
Vulnerabilities of the SMS Retriever API for the automat-

ic verification of SMS OTP codes in the banking sector

Amador Aparicio1, M. Mercedes Martínez-González1, Valentín Cardeñoso1,
1 Departamento de Informática, Universidad de Valladolid, 47071, Valladolid, Spain.

{amador,mercedes,valen}@infor.uva.es

The final, published version of this article is available online. Please check

the final publication record for the latest revisions to this article.

[Aparicio, A., Martínez-González, M.M., Cardeñoso, V. (2023). Vulnerabilities of the

SMS Retriever API for the Automatic Verification of SMS OTP Codes in the Bank-

ing Sector. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International

Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022).

UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham.

https://doi.org/10.1007/978-3-031-21333-5_99]

Abstract. One of the ways to authenticate users of mobile devices is by sending

One Time Password (OTP) codes via SMS messages. In order to facilitate the

use of these codes by customers, Google has proposed APIs that allow the au-

tomatic verification of the SMS messages without the intervention of the users

themselves. One of these APIs is the SMS Retriever API for Android devices.

This article presents a study of this API. Different scenarios of interaction be-

tween mobile apps and SMS OTP servers are posed to determine which imple-

mentations of the SMS Retriever API are vulnerable. The study presented here

focuses on Spain’s banking sector. The results show that there are vulnerable

implementations which would allow cybercriminals to steal the users’ SMS

OTP codes. The desirable equilibrium between ease of use and security needs to

be improved in order to maintain the high level of security which has tradition-

ally characterized this sector. The proposed methodology, applied here to this

particular sector (banking), is nevertheless simple enough to be applied to any

other sector. One of its advantages is that it proposes a method for detecting bad

implementations of the SMS Retriever API on the server side, based analyses of

the apps, which would make it easily applicable.

Keywords: app, SMS, OTP, 2FA, Android, malware, security, privacy.

1 Introduction

The use of double factor authentication (2FA) mechanisms gives users greater securi-

ty and thus greater confidence when accessing a system or authorizing a transaction.

2

This is an authentication method that has become extremely widespread since apps

have become one of the commonest ways for users to interact with services in the

internet. Mobile devices are nowadays a basic tool that practically every person uses

on a daily basis. When they use applications for mobile devices (apps), the 2FA sys-

tems permission the user’s identity to be verified by sending an OTP code to his/her

device. Only the user who receives the OTP code can verify her/his identity. Double

factor authentication relies on SMS to handle the OTP codes. This allows the user’s

identity to be confirmed through the mobile device, but it also means that the apps

have to be able to access these OTP codes through the SMS service. However, a bad

implementation of the 2FA in the apps means that this authentication scheme be-

comes vulnerable [1,6].

In this article, a study is presented that analyzes the handling of the SMS OTP

codes by the APIs in the banking sector apps. The APIs and the research method used

(the latter being applicable to any sector) are described. This method includes the

selection of the most commonly used banking apps in Spain, an analysis of the most

commonly used APIs that handle the SMS OTP codes and the study of the vulnerabil-

ities present in the chosen API.

Following the analysis of a bank app installed in an Android device infected by

banking malware1, we discovered that the app used the SMS Retriever API [2]. Due to

the bad implementation of the SMS Retriever API in the app, there appeared vulnera-

bilities, present in [1], that allowed the theft of OTP codes through the SMS service.

For that reason, we decided to investigate how bank apps manage the OTP codes

received via SMS in Android mobile devices.

The rest of the article is organized as follows: Section 2 shows the APIs that handle

the SMS messages used in the banking sector; Section 3 presents a general methodol-

ogy, applicable to any sector, for detecting bad implementations of the SMS Retriever

API; Section 4 presents the results obtained after applying the methodology to the

most commonly used banking sector apps in Spain; and Section 5 sets out the conclu-

sions.

2 The use of APIs for managing SMS OTP codes in Spain’s

banking sector apps

The APIs that handle SMS OTP codes appeared so that the user did not have to

manually introduce the OTP code in the app. Google offers various APIs to manage

SMS OTP codes in Android devices [2,9]: one-touch verification by SMS (One-tap

SMS verification) and automatic verification by SMS (SMS Retriever). Bank apps for

Android devices use these APIs. The One-tap SMS verification API needs the user to

authorize the recuperation by the app of the OTP code [9]. There is a risk here that the

users will not understand that they need to agree to authorizing the OTP recuperation

code. On the other hand, the SMS Retriever API automatically recuperates the SMS

1 Malicious app whose objective is to remotely control the device in order to steal such banking

information as: bank account credentials, authorization codes for electronic transactions, etc.

3

OTP codes destined for the apps without having to request any interaction with the

app on the user’s part [2].

Section 2.1 shows a generic process for exchanging SMS OTP codes for Android

devices. Section 2.2 sets out in detail the exchange of SMS OTP codes in apps be-

longing to the finance sector for Android devices; while Section 4 presents the study

of the APIs for the automatic verification of the SMS OTP codes used in Spain’s

banking sector.

2.1 Exchange of SMS OTPs in Android devices

In Android, applications can request permission to access SMS messages. The nec-

essary permissions are READ_SMS [4,5] and RECEIVE_SMS [4,5]. The former

allows an app to read the SMS in-tray at any time. The latter allows the app to read

the new messages that enter just before they appear in the in-tray. Google classifies

both as dangerous [4,5,8], as they allow SMS messages to be read in an arbitrary

manner, even when the messages are not relevant for the functioning of the app. As

they are dangerous permissions, they require user consent at time of execution and

this may not be granted.

To facilitate their management and to free the user from having to handle the OTP

codes or the SMS permissions, Android introduced the APIs SMS Retriever [2] and

SMS User Consent API [9] for the automatic verification of SMS OTP codes [1,2].

From here on, we focus on the SMS Retriever API , which requires no intervention on

the part of the user. For the API to know which device and which app it has to send

the SMS OTP code to, it needs to know the telephone number of the mobile device

and an alphanumeric chain (hash) that identifies the receiving app of the SMS OTP

code. The server of the application sends the SMS OTP code to the device that made

the request together with the hash that identifies the app which must receive the SMS

OTP code. This hash allows the device’s operating system to deliver the SMS OTP

code to the receiving app only, and no other [1,2].

The paper [1] demonstrates the vulnerabilities present in the SMS Retriever API.

There are three possibilities. First of all, the SMS OTP is not eliminated from the in-

tray, which would allow other applications to access it, for instance, malware installed

in the device itself. The second possibility is that the hash which identifies the receiv-

ing app’s SMS OTP is not generated or not registered in the SMS OTP server, while it

is the app which sends it. This may be due to the fact that the app has it in its source

code, or that the app can generate it dynamically. Finally, an attacker could generate

an SMS OTP petition to a remotely controlled malicious app installed in the victim’s

device in order to steal the SMS OTP code.

The vulnerabilities are taken advantage of by the malware to steal the SMS OTP

codes, which are then sent to the attacker in order to complete the authorization for

the fraudulent bank transaction. To do so, the malware needs to have the permission

android.permission.INTERNET. This permission has a normal pro-

tection level [4,5], which means that it is granted at the moment the app (the

malware in this case) is installed in the device and cannot be managed by the user

4

while the app is being executed [4,5,8]. The participants in this interaction are sum-

marized in the diagram in Figure 1.

Fig. 1. The malware in the device captures the SMS OTP and sends it to the attacker.

2.2 The apps of Spain’s banking sector

The apps used in digital banking use SMS OTP codes to identify users through

mobile devices and thus authorize bank transactions. We carried out a study which

discovered that the apps of Spanish banks use the APIs for the automatic verification

of SMS OTPs proposed by Google and presented in Section 2.1.

When clients of digital banking use these services, the OTP codes that authorize

their transactions are sent via SMS to a telephone number that the clients have already

providen when registering for the service. This is the case whether the clients use a

banking app to make transactions or the bank’s website. In our study, we focus on

situations in which banking apps are used.

3 Study of the vulnerabilities in the APIs for the automatic

verification of SMS OTPs

The work consists of the study of a sufficiently representative set of apps from the

banking sector to know how the SMS OTPs are handled.

5

3.1 Methodology

The methodology presented here starts from the supposition that the sector whose

apps are to be studied is already known. As indicated above, the methodology is ap-

plicable to any sector. The steps are as follows:

1. The most used apps from the chosen category are selected. In the case of this

study, the category is “finance” from Google Play2. The selection criteria to be

used are: largest number of downloads, largest number of evaluations, and lar-

gest number of stars.
2. A static analysis of the selected apps is carried out to know which automatic

verification method of SMS messages is used.
3. The most commonly used automatic verification method of SMS messages in

the analyzed apps is selected. The study focuses on the most used API.

4. A search is carried out to identify the bad implementations faults when using

the SMS automatic verification API selected in the point above. The bad im-

plementations correspond to the scenarios presented in [1]. As for the app, a

bad implementation consists of sending the app identifier (hash) to the SMS

OTP server. After studying the source codes of various applications, it has be-

come clear that this may happen because the hash appears in the source code

of the app or because the app itself generates it dynamically. As for the server,

a bad implementation consists of receiving the hash of the app, which indica-

tes that the server did not generate it or did not have it registered. The correct

implementation of the SMS Retriever API requires the server to know or to

calculate the hash with respect to the package name of the app and

5. Given that it is not usual to have access to the SMS OTP servers used by the

selected apps, we focus the study on looking for bad implementations of the

automatic SMS verification API in the apps. This provides generality and

allows the methodology to be applied to cases, such as ours, when there is no

access to the server of the OTP codes.

6. We then check whether, in the set of apps, the implementation faults of the

API for the automatic verification of SMS messages actually occur.

7. The results obtained are analyzed.

3.2 Static analysis

Static analysis allows us to search the source code of the apps for code chains without

the apps being executed in the device [7]. Having found the code chains described in

Table 1 in the source code of the app [1], we can know which API for managing SMS

OTP codes is used by the app.

Table 1. Code chains present in the APIs that manage SMS codes.

API de verificación SMS Code chains

SMS Retriever

SmsRetrieverClient

SmsRetriever.getClient

SmsRetriever.API

2 https://play.google.com/store/apps/category/FINANCE?hl=es&gl=ES

6

SMS Token
createAppspecificToken()

WithPackageInfo()

SMS Token+ createAppspecificSmsTokenWithPackageInfo()

One-tap SMS verification sendSMS()

The first step is to have the apps3. Then, the app to be statically analyzed is select-

ed and is decompiled using the tool jadx-gui [10]. Finally, using the same tool, a

search is carried out in the source code of the app for the code chains of Table 1.

Should the search be successful, we then know the API used to manage the SMS OTP

codes.

Given that the banking apps analyzed were downloaded from Google Play before

being stored, we shall focus on the APIs SMS Retriever and One-tap SMS verification,

which are the APIs for managing SMS OTP codes proposed by Google [2,9].

4 Results obtained

After applying step 1 of the methodology proposed in the Spanish banking sector,

the most commonly used apps in Spain for Android devices in the finance category

are those shown in Table 2.

Table 2. Most popular online banking apps in Spain present in Google Play.

Bank Version Downloads Evaluations Stars

CaixaBank 5.41.0 +10M +500K 4,5

BBVA

Varies

according

to device

+10M +100K 4,4

Bankia

Varies

according

to device

+5M +200K 4,2

Banco San-

tander
8.6.13 +5M +90K 3,6

ING 3.6.1 +1M +70K 4

Caja Rural 5.0.3 +1M 10K 2,9

In step 2, after carrying out the static analysis of the apps mentioned above, we de-

tected that the most used APIs for managing SMS OTP codes are SMS Retriever (see

Figures 2, 3, 4 and 5) and SMS OTP 1FA (see Figures 5 and 6). Column 2 in Table 3

shows the code chain used by the SMS Retriever API.

Table 3. Banking apps that use the SMS Retriever API.

APP Chain of the SMS Retriever API

caixabanknow.apk SmsRetriever.API

bankia.apk
SmsRetriever.API

SmsRetrieverClient

Nueva Santander_8.1.1_apkcombo.com.apk SmsRetriever.API

3 The apps are available for download and analysis in the URL

https://cutt.ly/UI91Eso [password: UCAMI2022]

7

SmsRetrieverClient

ruralvia.apk
SmsRetriever.API

SmsRetrieverClient

We detected that two of the apps analyzed use the One-Tap SMS verification API

(see Figures 5 and 6). Column 2 of Table 4 shows the code chain used by the One-

Tap SMS verification API.

Table 4. Banking apps that use the API One-Tap SMS verification.

APP Chain of the API One-Tap SMS verification

bbva.apk
sendSMS(String phoneNumber, String body)

sendSMSFromUri("smsto:" + phoneNumber, body)

ING.apk
sendSMS(String phoneNumber, String body)

tas_client_info.setClientKey(key_cliente)

Step 3 determines that the method for managing SMS messages most commonly

used in the analyzed apps is SMS Retriever (see Figures 3, 4, 5 and 6, and Table 3). In

addition, this is the verification method found in the banking app present in the An-

droid device infected by banking malware. So we decided to study this API for auto-

matically verifying SMS messages.

In steps 4, 5 and 6, knowing how the hash that identifies the apps (see Figure 2) is

generated, we searched the source code of the apps for the methods and packages

shown in [1] that are used to generate the hash of the apps (see Figure 3 and the Ap-

pendices).

x = concat (app_package_name, app_signing_certificate)

hash = truncate(base64encode(SHA256(x)), 11)

Fig. 2. Generating the hash of an app.

android.content.ContextWrapper: getPackageName()

android.content.pm.Signature: toCharsString()

java.security.MessageDigest: update(byte[])

java.util.Arrays: copyOfRange(byte[],int,int)

android.util.Base64: encodeToString(byte[],int)

Fig. 3. Packages and methods used to calculate the hash of the apps.

5 Conclusions

We have carried out a study of the diverse ways of using the automatic verification

of OTP codes in the development of apps for Spain’s banking sector. The most im-

portant conclusions obtained are as follows:

• We have seen that the most commonly used method for the automatic verifica-

tion of SMS OTP messages in the analyzed apps belonging to Spain’s banking

sector is the SMS Retriever API.

• We have proposed a method to find out if an SMS OTP server does not cor-

rectly implement the SMS Retriever API. The originality of the proposal is that

the method is based on an analysis of the apps, which brings a generality that

8

methods based on analyses of the servers lacks. Gaining access to the apps is

much easier for anyone interested in this research than attempting to access the

servers. This method analyzes the way in which the apps handle the hash.

• We have seen that the banking sector does not implement correctly the API to

automatically verify SMS messages in the apps and in the servers of SMS

OTP codes.

• The balance between the ease of using apps and their security is not the ade-

quate one in the banking sector. The banks are encouraging their clients to use

electronic banking, but technological barriers mean that the apps have to be

easy to use. This means that clients with scarce digital skills will be able to use

these applications, thus reaching an older sector of the population. However,

this unquestionable advantage comes with security risks; which, in our opin-

ion, are excessive, given the consequences they may have for people when

they see funds disappearing from their bank accounts. We therefore believe

that security in the technological solutions for this sector is particularly im-

portant; a quality that has historically been a hallmark of the banking sector.

The balance between ease of use and security for banking apps should be bet-

ter. It is possible to use safer solutions, where the bank servers of SMS OTP

codes do not accept that the hash codes that identify their apps should be sent

by the apps, but that they should be stored as Google recommends in [2]. It

would thus be unnecessary for banking apps to send the hash that identifies

them to the server of the SMS OTP codes. Consequently, neither the hash that

identifies the app nor the dynamic generation of hash patterns should appear in

the source code of the apps.

• Finally, a methodology has been proposed that has the qualities of simplicity

and generality. The former facilitates its application and getting results from

diverse profiles; while the latter means it is applicable to any sector.

As future work, we are working on the development of a framework to generate

test scenarios for the SMS Retriever API. Our objective is to discover vulnerabilities

caused by poor implementation by developers in the use of the SMs Retriever API in

apps and in the servers used by the apps to request and receive OTP codes. Our objec-

tive is to know more and to understand better what the vulnerabilities are due to the

bad implementation of this API in the apps and in the SMS OTP server.

References

1. Lei, Z., Nan, Y., Fratantonio, Y., Bianchi, A. (2021). On the Insecurity of SMS One-Time

Password Messages against Local Attackers in Modern Mobile Devices – NDSS Symposium.

NDDS Symposium. https://www.ndss-symposium.org/ndss-paper/on-the-insecurity-of-sms-

one-time-password-messages-against-local-attackers-in-modern-mobile-devices/

2. Automatic SMS Verification with the SMS Retriever API. (s. f.). Google Developers. Recu-

perado 16 de septiembre de 2021, de https://developers.google.com/identity/sms-

retriever/overview.

https://developers.google.com/identity/sms-retriever/overview
https://developers.google.com/identity/sms-retriever/overview

9

3. Subramaniam, M. (2019, 16 mayo). No more SMS permission required for SMS verification

in Android O+(8+). Medium. https://s-muthukhumar.medium.com/no-more-sms-permission-

required-for-sms-verification-in-android-o-3e9389a1e43e

4. Manifest.permission. (s. f.). Android Developers. Recuperado 3 de octubre de 2021, de

https://developer.android.com/reference/android/Manifest.permission

5. Manifest.protectionLevel. (s. f.). Android Developers. Recuperado 3 de octubre de 2021, de

https://developer.android.com/guide/topics/manifest/permission-element

6. M4: Insecure Authentication | OWASP. (2016). OWASP Mobile Top 10. Recuperado 21 de

diciembre de 2021, de https://owasp.org/www-project-mobile-top-10/2016-risks/m4-insecure-

authentication

7. Z. Li and G. Feng, "Inter-Language Static Analysis for Android Application Security," 2020

IEEE 3rd International Conference on Information Systems and Computer Aided Education

(ICISCAE), 2020, pp. 647-650, doi: 10.1109/ICISCAE51034.2020.9236807.

8. Mayrhofer, R., Stoep, J.V., Brubaker, C., & Kralevich, N. (2021). The Android Platform

Security Model. ACM Transactions on Privacy and Security (TOPS), 24, 1 - 35.

9. One-tap SMS verification with the SMS User Consent API | SMS Verification APIs |. (s. f.).

Google Developers. Recuperado 17 de enero de 2022, de

https://developers.google.com/identity/sms-retriever/user-consent/overview

10. GitHub - skylot/jadx: Dex to Java decompiler. (s. f.). GitHub. Recuperado 24 de enero de

2022, de https://github.com/skylot/jadx

Appendix A. Evidence of the use of the APIs for OTP code

verification in the banking sector

This appendix provides evidence in the form of screen captures extracted from the

static analysis carried out concerning the banking applications mentioned in the arti-

cle. Figures 4, 5, 6 and 7 show evidence of the use of the SMS Retriever API in the

bank apps “caixabanknow”, “bankia”, “Nueva Santander” and “ruralvia”. In the first,

“caixabanknow”, the use of the chain SmsRetriever.API in line 18 is evidence

of the use of this API. Analogously, the appearance of the chain SmsRetriever-

Client in the remaining apps is evidence that they all use this API. We have also

detected the use of the One-Tap SMS Verification API. The presence of the chain

sendSMS is evidence that both the bank app “BBVA Más Azul”, in Figure 8, and the

app “ING” (Figure 9) use this API to manage the OTP codes. The appearance of these

chains in all of them has been highlighted in yellow.

Fig. 4. Chain SmsRetriever.API present in the bank app “caixabanknow”.

https://developer.android.com/reference/android/Manifest.permission
https://github.com/skylot/jadx

10

Fig. 5. Chain SmsRetrieverClient present in the bank app “bankia”.

Fig. 6. Chain SmsRetrieverClient present in the bank app “Nueva Santander”.

Fig. 7. Chain SmsRetrieverClient present in the bank “app ruralvia”.

Fig. 8. Chain sendSMS present in the bank app “BBVA Más azul”.

11

Fig. 9. Chain sendSMS present in the bank app ING.

Appendix B. Evidence of hash generation in the apps

This appendix provides evidence of the use of methods and functions to generate

the hash in the studied apps belonging to the banking sector. They are all invocations

to methods that allow the package name of the app to be signed to be obtained, or

they allow those that permission the signing to be obtained. Figure 10 shows the use

of the method getPackageName to obtain the name of the app’s package. Figure

11 shows the use of the library android.content.pm.Signature used to sign

the app’s package. On the other hand, Figure 12 detects the library ja-

va.security.MessageDigest used to create summaries of messages in MD5,

SHA-1 or SHA-256 format. Figure 13 shows the use of the method encodeTo-

String used to represent a chain of characters in base64.

Fig. 10. Chain getPackageName present in the bank app “Nueva Santander”.

Fig. 11. Chain getPackageName present in the bank app “ING”.

12

Fig. 12. Chain java.security.MessageDigest present in the bank app “Nueva San-

tander”.

Fig. 13. Chain encodeToString present in the bank app “Nueva Santander”.

