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Abstract: The effectiveness of EMG biofeedback with neurorehabilitation robotic platforms has
not been previously addressed. The present work evaluates the influence of an EMG-based visual
biofeedback on the user performance when performing EMG-driven bilateral exercises with a robotic
hand exoskeleton. Eighteen healthy subjects were asked to perform 1-min randomly generated
sequences of hand gestures (rest, open and close) in four different conditions resulting from the
combination of using or not (1) EMG-based visual biofeedback and (2) kinesthetic feedback from the
exoskeleton movement. The user performance in each test was measured by computing similarity
between the target gestures and the recognized user gestures using the L2 distance. Statistically
significant differences in the subject performance were found in the type of provided feedback
(p-value 0.0124). Pairwise comparisons showed that the L2 distance was statistically significantly
lower when only EMG-based visual feedback was present (2.89 ± 0.71) than with the presence of
the kinesthetic feedback alone (3.43 ± 0.75, p-value = 0.0412) or the combination of both (3.39 ± 0.70,
p-value = 0.0497). Hence, EMG-based visual feedback enables subjects to increase their control over
the movement of the robotic platform by assessing their muscle activation in real time. This type of
feedback could benefit patients in learning more quickly how to activate robot functions, increasing
their motivation towards rehabilitation.

Keywords: biofeedback; electromyography; human–robot interaction; neuromotor rehabilitation;
robotics

1. Introduction

The incidence of stroke is growing because of the ageing population. Although
the stroke mortality has been reduced, the increase of stroke survivals has resulted in
an increasing number of adults with disabilities, and therefore the demand for stroke
rehabilitation services is also growing [1]. This aspect has elicited considerable scientific
interest in motor recovery using robotic rehabilitation systems.

Robotic assistance devices are deployed in clinical settings as a rehabilitation tool
with a special focus on arm function and gait [2]. There are two main categories based on
their design [3]: end-effectors [4,5] and exoskeletons [6–8]. Additionally, they can also be
classified according to training modality or assistance type: passive, assistive, active or
resistive [9].

As opposed to passive robots that always guide the movement of the paretic limb,
assistive robots only exert assisting forces if the patient intends to do the movement. Both
passive and assistive modes are aimed to be used in the first stages of stroke rehabilitation,
when the patient has not enough strength to move the paretic limb, while active and
resistive modes are used in later phases because they require patient movement.
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The passive training modality has been found to be temporarily effective for reducing
hypertonia [10] and for maintaining the range of motion in the early stage of treatment
but it does not significantly improve motor functionality [11]. Assistive rehabilitation
robots have been found to be more effective for motor skills improvement than passive
robots [11,12]. However, the design complexity of assistance robots increases when it is
necessary to detect the movement intention of the patient.

Hence, enabling a natural human–robot interaction (HRI) is a major challenge in
developing robotic rehabilitation systems. The selected strategy for intention detection
is crucial for a transparent and friendly HRI. Some robotic rehabilitation platforms use
bio-signals as an intention recognition source. Electromyographic (EMG) signals are most
commonly used since they are closely related to the human motion [13–15]: they represent
the electrical activity produced by the skeletal muscles responsible for performing the
intended gestures and actions [16–18]. Although the accuracy of the intention detection
strategy is mostly related to the sensors and algorithms [19], several studies have reported
the influence of the learning effect on the user’s performance after repeated used of the
robotic platform [20]. Hence, providing some feedback about EMG activity may help the
user to learn more quickly how to control the robot because it may improve the user’s
motor control. This way, the user’s learning time may be shorter and, consequently, their
motivation may be enhanced.

The biofeedback approach was introduced more than forty years ago in rehabilitation
settings [21]. It consists of providing the user with information about their physiological
activity in real time that would otherwise be unknown. EMG biofeedback is the most
widely used method of biofeedback and it is usually provided to the user by visual or
auditory signals [22,23]. These are known as EMG-based visual feedback and EMG-based
audio feedback, since the input source is based on EMG information and is fed back to
the user visually and auditorily, respectively. Although EMG biofeedback techniques
appear promising, there is limited and contradictory evidence about their effectiveness
in musculoskeletal and neurological rehabilitation [24–26]. However, studies that tried to
assess the effectiveness of EMG biofeedback did not use this technique in combination with
robotic rehabilitation platforms [27–52].

For this reason, we aim to evaluate whether the inclusion of EMG biofeedback enables
users to gain control over the movement of EMG-driven robotic rehabilitation platforms by
better assessing their EMG responses and, therefore, to learn self-control of these responses.
For this assessment, the RobHand platform, an EMG-driven robotic hand exoskeleton for
performing bilateral neuromotor rehabilitation therapies, is used.

EMG-driven bilateral therapies consist of recording the muscle activity of the healthy
limb to determine the motion and to reproduce it in the paretic limb with the assistance of
the robotic device. Bilateral robotic therapies follow the same principles of the traditional
mirror therapy with the only difference that the motion illusion created by the mirror is
replaced by the real motion provided by the exoskeleton. EMG-driven bilateral therapies
are included in the assistive training modality. Hence, they have great potential during the
first weeks of rehabilitation when the motor capabilities are limited, but also because the
muscle activity of the impaired limb may be unreliable for unilateral control.

During the experiments, EMG information was visually fed back to the user while
undergoing EMG-driven bilateral exercises. Furthermore, the EMG-based visual biofeed-
back was designed specifically for this study with the aim of being as simple as possible
using a visualization based on two variable length bars and two colors. Its effectiveness
was investigated by comparing the user performance with and without the presence of
this feedback. Furthermore, we investigated whether the kinesthetic feedback from the
exoskeleton movement also induced an enhancement over the robot control.
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2. Materials and Methods
2.1. Participants

The study was conducted with 18 subjects, all legal age (mean age was 23 ± 3.4) and
students from the University of Valladolid. All subjects were healthy, with no neurologi-
cal or orthopedic impairment, and volunteered to participate in the study by providing
written informed consent. None of the subjects had previously used EMG-driven robotic
devices. The study was undertaken during the month of January 2022, using the RobHand
rehabilitation platform.

2.2. Robot Rehabiliation Platform

The RobHand (Robot for Hand rehabilitation) robotic neurorehabilitation platform
is based on a hand exoskeleton that allows performing of EMG-driven bilateral therapies
(Figure 1). The exoskeleton assists the hand fingers in the flexion and extension move-
ments, and it is based on a direct-driven under-actuated serial four-bar linkage mechanism.
Specifically, the hand exoskeleton has a range of motion of the metacarpophalangeal (MCP)
joint of 2~−78◦, which indicates that flexion of the finger reaches −72◦, and the extension
reaches 2◦ [53].

1 
 

 
  
Figure 1. RobHand exoskeleton.

The EMG-driven bilateral therapies are carried out by recognizing the gesture of
the healthy hand (open, rest or close) by analyzing the EMG signals and replicating that
gesture on the hand exoskeleton, which is placed on the paretic hand. For this purpose,
the electromyographical signals of the extensor digitorum (ED) and flexor digitorum (FDS)
muscles of the healthy hand are recorded by a custom-made 2-channel low-cost EMG
acquisition system. Each channel consists of an instrumentation amplifier and a RC low-
pass filtered. ED and FDS are two of the muscles responsible for the hand opening and
closing movements, respectively. The EMG signals are recorded at a sampling rate of 200 Hz
and are processed in the real-time TMS320F28069M microcontroller (Texas Instruments,
Dallas, TX, USA) to detect the hand gestures.

The hand gesture recognition is performed by an EMG-based threshold algorithm.
Hence, it is performed by muscle activity comparison, which requires a previous normal-
ization of the EMG signals; the raw signals must be mapped into a range of 0–1, implying a
previous rectification of the signal. The 0 value stands for no muscle activity whereas the
value 1 stand for the maximal voluntary contraction (MVC) of the muscle.

Therefore, the recorded EMG signals are notch-filtered at 50 Hz and high-pass filtered
at 10 Hz to isolate the spectral content of interest. The filtered signals are rectified by
calculating the root mean square (RMS) with a moving average window of 50 ms (10-point
window) and then low-pass filtered at 2 Hz. The rectified signals (rEMG), with a resulting
frequency of 20 Hz, are normalized with respect to the MVC values, which have been
determined in a previous calibration. The gesture recognition depends on the normalized
signals (nEMG) of the ED and FDS muscles and the two EMG thresholds, which have also
been calculated in previous calibrations [54,55].
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Lastly, the microcontroller generates the proper control signals to move the L12-30-
100-6-I actuators (Actuonix Motion Devices Inc., Saanichton, BC, Canada) of the hand
exoskeleton to the target position. The control signal is a PWM signal, whose duty cycle is
proportional to the stroke extension percentage of the actuator. For instance, Figure 2 shows
that when the duty cycle changes to 0% the actuator starts moving so the exoskeleton
reaches the closed gesture (MCP joint angle of −78◦). Similarly, when the duty cycle
changes to 100%, the actuator starts moving in the way of opening the hand exoskeleton
(MCP joint angle of 2◦) [56]. Further details regarding the electronic design and operation of
the real-time system, including the custom-made EMG acquisition system, microcontroller
and actuators can be found in Cisnal et al. [54].
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Figure 2. Recorded data of the MCP joint angle of the middle finger and duty cycle of the PWM
control signal applied to the actuator.

2.2.1. Calibration Process

The calibration process is required to determine both the MVC values for normalizing
the signals and the muscular deactivation thresholds used in the EMG-driven control. The
duration of the calibration is 24 s: subjects are asked to rest their hand and to perform a
maximum hand finger flexion and extension for 8 s for each action (Figure 3).
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Figure 3. EMG signals of ED and FDS muscles during a calibration process: raw EMG signals,
normalized EMG signals and deactivation thresholds.

The MVC of the ED and FDS muscles (MVCED and MVCFDS) are determined as the
maximum value of their corresponding rectified EMG signal (rEMG) during the calibration
procedure. The two thresholds, ε and µ, correspond to the muscular deactivation of the
ED and FDS muscles. Therefore, the thresholds are determined as the minimum value of
their corresponding normalized EMG signals (nEMG) plus a constant of 0.1 during the
relaxation phase [54].

2.2.2. EMG-Driven Control

The EMG-driven control recognizes the actual gesture of the healthy hand and repli-
cates it on the hand exoskeleton. Three gestures can be recognized: rest, open and close.
The recorded EMG signals are transmitted to the real-time microcontroller to filter, rectify
and normalize the signals. Then, the gesture is recognized according to the normalized
EMG signals (nEMG) and the two EMG thresholds (ε and µ) set in the initial calibration
(Figure 4). The rest gesture is determined when both nEMG signals are lower than their
respective muscular deactivation thresholds. The open-hand gesture is recognized when
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the nEMGED signals exceed the extensor threshold (ε) and the nEMGED is larger than
nEMGFDS if nEMGFDS exceeds the flexor threshold (µ). Analogously, the close gesture is
recognized when the nEMGFDS signal exceeds the flexor threshold (µ) and the nEMGFDS is
larger than nEMGED if it exceeds the extensor threshold (ε).
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Formally, if A is defined to be true when nEMGED is higher than ε, B is true when
nEMGFDS is higher than µ and C is true when nEMGED is higher than nEMGFDS, the
gesture recognition algorithm can be defined by the following Equations (1)–(3).

REST = A·B (1)

OPEN = A·
(
B + C

)
(2)

CLOSE = B·
(
A + C

)
(3)

Note that for any combination of inputs (A, B and C), only one of the outputs (REST,
OPEN or CLOSE) is true [54].

2.3. Experimental Protocol

The subjects are comfortably seated in a chair in front of a table, looking into a
computer screen positioned approximately 50 cm away. Since the experiments are carried
out with healthy subjects, their dominant hand corresponds to the non-paretic hand of the
patients and their non-dominant hand corresponds to the impaired hand of the patients.
The positions for the placement of the EMG electrodes are determined by palpating and
visually observing muscle contractions in the dominant forearm. The hand exoskeleton is
placed on the non-dominant hand (Figure 5). The dominant arm is held in a self-selected
comfortable position (e.g., on their leg or on the table). The principle of EMG-driven hand
exoskeleton operation is explained, and the EMG calibration procedure is performed before
starting the experimental trial.
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All subjects perform four different experimental tests: A, B, C and D. Each test has a
duration of 1 min and there is a 3-min break between tests to eliminate the effects of possible
muscular fatigue. Furthermore, the four tests are randomly performed to eliminate the
possible learning order effect. A test consists of performing and maintaining a hand gesture
(rest, open or close) with the dominant hand following the sequence of gestures indicated
by visual and sound information from a computer program. The indicated gestures are
random generated, each lasting three seconds. Hence, a randomly sequence of 20 gestures
are performed during each one-minute test.

The main difference between the four tests is the presence of different sources of
feedback: kinesthetic and EMG-based visual feedback. The kinesthetic feedback is provided
by the movement of the hand exoskeleton, which replicates the detected hand gesture
by analyzing the EMG (Figure 2). The EMG-based visual feedback is provided by the
computer screen.

Table 1 shows the feedback configuration for each test. In tests A and B, the hand
exoskeleton is operative and moves the non-dominant hand of the subject according to the
analysis of the EMG signals collected (EMG-driven control). Hence, there is kinesthetic
feedback due to the exoskeleton’s own motion in the tests A and B. On the contrary, in
tests C and D, the hand exoskeleton is not operative and, therefore, it does not make any
movement, remaining continuously in the resting position. In addition, in tests A and C,
the EMG-based visual feedback is visible on the computer screen, while this is hidden in
tests B and D.

Table 1. Test configuration.

Kinesthetic Feedback EMG-Based Visual Feedback

Test A (X) (X)
Test B (X) (x)
Test C (x) (X)
Test D (x) (x)

The EMG-based visual feedback comprises two variable length bars, whose lengths
represent the instantaneous value of the normalized signals from the ED and FDS muscles
(nEMGED and nEMGFDS). The bars are labeled as ‘Opening force’ and ‘Closing force’ so
that the user can easily understand what they mean. The bars change color to indicate the
recognized gesture according to Equations (1)–(3). The bars turn red or green to indicate
whether the gesture recognition module has detected that the hand is at rest (both bars
are red), is opened (opening force bar is green while closing force bar is red) or is closed
(opening force bar is red while closing force bar is green). As previously said, the computer
screen incorporates the gesture to perform by the user. Figure 6 shows the configuration of
the computer screen with and without EMG-based visual feedback.
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The overall system setup for the experimental protocol is shown in Figure 7. The
subject is asked to perform a gesture (open, close or rest hand) with their dominant hand
by visual and audio indicators provided by the computer. The target gesture is randomly
generated every three seconds. Meanwhile, EMG signals from the ED and FDS muscles of
the subject are recorded by a custom-made EMG acquisition system at 200 Hz. Then, the
EMG signals are transmitted to the microcontroller to recognize the performed gesture and
to generate control signals to move the exoskeleton’s actuators accordingly. The normalized
EMG signals and the recognized gestures are transmitted to the PC over USB at 20 Hz
(Ts = 0.05 s), which is the resulting sampling frequency of the normalized EMG signals
and, hence, the recognized gesture is updated at that frequency. The UART module of the
microcontroller was set to transmit data at a rate of 115,200 bits per second (bps). Both
the recognized and the target gestures are registered and stored in a SQL database as a
temporal series for offline analysis at 20 Hz. The length of the bars of the EMG-based visual
feedback are also updated at that same frequency. Finally, EMG-based visual feedback
and kinesthetic feedback from the movement of the hand exoskeleton are provided or not
depending on the type of test (test A, B, C or D).
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A timing diagram of the experimental procedure is shown in Figure 8. Audio and
visual information is provided to indicate the user which gesture must be performed.
Consequently, the user starts to move the dominant hand after a response time. Hence, the
user response time (TR) is defined as the time from the beginning of the visual and audio
information that indicates to the user which gesture to perform to the onset of the dominant
hand movement. The motion-selection time (MST) is the time since the onset of the hand
motion performed to reach the target gesture to the instant of time in which that gesture
is recognized by the microcontroller after processing the muscle activity that generates
that hand movement. Once the gesture is recognized, the microcontroller generates the
proper control signals to move the exoskeleton’s actuators. However, due to the intrinsic
characteristics of the actuators, the motion does not start immediately after receiving the
position command and takes some time to reach the target gesture (see Figure 2). The
motion-onset time (MOT) and the motion-completion time (MCT) are the elapsed time
from the onset of the dominant hand movement to the onset and end of the exoskeleton
motion, respectively. During the experiments, the EMG-based visual feedback is updated
at a rate of 20 Hz with the results received from the microcontroller.
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Figure 8. Timing diagram of the experimental procedure.

The EMG signal preprocessing, hand gesture recognition and control signal generation
are performed in the real-time TMS320F28069M microcontroller programmed using C
programming language. The computer software was developed in C# programming
language using .NET framework and Microsoft Visual Studio. Furthermore, the database
was designed using SQL Server Management Studio (SSMS) for saving the data for offline
statistical analysis. Language Integrated Query (LINQ), which is a component of Microsoft
.NET framework, was used to create query expressions to extract, process and save data
from the developed relational database.

2.4. Data Analysis

The target sequence of gestures performed by the user (pink line called “Target” in
Figure 9) and the sequence of recognized gestures (blue line called “Recognized” in Figure 9)
are saved on the system database during the experiments. Note that the target gestures are
randomly updated by the computer every three seconds, while recognized gestures are
identified by the threshold EMG-based algorithm (Equations (1)–(3)) running in real time
at the microcontroller.
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Figure 9. Target and recognized sequence of gestures of one test.

As shown in Figure 9, the sequence of recognized gestures is delayed with respect to
the sequence of target gestures. This delay is due to the user response time (TR) and the
motion-selection time (MST). Since the performance evaluation is performed by measuring
the similarity between the two discrete-event time series (Target and Recognized), for each
test performed by each user, both time series are time-synchronized (Figure 10). The time
synchronization is carried out using the lag at which the cross-correlation of both sequences
is highest, which will be referred to hereafter as delay time (Td).
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Figure 10. Target and recognized sequence of gestures of one individual. (a) Raw data; (b) data after
synchronization.

The cross-correlation of two time series x and y (rxh) is computed using Equation (4),
where h is the lag and * denote the complex conjugate. Data analysis is performed using
Matlab 2021a software (MathWorks) licensed to University of Valladolid.

rxy(h) =


N−h−1

∑
n=0

x(n + h)·y∗(n), 0 ≤ h ≤ N − 1

r∗yx(h), −(N − 1) ≤ h ≤ 0
(4)

The performance of the subject in each test is measured by computing the similarity
between the two series. Hence, the L2 distance (squared Euclidean distance) between the
target gesture and the synchronized recognized gesture time series is calculated. Thus,
considering the order of states “Open < Rest < Closed” (coded by “Open” = −1, “Rest” = 0
and “Close” = 1), the distance between “Open” and “Closed” is twice that of either and
“Rest”. In addition, the quadratic cost penalizes the type of error more than other distances
such as the L1 norm, also known as Manhattan distance, that is the sum of the absolute
vector values. This is relevant because in practice a confusion between open and closed can
lead to more serious consequences than either of them at rest.

Besides, when calculating the distances between signals, it is important to consider
that the synchronized signals are shorter than the reference length (one-minute test) and,
moreover, that the differences between the lengths of the signals generated by each individ-
ual with each test depend on the time delay (Td). Therefore, the target signal is cut off at
the end to make it equal in length to the synchronized signal made by the individual.

Formally, let us denote by x = (xi)
nsamples
i=0 the recognized sequence for a particular

individual and test, for which the time delay is Td and xnsamples = [60 − Td]·Ts, where Ts is

the sampling period. If we denote by x∗ = (x∗i )
nsamples
i=0 the target signal (truncated by the

end, following previous observation), then the L2 distance (dL2 ) between the two sequences
can be computed according to Equation (5).

dL2(x, x∗) =

√√√√nsamples

∑
i=0

(
x∗i − xi

)2·Ts (5)

3. Results

All the statistical analysis in this section is carried out using the software R (https:
//cran.r-project.org/, access on 5 March 2022). To detect significant effects in the per-

https://cran.r-project.org/
https://cran.r-project.org/
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formance of the subjects, a multifactorial additive ANOVA for the L2 distances of the
two synchronized series is performed. The mean time delay (Td) for different tasks and
individuals is 0.88 ± 0.14 s. The ANOVA is performed to examine the effects of the test
variable, test order and individual (Table 2). Note that the consideration of individual as a
factor is included in the model in order to block its effect.

Table 2. Multifactorial additive ANOVA results of the L2 distances.

Df Sum Sq. Mean Sq. F Value Pr (>F)

Test * 3 3.366 1.1221 4.028 0.0124
Order 3 1.037 0.3456 1.241 0.3054

Individual *** 17 20.933 1.2313 4.420 2.43 × 10−5

Residuals 48 13.373 0.2786
*** Denotes significance at the (<0.001) level and * at the (<0.5) level.

From these results, we can conclude that there are no significant differences in the
order of the tests. What is relevant is that, in terms of subject performance, significant
differences are found in the type of tests taken (p-value 0.0124). More precisely, in Figure 11
we can see the differences in the distributions of the L2 distances conditionally given the
type of test. L2 distances are 3.39 ± 0.70, 3.43 ± 0.75, 2.89 ± 0.71, 3.17 ± 0.73 for test A, B, C
and D, respectively. Specifically, subjects perform better in test C than in the other tests A,
B and D, the differences between the latter three not being statistically significant.
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This can also be seen through the pairwise comparisons using Duncan’s multiple
range test (Table 3). Importantly, the results of such a test show that the performance of the
individual at test C is significantly better than at test B (p-value 0.038) and test A (p-value
0.051). Finally, all the results are supported by the fact that homoscedasticity has been
checked.

Table 3. Results of Duncan’s multiple range test.

Test A Test B Test C

Test B 0.8775 - -
Test C 0.0497 * 0.0412 * -
Test D 0.3557 0.3121 0.2451

* Denotes significance at the (<0.5) level.

4. Discussion

In the present study, performance of the subjects is better in test C. Thus, EMG-
based visual feedback has enhanced the motor control of the user and has significantly
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improved accuracy during the trials. This feedback allows the subjects to monitor their
EMG activation levels during the tests and compare them with the activation thresholds
predefined in the previous calibration in a simple way. This enables subjects to regulate
their EMG activity with respect to these threshold levels and to control the movement of
the hand exoskeleton better.

On the other hand, the kinesthetic feedback does not provide significant improvement
in the performance of the subjects. Neither does it improve when both feedbacks are
present. This result may be related to the fact that subjects do not need to consciously pay
attention to kinesthetic activity, as it is more straightforward and intuitive than the visual
EMG feedback.

The main factor behind these findings is the instant of time at which each feedback
modality is provided to the user. The EMG-driven control of the RobHand robotic platform
works as follows (Figure 12): the recorded EMG signals are rectified (rEMG) and normalized
(nEMG). The gesture recognition module determines the hand gesture based on the values
of the normalized signals and the thresholds calculated in the calibration. The position
controller generates the control signal related to the detected gesture so that the actuators
move to reach that gesture. Hence, EMG-based visual feedback provided to the user is
earlier in time than the kinesthetic feedback. Therefore, the performance of the subject is
better when he/she is provided with the visual feedback as it has a longer reaction time
than when the feedback is kinesthetic.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 12. Control loop for the threshold EMG-driven control of the RobHand indicating the source 
of each feedback. 

In fact, the real-time visual EMG feedback allows the user to modulate the exerted 
force at that very moment by directly influencing the position controller input. In contrast, 
with the kinesthetic feedback, the user modulates the exerted force once he/she has felt 
the movement performed by the actuators of the exoskeleton so that the force modulation 
is not immediate. 

Furthermore, the hand motion generation process is not instantaneous. The motion 
is achieved by muscle contraction and this motor control signal is delivered from the 
central neural system. For any intended motor action that implies muscle contractions, it 
is well known that there is a time delay between the onset of the EMG signal and the onset 
of force production. This time delay is known as the electromechanical delay (EMD) and 
is about 10–300 ms [57,58].  

In addition, the electromechanical characteristics of the actuators should be also 
considered: (1) the dynamic response (time interval from the instant the actuator receives 
a position command to the onset it starts to move) is low; and (2) the speed is not high due 
to the type of application (rehabilitation), with a maximum no-load speed of 12 mm/s. The 
time delays of the RobHand system that are considered relevant to the human–robot 
interaction have been determined [54]: the average of the motion-selection time (MST) and 
motion-onset time (MOT) are 0.48±0.59 s and 0.55±0.6 s, respectively. The average of the 
motion-completion time (MCT) is 1.90±1.65 s, varying from 0.98 s (close to rest movement) 
to 3.42 s (open to close movement). 

When the visual feedback is present, the subject modulates their force from the data 
of the gesture recognition module (nEMG signals and detected gesture) and anticipates 
the exoskeleton movement response. However, with the kinesthetic feedback the user 
modulates their force once the action has been performed by the exoskeleton. If the user 
perceives that the movement performed by the exoskeleton does not correspond to their 
intention, the subject can modulate their muscle activity to correct it, but it takes much 
longer than if he/she had corrected it based on the real-time EMG visual feedback. 

Inferences in this study are based on differences in performance with and without 
the two proposed feedbacks. There are some limitations of the current study in the 
following aspects. To obtain reliable EMG recordings, standardized electrode positioning 
is used. However, the surface electrodes placement has a direct influence on the 
performance. Another limitation of the present study is the possibility of muscular fatigue 
during the trials, which will deteriorate the user’s performance. Three-minute breaks are 
included between tests to avoid this.  

It is possible, although highly unlikely due to the low number of repetitions, that a 
learning effect on the user performance could appear during the trials. No statistically 
significant difference is observed in the results as a function of the order in which the tests 
are performed.  

For the calculation of the L2 distance that is used to performance evaluation, it is 
necessary to synchronize the target and recognized time series. The time delay between 
these two signals has been considered constant throughout each test, although in may 
vary between gestures. 

Experimental trials have been performed on healthy subjects, so they cannot be 
extrapolated to patients who have suffered damage affecting their cognitive abilities. The 

Figure 12. Control loop for the threshold EMG-driven control of the RobHand indicating the source
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In fact, the real-time visual EMG feedback allows the user to modulate the exerted
force at that very moment by directly influencing the position controller input. In contrast,
with the kinesthetic feedback, the user modulates the exerted force once he/she has felt the
movement performed by the actuators of the exoskeleton so that the force modulation is
not immediate.

Furthermore, the hand motion generation process is not instantaneous. The motion is
achieved by muscle contraction and this motor control signal is delivered from the central
neural system. For any intended motor action that implies muscle contractions, it is well
known that there is a time delay between the onset of the EMG signal and the onset of force
production. This time delay is known as the electromechanical delay (EMD) and is about
10–300 ms [57,58].

In addition, the electromechanical characteristics of the actuators should be also
considered: (1) the dynamic response (time interval from the instant the actuator receives
a position command to the onset it starts to move) is low; and (2) the speed is not high
due to the type of application (rehabilitation), with a maximum no-load speed of 12 mm/s.
The time delays of the RobHand system that are considered relevant to the human–robot
interaction have been determined [54]: the average of the motion-selection time (MST)
and motion-onset time (MOT) are 0.48 ± 0.59 s and 0.55 ± 0.6 s, respectively. The average
of the motion-completion time (MCT) is 1.90 ± 1.65 s, varying from 0.98 s (close to rest
movement) to 3.42 s (open to close movement).

When the visual feedback is present, the subject modulates their force from the data
of the gesture recognition module (nEMG signals and detected gesture) and anticipates
the exoskeleton movement response. However, with the kinesthetic feedback the user
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modulates their force once the action has been performed by the exoskeleton. If the user
perceives that the movement performed by the exoskeleton does not correspond to their
intention, the subject can modulate their muscle activity to correct it, but it takes much
longer than if he/she had corrected it based on the real-time EMG visual feedback.

Inferences in this study are based on differences in performance with and without the
two proposed feedbacks. There are some limitations of the current study in the following
aspects. To obtain reliable EMG recordings, standardized electrode positioning is used.
However, the surface electrodes placement has a direct influence on the performance.
Another limitation of the present study is the possibility of muscular fatigue during the
trials, which will deteriorate the user’s performance. Three-minute breaks are included
between tests to avoid this.

It is possible, although highly unlikely due to the low number of repetitions, that a
learning effect on the user performance could appear during the trials. No statistically
significant difference is observed in the results as a function of the order in which the tests
are performed.

For the calculation of the L2 distance that is used to performance evaluation, it is
necessary to synchronize the target and recognized time series. The time delay between
these two signals has been considered constant throughout each test, although in may vary
between gestures.

Experimental trials have been performed on healthy subjects, so they cannot be
extrapolated to patients who have suffered damage affecting their cognitive abilities. The
patient with impaired cognition and perception may become confused and distracted with
the EMG-based visual biofeedback, resulting in deterioration of test performance.

Furthermore, the EMG monitorization is carried out in a simple way and there is no
need to have any previous knowledge about the electromyogram. Moreover, no additional
visual information that may distract the user is provided apart from the target hand
gesture. There are two bars (one for opening and one for hand closing) of variable length
(proportional to the muscle activation) and two colors (exceed or not the predefined
threshold). Thus, evidence has been found of the effectiveness on the implemented EMG-
based visual feedback but cannot be applied to other types of feedback.

5. Conclusions

The incorporation of a real-time easily understandable EMG-based visual feedback
enhances the performance of the subjects. This feedback allows the subjects to monitor
their muscle activation in real time and, thus, modulate the exerted force. In contrast,
kinesthetic feedback does not improve performance due to lag times and eliminates the
positive influence of the EMG-based visual feedback if both are present. EMG-based visual
feedback can be very useful in the learning stage so that the user can learn more quickly
how to modulate their muscle activation so that the rehabilitation robot moves according
to their intention. This may result in an improvement of the motivation of the patient for
the rehabilitation process when using assistive robotic platforms.

Future work should be focused on people with neurological impairments to verify
the results presented in this manuscript from a healthy population sample. On the other
hand, the EMG is visually fed back in a simple manner, only using two variable length bars.
Hence, further studies should be undertaken to confirm whether different kinds of EMG
feedback have the same positive impact on the users’ performance and to determine its
influence when used in combination with other virtual objects (e.g., in exergames based on
virtual reality).
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