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1. Introduction

After Gurney et al. [10] came up with a scalar delay equation called Nicholson’s blowflies equation, 
there has been an increasing interest in the dynamical behaviour of the solutions of this equation, as well 
as of its generalisations, such as Nicholson systems or their non-autonomous versions, often periodic or 
almost periodic. Firstly, the interest is in the extinction versus the persistence of the population, or of the 
population within some patch, when dealing with a compartmental model. In the case of persistence, the 
goal is to describe the picture of the population’s evolution, depending on the initial situation. These models 
lie within the field of delayed functional differential equations (FDEs for short). A relevant reference for the 
theory of FDEs is Hale and Verduyn Lunel [11].
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Although there is extensive literature on Nicholson models, we mention some publications which are 

closer to our approach, namely, the works by Faria [5–7], Faria et al. [8], Faria and Röst [9], and Obaya 

and Sanz [19,20]. The reader can find many other references therein. In many papers dealing with the 

almost periodic model, the idea is to impose conditions forcing an invariant zone where a unique almost 
periodic solution is found by means of fixed-point theorems. New alternative methods can be found in 

Zhang et al. [24]. Very recently, almost periodic Nicholson systems have been considered by Novo et al. [17], 
as models in biology where the use of the exponential ordering can lead to new conditions that force the 

existence of a unique attracting almost periodic solution. This turns out to be the case for persistent systems 
provided that the delays are small enough.

In this paper, we apply methods of the theory of skew-product semiflows to analyse the long-term 

dynamics of almost periodic Nicholson systems. The monograph by Shen and Yi [22] can be a useful 
reference for this theory. Due to the time dependence of the system, solutions do not define a semiflow in a 

direct way. The almost periodic time variation in the model permits adding a compact base flow component 
Ω by means of the so-called hull construction, so that solutions induce a dynamical system on a product 
space of the form Ω ×X. In the scalar case, X is the space of continuous functions on an interval [−r, 0], 
where r is the delay in the equation and, in the m-dimensional case, X is the product of m such spaces. 
Then, dynamical techniques are applied in order to prove the existence of a global attractor in the standard 

positive cone Ω ×X+, which is the appropriate set from the biological point of view. This is a basic result 
which guarantees the existence of a subset approached by the trajectories in Ω × X+ as time evolves. 
When persistence is assumed, then there also exists a global attractor in the interior of the positive cone 

Ω × IntX+.
Describing the structure of an attractor is a difficult task in general. Here, we focus on finding new 

conditions which imply that the latter attractor is as simple as it can be. If one thinks of an autonomous 
equation, that means a globally attracting equilibrium point. The counterpart of this simple situation in the 

non-autonomous setting is a unique attracting invariant set K ⊂ Ω × IntX+ which is a copy of the base flow 

Ω, that is, K = {(ω, b(ω)) | ω ∈ Ω} for a continuous map b : Ω → IntX+. For the initial Nicholson model, 
this implies the existence of a unique attracting positive almost periodic solution, so that the behaviour of 
any other positive solution is asymptotically almost periodic.

It is important to mention that, although the Nicholson systems are not cooperative, they induce a local 
monotone and concave skew-product semiflow τ in a neighbourhood of Ω × {0}. This allows us to apply 

standard methods of comparison of solutions for the usual order in X+, as well as the general theory for 
monotone and concave skew-product semiflows by Núñez et al. [18].

The conditions in this work guaranteeing the existence of a unique attracting positive almost periodic 

solution are complementary to those in the literature. This fact extends the scope of applicability of our 
results and allows us to illustrate the structure of the global attractor with the aid of numerical techniques 
in these new cases. Moreover, the behaviour of the global attractors when the migration and mortality rates 
of the Nicholson system vary is investigated numerically.

We briefly describe the structure of the paper. In Section 2, we include some preliminaries to make 

the paper reasonably self-contained. In Section 3, the theoretical results on the existence of attractors for 
Nicholson systems are presented and, under the hypothesis of uniform persistence, precise inequalities are 

given which imply that the attractor in the interior of the positive cone is an exponentially stable copy of 
the base. Results of this type have also been obtained by Faria [6,7]. Finally, in Section 4, some numerical 
simulations illustrate the applicability of our results and compare them with other results given in the 

previous literature.
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2. Some preliminaries

We include some basic concepts of the theory of non-autonomous dynamical systems relevant in this 
work. In Section 3, we will provide a detailed explanation of the process to address the study of Nicholson 
systems in this context, by means of the hull construction.

Let (Ω, d) be a compact metric space. A real continuous flow (Ω, σ, R) is defined by a continuous map 
σ : R × Ω → Ω, (t, ω) �→ σ(t, ω) = σt(ω) = ω·t satisfying (i) σ0 = Id, and (ii) σt+s = σt ◦ σs for all s, 
t ∈ R. The set {ω·t | t ∈ R} is called the orbit of the point ω. We say that a subset Ω1 ⊂ Ω is σ-invariant if 
σt(Ω1) = Ω1 for every t ∈ R. The flow (Ω, σ, R) is called minimal if it does not contain properly any other 
compact σ-invariant set, or equivalently, if every orbit is dense.

Given a continuous flow (Ω, σ, R) on a compact metric space Ω and a complete metric space (X, d), a 
continuous skew-product semiflow (Ω ×X, τ, R+) on the product space Ω ×X is determined by a continuous 
map

τ : R+ × Ω ×X −→ Ω ×X

(t, ω, x) �→ (ω·t, u(t, ω, x))

which preserves the flow on Ω, called the base flow. The semiflow property means (i) τ0 = Id, and (ii) 
τt+s = τt ◦ τs for t, s ≥ 0, where τt(ω, x) = τ(t, ω, x) for each (ω, x) ∈ Ω ×X and t ∈ R+. This leads to the 
so-called (nonlinear) semicocycle property,

u(t + s, ω, x) = u(t, ω·s, u(s, ω, x)) for t, s ≥ 0 and (ω, x) ∈ Ω ×X. (2.1)

The set {τ(t, ω, x) | t ≥ 0} is the semiorbit of the point (ω, x). A subset K of Ω ×X is positively invariant
if τt(K) ⊂ K for all t ≥ 0 and it is τ -invariant if τt(K) = K for all t ≥ 0. A compact τ -invariant set K for 
the semiflow is minimal if it does not contain any nonempty compact τ -invariant set other than itself.

Some relevant references for global attractors and pullback attractors in non-autonomous dynamical 
systems are Carvalho et al. [3] and Kloeden and Rasmussen [13]. For a skew-product semiflow over a 
compact base flow Ω, the global attractor A ⊂ Ω ×X, when it exists, is an invariant compact set attracting 
a certain class D(X) of subsets of Ω ×X forwards in time; namely,

lim
t→∞

dist(τt(Ω ×X1),A) = 0 for each X1 ∈ D(X) ,

for the Hausdorff semidistance. The standard choices for D(X) are either the class Db(X) of bounded subsets 
of X or the class Dc(X) of compact subsets of X (see Cheban et al. [4]).

Since Ω is compact, the non-autonomous set {A(ω)}ω∈Ω, formed by the ω-sections of A defined by 
A(ω) = {x ∈ X | (ω, x) ∈ A} for each ω ∈ Ω, is a pullback attractor , that is, {A(ω)}ω∈Ω is compact, 
invariant, and it pullback attracts all the sets X1 ∈ D(X):

lim
t→∞

dist(u(t, ω·(−t), X1), A(ω)) = 0 for all ω ∈ Ω . (2.2)

Note that the notion of pullback attractor is well-defined within the context of semiflows because the 
time variable in (2.2) is positive.

3. Attractors in Nicholson systems

In this section, we apply the theory of non-autonomous dynamical systems to get some useful infor-
mation about the so-called Nicholson systems, regarding the existence of attractors. We also determine 
new conditions to ensure a simple structure of the global attractor, meaning the existence of a unique 
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almost periodic attracting solution of the Nicholson system. For completeness, recall that a continuous 
function h : R → R is almost periodic if, for every ε > 0, the set of the so-called ε-periods of h, 
{s ∈ R | |h(t + s) − h(t)| < ε for all t ∈ R}, is relatively dense.

Since the model has been explained in detail in many publications (e.g., see [6], [7], [17], and [19]), we do 
not include here the details of its history or the biological meaning of the imposed conditions. We consider 
an m-dimensional system of delay FDEs with patch structure (m patches) and a nonlinear term of Nicholson 
type, where the environment exhibits an almost periodic time variation:

y′i(t) = −d̃i(t) yi(t) +
m∑
j=1

ãij(t) yj(t) + β̃i(t) yi(t− ri) e−c̃i(t) yi(t−ri) , t ≥ 0 (3.1)

for i = 1, . . . , m. Here, yi(t) denotes the density of the population on patch i at time t ≥ 0 and ri > 0 is 
the maturation time on that patch. The coefficient ãij(t) stands for the migration rate of the population 
moving from patch j to patch i at time t ≥ 0. Finally, the nonlinear term is the delay Nicholson term. We 
make the following assumptions on the coefficient functions:

(a1) d̃i(t), ãij(t), c̃i(t) and β̃i(t) are almost periodic functions on R;
(a2) d̃i(t) ≥ d0 > 0 for each t ∈ R and i ∈ {1, . . . , m};
(a3) ãij(t) are all nonnegative functions and ãii is identically null;
(a4) β̃i(t) > 0 for each t ∈ R and i ∈ {1, . . . , m};
(a5) c̃i(t) ≥ c0 > 0 for each t ∈ R and i ∈ {1, . . . , m};
(a6) d̃i(t) −

∑m
j=1 ãji(t) > 0 for each t ∈ R and i ∈ {1, . . . , m}.

Although the procedure to build the hull of the Nicholson system has recently been explained in detail 
in [17], we include it here for the sake of completeness. Take X = C([−r1, 0]) × . . .× C([−rm, 0]) with the 
usual cone of positive elements, denoted by X+, and the supremum norm. Namely, X+ = {φ ∈ X | φi(s) ≥
0 for s ∈ [−ri, 0], 1 ≤ i ≤ m} with interior IntX+ = {φ ∈ X | φi(s) > 0 for s ∈ [−ri, 0], 1 ≤ i ≤ m}. 
Then, X is a strongly ordered Banach space. Note that, for y ∈ Rm, y ≥ 0 means that all components are 
nonnegative and y 	 0 means that all components are positive. The induced partial order relation on X is 
then given by:

φ ≤ ψ ⇐⇒ ψ − φ ∈ X+ ;

φ � ψ ⇐⇒ ψ − φ ∈ IntX+ .

The usual notation is that, given a continuous map y : [−r, ∞) → Rm for r := max(r1, . . . , rm) and 
a time t ≥ 0, yt denotes the map in X defined by (yt)i(s) = yi(t + s), s ∈ [−ri, 0], for each component 
i = 1, . . . , m. Let us write (3.1) as y′i(t) = fi(t, yt), 1 ≤ i ≤ m, for the maps fi : R ×X → R,

fi(t, φ) = −d̃i(t)φi(0) +
m∑
j=1

ãij(t)φj(0) + β̃i(t)φi(−ri) e−c̃i(t)φi(−ri) .

Consider the map l : R → RN given by all the almost periodic coefficients l(t) = (d̃i(t), ̃aij(t), β̃i(t), ̃ci(t))
and let Ω be its hull, that is, the closure of the time-translates of l for the compact-open topology. Then, 
Ω is a compact metric space thanks to the boundedness and uniform continuity of almost periodic maps. 
Besides, the shift map σ : R × Ω → Ω, (t, ω) �→ ω·t, with (ω·t)(s) = ω(t + s), s ∈ R, defines an almost 
periodic and minimal flow. By considering the continuous nonnegative maps di, aij , βi, ci : Ω → R such 
that (di(ω), aij(ω), βi(ω), ci(ω)) = ω(0), the initial system is included in the family of systems over the hull, 
which can be written for each ω ∈ Ω as
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y′i(t) = −di(ω·t) yi(t) +
m∑
j=1

aij(ω·t) yj(t) + βi(ω·t) yi(t− ri) e−ci(ω·t) yi(t−ri) (3.2)

for i = 1, . . . , m. For each ω ∈ Ω and ϕ ∈ X, the solution of (3.2) with initial value ϕ is denoted by 
y(t, ω, ϕ). The solutions induce a skew-product semiflow τ : R+×Ω ×X → Ω ×X, (t, ω, ϕ) �→ (ω·t, yt(ω, ϕ))
(in principle only locally defined). This semiflow has a trivial minimal set Ω × {0}, as the null map is a 
solution of all the systems over the hull.

Note that this family of systems does not satisfy the standard cooperative or quasimonotone condition, 
which for a single system of delay FDEs y′(t) = g(t, yt) given by a map g : R+ × X → Rm reads as: 
whenever φ ≤ ψ and φi(0) = ψi(0) for some i, then gi(t, φ) ≤ gi(t, ψ) for all t ≥ 0. This condition implies 
that ordered initial data φ ≤ ψ lead to ordered solutions, as far as defined (e.g., see Smith [23]). In any 
case, the set Ω ×X+ is invariant for the dynamics, that is, the solutions of (3.2) starting inside the positive 
cone remain inside the positive cone while defined (see [23, Theorem 5.2.1]). Also, if ϕ ≥ 0 with ϕ(0) 	 0, 
then y(t, ω, ϕ) 	 0 for all t ≥ 0. Besides, the induced semiflow is globally defined on Ω ×X+, since all the 
solutions of (3.2) are bounded (see [20, Theorem 3.3]).

The advantage when a global attractor exists for the induced semiflow is that there is a dynamical object 
approached by the trajectories in the product space Ω ×X+ in a forward sense. In our first result, we prove 
that the induced semiflow always has a global attractor. To the best of our knowledge, this general result 
has not been stated before. Recall that Db(X+) stands for the class of bounded sets in X+. Also, given a 
constant ρ > 0, we denote by ρ̄ either the vector in Rm or the map in X which takes the constant value ρ
in all components.

Theorem 3.1. Assume that the Nicholson system (3.1) satisfies (a1)–(a6). Then, there is a global attractor 
A ⊂ Ω ×X+ with respect to the class Db(X+) for the induced skew-product semiflow τ : R+ × Ω ×X+ →
Ω ×X+.

Proof. To get the existence of a global attractor, it suffices to find an absorbing compact set (e.g., see [13, 
Theorem 1.36]). Under the regularity conditions satisfied by the Nicholson systems, for r := max(r1, . . . , rm), 
the map yr : Ω ×X → X is compact, meaning that it takes bounded sets into relatively compact sets. Then, 
given a constant ρ > 0, the set

H = cls
{
yr(ω, ϕ) | ω ∈ Ω , 0 ≤ ϕ ≤ ρ̄

}
⊂ X+ (3.3)

is compact. Now we search for the appropriate ρ > 0 so that Ω ×H is absorbing, that is, for every bounded 
subset X1 ⊂ X+ there exists t1 = t1(X1) such that τt(Ω ×X1) ⊂ Ω ×H for all t ≥ t1.

For the constants c0 given in condition (a5) and β+
i := supt∈R β̃i(t), 1 ≤ i ≤ m, let us consider the family 

of ODEs given by

z′i(t) = −di(ω·t) zi(t) +
m∑
j=1

aij(ω·t) zj(t) + β+
i

e c0
, 1 ≤ i ≤ m, ω ∈ Ω . (3.4)

This family is cooperative by (a3) and it is easy to check that it is a majorant family of the Nicholson 
family (3.2), considering the extrema of the maps hi(y) = y e−ci(ω) y for y ≥ 0, 1 ≤ i ≤ m, and condition (a5). 
Let z(t, ω, z0) denote the solution of the previous system of ODEs for ω ∈ Ω with initial value z0 ∈ Rm.

It can be deduced from condition (a6) that the homogeneous part of the family of ODEs (3.4) admits 
an exponential dichotomy with full stable subspace. From this, it follows that the solutions of (3.4) are 
ultimately bounded, uniformly for ω ∈ Ω, that is, there exists ρ > 0 such that, given an initial condition 
z0 ∈ Rm, there is a t0 = t0(z0) such that z(t, ω, z0) ≤ ρ̄ for all ω ∈ Ω and t ≥ t0. We refer the reader to the 
proof of [19, Theorem 6.1] for all the details.
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To finish, let us see that this value of ρ serves our purposes. Given a bounded subset X1 ⊂ X+, we 
can take ϕ0 ∈ X+ which satisfies ϕ ≤ ϕ0 for all ϕ ∈ X1. For z0 = ϕ0(0), we take the corresponding 
t0 as in the previous paragraph. Then, by comparing the solutions (see [23, Theorem 5.1.1]), y(t, ω, ϕ) ≤
z(t, ω, ϕ(0)) ≤ z(t, ω, ϕ0(0)) ≤ ρ̄ for all (ω, ϕ) ∈ Ω × X1 and t ≥ t0. That is, 0 ≤ yt(ω, ϕ) ≤ ρ̄ for all 
t ≥ t0 +r. Now, it suffices to apply the semicocycle property (2.1) to conclude that, if t ≥ t1 := t0 +2r, then 
yt(ω, ϕ) = yr(ω·(t − r), yt−r(ω, ϕ)) ∈ H for all (ω, ϕ) ∈ Ω ×X1, as wanted. We are done with the proof. �

In some situations, we can give a description of the global attractor. Often the interest is in the extinction 
versus the persistence of the species. Regarding the extinction at an exponential rate, Novo et al. [15] have 
proved that the uniform exponential stability of the null solution is equivalent to the uniform exponential 
stability of the null solution of the linearised systems along the null solution,

z′i(t) = −di(ω·t) zi(t) +
m∑
j=1

aij(ω·t) zj(t) + βi(ω·t) zi(t− ri) , t ≥ 0 , (3.5)

for i = 1, . . . , m, for each ω ∈ Ω. In [15, Proposition 3.4] one can find a series of equivalent conditions for 
this behaviour. In particular, it is enough that the null solution of (3.5) is uniformly asymptotically stable. 
In this situation, the global attractor in the positive cone is the trivial set A = Ω × {0}.

Hereafter, we focus on situations in which the population persists. First of all, we give the definition of 
persistence for the initial system (3.1), meaning that, if there are some individuals on every patch at the 
initial time t = 0, the population will surpass a positive lower bound on all the patches in the long run. We 
use the terminology introduced in [20].

Definition 3.2. The Nicholson system (3.1) is uniformly persistent at 0 if there exists M > 0 such that for 
every initial map ϕ ≥ 0 with ϕ(0) 	 0 there exists a time t0 = t0(ϕ) such that

yi(t, ϕ) ≥ M for all t ≥ t0 and i = 1, . . . ,m .

As shown in [20, Theorem 3.4], this dynamical property for the system implies the uniform persistence 
of the whole family (3.2), according to the next definition. Because of this, we say that Nicholson systems 
are well-behaved, as this implication is not to be expected in general (see [20] for more details).

Definition 3.3. The skew-product semiflow induced by the family of systems (3.2) is uniformly persistent in 
the interior of the positive cone IntX+ if there is a map ψ 	 0 such that, for every ω ∈ Ω and every initial 
map ϕ 	 0, there exists a time t0 = t0(ω, ϕ) such that yt(ω, ϕ) ≥ ψ for all t ≥ t0.

When the Nicholson system is uniformly persistent at 0, the induced semiflow has an attractor in the 
interior of the positive cone.

Theorem 3.4. Assume that the Nicholson system (3.1) satisfies conditions (a1)–(a6) and it is uniformly 
persistent at 0. Then, there exists a global attractor for τ in Ω × IntX+ with respect to the class of compact 
subsets of IntX+.

Proof. As in the proof of Theorem 3.1, we search for a compact absorbing set in Ω × IntX+. First of all, 
let H be the compact set defined in (3.3), and consider H ′ := H ∩ {ϕ | ϕ ≥ ψ} for a certain ψ 	 0. Note 
that H ′ is compact and it lies within the interior of the positive cone. It remains to prove that, making the 
appropriate choice of ψ, for each compact subset X1 ⊂ IntX+, the set Ω ×H ′ absorbs the set Ω ×X1, that is, 
there exists t0 = t0(X1) such that τt(Ω ×X1) ⊂ Ω ×H ′ for t ≥ t0. We already know by the aforementioned 
theorem that, given such a subset X1, there is a t1 = t1(X1) such that τt(Ω × X1) ⊂ Ω × H for t ≥ t1. 
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Clearly, the fact that trajectories starting in X1 will eventually surpass a certain ψ is related to the uniform 
persistence property.

Since Nicholson systems are not cooperative, it is necessary to build an auxiliary family of cooperative 
systems, so that some results that enable a comparison of solutions can be applied. (Note that we have 
already used this technique in the proof of Theorem 3.1.) The idea is not new, so we refer the reader to the 
proof of [19, Theorem 6.2] for all the details. A family of delay systems is built with the following properties: 
it is cooperative, concave, of class C1 with respect to the functional variable, it shares the linearised family 
along the null solution (3.5), and it is a minorant family of (3.2) in the long run. We denote by z(t, ω, ϕ) the 
solutions of this family for each ω ∈ Ω and ϕ ∈ X+. Then, this cooperative family inherits the property of 
uniform persistence from the linearised family, and this happens uniformly for ω ∈ Ω, that is, there exists 
ψ 	 0 such that given ϕ0 	 0 there is a time t2 = t2(ϕ0) such that zt(ω, ϕ0) ≥ ψ for all t ≥ t2 and all 
ω ∈ Ω. The uniformity in ω can be justified because the uniform persistence forces the auxiliary family into 
the dynamical situation described in Case A1 in Theorem 3.8 in [18].

At this point, since X1 ⊂ IntX+, we can find a ϕ0 	 0 such that ϕ0 ≤ ϕ for all ϕ ∈ X1, and take 
the corresponding t2 = t2(ϕ0). Then, for all ω ∈ Ω and ϕ ∈ X1, ψ ≤ zt(ω, ϕ0) ≤ zt(ω, ϕ) for t ≥ t2, by 
monotonicity. Since we can compare these solutions with those of the Nicholson systems from one time on 
(see [23, Theorem 5.1.1]), uniformly for ω ∈ Ω, we find a time t3 ≥ t2 such that ψ ≤ yt(ω, ϕ) for all ω ∈ Ω, 
ϕ ∈ X1 and t ≥ t3. By taking t0 := max(t1, t3), the proof is finished. �

For Nicholson systems, the compartmental structure and the relations among the different compart-
ments have a strong influence on the property of uniform persistence. One crucial fact for the nonlinear 
and noncooperative Nicholson systems (among other systems, e.g., see the Mackey and Glass model for 
hematopoiesis [14]) is that its uniform persistence turns out to be equivalent to the uniform persistence 
of the linearised systems along the null solution (3.5). Since these linear equations are cooperative, the 
general methods in Novo et al. [16] (see also [19]) to study the uniform persistence of cooperative recurrent 
non-autonomous delay FDEs apply, giving a complete spectral characterisation of this dynamical property.

The next statement is part of [20, Theorem 3.5] and is included here for completeness and because it will 
be useful in Section 4. It offers a characterisation of the uniform persistence of an almost periodic Nicholson 
system (3.1) in terms of a few Lyapunov exponents, which can be numerically calculated.

Theorem 3.5. Assume that the Nicholson system (3.1) satisfies conditions (a1)–(a6), and assume without 
loss of generality that the constant matrix Ā = [a+

ij ] with entries a+
ij := supt∈R ãij(t) has a block lower 

triangular structure

⎡
⎢⎢⎢⎢⎣
Ā11 0 . . . 0
Ā21 Ā22 . . . 0
...

...
. . .

...
Āk1 Āk2 . . . Ākk

⎤
⎥⎥⎥⎥⎦

with irreducible diagonal blocks Ājj of dimension nj for j = 1, . . . , k (n1 + · · · + nk = m). Arrange the set 
of delays as {r1, . . . , rm} = {r1

1, . . . , r
1
n1
, . . . , rk1 , . . . , r

k
nk
} and write X = X(1) × . . .×X(k) for

X(j) = C([−rj1, 0]) × . . .× C([−rjnj
, 0]) , j = 1, . . . , k .

For each j = 1, . . . , k, consider the nj-dimensional almost periodic linear delay system
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z′i(t) = −d̃i(t) zi(t) +
∑
l∈Ij

ãil(t) zl(t) + β̃i(t) zi(t− ri) , t ≥ 0 ,

for i ∈ Ij, the set of indices corresponding to the rows of the block Ājj, and let zj(t, ̄1) be the solution with 
initial map 1̄, the map with all components identically equal to 1 in the space X(j). Then, let λ̃j be defined 
as

λ̃j = lim
t→∞

log ‖zjt (1̄)‖∞
t

.

Finally, consider the set of indices I associated to the structure of the linear part of the system as follows: 
if k = 1, i.e., if the matrix Ā is irreducible, let I = {1}; else, let

I = {j ∈ {1, . . . , k} | Āji = 0 for all i �= j},

that is, I is composed by the indices j such that all off-diagonal blocks in the row of Ājj are null. Then, the 
almost periodic Nicholson system (3.1) is uniformly persistent at 0 if and only if λ̃j > 0 for all j ∈ I.

Assuming the uniform persistence of the Nicholson system, we give a new result on the existence of a 
unique positive almost periodic solution which attracts every other positive solution as t → ∞. In these 
cases, the attractor in the interior of the positive cone is as simple as it can be, i.e., a copy of the base 
which reproduces the almost periodic dynamics on the base Ω. Briefly, whenever the attractor lies within the 
region of monotonicity of τ for the usual ordering, it is a copy of the base. This is a nontrivial generalisation 
to the almost periodic case of the same result in the autonomous case: see [5, Theorem 3.1]. Some other 
related results are [6, Theorem 4.1] for a class of periodic Nicholson systems and [7, Theorem 3.4].

We want to note that in the mentioned related results, and in many others in the literature, there are 
conditions which imply the uniform persistence of the system, given in terms of the spectral bound of an 
associated matrix in the autonomous case, or by introducing a positive lower bound in expressions of the 
type (3.6). However, we have chosen to directly assume the fact that the system is persistent, and whenever 
a particular system is given, calculate the Lyapunov exponents and check the persistence using the sufficient, 
but also necessary, conditions given in Theorem 3.5.

Theorem 3.6. Assume that the Nicholson system (3.1) satisfies conditions (a1)–(a6) and it is uniformly 
persistent at 0. If, for every t ∈ R,

0 <
β̃i(t)

d̃i(t) −
∑

j �=i ãij(t)
c+i
c+j

≤ ec
−
i /c+i for each i = 1, . . . ,m , (3.6)

for the positive constants c−i := inft∈R c̃i(t) and c+i := supt∈R c̃i(t), then there exists a unique positive almost 
periodic solution of (3.1) which attracts every other positive solution at an exponential rate; more precisely, 
it attracts every other solution y(t, ϕ) with initial value ϕ ≥ 0 such that ϕ(0) 	 0.

Proof. The proof relies on the application of the general theory for monotone and concave skew-product 
semiflows developed in [18]. Thus, we consider the family of systems over the hull (3.2) and the induced 
skew-product semiflow τ . From condition (3.6), it follows that for every ω ∈ Ω and every i = 1, . . . , m,

−di(ω) +
m∑
j=1

aij(ω) c
+
i

c+j
+ βi(ω) e−c−i /c+i ≤ 0 .

Then, it is easy to check that for the constant map ϕ̄ in X with value the vector
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(
1
c+1

, . . . ,
1
c+m

)
∈ Rm ,

the region Ω × [0̄, ϕ̄] is positively invariant: just apply the criterion given in [23, Remark 5.2.1] for non-
quasimonotone delay FDEs, bearing in mind the Nicholson nonlinear term. Actually, it is easy to check 
that the restriction of the semiflow to this positively invariant region is monotone, concave, and of class 
C1 with respect to ϕ. Besides, recall that the persistence property of the initial system implies the uniform 
persistence of the semiflow in the interior of the positive cone. Then, if we fix ω0 ∈ Ω and 0 � φ0 ≤ ϕ̄, the 
omega-limit set of the pair (ω0, φ0) is a strongly positive compact and positively invariant set, which thus 
contains a minimal set K such that 0 � K and φ ≤ ϕ̄ for all (ω, φ) ∈ K. Due to the uniform persistence, 
[18, Theorem 3.8] implies that K is the only strongly positive minimal set for τ |Ω×[0̄,ϕ̄], it is a copy of the 
base, namely, K = {(ω, b(ω)) | ω ∈ Ω} for a continuous map b : Ω → IntX+, and it exponentially attracts 
every other semiorbit for ω ∈ Ω and 0 � ϕ ≤ ϕ̄, that is, limt→∞ ‖yt(ω, ϕ) − b(ω·t)‖∞ = 0 exponentially 
fast.

Let us now prove that the semiorbit τ(t, ω, ϕ) of each ω ∈ Ω and ϕ 	 0 is attracted by K too. In 
order to check it, we introduce a majorant family of systems which satisfy the quasimonotone condition, 
are concave, and of class C1 with respect to ϕ. More precisely, for each 1 ≤ i ≤ m, we consider the map 
hi : Ω × [0, ∞) → [0, ∞) defined by

hi(ω, y) =

⎧⎨
⎩

y e−ci(ω) y if 0 ≤ y ≤ 1
ci(ω) ,

1
ci(ω) e if y ≥ 1

ci(ω) ,

together with the family of delayed nonlinear systems given for each ω ∈ Ω by

y′i(t) = −di(ω·t) yi(t) +
m∑
j=1

aij(ω·t) yj(t) + βi(ω·t)hi(ω·t, yi(t− ri)) , (3.7)

for i = 1, . . . , m, where the coefficients are just those of (3.2). Let τ̃ : R+ × Ω ×X+ → Ω ×X+, (t, ω, ϕ) �→
(ω·t, zt(ω, ϕ)) denote the induced skew-product semiflow, where z(t, ω, ϕ) is the solution of system (3.7) with 
initial value ϕ ∈ X+. This semiflow turns out to be monotone, concave, and of class C1 in ϕ. Besides, K 	 0
is also a minimal set for τ̃ , because the systems coincide when restricted to Ω × [0̄, ϕ̄]. Then, in particular 
τ̃ is globally defined (see [18, Proposition 3.6]). Also, the fact that K attracts all the semiorbits starting 
below it implies that K is the only minimal set for τ̃ , and thus attracts all the solutions in the interior of the 
positive cone (see [18, Theorem 3.8]), that is, for each ω ∈ Ω and ϕ 	 0, ‖zt(ω, ϕ) −b(ω·t)‖∞ → 0 as t → ∞
exponentially fast. In other words, there is a global attractor for τ̃ in the interior of the positive cone given 
by the set K ⊂ [0̄, ϕ̄]. Now, as systems (3.7) satisfy the quasimonotone condition, we can apply a standard 
argument of comparison of solutions (see [23, Theorem 5.1.1]) to get that 0 ≤ yi(t, ω, ϕ) ≤ zi(t, ω, ϕ) for all 
ω ∈ Ω, ϕ ∈ X+ and t ≥ 0. Hence, it is easy to deduce that also the attractor in Ω × IntX+ for the Nicholson 
systems is in [0̄, ϕ̄], and thus it must be K, as desired.

Finally, when we take ω1 as the element in the hull giving the initial system (3.1), we get the positive 
almost periodic solution b(ω1·t) attracting every other solution yt(ω1, ϕ) with ϕ 	 0. Moreover, if ϕ ≥ 0
with ϕ(0) 	 0, then y(t, ω1, ϕ) 	 0 for all t ≥ 0, so that we just need to move forwards in time and apply 
the semicocycle property to obtain the attraction result for these initial data. The proof is finished. �
Remark 3.7. Some other systems in the literature with a similar structure can also be treated in the same 
fashion. For instance, similar results can be stated for useful almost periodic population models which are 
written as
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y′i(t) = −d̃i(t) yi(t) +
m∑
j=1

ãij(t) yj(t) + β̃i(t)hi(t, yi(t− ri)) ,

for i = 1, . . . , m, with assumption (a6) on the linear part of the systems, and where the nonlinearities are 
of the form

hi(t, y) = y

1 + c̃i(t) yα
(α ≥ 1) , t ∈ R , y ∈ R+.

See [20] for more details on the structure of these systems from an analytical point of view. For example, 
the scalar model for the process of hematopoiesis for a population of mature circulating cells in [14] falls 
within this class.

4. Numerical simulations

The aim of this section is twofold. First, we will illustrate the results presented in Section 3 and compare 
their applicability with those in the literature. We will then explore the behaviour of the omega-limit sets 
of Nicholson equations when their coefficients undergo certain variations.

Let T 2 = (R/[0, 2π])2 be the two-dimensional torus endowed with the Kronecker flow σ : R ×T 2 → T 2, 
(t, θ1, θ2) �→ σt(θ1, θ2) = (θ1+t, θ2+

√
2 t) (mod 2 π). As in the previous sections, we simply write σt(θ) = θ·t

for each θ = (θ1, θ2) ∈ T 2. This flow is minimal because 1 and 
√

2 are linearly independent over Q.
Let us consider the family of two-dimensional quasi-periodic Nicholson systems given for each θ =

(θ1, θ1) ∈ T 2 by

y′1(t) = − d1(θ·t) y1(t) + a12(θ·t) y2(t) + β1(θ·t) y1(t− 1) e−c1(θ·t) y1(t−1) ,

y′2(t) = − d2(θ·t) y2(t) + a21(θ·t) y1(t) + β2(θ·t) y2(t− 2) e−c2(θ·t) y2(t−2) ,
(4.1)

for t ≥ 0, determined by the continuous coefficients defined for each t ∈ R by

c1(θ·t) = 1, c2(θ·t) = 0.5 + 0.2 p(θ1 + t) + 0.01 q(θ2 +
√

2 t),

a12(θ·t) =α12 (0.1 + 0.03 p(θ1 + t) + 0.01 q(θ2 +
√

2 t)),

a21(θ·t) =α21 (1 + 0.03 p(θ1 + t) + 0.01 q(θ2 +
√

2 t)),

m1(θ·t) = 1.2, d1(θ·t) = m1(θ·t) + a21(θ·t),
m2(θ·t) =μ (1.9 + 0.02 p(θ1 + t)), d2(θ·t) = m2(θ·t) + a12(θ·t),
β1(θ·t) = 5 + 0.03 p(θ1 + t) + 0.01 q(θ2 +

√
2 t),

β2(θ·t) = 1 + 0.03 p(θ1 + t) + 0.01 q(θ2 +
√

2 t),

where μ, α12, and α21 are positive real numbers, and p, q ∈ C(R, R) are 2 π-periodic functions (or, equiva-
lently, continuous maps on the torus T ). Recall that quasi-periodic maps are a relevant class within the set 
of almost periodic maps. For each θ ∈ T 2, system (4.1) may be seen as a quasi-periodic perturbation of an 
autonomous Nicholson system. Notice that m1 and m2 represent the mortality rates.

Fix p(t) = sin(t) and q(t) = cos(t), t ∈ R. It is straightforward to check that conditions (a1)–(a6)
are satisfied for the system for θ = (0, 0), which can be considered as the initial Nicholson system (3.1). 
Moreover, it can be checked that condition (3.6) holds as well for μ = 1 and α12 = α21 ∈ {0.8, 1, 1.2}. The 
bound given in [7, Theorem 3.4] fails for the vector with positive components (1/c+1 , 1/c

+
2 ) used in the proof 

of Theorem 3.6 (see Fig. 1). We also performed a parameter sweep over the grid
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{0.01 k | k = 0, 1, . . . , 10000} × {0.01 k | k = 0, 1, . . . , 10000}

which seems to indicate that the bound given in [7, Theorem 3.4] fails for all the vectors with positive 
components.

Fig. 1. In both cases, μ = 1, p(t) = sin(t), q(t) = cos(t), and α12 = α21 = 0.8, 1, 1.2, resp. The first component is blue and the 
second one is red. (For interpretation of the colours in the figures, the reader is referred to the web version of this article.)

In order to apply Theorem 3.6, it remains to check that the quasi-periodic Nicholson system (4.1) for 
θ = (0, 0) is uniformly persistent at 0. Assuming the notation of Theorem 3.5, we have Ā = [Ā11], that is, 
an irreducible matrix of dimension 2. As a result, it suffices to check that the Lyapunov exponent λ̃1 > 0.

We are in a position to apply an adaptation of the techniques introduced in Calzada et al. [2] to compute 
λ̃1. Specifically, we will use some appropriate methods to perform the numerical integration of the delay 
linear system

y′1(t) = − d1(θ·t) y1(t) + a12(θ·t) y2(t) + β1(θ·t) y1(t− 1) ,

y′2(t) = − d2(θ·t) y2(t) + a21(θ·t) y1(t) + β2(θ·t) y2(t− 2)
(4.2)

for θ = (0, 0). Note that the appropriate state space for this problem is X = C([−1, 0]) × C([−2, 0]). As 
suggested by Theorem 3.5, we take 1̄ as the initial map, the map in X with both components identically 
equal to 1.

A first approach is given by Matlab’s code dde23 (see Shampine and Thompson [21]), which relies on 
an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine [1]. The results of that integration present an 
evident numerical instability, as seen on the left-hand side of Fig. 2. In order to circumvent this issue, the 
Gauss-Legendre method of order four for delay equations was considered. Its implementation was validated 
against both the symbolic solution and the numerical approximation given by Matlab’s dde23 of the un-
perturbed system (4.2) with parameters μ = α12 = α21 = 1, p = q ≡ 0. The Gauss-Legendre method is an 
implicit Runge-Kutta method with two stages and Butcher tableau

1
2 − 1

6
√

3 1
4

1
4 − 1

6
√

3
1
2 + 1

6
√

3 1
4 + 1

6
√

3 1
4

1 1

2 2



Fig. 2. Results of the numerical integration of system (4.2) on [−20, 2 π] with Matlab’s dde23 (left) and with the implicit Gauss-
Legendre method with two stages for delay equations (right). The first component is blue and the second one is red.

It is noteworthy that this method has order four and is A-stable as a consequence of the Wanner-Hairer-
Nørsett Theorem (see, e.g., Iserles [12]). The results of the integration of system (4.2) leading to the 
computation of the required Lyapunov exponent by the Gauss-Legendre method show no instabilities, 
as seen on the right-hand side of Fig. 2. Therefore, the techniques in [2] can be applied to conclude that 
the approximate value of λ̃1 is 0.597, which is positive. Finally, an application of Theorem 3.5 yields the 
uniform persistence at 0 of system (4.1) for θ = (0, 0), as desired.

As a consequence, Theorem 3.4 implies that the skew-product semiflow τ defined by the family (4.1), 
θ ∈ T 2 has a global attractor K in T 2 × IntX+. Furthermore, by Theorem 3.6 (see also its proof), the 
global attractor K is a copy of the base, that is, there exists a continuous map b : T 2 → IntX+ such that 
K = {(θ1, θ2, b(θ1, θ2)) | (θ1, θ2) ∈ T 2}. The implication in terms of solutions is that for each θ ∈ T 2 there 
exists a unique positive quasi-periodic solution of (4.1) which attracts every other positive solution at an 
exponential rate. This allows us to compute the global attractor K, having in mind that {K(θ)}θ∈T2 =
{b(θ)}θ∈T2 is the pullback attractor of the semiflow (see (2.2)).

Note that the graphs of the components of the map T 2 → R2, (θ1, θ2) �→ b(θ1, θ2)(0) determine two 
copies of T 2. Fix (θ1, θ2) ∈ T 2. Then b(θ1, θ2)(0) = limt→∞ y(t, σ−t(θ1, θ2), ̄1) and the limit converges 
exponentially fast. As a result, we can divide the 2-torus T 2 into a uniform grid {(θi1, θj2) | i, j = 1, . . . , 16}
and fix a tolerance 10−6. Therefore, we compute yij = y(T, σ−T (θi1, θ

j
2), ̄1), for each i, j = 1, . . . , 16, where 

T > 0 is such that the distance between yij and y(T − 10, σ−(T−10)(θi1, θ
j
2), ̄1) is under the tolerance. This 

procedure yields an approximation of both copies of T 2, as shown in Fig. 3.
By repeating the procedure above for the parameters μ = 1, p(t) = sin(t), q(t) = cos(t), and α12 =

α21 = 0.8, 1, 1.2, we can see that both components of the global pullback attractor vary monotonically, 
either increasingly or decreasingly, when both migration rates undergo similar variations (see Fig. 4).

If, on the other hand, only one of the migration rates is modified, the components of the global pullback 
attractor still vary monotonically, but their increasing and decreasing characters are reversed (see Fig. 4
again). Notice that, in this case, we are considering the parameters μ = 1, p(t) = sin(t), q(t) = cos(t), 
α21 = 1, and α12 = 0.01, 0.5, 1, for which it is easy to check that hypotheses (a1)–(a6) and condition (3.6)
hold.

Finally, let us investigate how the global pullback attractor is modified when the mortality rate in the 
second patch is increased or decreased. In either case, both components of the global pullback attractor vary 
monotonically according to the value of the parameter μ (see Fig. 5). We are considering the parameters 
μ = 0.7, 0.85, 1, 3, 9, 27, p(t) = sin(t), q(t) = cos(t), α21 = α12 = 1, for which hypotheses (a1)–(a6) and 
condition (3.6) hold.
12 A.M. Sanz, V.M. Villarragut / J. Math. Anal. Appl. 528 (2023) 127588
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Fig. 3. Mesh of points (θi
1, θj

2, yij
1 ) on the left and (θi

1, θj
2, yij

2 ) on the right, i, j = 1, . . . , 16, for the parameters μ = 1, p(t) = sin(t), 
q(t) = cos(t), and α12 = α21 = 1.

Fig. 4. Variation of the attractor for the parameters μ = 1, p(t) = sin(t), q(t) = cos(t). Plots 4a and 4b: α12 = α21 = 0.8 (green), 
1 (red), 1.2 (blue). Plots 4c and 4d: α12 = 0.01 (green), 0.5 (red), 1 (blue).
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Fig. 5. Variation of the attractor for the parameters p(t) = sin(t), q(t) = cos(t), α21 = α12 = 1. Plots 5a and 5b: μ = 27 (magenta), 
9 (green), 3 (red), 1 (blue). Plots 5c and 5d: μ = 1 (green), 0.85 (red), 0.7 (blue).
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