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A B S T R A C T

In this work, a method to predict the output power of Photovoltaic (PV) cells using their Electroluminescence
(EL) images is presented. The data used includes Electroluminescence Images and the value of the Max Power
Point computed from the Current–Voltage Curve of the cells. The method is used as follows: Firstly, the
images are preprocessed to improve their quality. After that, a comparison between different Machine Learning
methods from Traditional ones, such as Random Forest or Gradient Boosting, to Deep Learning methods, such as
Recurrent Neural Networks or Convolutional Neural Networks is performed. Another significant contribution
of this paper is that it analyzes the problem of unbalanced data, trying to solve it using Synthetic Images
created by a Generative Adversarial Network. Our results show that the best model is the Gradient-Boosting
based method using a pre-trained Resnet50 as a feature extraction method with a Mean Absolute Error (MAE)
of 0.0341 and a Mean Squared Error (MSE) of 0.00211. The results also shows how the models trained with
the unbalanced dataset are capable of obtaining results similar to the models trained with the balanced dataset.
1. Introduction

In nowadays world, the energy production faces two big problems.
First, the cost of producing energy is on a steady rise due to the lack
of fossil fuels and the high price of the available resources. Another
important problem is that these kinds of energy have played a signif-
icant role in polluting the environment, which has resulted in climate
change [1]. Due to these two problems, the use of alternative energies
has been increasing in recent years. Among these energies, the use of
Solar Energy is one of the most effective and most used due to its
availability[2].

Photovoltaic (PV) plants are one of the most important alternatives
[3] to mine solar energy [4], due to their availability, affordability,
and share market [3]. PV plants gather hundreds to thousands of PV
modules, each one made of a set of PV cells, depending on the module
configuration. The amount of PV cells depends on the configuration
of the module. The maintenance of these plants is generally highly
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complex. The production of PV cells is affected by different aspects
such as weather, soiling, defects, etc. Another important factor is
that some defects cannot be found by visual inspection; techniques
such as Thermography or Electroluminescence (EL) are necessary to
detect them. Thermography measures the infrared irradiation of the
module and produces an image of it. However, Electroluminescence
(EL) measures the amount of light a module emits when injected with
electric current. More information about these techniques can be found
in the bibliography [5,6].

Artificial Intelligence Techniques have been used to optimize the
production of PV systems [7,8]. Different problems have been ad-
dressed, such as the Max Power Point Tracking, the estimation of
the parameters of the model for simulating, the forecasting of the
production, or the detection of faults in the cells.

This work focuses on using Artificial Intelligence to build a model
with the capacity to estimate the performance of PV cells from its
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Table 1
Characteristic of the solar cells used in the experiments.

Characteristic Value

Max power 4.67 W
Open-Circuit voltage 0.645 V
Short-Circuit current 8.99 A
Fill factor 0.81
Efficiency 19%
Number of busbars 4
Size 156 mm × 156 mm
Thickness 200 μm
Technology Polycrystalline

EL image. Different works [9–11] tackle the issue of finding defects
in PV cells or modules obtaining accuracy values of near 99% [7].
Still, their limitation is that they do not directly consider the impact
of these defects on their performance. This can be an issue since the
final objective of these kinds of methods is to detect bad-performing
modules. The main reason for this problem is that it is quite complex
to measure the performance of a single cell by measuring its I–V curve
since it is usually installed in the modules, and it is not possible to
remove them without affecting the performance of the installations
since their contacts are welded.

Using the performance of the modules is a more direct metric of
their performance and state. Other works have tackled this issue by us-
ing machine learning to predict the power produced by the cell [12,13],
but their training data has not been measured directly since they are
not able to measure the individual I–V curve of each of these cells.

The main contribution of this paper is the creation of an Artificial
Intelligence Model that is able to predict the power of the cell using EL.
This model has been trained with data obtained directly from the I–V
curves of the cells. The I–V curves were measured individually for each
cell, using the device described in the work by J. I. Morales-Aragones
in [14]. Different models were trained with the data and the images to
predict the power of the cells, addressing the problem as a regression
problem. This paper also tackles the issue of unbalanced data by
analyzing the effects of balancing the dataset with synthetic data[15].
This is a step forward from other works since the IV curve provides
direct information about the performance (The energetic production)
of the PV cell.

The paper is structured as follows: First, it describes the instrumen-
tal setup for taking the EL images and the I–V curves of the cells in
Section 2.1, after that, it explains the methodology that it has been
followed for preprocessing the data (Section 2.2), for balancing the
data (Section 2.4), choosing the metrics (Section 2.5) and designing
the models (Section 2.6). It also explains the feature extraction method
in Section . Finally, Section 3 analyzes the results of the experiments
and explains the conclusions and the future work in Section 4.

2. Data and methodology

This section will explain the methodology of the different processes
of the experiments: data gathering, data preprocessing, data label-
ing, balancing of the data, metrics selection, feature extraction, and
hyperparameter tuning of the different models.

2.1. Data

The dataset is composed of 603 EL measurements (Fig. 1), including
cells with different defects or artificial masks. The cells used in the
experiments are individual and are not a part of any solar module.
Table 1 presents the most important characteristics provided by the
manufacturer.

The shadowing in the cells was performed using cardboard masks
with a layer of aluminum. The zones covered by the mask do not
contribute to the production of current since the aluminum foil is
2

Fig. 1. Distribution of the samples of the dataset.

capable of blocking photons. This is clearly visible in the EL image, in
the area shadowed by the mask, and in the I–V curve, since the mask
reduces the current production of the cell.

These masks have been placed on the surface of the cell. Overall,
there are 8 kinds of masks or defects that imitate problems found in
real cells (Fig. 2). The images have been taken with different values of
polarization current (Fig. 5).

The images were captured using an ‘‘InGaAs C12741-0’’ silicon
detector camera with an 8 mm focal length lens and an ‘‘f’’ number of
1.4. At a PV cell level, each EL measurement was taken consecutively
as the measurement of the I–V curve was carried out, in the same
experimental conditions. . For these measurements, it was used the I–V
measurement device created in [14] (Fig. 4) This device is capable of
measuring the I–V curve of a single cell when its contacts are available,
which is not the case in typical solar modules but it is possible when the
cell is inserted into a module. The illumination for the measurements
was provided by an LED infrared panel. The information about the
individual LEDs and the panel can be found in Table 2

The temperature of the cells was also monitored. All of the mea-
surements were taken at similar temperatures.

In addition to the EL measurements of the cells, some synthetic
images were included. These images were created in the previous works
of research group [15]. This dataset comprises 10,000 images of EL
measurements of cells with a certain value of power associated with
each one. was predicted using a Random Forest algorithm, which is one
of the most well-known ensemble-based approaches (see reference for
more details). This synthetic dataset was used to balance the original
dataset (Fig. 3).

2.2. Data preprocessing

The measurements that were made required a complex process to
improve their quality. This process helped the models to manage the
images. The method of preprocessing included the following processes
(Fig. 6):

• Removing dead pixels and image noise caused by camera deteri-
oration and tiny amounts of external light entering the chamber
when the PV cell was enclosed, which was not a perfect light-tight
chamber.

• Increasing the brightness and contrast of the digital values of the
pixels of the images through min–max normalization in order to
improve the visibility of the image.

• Fixing the distortion produced by the lens of the camera and
removing the surrounding black areas. These processes crop the
image to a square closer to the area occupied by the cell. Re-
moving the parts that do not provide information and ensuring
a better correspondence of the geometry of the images with the
one of the measured cells.

A more detailed explanation of these processes can be found in our
previous work [15].
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Fig. 2. Different Masks or Features presented in the datset.
Table 2
Information about the LEDs and the array.

Characteristic LED Characteristic Panel

Dimensions 3,85 × 3,85 × 2,41 mm Dimensions 150 × 150 mm
Operation temperature −40 to 125 ◦C Wave length 850 nm
Direct voltage 1.5 V Excitation voltage 21 V
Direct current 1000 mA Direct current 3 A
Radiation peak 860 nm Electric power 43 W
Radiation center 850 nm Branches in parallel 3
– – LEDs in series 14
Fig. 3. Examples of generated images.

2.3. Calculation of the power

Along with the image, the I–V curve of each measurement was
taken. With this data, it is possible to find the Maximum Power Point
(MPP) of each measurement. This MPP depends on the amount of
3

light emitted to the cell, the state of the cell, and its temperature. In
Fig. 7, the I–V curve of a cell can be observed along with the computer
Power–Voltage curve and the position of the MPP.

After calculating the MPP for each cell, it was necessary to stan-
dardize the values since these values depended on the amount of light
that was used to take the measurements. The following methodology
was used to standardize the value:

• Different groups of cells were created according to the irradiance
that was used to take the measurement.

• For each one of the groups, the 5 highest values of the MPP are
obtained.

• The mean of the 5 values is computed. This will reduce the
problems for extreme values that can be caused by problems in
the measurements.

• MPP of each of the cells is divided by the mean computed of its
group.

This process results in a variable that is independent of the irradi-
ance. Low values will correspond with cells with low output power.
High values indicate that the cell operates according to its theoretical
capacities. The values of power of the synthetic images were computed
using a Random Forest algorithm trained with the values of the real
data; more information can be found in the original article [16].

2.4. Balancing of the data

As shown in Fig. 8(a), the distribution of cells according to their
maximum power is not balanced. This is caused by the nature of the
problem. It is easier to find cells in a quite eroded state or with some
defects than cells completely broken or in a perfect state.

As seen in other problems [17–19], the unbalance of the datasets
is a common problem in machine learning that needs to be tackled
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Fig. 4. I–V-tracer.

Fig. 5. Devices used to obtain the images.

Fig. 6. Image before and after applying the explained process (the process explained in the text: removing noise, adjusting contrast and brightness, and modifying image geometry
to eliminate black surrounding areas and deformation.
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Fig. 7. Curves current–voltage and power–voltage.
Fig. 8. Histogram of the distribution of the images before and after the balancing.
following a tailored strategy for each problem. Synthetic images were
included to solve this problem. The process that was used can be
summarized in these steps:

• The original dataset is divided into four different subgroups ac-
cording to their power (Group 0: 𝑥 < 0.7, Group 1: 0.7 ≤ 𝑥 < 0.8,
Group 2: 0.8 ≤ 𝑥 ≤ 0.9, Group 3: 𝑥 > 0.9) (Fig. 8(b))

• For each group, synthetic images with a power value in the same
range as the others of the group are added until all of the groups
are of the same size as the biggest group.

This procedure helps to have a more balanced dataset (Fig. 8(c)).
Different combinations of groups and sizes were tested, and it was
found that 4 groups using the biggest size and maximum size gave the
best results in our tests. The balancing had only been applied to the
training data.

2.5. Metrics

Common metrics for regression include Mean Squared Error (MSE)
and Mean Average Error (MAE).

MAE : ∑𝐷
𝑖=1 |𝑥𝑖 − 𝑦𝑖|

MSE : ∑𝐷
𝑖=1(𝑥𝑖 − 𝑦𝑖)2

With 𝑥 being the real value and 𝑦 the predicted value MSE, due to
its definition, gives more importance to the outliers, performing better
for underrepresented cases and worse for overrepresented cases. This
also helps to deal with the unbalance of the data. More information
about metrics can be found in the bibliography [20].

2.6. Experiments

Different models have been tested to solve the problem tackled
in this article, which is important since, as it has been commented,
there are no other works in the bibliography that tackles directly this
problem. For each one of them, the issue of the extraction of features
for training the model and the optimization of the architecture and
hyperparameters has been addressed.
5

2.6.1. Traditional methods
This section proposes a baseline approach to estimate the power

from a single EL image. Different traditional methods have been used
for regression problems [21]. From the enormous amount of different
techniques, Random Forest [16] and Gradient boosting [22] were
chosen due to their good performance in our preliminary tests and their
low computational cost.

• Random Forest [16]: is a widely-used algorithm that combines the
output of many decision trees in order to reach a single output.

• Gradient Boosting [22]: is a popular ensemble algorithm that
trains the models sequentially, each new one trying to improve
the previous one.

The algorithms were trained with features extracted from the EL
images. The implementation used can be found in the Sklearn [23]
library for both of the methods.

Feature extraction. To apply power estimation using traditional meth-
ods, it is not possible to simply use the images. It is necessary to extract
information from the images. Two different approaches have been used
to perform this task:

• Manual extraction: The histogram of an EL image cell (see Fig. 9)
usually presents two different peaks; the position of these peaks
is related to the amount of white and dark areas in the image.
Another important feature is the number of dark regions. These
zones are related to the parts of the cell that are not working
right [24]. The areas with pure white are usually also harmful
since they are related to other kinds of defects. It also included
information about the roughness of the curve and different sta-
tistical metrics such as mean, variance, and standard deviation.
These features represent the most important characteristics of the
EL images (Table 3).

• Resnet extraction: Pre-trained convolutional networks for feature
extraction are being used in different areas with excellent results.
They have also been used in topics related to EL images of solar
cells. It has been shown that models trained on the ImageSet [25]
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Fig. 9. Color histogram of a cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Manually selected features. Mean, median, mode, variance, roughness and standard
deviation of all the values of the histogram. Number of pixels with values of blacks,
very bright whites, and other values. Number of peaks in the histogram and their height
and width.

Mean Median Mode Variance std

Roughness Blacks Burned whites Others peaks_number
Peaks distance Peak 0 height Peak 0 width Peak 1 height Peak 1 width

dataset are advantageous since they have an extraordinary capac-
ity for finding features in other images and problems [26,27]. One
of the most popular architectures is Resnet [28] which presents
a configuration between 18 and 152 layers. For our problem,
it has been chosen the Resnet50 in its implementation found in
Tensorflow Library [29]. Tensorflow is a widely used library used
to create any kind of neural network, with a high variety of layers
(Deep, Convolutional, Recurrent) available to use. To compute the
features, It was necessary to convert the measurement to RGB
images and resize them according to the specifications of the
network.

Hyperparameter tuning. The tuning of the hyperparameters it is critical
in Machine Learning problems since the correct adjustment of the
hyperparameters can improve greatly the results of the models since it
can be a complex problem in models with a high amount of parameters.
Different algorithms have been created in order to automatize it. This
work has been done with GridSearchCV using the Sklearn library [23].
GridSearch does an exhaustive search over the specified parameters
evaluating the results according to the metrics of the model. The results
of the optimization for RF can be found in Table 4 and the results for
GB in Table 5.

2.6.2. Recurrent Neural Networks (RNNs)
The two methods based on Recurrent Neural Networks (RNN) have

been tested. The main characteristic of these networks is that the nodes
can form cycles, enabling them to exhibit temporal dynamic behavior.
One of the methods is based on Long Short Term Memory (LSTM) [30],
and the other is based on Gated Recurrent Unit (GRU) [31,32]. The
implementation was made using Tensorflow [29].

Feature extraction. As in the traditional methods, recurrent Neural
Networks are not able to work with the image itself. It is necessary
to extract features from the original images. The same process as in the
previous subsection was followed, using manual feature extraction and
feature extraction based on Resnet50.
6

Optimization. Different optimization methods have been proposed in
the literature. Adam [33] was used as the optimizer since it is one of
the most used and it has a good performance.

The optimization of the hyperparameters is one of the most complex
processes in the design of Deep Learning Models. A manual process is
not viable since the number of parameters and their values to optimize
is usually extremely high. To solve this problem, it has been chosen the
library Keras-Tuner [34]. This library includes different optimizers, one
of which is the Bayesian Optimization Tuner [35]. This algorithm takes
into account the results of past evaluations when choosing the hyper-
parameter to evaluate next. This informed way of choosing parameters
improves the search in the most promising area of the search space.
It also disregards the less promising areas which reduces the iterations
needed to find the optimal set of parameters

Different parameters were chosen to be optimized: the learning rate,
the batch size, the number of hidden layers, and the number of nodes
in each layer, adding 16 each time. The optimization process was run
for 32 iterations.

Adan was used as the optimizer. The best results can be found in
Table 6.

Architecture. The architecture of the best model according to the tuning
process can be found in Fig. 10.

2.6.3. Convolutional Neural Networks (CNNs)
This section introduces the CNN-based approach to predict the

power of a cell from its EL image. CNNs have the capacity to deal with
images since they can apply Feature Extraction with their convolutional
layers. Two different approaches are presented: One training a new
CNN from scratch and one using transfer learning from a Resnet50 [28].
Tensorflow is used for implementing the models.

Preprocessing. Along with the processes discussed in Section 2.2, it was
important to reduce the size of the images to 200 × 200, to decrease
the computational cost of the algorithm.

Architecture. The architecture of the neural network was chosen using
a manual process. The networks were trained during 500 epochs, and
the best model found in the training of each option was considered the
final one. The findings showed that the best one had 2 convolutional
layers of 64 and 128 units and one dense layer of 256 units. (Fig. 11).

This architecture was chosen after doing a trial-error process with
different architectures trying to minimize the validation error, and it
was not possible to use an automatic optimizer due to limitations in

the hardware used for the experiments.
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Table 4
Best hyperparameters found for Random Forest: n_estimators ∈ [100, 1000], max_depth ∈ [2, 𝑁𝑜𝑛𝑒], min_samples_leaf
∈ [1, 10], min_samples_leaf ∈ [1, 10], min_weight_fraction_leaf ∈ [0, 0.8].
n_estimators max_depth min_samples_leaf min_samples_leaf min_weight_fraction_leaf

750 None 1 3 0
Table 5
Best hyperparameters found for Gradient Boosting: n_estimators ∈ [100, 500], max_depth
∈ [2, 𝑁𝑜𝑛𝑒], learning_rate ∈ [0.01, 0.001].

n_estimators max_depth learning_rate

275 None 0.08

Table 6
Best hyperparameters found for Recurrent Neural Networks: num_layers ∈ [2, 3, 4, 5, 6],
num_units ∈ [16, 32, 64, 125, 256, 512], batch_size ∈ [16, 32, 64, 80, 96, 112, 128], learn-
ing_rate ∈ [0.001, 0.00001].

RNN num_layers num_units batch_size learning_rate

LSTM 6 512 16 0.000219
GRU 2 16 16 0.001

Fig. 10. Final architectures of the recurrent networks.

Table 7
Best hyperparameters found for Convolutional Neural Networks: batch_size ∈
[16, 32, 64, 80, 96, 112, 128], learning_rate ∈ [0.001, 0.00001].

batch_size learning_rate

16 0.00005

Optimization. Bayesian Tuner from Keras-Tuner was also used in the
experiments with RNNs, optimizing the following parameters the learn-
ing rate and the batch size. The optimization process was run for 32
iterations. Adam was used as the optimizer. The best results can be
found in Table 7.

3. Results and discussion

This section assesses the performance of the methods for predicting
the power of a cell by comparing different approaches in terms of
their performance. Each experiment was repeated 5 times using the
parameters found in the hyperparameter optimizations. This ensured
the stability and quality of the results of each method. The experiments
were performed with an AMD Ryzen 7 5800H, a GTX 1650 of 4 GB, and
16 GB of RAM.
7

Fig. 11. Final architecture.

3.1. Training only with real images

The results of the experiments using only the original dataset can
be found in Table 8.

The results show that CNN has the best performance in terms of
MAE, but RF is better when the MSE is taken into account. Recurrent
Networks methods perform considerably worse than the other methods.
It can be seen that the results are notably good even when the problem
of unbalanced data is presented.

3.2. Training with original + synthetic images

The results of the experiments balancing the original dataset with
synthetic images can be found in Table 9.

The results of the experiments with the original dataset and the
balanced are quite similar. In the methods that use features, there is
a low increase in both errors, but in CNN, which uses the images, there
is a low decrease in the errors. Two different facts can be concluded
from these results: that the manual feature extraction is not good
enough for this problem or that the unbalance of the original dataset
is not worsening the results of the models. This first hypothesis will
be verified by using the feature extraction methods presented in the
methodology section.

3.3. Using resnet

For this experiment, only the two most promising feature-based
methods from the previous section are considered (GB and RF). The
results of both methods are compared using the original dataset and
the balanced dataset.
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Table 8
Results using the original dataset.

Metric MAE MSE

Data Train Validate Test Train Validate Test

GB 0.00222 0.03674 0.03667 ± 0.00148 4.67e−05 0.00224 0.00290 ± 0.00006
RF 0.01432 0.03821 0.03721 ± 0.00179 0.00287 0.00227 0.00285 ± 0.00002
LSTM 0.03682 0.04602 0.04397 ± 0.00386 0.00257 0.00343 0.00354 ± 0.00027
GRU 0.03805 0.04615 0.04637 ± 0.00402 0.00258 0.00343 0.00386 ± 0.00008
CNN 0.01181 0.03328 0.03630 ± 0.00160 0.00039 0.00202 0.00301 ± 0.00005
Table 9
Results using the balanced dataset.

Metric MAE MSE

Data Train Validate Test Train Validate Test

GB 0.00233 0.03647 0.03708 ± 0.00316 8.62e−05 0.00206 0.00282 ± 0.0006
RF 0.00980 0.03712 0.03747 ± 0.00394 0.00980 0.002155 0.002935 ± 0.0001
LSTM 0.01998 0.04497 0.04068 ± 0.00340 0.00114 0.00332 0.00349 ± 0.00008
GRU 0.02582 0.04601 0.04870 ± 0.00439 0.00149 0.00357 0.00430 ± 0.00004
CNN 0.01071 0.03255 0.03407 ± 0.00255 0.00034 0.00192 0.00284 ± 0.00005
Table 10
Results of using Resnet for feature extraction (R): Original Dataset, (S): Balanced Dataset.

Metric MAE MSE

Data Train Validate Test Train Validate Test

GB (R) 0.001000 0.032786 0.034277 ± 0.00293 1.63e−05 0.003078 0.002271 ± 0.0001
RF (R) 0.009926 0.035272 0.034684 ± 0.00251 0.000202 0.003469 0.002332 ± 0.0001

GB (S) 0.001957 0.032993 0.034143 ± 0.00307 5.12e−05 0.003183 0.002116 ± 0.0001
RF (S) 0.009926 0.034884 0.034559 ± 0.00248 0.000202 0.003444 0.002319 ± 0.0001
Fig. 12. Box diagram of the experiments.
It can be observed in Table 10 that GB and RF perform better with
this feature extraction method. Their results are even better than CNN
in terms of MSE, but they perform a bit worse in terms of MAE.

GB is considered the best model for two main reasons: MSE is a bet-
ter metric than MAE in this problem since MSE gives more importance
to the outliers, which helps to deal with problems that have a problem
of unbalance in the data. The other reason is that the computation cost
of GB [36] is considerably lower than CNN [37] even after applying
Resnet to extract features.

Fig. 12 presents a summary of all of the experiments.
8

It can also be observed that the use of synthetic images for balancing
the dataset does not make a great change in the results of the models
but they do not make them worse. It is therefore concluded that the
problem of the unbalance of the dataset is not damaging the perfor-
mance of the models. This also reassures the quality of the synthetic
images.

Fig. 13 shows the relationship between the distance real valor and
predictions. Almost all the samples have a distance between [−0, 1, 0.1]
with only a few outliers in the most extreme values. This shows that
the method is not biased toward certain values.
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Fig. 13. Relation between the values and error.

4. Conclusions and future work

The detection of the output power of PV cells is one of the most criti-
cal research issues in the PV sector since it can analyze their production
directly. Still, it is quite complex due to the difficulty of obtaining the
individual I–V curves of the cells. In an attempt to design an enhanced
prediction system, different models are presented and compared in the
paper. The effect of an unbalanced dataset has also been analyzed.
Synthetic images have been used to try and fix the problem. The
results have shown two important conclusions: The Gradient Boosting
model is the best-performing method when combined with a robust
feature extraction method such as Resnet50, with an MAE of 0.0341
and MSE of 0.0021. It has also been observed that the unbalance in
the dataset is not as critical as it can be seen. The method trained
with the unbalanced dataset performs similarly to the methods with
the balanced dataset.

The research objectives have been fulfilled since it has been shown
that it is possible to create a model capable of predicting the output
power of a PV cell using the information from the EL images. It is ex-
tremely important to remark on the importance of using the I–V curve
to obtain the values of the labels since this information is an objective
measurement of the performance of the cell. This is different from
approaches presented in most of the works of the biography, where
they do not have the possibility of measuring the I–V at the cell level.
Even with the good results, the method has some flaws that should be
addressed in the future works: The amount of data is quite limited, so
new images with different defects would improve the generalization
and performance of the model. Another interesting option would be
to upgrade the preprocessing of the images to improve the amount of
information that can be obtained from them. The applicability of the
model is quite limited at this point of the research; for applying it to
real-time applications, it would need a constant way of performing EL
captures of the PV modules.
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