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Abstract: Two efficient feather-degrading bacteria were isolated from honeybee samples and iden-
tified as Bacillus sonorensis and Bacillus licheniformis based on 16S rRNA and genome sequencing.
The strains were able to grow on chicken feathers as the sole carbon and nitrogen sources and de-
graded the feathers in a few days. The highest keratinase activity was detected by the B. licheniformis
CG1 strain (3800 U × mL−1), followed by B. sonorensis AB7 (1450 U × mL−1). Keratinase from
B. licheniformis CG1 was shown to be active across a wide range of pH, potentially making this strain
advantageous for further industrial applications. All isolates displayed antimicrobial activity against
Micrococcus luteus; however, only B. licheniformis CG1 was able to inhibit the growth of Mycobacterium
smegmatis. In silico analysis using BAGEL and antiSMASH identified gene clusters associated with
the synthesis of non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKSs) and/or
ribosomally synthesized and post-translationally modified peptides (RiPPs) in most of the Bacillus
isolates. B. licheniformis CG1, the only strain that inhibited the growth of the mycobacterial strain,
contained sequences with 100% similarity to lichenysin (also present in the other isolates) and licheni-
cidin (only present in the CG1 strain). Both compounds have been described to display antimicrobial
activity against distinct bacteria. In summary, in this work, we have isolated a strain (B. licheniformis
CG1) with promising potential for use in different industrial applications, including animal nutrition,
leather processing, detergent formulation and feather degradation.
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1. Introduction

Around 1 million tons of chicken feathers are produced as waste products annually by
the poultry industry around the world [1]. In general, all types of feathers have a protein
content of around 90%, which indicates that this waste could have great potential as a
source of protein and amino acids for animal feed or many other applications [2]. However,
the most abundant protein in feathers is keratin, an insoluble protein that is difficult
to degrade due to the presence of hydrogen bonds, disulphide bonds and hydrophobic
interactions [3]. Commonly, the discarded feathers are either dumped in landfills or
incinerated. Sometimes, feathers are converted to feather meal by steam pressure and/or
chemical treatment and utilized on a limited basis as a dietary protein supplement for
animal feedstuffs [4]. However, this approach is unusual due to the poor digestibility
of keratin by animals and the high cost of the production process. In fact, in its native
state, keratin is not degradable by common proteolytic enzymes such as trypsin, pepsin
or papain. Therefore, prior to usage, the feathers are steam pressure cooked or chemically
treated to make them more digestible [5]. An alternative to these mechanical and chemical
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approaches is proteolysis of keratin by enzymatic and/or microbiological methods, thereby
improving the nutritional value of feather waste by avoiding the destruction of certain
amino acids, such as methionine, tryptophan and lysine [6].

Keratin degradation requires a specific class of proteases known as keratinase [4].
Although several microorganisms, including fungi and bacteria, are known to degrade ker-
atin, Bacillus species are considered as the most effective keratin degraders [7]. Lin et al. [8]
were the first to successfully isolate and characterize a keratinase enzyme from a keratin-
degrading bacterium, Bacillus licheniformis PWD-1, that they previously isolated. Recently,
we have also characterized a keratin-degrading strain that, in addition to feathers, can de-
grade other type of wastes, such as bioplastics [9]. The strain, initially referred to as Bacillus
pumilus B12 [10], was reclassified as Bacillus altitudinis B12 after genomic analyses [9]. Other
strains with keratinolytic activity have also been reported and, in some cases, highlighted
as promising candidates for the development of cost-effective and eco-friendly platforms
for the conversion of feathers into value-added products, especially in the form of livestock
feed [2,5–7]. To develop a biotechnological application for that purpose, it would be of
great interest to characterize a strain that, in addition to its keratinolytic activity, would
exhibit an important antimicrobial potential. This feature would inhibit certain pathogenic
microorganisms present in the feathers, thereby decreasing the risk of causing diseases
(such as gastroenteritis or tuberculosis) in animals fed with these wastes [11–13]. There is
currently a global antibiotic resistance crisis. New antibiotics are rarely discovered, and the
number of resistant microbes is increasing worldwide.

At present, scientists are searching for new antimicrobial weapons and therapies
against microbial infections in natural products and unexplored ecological niches. For
decades, soil has been used as the main source for the identification of novel antibiotics.
However, there is an urgent need to explore other ecological niches as the screening of soil
samples has become overexploited. Interestingly, ecological niches in which symbionts
work together to defend themselves by producing bioactive compounds are relatively
underexploited. This is the case in beehives. Some authors have found antimicrobial
metabolites in honeybee products, such as pollen and honey, where a significant vari-
ety of different bacteria derive from plants and bees [14,15]. Honeybees manufacture
honey, bee bread (pollen) and royal jelly using secretions from their stomach, salivary
glands and hypopharynx glands, and these natural products are continuously exposed to
the environment [15]. Honeybees transfer microorganisms vertically (mother to daugh-
ter) or horizontally, via trophallaxis (mouth to mouth feeding) and coprophagy (anus to
mouth). These microorganisms have a very important function in the digestion of plant
polymers and in the preservation of honey and bee pollen by controlling the growth of
pathogens [14,15]. Therefore, honeybee products are promising sources for isolating novel
antibiotic-producing microorganisms. In previous work, we have shown that raw honeybee
products provide antibiotic-producing isolates (Streptomyces) and lactic acid bacteria (LAB)
with high antimicrobial potential and probiotic features, respectively [14,15]. Among the
antibiotic producers isolated, Streptomyces species stand out as most interesting, as they
are responsible for production of over half of the antibiotics discovered so far [16–18]. On
the other hand, the isolated LAB (Lactobacillus and Pediococcus) can potentially exhibit
good probiotic properties in animals and/or humans as they are able, among other ca-
pabilities, to activate type-I interferon production [15]. In another study, both probiotic
and antimicrobial properties have been described for some Bacillus strains isolated from
stingless bee honey collected across Malaysia [19]. Therefore, the products that honeybees
manufacture are a very valuable source for the isolation of antibiotic-producing bacteria.
Whether these bacteria derive as symbionts of honeybees or environmental contaminants
is a very important question that remains to be elucidated.

The aim of this study was to isolate novel Bacillus strains with both high keratinolytic
activity to degrade feather wastes in an efficient manner and antimicrobial potential to
inhibit major pathogens, such as Mycobacterium. To this end, studies were carried out on
antibiotic-producing and probiotic strains previously isolated from natural honeybee prod-
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ucts collected from 15 apiaries across Southeast England [20]. Genome sequencing analysis
of the isolates resulted in the identification of novel strains. Furthermore, phenotypic
characterization was performed in a systematic manner to select for the most promising
candidate with potential in industrial applications.

2. Materials and Methods
2.1. Microbial Growth Conditions and Growth Determination

Bacillus cells were grown in a mineral salt medium with feathers as the sole carbon
and nitrogen sources, with the following composition (g/L): KH2PO4 (0.7), K2HPO4 (1.4),
MgSO4 (0.1), NaCl (0.5), ZnSO4·7H20 (0.05), FeSO4·7H20 (0.015) and feathers (10). pH
of the medium was maintained at 7, nevertheless, growth of cells was also determined
across a range of pH (6–9). Chicken feathers provided by a poultry farm in Valladolid,
Spain, were first washed with tap water and Triton-X to get rid of any debris, followed
by a final cleaning step with distilled water. Then, clean feathers were dried at 60 ◦C
overnight and manually cut into small pieces. Cultures were performed in either 120 mL
or 2.2 L bottles, depending on the experiment. In all experiments, cultures of the respective
strain grown until the mid-exponential phase (i.e., OD600~1.5) were inoculated into the
defined media at 2% (v/v). The bottles containing the inoculated cultures were hermetically
closed with an isoprene rubber and an aluminum crimp seal and incubated at 37 ◦C
with shaking (150 rpm) for several days. Determination of bacterial cell growth was
performed by measuring O2 consumption and CO2 production in the glass bottles using a
Gas Chromatograph (Varian Bruker 430-GC, Middelburg, The Netherlands) equipped with
a thermal conductivity detector (GC-TCD), as previously described [9]. Abiotic controls
(without bacterial inoculum) were also maintained under the same conditions to monitor
O2 and CO2 concentrations in the bottles, which should remain invariable.

2.2. Experimental Design, Sampling, DNA Extraction and 16S rRNA Sequencing

Honeybee samples were collected from 15 apiaries across Southeast England. Sample
collection took place between mid-June and mid-August and targeted several habitats
and soils in 4 different counties, as well as different beehives, some of which were located
within the same apiary [20]. Samples were collected directly from honeycomb frames. Ten
grams each of bee product sample were collected in sterile swab tubes and containers
respectively, which were then immersed in liquid nitrogen and stored at −80 ◦C. To ensure
full representation of the whole beehive, samples were collected from different parts of
the honeycomb.

To enrich the presence of Bacillus strains in the honeybee products, the samples were
incubated at 80 ◦C for 10 min to select for endospore-forming bacteria. The samples were
serially diluted and seeded onto Tryptone Soya Agar (TSA) medium to favor Bacillus growth.
After incubation, isolates with stronger antimicrobial properties were selected and further
analyzed using 16S rRNA sequencing to select strains belonging to the Bacillus genus.

DNA extraction was carried out from cultures in Tryptone Soya Broth (TSB) using the
EZNA bacterial DNA kit according to the manufacturer’s instructions (Omega Bio-Tek,
Doraville, CA, USA) and as previously reported [18]. 16S rRNA gene amplicon sequencing
was performed on an Illumina MiSeq sequencer using universal 16S rRNA bacterial primers
for V3–V4 regions. Among the isolates, three were found to be Bacillus sonorensis, one was
B. licheniformis, one was B. subtilis and one was an unclassified Bacillus species that had
100% sequence similarity to Bacillus sp. BAB-4886.

2.3. Genome Sequencing, Assembly and Annotation

DNA sequencing was performed by MicrobesNG (University of Birmingham, United
Kingdom) using the Illumina MiSeq platform as previously described [21]. Briefly, the
library was prepared with the 250 NexteraTM XT Library Prep Kit Genome sequencing and
the quality of the generated reads was trimmed with Trimmomatic [22]. The generated con-
tigs were assembled from the paired-end reads using Shovill v.1.0.41 with SPAdes 3.13.0 [23]
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and the resulting genome assemblies were verified by N50 and L50 using Quast v.4.5 [24]
and annotated with Prokka v.1.13 [25]. The secretome for each of the strains was inferred by
predicting the presence of signal peptides using SignalP-5.0 [26]. Sequencing reads, genome
assemblies and metadata have been uploaded onto Genbank in BioProject PRJNA907715,
with the next genome accession numbers: JAPQWB000000000 (Z1), JAPQWC000000000
(CG1), JAPQWD000000000 (X1), JAPQWE000000000 (X2), JAPQWF000000000 (AB6) and
JAPQWG000000000 (AB7).

2.4. Taxonomic Analysis

For the taxonomy analysis, the web-based tool JSpeciesWS [27] was employed
(https://jspecies.ribohost.com/; accessed on 3 November 2022). An initial search for
the closest relative of each of the isolates was carried out using Tetra Correlation Search
(TCS) [28], followed by a more systematic comparison with B. subtilis, B. sonorensis and
B. licheniformis species using pairwise Average Nucleotide Identity with BLAST (ANIb)
calculations [29]. The phylogenetic analysis was performed using the dendrogram function
in SciPy. A distance between species was defined as 100 minus the obtained ANI values
and the resulting matrix of distances was used to construct the dendrogram.

2.5. Keratinase Activity Detection Assay

Keratinase activity was determined following previous existing methods [8,30]. Liquid
samples of 0.7 mL were daily extracted of each culture and centrifuged 20 min at 13,000 rpm
to obtain a final 0.5 mL aliquot of supernatant. With the centrifugation step, cells and feather
debris are removed. The 0.5 mL aliquot was mixed with 0.5 mL of 100 mM glycine-NaOH
(pH 10) containing 1% casein and incubated at 37 ◦C for 20 min. In this reaction, tyrosine
is released after the breaking of casein by the keratinases, among other enzymes. The
reaction was stopped by addition of 0.5 mL of trichloroacetic acid (20% w/v) and incubation
for 15 min at room temperature. Following the inactivation of the enzymes, the samples
were centrifuged during 15 min at 13,000 rpm and the supernatant collected and measured
with a spectrophotometer at 280 nm. A standard curve was performed using solutions of
0–700 mg L−1 of tyrosine. One keratinase unit (U) was defined as the amount of enzyme
required to increase the absorbance by 0.01 (OD280nm) in one minute under the assay
conditions employed.

2.6. Growth Inhibition Bioassay

To study the growth inhibition of Micrococcus luteus and Mycobacterium smegmatis,
aliquots of 5 µL of each of the Bacillus isolates were added onto the surface of TSA plates
containing 108 CFU × mL−1 of the respective indicator strain. Plates were incubated at
30 ◦C until visible halos of inhibition appeared.

2.7. Analysis of Gene Clusters with Antimicrobial Potential

The genomes of Bacillus isolates were analyzed to identify gene clusters associated
with the biosynthesis of antimicrobial compounds. The secondary metabolites clusters
were identified using antiSMASH v.6.0 [31] and BAGEL v.3 [32].

3. Results
3.1. Isolation and Selection of Bacillus Strains from Raw Honeybee Products

Natural Bacillus strains with antimicrobial potential were isolated using a screening
approach from samples of raw honey, bee bread (referred as to pollen henceforth) and
royal jelly collected from 15 apiaries across Southeast England [20]. Colonies with stronger
antimicrobial properties against Micrococcus luteus ATCC4698 were selected and further
analyzed using 16S rRNA sequencing to select for Bacillus species. We isolated six different
Bacillus strains (Z1, CG1, AB6, AB7, X1 and X2) from either raw honey or royal jelly samples
(see Table 1).

https://jspecies.ribohost.com/
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Table 1. Strains isolated from honeybee samples in South England and characterized in this and
previous studies.

Strain Organism Source Location BioSample References

O29 Lactobacillus
kunkeei Bee pollen Verney Junction,

BUCKINGHAMSHIRE SAMN11831833 [15]

E1 Pediococcus
acidilactici Raw honey Saffron Walden, ESSEX SAMN11831832 [15]

AD1 Streptomyces
drozdowiczii Raw honey Woking, SURREY SAMN20207146 [14]

AD2 Streptomyces
griseoaurantiacus Raw honey Woking, SURREY SAMN20207147 [14]

AN1 Streptomyces
albus Bee pollen West Byfleet, SURREY SAMN20207148 [14]

Z1 Bacillus
subtilis Raw honey Woking, SURREY SAMN31988539 This study

CG1 Bacillus
licheniformis Raw honey Shere, SURREY SAMN31988540 This study

AB6 Bacillus sonorensis Raw honey West Byfleet, SURREY SAMN31988543 This study

AB7 Bacillus sonorensis Raw honey West Byfleet, SURREY SAMN31988544 This study

X1 Bacillus sonorensis Royal jelly Woking, SURREY SAMN31988541 This study

X2 Bacillus sonorensis Royal jelly Woking, SURREY SAMN31988542 This study

3.2. Taxonomy of the Bacillus Isolates and General Features of Their Genomes

The 16S rRNA sequencing analysis informed that the six isolates were Bacillus, and
more specifically B. subtilis, B. licheniformis and B. sonorensis, depending on the strain (see
Table 1). To have a better insight about these strains, their genomes were sequenced. The
sequenced genomes were used to classify the isolated strains based on whole genome
similarities (to confirm or correct the taxonomy obtained with 16S rRNA sequencing). A
pairwise ANIb calculation was carried out between all the possible combinations of the
isolated strains and several strains of B. subtilis, B. sonorensis and B. licheniformis contained
in the JSpeciesWS database [27]. The constructed dendrogram (Figure 1) clearly shows that
the newly sequenced strains belong to the species B. subtilis (Z1), B. licheniformis (CG1) and
B. sonorensis (AB6, AB7, X1 and X2).
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Table 2 summarizes the predicted general features of each of the Bacillus genomes
as well as the proteins that each of the strains might secrete according to RAST and
SignalP-5.0 analyses.
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Table 2. Data obtained from the genomes of the six Bacillus strains isolated in this study.

Strain Genome Accession Bases Contigs Encoded
Proteins

Secreted
Proteins

Bacillus subtilis
Z1 JAPQWB000000000 4316935 305 4280 399

Bacillus licheniformis
CG1 JAPQWC000000000 4228198 208 4252 407

Bacillus sonorensis AB6 JAPQWF000000000 4767461 595 4532 441

Bacillus sonorensis AB7 JAPQWG000000000 4580150 233 4440 437

Bacillus sonorensis X1 JAPQWD000000000 4903862 502 4770 447

Bacillus sonorensis X2 JAPQWE000000000 4809962 323 4807 445

3.3. Antimicrobial Assays

After the initial antimicrobial screening against M. luteus (see Figure 2), the six Bacillus
isolates were also tested against other pathogenic bacteria, such as Paenibacillus alvei DSM29
(B), Staphylococcus aureus NCTC8325 (C) and Mycobacterium smegmatis MC2155. Antagonis-
tic activity was only seen by B. licheniformis CG1 against M. smegmatis (Figure 2). Therefore,
while M. luteus was susceptible to the six strains, M. smegmatis was only susceptible to the
CG1 strain. As Mycobacterium species are quite resistant to antibiotic treatments, this result
highlights the B. licheniformis CG1 isolate as an interesting antibiotic-producing strain.
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terium smegmatis MC2155.

3.4. Characterization of the Keratin-Degrading Activity of the Isolated Bacillus Strains

To study the keratin-degrading activity of the Bacillus isolates over keratin-rich wastes,
the strains were assessed on their ability to grow on a medium with chicken feathers as
the sole carbon and nitrogen source, as well as on their production of keratinase. The
results showed in Figure 3 indicated that the strains with better degrading capabilities were
B. licheniformis CG1 and B. sonorensis AB7. Both strains were able to grow and produce
keratinases until the oxygen (O2) was depleted from the sealed bottes. Keratinase activity
was more than 2.6 times higher in B. licheniformis CG1 in comparison to B. sonorensis AB7,
and almost 16 times higher than the rest of isolates (see Table 3), which makes this strain a
promising keratinase producer under minimal nutritional requirements.
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Figure 3. Growth and keratinase activity of the Bacillus isolates on chicken feathers as sole carbon and
nitrogen source. Samples for growth (CO2 production and O2 consumption) and keratinase activity
were collected every 24 h until O2 was depleted from the bottles or until when 20 days were reached.
Vertical error bars correspond to the standard error of the mean of three replicated experiments.

Table 3. Summary of the antimicrobial and keratinolytic activities obtained for each of the strains.

Strain Anti- Micrococcus
Activity

Anti- Mycobacterium
Activity

Max. Keratinase
Activity (U/mL)

Bacillus subtilis Z1 Positive Negative 240

Bacillus licheniformis CG1 Positive Positive 3800

Bacillus sonorensis AB6 Positive Negative 240

Bacillus sonorensis AB7 Positive Negative 1450

Bacillus sonorensis X1 Positive Negative 290

Bacillus sonorensis X2 Positive Negative 260
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3.5. Gene Cluster Associated with the Biosynthesis of Putative Antimicrobial Metabolites

Gene clusters associated with the synthesis of non-ribosomal peptide synthetases (NRPS),
polyketide synthases (PKSs) and/or ribosomally synthesized and post-translationally modi-
fied peptides (RiPPs) were identified in most of the Bacillus isolates using both BAGEL3 and
antiSMASH_v.6.0 software (see Supplementary Table S1). BAGEL3 was unable to identify
NRPS, PKSs or RiPPs in AB7 and X2 strains. Nevertheless, antiSMASH_v.6.0 analysis
predicted gene clusters for the production of lichenysin in all strains, with the exception
of B. subtilis Z1. This metabolite has been shown to display antimicrobial activity against
Gram-positive bacteria [33] and it could account for the inhibition of M. luteus growth by
all Bacillus isolates tested. Surfactin [34], another predicted compound, would account for
the antimicrobial activity displayed by B. subtilis Z1 (see Supplementary Table S1).

Interesting, B. licheniformis CG1, the only strain that inhibited the growth of the
mycobacterial strain (see Figure 2), contained (in addition to the sequences with 100%
similarity to lichenysin) another sequence with 100 % similarity to lichenicidin (see Figure 4).
Lichenicidin is a lantibiotic compound with antimicrobial activity against a wide range of
Gram-positive bacteria [35], which has been previously shown to be produced by another
B. licheniformis strain, i.e., DSM13 [36]. This antibiotic might account for the antimicrobial
activity against M. smegmatis observed by the CG1 strain; however, this hypothesis would
require further testing.
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3.6. B. licheniformis CG1 Keratinase Activity Detected across a Wide Range of pH

Factors such as microbial strain, medium composition, pH and temperature play
major roles in the production of highly active keratinase enzyme. As we have shown,
B. licheniformis CG1 displays the most interesting antimicrobial potential and the highest
keratinase activity among the Bacillus isolates. Therefore, this strain would be a good candi-
date for biotechnological applications in feather valorization. For industrial approaches, it
is important that the employed strain remains active across a range of pH, among other
parameters. To study this, keratin degradation using smaller bottles and less volume of
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medium (20 mL instead of 200 mL) at pH values from 6 to 9 was performed. As is shown in
Figure 5, the strain showed a similar keratinase activity with all pH values tested, reaching
around 3000 units per mL in just 2–4 days, which might provide an advantage for further
industrial applications.
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Figure 5. Keratinase activity of B. licheniformis CG1 across a range of pH. Cultures grown at
37 ◦C and 150 rpm for 4 days in 120 mL bottles hermetically closed showed similar keratinase
activity in a medium adjusted to varying pH values and where chicken feathers were the sole carbon
and nitrogen source. Vertical error bars correspond to the standard error of the mean of three
replicated experiments.

4. Discussion

Famine and lack of resources are a problem in certain parts of the world, whereas
waste management is a problem in developed countries, which results in environmental
problems and diseases. In this sense, a more sustainable use of natural resources is of vital
importance. This especially applies to those wastes that can serve as food, either for humans
or for animals. A clear example is the feather residues generated by the poultry industry,
which are usually discarded into the environment, generating ecological problems [37].
Biodegradation is a process carried out by organisms that transform waste (and other
compounds) into novel products that can be of interest for the industry. Therefore, this
natural process could play a key role in the creation of viable end-products using wastes of
a different nature in a circular and environmentally friendly approach.

Feathers serve as an example of cheap waste with potential nutritional value [38].
Poultry farming produces thousands of tons of chicken feathers in every year [4]. This waste
product cannot be digested by most animals; therefore, it has to be degraded in some form
to be usable. Several microorganisms with keratinolytic activity have been reported in the
last few decades [7]. In this study, we have isolated and characterized two Bacillus strains
with significant keratinolytic activity. The highest keratinolytic activity was achieved by
B. licheniformis CG1 (3800 U × mL−1). In previous work, Bacillus altitudinis B12 displayed
maximal keratinolytic activity of 1500 U × mL−1 [9]. In this study, B. sonorensis AB7
exhibited a comparatively similar magnitude of keratinolytic activity (1450 U × mL−1). This
means that B. licheniformis CG1 shows a keratinolytic activity more than 2.6 times higher in
comparison to the other two strains. Our results correlate well with previous studies. For
example, in a study with B. licheniformis strain PWD-1, a similar magnitude of keratinolytic
activity was reported (i.e., 3750 U × mL−1) [8]. Similarly, Hmidet et al. [39], after an in-depth
optimization of the testing conditions, reported B. licheniformis strain NH1 with a maximal
keratinase activity of 3960 U × mL−1. On the other hand, many studies have shown that
the Bacillus strains analyzed (or other genera of bacteria) reached a maximal keratinolytic
activity of 1000 U × mL−1 [40]. For example, Bacillus pumilus AR57 was found to be the
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most potent keratinase producer out of 39 isolates. However, the maximum keratinase
activity reached by this strain was around 700 U × mL−1 [41], more than five times lower
than B. licheniformis CG1, PWD-1 or NH1. In summary, our work corroborates previous
studies that report that B. licheniformis species constitute one of the most important and
effective keratin-degrading microorganisms discovered to date [8,39]. These observations
highlight B. licheniformis species as promising candidates for feather degradation and
keratinase production approaches. Keratinases are highly employed in different industrial
applications, including animal nutrition, leather processing, detergent formulation and
biofertilizer development [42]. In addition, as the bacterium grows on feathers as the
sole carbon, nitrogen, sulfur and energy source, the utilization of feathers by these strains
represents a method for replacing the commercial and more expensive substrates normally
employed, therefore cheapening the cost of the culturing conditions. Thus, the utilization
of feathers as substrate could result in a cost-effective process suitable for large-scale
production of commercial enzymes produced by this species, such as those used in laundry
detergent formulations [42]. The production of any other valuable metabolite that the
bacterium could produce (either intrinsically or heterologously) would also be cheapened.
Moreover, the absence of rapidly metabolizable carbohydrates in chicken feathers could
also be beneficial for avoiding carbon catabolite repression [43], which is often observed
in the production of extracellular proteases, including the well-known alkaline proteases
produced by this bacterium [44].

This study has found that honeybee products, including honey and royal jelly, can
contain Bacillus species. For centuries, it has been known that honey is an effective wound-
healing agent and can even heal wounds that are unable to be healed by conventional
treatments [45,46]. Studies into the antimicrobial activity of honey believed its effects were
due to high osmolality of honey, and the presence of hydrogen peroxide [47]. However,
more recent studies have shown that bacterial isolates from honey are able to exhibit an-
timicrobial activity against several foodborne pathogens, which suggests that the bacteria
within honey contribute to its antimicrobial effects [48]. For example, it was shown that
some Bacillus species, present in the gut of honeybees, were able to kill the pathogenic Paeni-
bacillus larvae, which is the causative agent of foulbrood disease in bees, providing further
indications that the bacteria within the honeybee microbiome may exhibit antimicrobial
properties [49]. Actually, Bacillus species are an important source of antibiotics [50]. Some
of these antimicrobial compounds are lipopeptides, which are produced by NRPS encoded
in clusters on the bacterial genome [50]. Lipopeptides, that act through the disruption of
membranes, are a particularly important source of antimicrobials, as it is less likely that
resistance will develop towards them compared to other antibiotics. However, because
of their toxicity, their use as therapeutics has been limited to mainly topical agents [51].
Well-known lipopeptides produced from Bacillus species include surfactin, fengysin and
lichenysin, which have powerful antibacterial and antiviral properties [52]. Additionally,
secondary metabolites of Bacillus can also be produced by PKS, also encoded within gene
clusters on the bacterial genome. There are three categories of PKS: type I, type II and type
III [53]. PKS are categorized in terms of structure; where the catalytic domains of type
I PKS enzymes are within a single protein, the catalytic domains of type II and type III
PKS enzymes are on separate proteins [54]. The possession of PKS genes is very common
in Bacillus species, including in B. subtilis and B. licheniformis. In this study, and others,
it has been shown that B. licheniformis is able to synthesize different antimicrobial com-
pounds that can inhibit the growth of specific bacteria, which could be useful to tackle
certain diseases associated with animals and plants in downstream applications with the
strain [55]. The B. licheniformis CG1 isolate was predicted to have secondary metabolite
clusters associated with the synthesis of lichenysin and lichenicidin, which is consistent
with the literature [56,57]. Clusters for lichenysin were also present in the B. sonorensis
isolates from this study. Of the six isolates found in the honeybee samples, four were iden-
tified as B. sonorensis. To our knowledge, this is the first report that describes the presence
of B. sonorensis in honeybee products. Two B. sonorensis strains (X1 and X2) were isolated
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from royal jelly samples, which has never been reported before. The high nutritional value
of royal jelly could make this substance as a good growth medium for these bacteria [58].
Alternatively, the presence of Bacillus strains in the royal jelly samples could be the result
of a contamination, since bees mix royal jelly with pollen and nectar to produce worker
jelly [59].

In summary, B. licheniformis has been defined, not only as one of the most important
bacterial organisms employed in industry for enzyme production, but also as a promising
probiotic organism for animal feed and as an efficient biofertilizer to prevent diseases and
promote growth in plants [60]. Therefore, the B. licheniformis CG1 strain characterized in
this study constitutes a promising candidate for use in different industrial applications
based on keratin wastes utilization.
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