 − 𝜔1 − 𝜔2.

The second experiment is a comparison of the three
optimization schemes (namely, GEEM, SC, and WISH).
We have tested the four combinations of coefficients
wM , 1 ≤ M ≤ 3, indicated in Figure 3(i). Then for each
combination and optimization procedure we have calcu-
lated both Coherence and RIP—following Equations (7)
and (8)— for three values of parameter s, namely s =
{1, 2, 3}, of the MAP reconstruction matrices that result
from each method. In order to test the benefits of the initial
solution proposed in Section 3.2, the optimization of func-
tion in Equation (11) has also been initialized with 500 ran-
dom realizations of the gradients, uniformly distributed in
the three spheres. Finally, for this second experiment, we
also calculate the distribution of Voronoi cell areas, to gain
insight into a geometrical interpretation.

The third experiment is intended to test the impact
of the multishell designs in actual reconstruction prob-
lems. To this end, we have borrowed the methodology
in Reference 12; specifically, departing from a statistical
characterization of the biological properties of relevant
structures within the white matter, the NODDI approach13

is used to generate random models of one-, two-, or
three-crossing fibers that mimic a wide variety of white
matter voxels. These models are used to simulate the
signal acquired with either multi-shell scheme designed
(at a peak signal-to-noise ratio [SNR] of 16 or 32) and
as ground-truth that the MAPL-reconstructed (Laplacian
regularized MAP-MRI) signals are compared to through
the relative mean squared error.

4 RESULTS

Figure 2 shows the results of the first experiment; in the
five plots, we show the value of the terms {qM}3

M=1, respec-
tively, in colors red, green, and blue. The variable in the
horizontal axis is 𝜔2 and plots (a) through (e) are parame-
terized by 𝜔1, for values {0, 1∕3, 1∕4, 1∕3, 1∕2}.
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6 RODRÍGUEZ-GALVÁN et al.

(A) (B)

(C) (D)

(E)

onefold
twofold
threefold

onefold
twofold
threefold

onefold
twofold
threefold

onefold
twofold
threefold

onefold
twofold
threefold

F I G U R E 2 Experiment 1: Values of qM in Equation (11) as a function of 𝜔2 parameterized by 𝜔1: q1 red, q2 green, q3 blue

Figure 3(ii) shows the result of the second experi-
ment; in this case, plots labeled with (a) and (b) repre-
sent Coherence and those with (c) and (d) RIP for either
3 × 30 gradients (leftmost figures) and 3 × 90 (rightmost).

Combination stands for each row in Table 3(i).For each
combination, the values actually represented are the differ-
ence between the result of the methods used for compar-
ison (SC, GEEM and random initializations) and WISH;
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RODRÍGUEZ-GALVÁN et al. 7

(i)

(ii)

(A) (B)

(C) (D)

F I G U R E 3 (i) Table of selected combinations for Experiments 2 and 3. (ii) Experiment 2: Difference of Coherence and Restricted
Isometry Property of the reconstruction matrices from Spherical Codes (SC), General Electrostatic Energy Minimization (GEEM) and
random initialization with respect to WeIghting SHells (WISH). SC and GEEM are represented by filled circles with colors blue and green
respectively. Results from random initializations are shown as boxplots. Level zero has been highlighted for easier reference (positive values
favor our method). (a) Coherence for 3 × 30; (b) Coherence for 9 × 30; (c) Restricted Isometry Property for 3 × 30; (d) RIP for 9 × 30.

for to SC and GEEM we have used filled circles with col-
ors green and blue, respectively, while for the random
initializations we have used boxplots. The variable in the
horizontal axis is parameter s. Positive values support our
method.

As for Figure 3, we represent the distribution of
Voronoi cells areas along the three shells after optimiza-
tion of gradient directions according to methods WISH,
GEEM, and SC. For WISH, the four combinations of
parameters in Table 3(i) have been tested, labeled in the
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8 RODRÍGUEZ-GALVÁN et al.

(A)

(B)

F I G U R E 4 Experiment 2: boxplots of the area of Voronoi cells for the four combinations of parameters in Figure 3 (i) and the methods
WeIghting SHells, general electrostatic energy minimization, and spherical codes. (A) Experiment 3 × 30; (B) Experiment 3 × 90
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(A) (B)

(C) (D)

F I G U R E 5 Difference of relative mean squared errors on the reconstruction of synthetic data for best restricted isometry property
WeIghting SHells (WISH) combination. (A) Between general electrostatic energy minimization (GEEM) and WISH peak signal-to-noise ratio
(SNR) 16, (B) between GEEM and WISH peak SNR 32, (C) between spherical codes (SC) and WISH peak SNR 16, (D) between SC and WISH
peak SNR 32

figure as Combination 1 through 4. Results are shown for
both the experiment 3 × 30 and experiment 3 × 90.

The third experiment is shown in Figure 5, where we
depict the relative mean squared error improvement of
our method with respect to both GEEM (top) or SC (bot-
tom) for peak SNR 16 (left) or 32 (right). We have designed
three shells in all cases with a varying number of gradients
per shell; as can be seen, our method slightly outperforms
the others in many situations and, when improvement is
not observed, its performance is virtually identical. As it
could be expected, all methods tend to converge when the
number of gradients per shell is sufficiently large (90).

5 DISCUSSION AND
CONCLUSIONS

Figure 2 shows that parameters wM do play a role since
the terms qM defined in Equation (11) reveal a dependence

with these parameters. Specifically, the green line in the
plots shows a decreasing trend with parameter w2, while
the blue line shows a complementary trend. As for the red
line, subfigure (2) shows an erratic behavior for 𝜔1 = 0,
since q1 is irrelevant for this value, but the decreasing trend
is appraised as w1 increases. Interestingly, this trend is not
observed when nonconsecutive shells are allowed to inter-
act in Equation (11) for M = 2, since in this case the role
of q2 is essentially taken over by q3.

The role played by the parameters is highlighted in
Figure 3(ii), where we appraise that for 3 × 30 (leftmost
subfigures) we can find a parameter setting (say, Combina-
tions 1 or 3) where WISH shows better figures than both
GEEM and SC, and the medians of the boxplots of random
initializations show a positive bias. Actually, if Gaussianity
is accepted for the distributions of random initializations,
the probability of requiring at least five random initializa-
tions to obtain a better figure than WISH is about 0.40
for s = 2 and Combination 3, for both Coherence and RIP.
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Similar comments apply for the 3 × 90 case, although dif-
ferent parameters combinations in this case are needed for
Coherence (Combination 3) and RIP (Combination 2); as
for random initializations, the same probability as before
is now 0.22 for the former and s = 3 whereas it reaches
0.79 for the latter and s = 3. These results, however, do not
have a clear geometric counterpart, as shown in Figure 4,
since combinations 1 and 3 for the experiment 3 × 30 do
not seem to favor WISH with respect to GEEM and SC,
either in terms of higher median or lower variance (sub-
figure (A)). This seems to be also the case for the 3 × 90
case (subfigure (B)) in which albeit combination 2 seems
favorable to our method, combination 3 does not. Hence
geometric criteria may not be the only ones to consider
for the design of diffusion sampling schemes as our coun-
terexample reveals. Concerning Figure 5, and as it might
be expected beforehand—due to the subtle improvement
of SC over GEEM reported in Reference 2—differences
are not dramatic, but we attain a consistent improvement
for the mid-range of gradient directions per shell: for 45
and 60 gradient directions, the notches in the box plots
indicate that our method’s median values outperform the
other methods within a confidence interval (except for
GEEM with the—otherwise very high—peak SNR value
of 32).

Hence, these results support that M-fold combinations
of consecutive shells, M = 1, 2 … , S, provide degrees of
flexibility to optimize the figure of merit of choice, and
optimizing these figures is not necessarily accompanied by
an obvious geometric signature. In addition, this method-
ology carries over to other methods not based on the linear
model in Equation (5) as long as a proper figure of merit is
defined and optimized in the weighting parameter space.
Consequently, and as further research, rather than sam-
pling a small set of values in the {𝜔1, 𝜔2, 𝜔3} space, as
carried out in the paper, these parameters could be tar-
get variables of an outer optimization loop to maximize
the reconstruction matrix quality for the linear case, or
some figure of merit—to be designed—for a more general
case.
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