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Abstract: In the wind industry (WI), a robust and effective maintenance system is essential. To minimize
the maintenance cost, a large number of methodologies and mathematical models for predictive
maintenance have been developed. Fault detection and diagnosis are carried out by processing and
analyzing various types of signals, with the vibration signal predominating. In addition, most of the
published proposals for wind turbine (WT) fault detection and diagnosis have used simulations and
test benches. Based on previous work, this research report focuses on fault diagnosis, in this case using
the electrical signal from an operating WT electric generator and applying various signal analysis
and processing techniques to compare the effectiveness of each. The WT used for this research is
20 years old and works with a squirrel-cage induction generator (SCIG) which, according to the wind
farm control systems, was fault-free. As a result, it has been possible to verify the feasibility of using
the current signal to detect and diagnose faults through spectral analysis (SA) using a fast Fourier
transform (FFT), periodogram, spectrogram, and scalogram.

Keywords: wind turbine; electric generator; spectral analysis; fault diagnosis

1. Introduction

Regardless of the maintenance strategies and models applied in the wind industry (WI) to detect and
diagnose faults, the use of signals, such as vibration, acoustic, temperature, magnetism, and electrical
signals, is an indispensable requirement. Each of these types of signal have their advantages and
disadvantages. However, because all moving equipment produces some type of vibration, in the WI,
the use of vibration signals predominates [1–3]. Even though the current signal does not use intrusive
methods, the equipment used is inexpensive, easy to install, and also, according to reference [4,5],
both the vibration and current signal can be used to detect failures of the electric generator and loads
coupled to its axis. However, according to published reports, in the WI, current signals have rarely
been used, and the existing research is based predominantly on laboratory studies.

The processing of the signals used for the detection and diagnosis of faults is carried out using
a variety of models in the time, frequency, and time–frequency domains. All signal processing techniques
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have their own advantages and disadvantages, and the same applies to the domain in which the
analysis is carried out [1–4]. Furthermore, the lack of ideal conditions to apply a specific technique
directly prompts us to develop mathematical models that allow the detection and diagnosis of a specific
type of fault that occurs in a particular component and in certain specific conditions of operation [6–8].
The combination of all these factors has given rise to a huge number of proposed methods, some of
which are analyzed in more detail in the following sections.

Based on the foregoing, the purpose of this research is the detection and diagnosis of electrical
generator faults by means of the current signal of real wind turbines (WTs) in operation and the
application of various techniques for processing and analyzing existing signals to:

• Analyze the models used to detect the frequency components associated with faults.
• Obtain the spectrum of the current signal of an operating turbine.
• Study the effectiveness of signal processing techniques in detecting WT failures.
• Check the effectiveness of the WT control system to determine the status of the generator.
• Compare the results obtained with those of previously published studies.

Due to the variety of stresses to which the rotary induction machine is subjected, there are a variety
of failures that can occur in the stator, rotor, and bearings, as described in reference [9]. The objective
of this research is not to focus on a specific fault, but rather, applying the different signal processing
techniques, try to detect and diagnose the faults that will be described in sections two and three. As one
of the main objectives of this research is to use data from WTs in operation, and the only wind farm
(WF) available to make the measurements was integrated by WTs that use SCIG, then the study will
focus on this type of electric generator. The remainder of this original research is organized as follows.
Section 2 analyzes the mathematical models used to determine the frequency components associated
with faults in the SCIG using current signal analysis. In Section 3, the fundamentals and application
of various signal analysis techniques are discussed, emphasizing the published techniques for fault
detection in WTs using the SCIG current signal. Section 4 details the methodology and materials
used for the experimental part of this research. Section 5 includes the results obtained by applying
the techniques described in Section 3. Finally, the conclusions and recommendations are included in
Section 6.

2. Modeling Electrical Generator Faults Using the Current Signal

Due to its design, durability, and low cost, the use of the squirrel-cage induction machine
predominates at the industrial, commercial, and domestic levels [10,11]. Although there are several
types of generators, according to reference [12], in the WI, the doubly fed induction generator (DFIG),
and the squirrel-cage induction generator (SCIG) predominate.

The voltage signals, current, magnetic field, magnetomotive force (MMF), torque, and power of
an induction machine are characterized by its sinusoidal behavior [13]. Since the speed of the rotor
depends on the coefficients of the associated differential equations, which vary with time, the behavior
of the materials used in the construction of the motor is not constant over time but depends on the
position of the rotor. Under these conditions, it is hard to analyze signals in a spatial system, which is
why in-plane analysis is preferred. For this purpose, using the Clarke and Park transforms, a change of
variables is made. With the first transformation, we go from a 3D system (abc) to a 2D plane (alpha-beta)
that varies with the stator, while with the second one, we obtain a plane dq0 equivalent to a 2D plane
that rotates at the same rotor speed but is offset by an angle θ. Since the three-phase induction machine
generally does not use a neutral line, the main current does not have a homopolar component, and the
three phases can be represented in the dq plane. In this plane, the stator remains fixed (direct axis d) in
relation to a rotor plane (quadrature axis q) that rotates at speedωx [13–15].
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The transformation between the abc space system and the dq0 plane, when the latter is oriented at
an angle θ with reference to the axis that remains fixed, can be performed directly using Equations (1)
and (2). When θ is zero, these Equations become (3) and (4), respectively [15–18].

iqs

ids
i0s

 = 2
3


cosθ cos(θ− 2π

3 ) cos(θ+ 2π
3 )

sinθ sin(θ− 2π
3 ) sin(θ+ 2π

3 )

0.5 0.5 0.5




ia
ib
ic

 (1)


ia
ib
ic

 =


cosθ sinθ 1
cos(θ− 2π

3 ) sin(θ− 2π
3 ) 1

cos(θ+ 2π
3 ) sin(θ+ 2π

3 ) 1




iqs

ids
i0s

 (2)

[
iqs

ids

]
=

2
3

 1 −
1
2 −

1
2

0
√

3
2 −

√
3

2




ia
ib
ic

 (3)


ia
ib
ic

 =


1 0

−
1
2 −

√
3

2

−
1
2

√
3

2


[

iqs

ids

]
(4)

According to reference [16], the phase current of the DFIG can be expressed as a function of the
flow and torque vectors (the torque angle is 90◦ over the flow), Equations (5) and (6), respectively,
which can be represented in the dq plane, according to Equation (2). Since the variables of Equations (5)
and (6) rotate at speed 2πfs, they cannot be measured directly, so it is necessary to apply the inverse Park
transform to obtain the phase currents according to Equations (7) to (9). As described previously [19],
the different stresses that cause a torque on the rotor include coupled loads; unbalanced dynamic forces;
torsional vibration; transient torques; magnetic forces caused by leakage flux over the slots, making
them vibrate at twice the frequency of the rotor; air gap eccentricity; centrifugal forces; thermal stresses
caused by heat in the short-circuit ring and heat in the bars during starting (skin effect); residual forces
due to casting; machining and welding. Under normal operating conditions, the spectrum of the
signal has defined components. However, the asymmetries of the generator and the loads coupled
to it (gearbox, blades) transmit torsional vibrations that act on the rotor, causing variations in the
speed, torque, air gap magnetic flux and current bars. In this way, both mechanical and electrical
faults manifest as lateral components of the fundamental wave. The number of harmonics and their
amplitude depend on the magnitude of the fault [20,21].

isM = isM0 +
∑

AsMisin(2π fvt + ϕMi) (5)

isT = isT0 +
∑

AsTicos(2π fvt + ϕTi) (6)

ia(t) = i0 sin (2π fst + ϕ0)

+ 1
2 {AsMi cos[2π( fs − fv)t−ϕM]

+AsTi cos[2π( fs − fv)t−ϕT]}

−
1
2 {AsMi cos[2π( fs + fv)t + ϕM]

−AsTi cos[2π( fs + fv)t + ϕT]}

(7)

i0 =
√

i2sM0 + i2sT0 (8)

ϕ0 = tg−1 isT0

isM0
(9)

As described in reference [22], in a fault-free machine, the rotor and stator currents should be
balanced. However, due to small differences in the winding geometry and the nonlinearity of the
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materials, an asymmetry arises that causes axial flow dispersion. Under these conditions, the distribution
of the harmonics in the air gap undergo alterations that can be easily detected, so that we can detect
broken rotor bars, one-phase failure, dynamic eccentricity, a negative sequence phase, and short circuits
in the rotor and stator windings. According to the same author, in a three-phase machine, with a full
pole-pass and fed by a balanced frequencyωs, the spatial distribution of the harmonics of the MMF
about the stator and as a function of the air gap flux is given by Equation (10). To apply these Equations
to the rotor, θ is given by (11) or (12). Substituting these Equations in the general term of (10) and
expanding it to obtain the first terms, we obtain Equation (13), which provides the components of
the frequency spectrum of the current induced in the rotor by the harmonics of the air gap. That is,
the stator current spectrum (CS) includes the components of the supply current and those of the rotor.
The presence of short circuits between turns produces an MMF with its own frequency spectrum that
is superimposed on the main one to give rise to a new spectrum that is expressed by (14) and whose
main term is (15).

Φs = Φ1 cos (ωt− pθs) + Φ5 cos (ωt + 5pθs)

−Φ7 cos (ωt− 7pθs) + Φ11 cos (ωt + 11pθs) . . . . . .Φn cos (ωt + npθs)
(10)

θ = θr + θsr = θ_r +ωrt (11)

ωr = ω(1− s)/p (12)

Φs = Φ1 cos (sωt− pθr) + Φ5 cos ((6− 5s)ωt + 5pθr)

−Φ7 cos ((7s− 6)ωt− 7pθs) + Φ11 cos ((12− 11s)ωt + 11pθs) . . . . . .
(13)

Φs = 0.5
∑∑

Φn cos
[
(k1 ± k2(

(1− s)
p

)) ± k2θr

]
(14)

f =
[
(k1 ± k2(

(1− s)
p

)) ± k2θr

]
(15)

As described in reference [14], the faulty and healthy squirrel-cage induction motor current is
given by (16) and (17), respectively. According to reference [23], when there is a short circuit or static
eccentricity in the stator, a negative sequence component appears, the amplitude of which depends on
the percentage of shorted turns. As described in reference [24,25], the components due to stator failures
( fs f ) are given by Equation (18), while according to reference [26], in the case of a healthy motor, the main
components are the first and fifth harmonics. In the case of an unbalanced voltage, regardless of slip,
this fault shows itself mainly in the first and third harmonics. According to reference [27], short circuits
cause the components given by Equation (19). As described in reference [28], in a symmetrical stator,
the CS contains the harmonics given by Equations (20) and (21), for which the harmonics determined
by Equations (22) through (24) should be added, in case of asymmetry. As described in reference [29],
another simple alternative for the early detection of stator faults depends on the magnitude of the
negative sequence of the current, which allows us to obtain the negative impedance to be compared
with the average winding impedance.

ia(t) = iA(t) = ia(t)
[
1 + km cos(ω f t) (16)

iA(t) = I cos
(
ωst−ϕ−

π
6

)
+

kmIL
√

2
{cos

[
(ωs +ω f )t−ϕ−

π
6
]+ cos

[
(ωs −ω f )t−ϕ−

π
6

]
} (17)

fs f =

[
2k0(

1− s
p

) ± k1

]
fs (18)

f = fs

[
2k
p
(1− s) ± k1

]
(19)
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fs1 = fs

∣∣∣∣∣(1− k3) −
2k4Qr

p
(1− s)

∣∣∣∣∣ (20)

fs2 = fs

∣∣∣∣∣(1− k3) + (−
2k4Qr

p
+ 2 + 6k0)(1− s)

∣∣∣∣∣ (21)

fs3 = fs1 − (n1 + 1)s fs
∣∣∣
n1=1 = fs1 − 2s fs (22)

fs4 = fs2 − (n1 + 1)s fs
∣∣∣
n1=1 = fs2 − 2s fs (23)

fs5 = fs (24)

As described in reference [30], rotor faults generate components below the supply frequency in the
stator spectrum, according to Equation (25), where the first term does not contribute to increasing the
supply current because it induces an MMF of zero sequence. However, the second term induces a set
of three-phase currents at the supply frequency and contains a component displaced by twice the slip
frequency, 2sf s. The fault causes a 2spωmr variation in rotor speed, causing a displacement of the lower
component (1 − 2s) f s and the appearance of an upper component at (1 + 2s) f s modulated by the third
harmonic of the stator flux. Other components that may appear are given by Equation (26). Because of
the static, dynamic, or mixed eccentricity, the air gap is not uniform, and the forces applied to the shaft
become unbalanced, causing friction between the stator and rotor. According to references [26,31,32],
the eccentricity causes the appearance of harmonics whose sequence is given by (27). If the eccentricity
is static, nd is zero, while if it is dynamic, it is 1, 2, 3, . . . However, according to reference [33], a difference
between static and dynamic eccentricity does not always exist for all motor configurations, in addition
to the fact that there are components that are not easily detectable.

fs =
NrI2

2
{cos[(3− 2s)ωst− 3pθ1]− cos[(1− 2s)ωst− pθs ] } (25)

fs = (1± 2k0s)ωs (26)

fecc =

[
2(k0Qr + nd)

(
1− s

p

)
± v

]
fs (27)

As described in reference [34], mechanical faults can be classified as those that cause air gap
eccentricity, load torque oscillations, or a combination of both. The first effect is due to unbalanced
loads, shaft misalignment, and gearbox and bearing failures. The second effect is due to wear or
failure of the bearings and to rotor imbalance caused by poor assembly, for example. The load torque
oscillation component, Equation (28), affects the rotor position and stator current. The length of the
air gap affects the permeance, flux density of the air gap, and MMF, which ultimately modulates the
stator current signal. When there is air gap eccentricity, that failure can vary with time and the angle
of the circumference θ, so, in the case of dynamic eccentricity, the length of the air gap is a function
of θ and t, according to Equation (29). The use of ωrt in the last equation provides an expression for
the static eccentricity. From this last expression, it is deduced that the dynamic eccentricity produces
components given by (30) in the signal spectrum. In addition, the modulation of the phase and the
amplitude occur at the same rotor frequency.

TT(t) = To + Tosc cos (ωt) (28)

gde(θ, t) ≈ g0(1− δd cos (θ−ωrt)) (29)

fs ± fr (30)

3. Signal Processing Techniques Applied to Wind Turbine Failure Detection

Initially, the study of the signals was carried out in the time-amplitude plane and was based on
the variation of the waveform in addition to the calculation of parameters such as the average value,
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peak value, interval between peaks, standard deviation, crest factor, root mean square value, kurtosis,
and skewness [35,36]. According to reference [37], synchronizing the sampling of the vibration signal
with the rotation of a gear and evaluating the average of several revolutions provide a signal called the
synchronized time average, which is expressed by Equation (31). This equation makes it possible to
accurately approximate a periodic signal and obtain the vibration pattern (including any modulation
effects) of the gear teeth of a gearbox. However, according to the author, this method requires
repeating the analysis for each gear. As described in reference [38], the most advanced proposed
methods for the analysis in the time domain apply time series models to the signal, among which are
those of auto regression (AR) and the autoregressive moving average (ARMA), which are applied in
references [39–41]. Currently, the parameters used in the analysis of the current signal in the time
domain can be used for the detection and diagnosis of faults using artificial intelligence models [42].
Thus, in reference [35], the eight parameters of the current signal in the time domain are the input
variables of a three-layer artificial neural network (ANN) used to predict the remaining useful life
(RUL) of the bearings of the gearbox of a WT.

g(t) =
k0∑

k0=0

Ak0(1 + ak0(t)) cos (2πk0 ftet +∅k0 + bm0(t)) (31)

As described in reference [43], the complex sinusoidal and cosine signals in the time domain
can be better analyzed using their frequency components obtained with the Fourier transform (FT).
According to references [38,44], the analysis in the frequency domain allows us to obtain information
that is not available in the time domain, for example, knowing the origin of the signal, the phase
modulation, and the moment at which the components arise. When the signals are stationary, their
frequency spectrum is constant over time, so the analysis can be performed using the FT. For example,
reference [45] determines the frequencies associated with the DFIG faults of WTs by applying the fast
Fourier transform (FFT) to the current signal of the electric generator, but during periods of steady-state,
that is, when the speed is constant.

When the signals are transient and not periodic, such as during startup or load variation or under
wind speeds with stochastic behavior, the spectrum is oscillatory. Under these conditions, the FFT and
analysis in the frequency domain are not sufficient, so it is necessary to resort to other techniques that
allow analysis in the time-frequency domain, such as the short-time Fourier transform (STFT), wavelet
transform, Wigner–Ville distribution (WVD), and Hilbert transform (HT) [42,46,47].

One of the first alternatives used to overcome the disadvantages of the FT was the windowing
technique proposed in 1946 by Dennis Gabor, which consisted of applying the FT to only a small
section of the signal at a time. This methodology is the origin of the STFT, which allows the signals to
be represented as a function of time and frequency. For this, the total signal time is divided into shorter
time intervals [48,49]. The signal is multiplied by a window function, Equation (32), and for each
resulting interval, the discrete time FT (DTFT) is given by (33) and (34). For a fixed time (n) of analysis,
the DTFT is known as the STFT, where (32), which is a sequence of DTFTs, is a periodic function of
frequency ω and period 2π. There is a different spectrum in each window, and by analyzing all the
intervals as a whole, the variation in frequency over time can be observed. When, instead of studying
the spectrum at a certain time, one wishes to study a specific frequency, then the windowing process
is carried out in the frequency domain. The quality of the results depends on selecting the window
that minimizes losses due to spectral leakage and reduces the amplitude of the main and secondary
lobes [50].

xt(m) = x(m)h(t−m) (32)

Xt(e
jω) =

1
√

2π

∫
e− jωmxm(m)h(t−m)dm (33)
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Xt(e
jω) =

∞∑
m=−∞

x(m)h(t−m)e− jωm (34)

Xt(e
jω) = (x[t]e− jωt) ∗ω[t]

∣∣∣
t=t (35)

As described in reference [38], the STFT has resolution problems due to signal segmentation; one
of the alternatives to overcome this limitation is the WVD. This distribution is one of the most popular
ones since, unlike the STFT, it is not based on signal segmentation, providing better resolution in
both the time domain and the frequency domain. According to references [47,51], given a signal s(t)
in the time domain, the WVD is defined by (36), while starting from the frequency spectrum of s(t),
it is given by (37). It can be assumed that using the WVD means dividing the signal into two equal
parts in relation to a time t, with the right part overlaid over the left part, which means that when the
signal is null before or after t, then the signal is zero in t. The correct average is obtained only when
the signal can be separated into a component that is a function of time only and another function of
frequency. A signal that is not zero at time zero or a signal with frequencies without the existence
of a spectrum indicates the presence of interference or cross terms. As described in reference [34],
a sinusoidally modulated amplitude current signal has the same components as in (30), which means
that when f = fr, in the case of faults due to torque oscillations and eccentricity, the use of classic
spectral analysis (SA) does not allow us to distinguish between amplitude and phase modulation since
the modulation indices are small. However, the use of the WVD does allow us to distinguish these
faults using Equation (38).

W(t,ω) =
1

2π

∫
∞

−∞

s∗(t−
1
2
τ)s(t +

1
2
τ)e− jτωdτ (36)

W(t,ω) =
1

2π

∫
∞

−∞

S∗(ω+
1
2
θ)S(ω−

1
2
θ)e− jtθdθ (37)

fs ±
fr
2

(38)

The small magnitude of the components associated with the faults makes their extraction difficult.
To overcome this drawback, one of the most suggested techniques is to demodulate the signal amplitude.
For this, according to reference [52], the best option is to use HT due to its strength to handle noise.
According to that report, when there are no faults, the amplitude of the envelope is constant over time,
and its variance is zero. Otherwise, if the variance is greater than a pre-established threshold level,
some type of asymmetry exists.

According to reference [53], the HT of a signal is the relationship between the real and imaginary
parts of the FT of said signal. Similarly, the function of time obtained by the Fourier inverse is a complex
function called the analytical signal, the imaginary part of which is the HT. The analytical signal
can be represented as a phasor whose amplitude and rotation speed vary over time, according to
Equation (39), implying that, given a function in the time domain, in addition to the amplitude, one can
also obtain the components that modulate the frequency or phase, ã(t). In the HT, the amplitude
function is the envelope of both the real and the imaginary parts and represents the modulated signal
plus dc compensation. In the case of oscillating functions, the direct analysis in the frequency domain
of the periodic variations over time of the components introduced by some type of anomaly does
not provide enough information. However, if a bandpass filter is used in the region containing the
components that modulate the CS and its envelope is obtained, the frequencies associated with the
faults can be easily identified. Additionally, since the magnitude of the envelope can be plotted on
a logarithmic scale, exponential decays can be converted into straight lines to detect low-level peaks.
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This is the reason why the demodulation of the amplitude of the current signal is one of the most used
techniques for the detection and diagnosis of faults in rotating electrical machines using SA.

A(t)e jω(t) = a(t) + j̃a(t) = a(t) +
1
π

∫
∞

−∞

a(τ)
1

t− τ
dτ (39)

According to reference [54], mathematically, the HT along with its FFT are given by (40). The composition
of the analytical signal and its amplitude, phase of the envelope, and instantaneous frequency can be
obtained from Equation (39). Both positive and negative components have a 90◦ offset, and Equation (41),
according to the Park transform, takes the same form after applying HT as Equation (17). From this,
it follows that the characteristic frequencies are fm and 2 fm, there being a dc component in fm, 2 fm,
2( fm + f1), etc. According to reference [55], when some type of failure occurs in the multipliers, a new
impulse appears in the original spectrum or phase spectrum. For this reason, prior to using the FFT
to obtain the spectrum, demodulation is applied (using the HT) to the current signal, demonstrating
the effectiveness of this technique in the detection and diagnosis of pinions and broken teeth in the
gearbox of a WT.

x(t) =
1
π

∫
∞

−∞

x(τ)
t− τ

dτ = x(t) ∗ h(t) = x(t) ∗
1
πt

(40)

isq = isq0 + isqv sin (ωmt + ϕsqv) (41)

According to reference [56], due to the operating characteristics of the WTs, the resolution of the
STFT, in both the time and the frequency domains, is limited. The wavelet transform has the capacity to
analyze variations in the signal in the coupled time-frequency domain. However, this process depends
strongly on the chosen function and requires prior knowledge of the signal used, while empirical
mode decomposition (EMD) lacks a theoretical foundation and requires extreme interpolation. In this
context, the author proposes a new method to detect the failures of the gearbox of the WTs, which
is based on first demodulating the stator current signal of a DFIG using the HT and then applying
a signal resampling algorithm based on the generator rotation frequency, such that the resampled
envelope has a constant phase angle range.

While the FT decomposes a signal into a set of waves of different frequencies, the wavelet transform
transforms a signal contained in space to a time-scale region using an infinite set of functions called wavelets
and defined according to Equation (42), called the wavelet mother. Similar to the FT, the continuous
wavelet transform (CWT) represents the sum of the products of the signal multiplied by each of the
wavelets, as shown in Equation (43). The characteristics and properties vary according to the type of mother
wavelets or wavelet families, among which we mention the Haar wavelet, Daubechies wavelets, symlets,
coiflets, biorthogonal wavelets, reverse biorthogonal wavelets, Meyer wavelets, discrete approximations
of Meyer wavelets, Gaussian wavelets, Mexican hat wavelets, Morlet wavelets, complex Gaussian
wavelets, Shannon wavelets, frequency B-spline wavelets, and complex Morlet wavelets. Unlike the
STFT, wavelet transformation allows the window measurement to be varied in such a way that a wide
window can be used when information about low frequencies is required and narrow windows
when it is necessary to analyze high frequencies since the latter are detected better in the time domain,
while low frequencies are more accurately analyzed in the frequency domain. This property means
that wavelets can be used in the SA at different frequencies and resolutions of both stationary and
transient signals [48].

Ψa,b(t) =
1
√

a
Ψ(

t− b
a

) (42)

C(a, b) =
∫
∞

−∞

f (t)Ψ(a, b)dt (43)

As described in reference [57], techniques such as the CWT and discrete FT have disadvantages
when the analysis is carried out with small loads and close to the synchronism speed. According to
this author, a more effective method for detecting faults and analyzing the evolution of their severity is
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to use a Kalman filter, which is computationally more efficient. Since the CWT requires considerable
computational effort and generates too much data, an alternative is to filter the signal iteratively
in such a way that each frequency band obtained is again decomposed and so on until we obtain
several high-resolution frequency components, on which we perform the analysis. In other words,
the alternative is to discretize the parameters of both scale and time, leading to the discrete wavelet
transform (DWT), also called multiresolution analysis [58]. According to reference [59], calculating the
coefficients throughout the scale increases the calculation time, while according to reference [60], it can
be shown that the CWT is not useful for detecting faults or torque variations; therefore, the use of the
DWT is preferable. According to that report, the signal must first be decomposed by the CWT with
a Daubechies 8 (Db8) mother function, and then the FFT is used to analyze the spectrum components.

In reference [61], the components of the fundamental frequency and harmonics due to eccentricity, slots,
and other unknown causes, including environmental noise, determine the CS. However, these components
are not those related to the generalized bearing roughness; therefore, to detect this type of failure,
that work proposes to eliminate the mentioned components by filtering the generator stator signal
from a WT using the DWT based on the coiflet function. In addition, the signal is also broken down by
wavelets into several segments until the components associated with bearing failures are obtained.
As described in reference [62], in regard to detecting broken bars, the main problem with steady-state
analysis is that the frequency separation depends on inertia, which means that for small loads,
the separation decreases to a point where the frequencies associated with the broken bars cannot be
distinguished, so those authors propose processing the signal using wavelets. The current signal of
an induction motor is also broken down by wavelets for the detection of broken bars under different
load conditions. According to the authors, the high-order Daubechies family behaves as an ideal
filter and partially avoids overlap between frequency bands. In reference [63], the current signal of
an induction motor is also segmented by wavelets to detect broken bars under different load conditions.
According to the authors, the high-order Daubechies family behaves as an ideal filter and partially
avoids overlapping between frequency bands. According to reference [16], the use of wavelets makes
it unnecessary to know the slip, and in reference [20], a diagnosis of broken bars is proposed based on
the current signal and the transformation of wavelets, without using the slip.

As described in reference [64], it is possible to identify the incipient presence of broken bars
by applying the DWT with the Daubechies-44 family. Furthermore, since the transient state of the
induction motor can offer very useful information for the detection of electromechanical faults, such as
the dynamic eccentricity, the signal is sampled during startup. The detection of failures of loads coupled
to the induction machine using the MCSA has also been extensively studied, such as in reference [65],
where this methodology is used to detect gearbox failures caused by broken gears or broken teeth.
The use of GCSA for this purpose in WTs has not received the same attention, especially in regard to
studies based on real data.

In the time-frequency analysis, both variables are dependent, and according to the Heisenberg
uncertainty principle, it is not possible to know exact values but only intervals [66]. The autocorrelation
and power spectrum function does not provide all the necessary information, such as phase coupling
or bicoherence, whereas the STFT has the drawback of temporal resolution. For this reason, in the
case of non-Gaussian and nonlinear signals and signals whose spectrum is made up of a large number
of frequencies, SA must be implemented using high-resolution or higher-order-spectrum (HOS)
techniques [67]. Among these techniques is an approach using the bispectrum, which, being a complex
number, consists of magnitude and phase. The bispectrum can be used to analyze the relationship
between the frequencies of two sinusoids and the result obtained due to the modulation between them.
For each set of three frequencies, the signal power and phase are calculated; if the phase shift between
the two sinusoids tends to zero, then both have the same origin. Otherwise, the phase shift provides
an indication of failure [68].

According to reference [69], given a signal X(K), its second-order statistical characterization can
be represented by the autocorrelation and power spectrum function. For the same signal, with zero
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mean, its third-order moment is given by (44). If the signal is not stationary, Equation (44) depends
on three parameters (k, τ1, τ2), while for stationary signals, the function contains only τ1 and τ2.
The FT of the second-order momentum is the power spectrum that we have seen previously, while the
bispectrum is the double FT of the third-order momentum and is defined by Equation (45). The degree
of coupling between frequencies of different phases is measured by the bicoherence index, Equation (46),
whose magnitude varies from zero to one. The greater the value, the greater is the coupling [70].
According to reference [26], the bispectrum technique allows us to represent the FFT of both the phase
and the amplitude of the signal. Since the magnitude of the dominant component is a function of the
level of the fault, when this technique is applied to the current of induction motors, the spectrum of the
current signal allows the detection of electrical faults. The theoretical and mathematical foundations of
HOSs are addressed in reference [71–75].

c3,x(k, τ1, τ2) = c3,x[x(k)x(k + τ1)x(k + τ2)] = E[x(k), x(k + τ1), x(k + τ2)] (44)

B( f1, f2) = E[X( f1)X( f2)X × ( f1 + f2)] (45)

bic( f1, f2) =
B( f1, f2)√

P( f1)P( f2)P( f1 + f2)
(46)

Other HOS techniques used are frequency estimators based on eigen analysis. This methodology
divides the RM autocorrelation matrix into two vector subspaces, one representing the signal and another
representing noise, as shown in Equation (47). The order of the matrix and its eigenvalues are given by (48).
Among the frequency estimators developed based on this methodology, multiple signal classification
(MUSIC) and root MUSIC can be mentioned, which, as addressed in [76], are high-resolution models
that allow for the detection of frequencies in signals with low signal-to-noise ratios.

d(n) =
si∑

k=1

Ake( j2πn fk+∅k) + e(n) (47)

M = {λ1 + σ2, λ2 + σ2, . . . . . . , λL + σ2, σ2, . . . . . . σ2
} (48)

As described in reference [76], although the relevant techniques generally deal with the detection
of a fault, in induction motors, it is most likely to find the presence of several faults, and for its
detection, a high-resolution model is proposed that combines a bank of infinite impulse responses
and MUSIC. According to the authors, this method is capable of detecting broken bars, imbalance,
and defects in the outer bearing race. Another approach that MUSIC uses is described in reference [77].
Although signal sampling is generally performed during machine operation and in some approaches
during startup, in that work, signal sampling is performed when the machine is disconnected from the
network since, according to reference [75], as the terminal voltage is produced by the rotor currents,
the presence of broken bars is reflected in the spectrum of the stator voltage. On the other hand,
according to reference [78], the disadvantage of MUSIC is that by increasing the correlation matrix
to find more frequencies, the required computational effort increases. To overcome this drawback,
that work proposes applying an algorithm similar to the zoom-FFT (ZFFT) method that focuses on
certain frequencies regardless of the total frequency range while applying zoom-MUSIC (ZMUSIC).
According to the authors, very good results are obtained with the proposed method, comparable to
those obtained with ZFFT but requiring less sampling time and less memory capacity.

Other models used for HOS fault monitoring and detection include estimation of signal parameter
via rotational invariance technique (ESPRIT) and PRONY. ESPRIT belongs to the subspace parametric
spectrum estimation methods expressed by Equations (52) and (53) [79], whereas according to
reference [80], the PRONY method is used to model the sampled data of a signal using a linear system
of complex exponential functions. As described in reference [81], the extensive use of the power
converter when the DFIG works below the synchronous speed causes the current to have a high
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content of interharmonics that can cause resonance, in addition to damage to capacitors, insulation,
control elements, and protection. According to the authors, the identification of these harmonics can
be performed using the PRONY and ESPRIT methods, although the latter has a lower resolution than
the former.

According to reference [82], to overcome spectral leakage, high-resolution analysis should be
applied, but since this implies a longer sampling time, the spectrum varies both in frequency and in
amplitude, making diagnosis difficult. From this, it can be deduced that there are no stable conditions
that are required to apply the FFT and that its use does not guarantee the identification of the frequency
components. The DWT allows for better spectral resolution. However, in general, the proposed signal
techniques are not efficient at low slips, such as 1%. Based on the foregoing, reference [82] proposed
using ESPRIT in combination with an improved Hilbert’s modulus method, which was successful in
detecting broken bars even with a slip as small as 0.33%, using only the one-phase signal and short
sampling time. When the same experiments were performed using MUSIC, satisfactory results were
not obtained, demonstrating the superiority of ESPRIT.

Another technique that has been widely used to diagnose faults in electrical machines is Park’s
vectors. According to Fortescue’s theorem, a triphasic system can be represented as the sum of
the components as a zero or homopolar, positive sequence and negative sequence, as expressed in
Equation (49) [83]. For three-phase induction motors, the three phases can be represented in the 2D dq
plane with Equations (3) and (4), known as Park vectors or Concordia patterns. In the absence of faults,
the Park vectors have components given by (50) and (51), whose graph is circular and centered on
the origin, while when there are faults in the stator and/or rotor, the graph is deformed and takes on
an elliptical shape [84–89]. 

Ia

Ib
Ic

 =


1 1 1
1 a2 a
1 a a2




I0
a

I+a
I−a

 (49)

id =

√
6

2
Is sinωt (50)

iq =
√

6
2

Is sin(ωt−
π
2
) (51)

4. Materials and Methods

This research work has two parts. In the bibliographic part, emphasis has been placed on the
presentation of the theoretical foundations, mathematical models, and existing proposals for some
of the most used methodologies for the detection and diagnosis of failures in WTs. The second part
is a field investigation, with the purpose of verifying the effectiveness of the analyzed models to
determine the status of WTs in operation. The mentioned WFs were installed approximately 20 years
ago, and the one where the measurements were made consists of 33 WTs of brand NEG Micon.
The electric generator used by the WTs is a SCIG with two windings, one of small power (200 kW)
for low speed and the other of a higher power (900 kW) for higher wind speeds (see Table 1). As at
the time of testing, the wind speed was high, and measurements were made on the highest-power
generator (see Figure 1).
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Table 1. Technical characteristics of the WT and electric generator.

Brand NEG Micon

Model NM 52/900

Rotor diameter 52.2 m

blades 3

Power 900 kW

Power control Stall control

Drive train

Gearbox type: Planetary-Parallel
Transmission ratio: 1:67.5

Main bearing: spherical rollers
Cooling system: refrigerant, heat exchanger and pump

Electric Generator

Type: SCIG
Speeds: 750/500 rpm

Poles: 4/6
Power: 900 kW/200 kW

Voltage: 690 V/50 Hz
Cooling system: water

Coupling to the power grid Smooth, using thyristors
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Figure 1. Location of the current clamps on the WT power panel.

Formeasurements, inadditiontotheFlukei3000sflexibleclamps,aPicoTechnologyunit,modelPicoScope®4424,
was used, which must necessarily be connected to a computer in which software has previously been
installed to be able to acquire the signal. Data were acquired by applying a sampling rate of 10 kHz
over 2s (representing 20,000 data points per sample). This measurement was made continuously for
approximately 10 min. The processing of the data and the application of the various SA techniques
were performed in MATLAB r2019b software.

5. Results and Discussion

By applying the FT to the current signal of the generator under study, Figure 2a,b are obtained for
one and three phases, respectively. In the graphs, harmonics with frequencies of 40, 42, 46 and 56 Hz
can be distinguished, which, according to references [42,76,90], are related to stator failures, broken
bars, and phase imbalance. In addition, as described in reference [42], rotor failures are manifested by
harmonics of the fundamental frequency (3, 5, 7, etc.), which reinforce the indications of bar failure.
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Figure 2. FT of the WT current signal. (a) One phase and (b) three phases.

The frequency components are very close to the central frequency, and depending on the window
used, the width of the lobes can be very large, and the identification of faults by means of the FFT is
difficult, making it necessary to resort to other variables and techniques such as the power spectral
density (PSD) [91]. In MATLAB, we obtain an improved version of the PSD, which is shown as a Welch
periodogram (see Figure 3). In this approach, by definition, MATLAB applies the Hamming window
and displays the part of the graph corresponding to the real values. Unlike the case of the classic FT,
in the spectrum obtained by the Welch periodogram, a greater number of frequency peaks can be
distinguished, such as 30, 46, 54, 63, 124, 165, 261, 451, 534, 575, and 781 Hz. Although the composition
of the spectrum is uniform, there are differences in the magnitudes of the components. These differences
can also be observed when comparing the three phases of the generator (see Figure 3b).
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Another alternative to overcome the drawbacks mentioned so far is the proposed methods to
eliminate frequencies that are not of interest so that it is easier to identify the components sought.
In this context, one option is the technique known as cepstrum analysis, which calculates the inverse
FT of the signal spectrum on a logarithmic scale. Failures alter the rotor speed and magnitude of the
components, creating new frequency components that have their own harmonic families. The cepstrum
provides an average of each of these families displayed as a single line with their respective harmonics
bands. Identifying the frequency of each frequency also allows for the separation of signals that have
been combined due to convolution [53,92].

By applying cepstrum analysis and selecting the appropriate scale for the axes, Figure 4 is obtained.
Several families of components close to the fundamental wave can be more clearly distinguished than
before. For our case, the harmonic families separated by 200 ms that are equivalent to 5 Hz are easily
visible. These frequencies are consistent with a fault attributed to broken bars, as was deduced with the
previous techniques. Other types of mechanical failures associated with these frequencies are imbalances
of the blades and bearings of the generator, which, according to reference [93], are manifested by
frequencies of 10 and 5 Hz, respectively. Although there is considerable similarity in the spectrum of
the three phases obtained with this technique, differences in the composition of the spectrum and the
magnitude of the components can also be highlighted, providing another indication of failure.
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As we have been able to verify from the techniques used so far, time-domain analysis does
not provide the frequency spectrum, while the analysis in the frequency domain does not provide
the moment at which the components are produced. By applying the algorithm of reference [94] to
calculate the STFT in MATLAB, Figure 5 is obtained. Parts a and b of this figure emphasize how both
the fundamental frequency and its components, which remain invariant over time, stand out in terms
of their energy (yellow color). Part b reveals harmonics very close to the fundamental (green and
orange color), which correspond to the frequencies of 10 and 5 Hz mentioned above.
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From a conceptual point of view, the STFT is one of the most important techniques and serves as
the basis for other signal processing techniques. However, its main disadvantage is that it uses the
same window width for the entire signal, resulting in the resolution in the time and frequency domain
being constant and only one frequency band being known. If the window is wide, a good resolution is
obtained in time, but a poor resolution is obtained in the frequency domain, whereas when the window
is narrow, the opposite occurs. Therefore, if the frequency components are well separated, a good
resolution over time may be preferred, whereas when the components are close together, the frequency
resolution is prioritized. The STFT is suitable for the analysis of quasistationary signals (stationary at
the window scale), which do not precisely represent the behavior of real signals. Another disadvantage
is that there are no orthogonal bases for the STFT, so it is difficult to find a quick and effective algorithm
to calculate it [45,65].

According to reference [47], the STFT is positive in all parts and fulfills the positivity requirement,
but regardless of the selected window, it does not provide adequate resolution to distinguish the
components, nor does it manage to show the instantaneous frequency that can be obtained by the
WVD. However, the WVD does not meet the positivity, global average, and finite support requirements.
As described in reference [38], one of the main disadvantages of bilinear distributions, such as the WVD,
is the interference terms formed by the transformation, which makes interpretation difficult and prevents
identifying the true components. To correct this disadvantage, distributions such as the Choi–Williams
distribution, pseudo-Wigner–Ville distribution (PWVD), and smooth pseudo-Wigner–Ville distribution
(SPWVD) are used [95].

Applying the SPWVD to the WT signal under study, Figure 6 is obtained. The 50 Hz frequency
(yellow color) and its harmonics stand out, and—as with the previous techniques—components
including 5 Hz can be distinguished along with the fundamental wave. Despite this advantage,
in Figures 5 and 6, the disadvantages of the STFT and WVD mentioned by references [38,47] can
respectively be seen.
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According to reference [96], when the carrier signal frequency is on the order of kHz, bearing
failures cannot be detected. However, by applying envelope analysis at the lower frequencies, detection
is possible. This is the foundation on which techniques such as the shock pulse meter (SPM) and spike
energy are based. HT demodulation, either directly to the current signal or to the Park transformation,
is used to detect various types of rotor and stator faults, such as broken bars and inter-turn short
circuits. In general, signal demodulation is usually the first phase, prior to the application of other
mathematical models that are used to improve detection and diagnosis [84,85,97,98]. By applying
the HT to our signal, Figure 7a is obtained, and we can distinguish the real and imaginary parts.
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Taking this last part and calculating the PSD, the spectrum of Figure 7b is obtained, which is similar to
those obtained using the FFT and Welch’s periodogram. However, the components associated with
broken bars cannot be distinguished, as it was done with the previously applied techniques.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 29 
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According to reference [99], in regard to systems with multiple components, such as WTs,
the approach described in reference [54] does not work because the noise processed by the HT generates
spurious amplitudes at negative frequencies. To avoid this drawback, according to reference [99],
the HT should not be applied directly to the signal but to each of the members of an empirical
decomposition of the signal in the IMF, obtained by means of the method called sieving. By applying
this methodology to the SCIG signal, Figure 8 is obtained. For our case, the MATLAB algorithm breaks
down the signal into seven IMIs (Figure 8a), and proceeding as in reference [55], the HT of the first
IMF is obtained (Figure 8b), to which other techniques can be applied, such as the FFT (Figure 8c).
In this last figure, the components associated with broken bars are much more evident.
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According to reference [42], when the generator is directly coupled to the grid using closed-loop
controllers, there is no manual control over the frequency or the terminal voltage. This control system
affects the behavior of the generator signal, and for fault diagnosis, it is necessary to use techniques
for transient states. For this reason, the author proposes to first filter and decompose the current
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signal of a SCIG using the DWT and then use the STFT to analyze the evolution over time of the
frequency of interest. This allows detecting not only stator and rotor failures but also their location
and identification. A similar approach to detect SCIG failures using the current signal is presented
in [100]. According to this study, due to its flexibility in the analysis of the evolution of the different
frequencies of a signal during transient phenomena, the wavelet transform is the most used signal
processing technique for fault diagnosis. However, the author agrees in stating that the DWT cannot
analyze the evolution over time of each frequency band in which the signal decomposes, which can be
solved by applying the STFT to the obtained frequency bands of interest.

To apply the wavelets to our signal, we proceed in a similar way to reference [60]. First, by means
of the DWT and the Daubechies family we decompose the signal into 8 levels (see Figure 9a), in such
a way that, at level d7 the frequency range is from 0 to 78 Hz and this is where the frequency components
could be found associated with the types of failures mentioned so far. However, observing the d7 level
in Figure 9a, it is not enough to make a diagnosis, and in these cases, it is necessary to apply another
type of analysis or use other methodologies, as described in reference [101]. Later, CWT with a scale of
1:100, it is applied and whose 2D graph is shown in Figure 9b. Here, in addition to the periodicity
of the signal, it can also be seen how as the scale factor increases towards the last low-pass filters,
the wavelets compress more and the number of low-frequency components associated with faulty bars
or eccentricity becomes more evident. The 3D graph is included in Figure 9c, displaying the periodicity
and uniformity or composition of the signal as a function of time. In this last graph, the peaks of the
signal occur in the last scales; therefore, by calculating in MATLAB the frequency equivalent of scale
100, the value of 6 Hz is obtained, which is consistent with the results of other signaling techniques.

According to reference [102], one of the disadvantages of classic SA using the FFT is the loss of
information when the signal is segmented. This can be compensated by the weighting of the windows.
However, this incurs a decrease in spectral resolution. As described in references [45,65], despite the
benefits of analysis in the time-frequency domain, since the components associated with the faults may
be very close to the fundamental frequency, their identification is complicated, so it is also necessary
to determine the frequency at which the analysis should be performed. At high frequencies, a good
resolution is obtained in the time domain, while at low frequencies, the resolution is better in the
frequency domain.
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Figure 9. Application of the wavelet transform to the SCIG signal. (a) Decomposition of the current
signal using the DWT, (b) 2-dimensional continuous wavelet transform, (c) 3-dimensional continuous
wavelet transform.

According to reference [99], the wavelet transform has the disadvantage of overlap between the
frequency bands in which the signal has been separated and the need for an optimal selection of the
mother wavelet. To overcome these drawbacks, that report proposes to carry out the analysis by
applying both the HT and the wavelet transform to the current signal during startup. According to the
authors, based on the experimental studies and in contrast to the classic Fourier analysis, the DWT-based
approaches are simple and allow clear and reliable patterns to be obtained. The Hilbert–Huang
transform (HHT) has the advantage of avoiding dyadic decomposition, allowing greater security in
the study of high-frequency components located on the right-hand side, and IMFs allow a more secure
theoretical representation of the waveform composed of the left sidebands on the supply frequency,
which cannot be achieved with the DWT. Among the disadvantages are the introduction of signal
overlap problems, although this effect is negligible during startup. The patterns obtained are not as
clear as in other methods and are more difficult to interpret. There is no a priori relationship between
IMFs and frequency bands, making it difficult to select the appropriate number of IMFs to consider
for the detection of lateral components. As discussed in reference [99], these conclusions have to be
verified in field studies so that the results can be generalized for different operating conditions.

Finally, by applying the Park transform to the generator signal, Figure 10 is obtained. According
to reference [97], regardless of the slip, the short circuits between turns or broken bars produce
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an alteration in the envelope repeats cyclically to the same supply frequency, causing the elliptical
shape of the Park transform graph. Additionally, the comparison of Figure 10 with the results obtained
in reference [103] for the diagnosis of broken bars verifies substantial similarity.
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6. Conclusions and Recommendations

Through this research, it has been possible to demonstrate the feasibility of detecting and
diagnosing faults in a WT generator using SA of the current signal. According to the models described
in the theoretical part of this research, there is at least one indication of failure due to broken bars in
the generator under study. The analysis was carried out using various signal processing techniques,
obtaining similar results with all techniques. However, the magnitude of the failure has not been
included in this investigation. To check the results obtained and to carry out a more in-depth
investigation, a periodic sampling could be done to analyze the evolution of the spectrum of the
generator current signal.

Although the diagnosis was obtainable with all the signal processing and analysis techniques
used, there are some differences. The FT indicates which frequencies exist in the spectrum of a signal,
but it does not provide the time at which these frequencies occur, nor does it provide the modulation
of the phase. Aliasing and leakage problems can also occur, and in general, this technique is not
recommended for transient states. The STFT allows information to be obtained in both the time domain
and the frequency domain. However, since it uses a fixed observation window for all frequencies,
it cannot adapt to rapid signal changes and cannot eliminate noise. In contrast, the DWT cannot
analyze the evolution over time of the frequency composition of each frequency group. The power
spectrum does not provide phase information, and the autocorrelation sequence does not provide
evidence of nonlinearity. Furthermore, since the power spectrum variance does not tend to zero as the
number of samples increases, the second-order periodogram or moment is not a consistent estimator,
and it is necessary to resort to third-order estimators such as the bispectrum, MUSIC, and root MUSIC.

Signal processing techniques are a very powerful tool. However, in many cases, especially when
conditions are not ideal, the use of these methodologies in isolation is not sufficient, and it is necessary
to use other, complementary models to increase the effectiveness of diagnosis. The use of the current
signal for the detection and diagnosis of faults in WTs is an area still to be explored, especially through
field work. However, based on the few existing references on field studies carried out with WTs in
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operation, it can be said in general that when the current signal is used, the diagnostic process is based
on the models analyzed in Sections 2 and 3 of this investigation.

According to what was seen in the introduction, in this research we have concentrated on the SCIG.
However, the most widely used electric generator in the wind industry is the double feed induction
generator (DFIG) which has many characteristics in common with the SCIG. However, since the DFIG
has a wound rotor that is feed independently, it has an electrical signal from the stator and another
signal from the rotor, which could be studied independently or in combination to detect both rotor and
stator faults. Another important aspect to consider is that WTs with DFIG use a power converter to
control the rotor current, which modifies the spectrum of the signals and increases the difficulty of
diagnosis. To limit the research, we have preferred not to delve into the differences that we would have
with the DFIG, since it would be preferable to do another specific field study on this type of generator.

Several of the models seen so far require knowledge of the rotor mechanical speed and/or slip and
generator design parameters, among other variables, which are generally not available. Additionally,
when signal processing and analysis techniques are used, it is necessary to perform the study for each
phase and for each record at the same time, so, considering the three phases of each generator and the
total WTs of a WF, the work is very complicated and can lead to diagnostic errors. Besides, almost all
the reports used as references rely on a signal that includes an explicitly provoked failure, which was
not possible to obtain for this investigation. Despite these aspects, a very useful technique at present is
to combine signal processing techniques with artificial intelligence models.
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Nomenclature

AT torque amplitude
AsMi, AsTi amplitude of magnetization and torque components
a 1(120◦) = 1e j 2π

3 = −0.5 + j0.866
a2 1(240◦) = 1e j 4π

3 = −0.5− j0.866
→

B flux density

e(n) sampled noise
fr(Hz) rotor frequency
fmr rotor mechanical frequency
fte gear frequency
fv vibration frequency of bearing failure
g (θr,θsr) air gap function (g in the case of a uniform air gap)
go constant air gap length
g(t) mean air gap length as a function of time
IL line current
i0 average or constant component of the current
isM, isT magnetization and torque components of the stator current
isM0, isT0 constant value of magnetization and torque components
J inertia
km failure modulation index
kwh winding factor for harmonic h
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k0 0, 1, 2, 3, 4, 5, . . .
k1 1, 3, 5, 7, 9, . . .
k2 1, 2, 3, . . . , (2p− 1)
k3 0,±2, ±6, ±10, . . .
N number of turns per coil
Nr number of turns of the rotor winding
nd 0 for static eccentricity, 1, 2, 3, 4, 5, . . . for dynamic eccentricity
MMF magnetomotive force
Pi input power
p pole pairs
pd bearing diameter
PFe iron losses
Qr rotor slots
Rr rotor resistance
Rs stator resistance
S arbitrary contour surface
si number of complex sinusoids
s slip per unit
T0 constant torque component
Tem electromechanical torque
TT total torque
Td damping torque due to failure
Tosc blade torque under normal conditions
θs angular displacement with reference to the stator
θr rotor angular displacement, rotor surface
θsr angular displacement between rotor and stator reference position
ϕ phase angle, load or power factor
ϕs phase shift between the stator and rotor MMFs
ϕd phase angle of the fault
ω angular velocity of the feed current
ωro constant component of the angular speed of the rotor
ωs stator field angular velocity
ωmr rotor mechanical speed
ωr rotor magnetic field speed
ω f angular velocity of the fault
Λ2 Laplace operator
ξ temporal variable
σ2 variance
δd dynamic eccentricity index
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