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The Basics of Transmission Line Theory in Four Arrows
■ Julio Sánchez-Curto 

Transmission line (TL) theory 
ca n be considered a sim-
plified and consistent frame-

work within general electromagnetic 
theory, so the governing equations 
of the line and their solutions can 
be viewed as more tractable and 
understandable versions of their cor-
responding electromagnetic counter-
parts [1]. This is particularly appealing 
for undergraduate students in elec-
trical engineering since the vector 
nature of the field vanishes, and 
the propagation phenomenon in 
the line can be understood in terms 
of forward and backward scalar 
voltage waves. The presentation of 
the Smith chart [2], [3] within this 
context gives a boost to this initial 
attraction since the chart beauti-
fully replaces all complex calculations 
involved in TL analysis with mere 
geometrical considerations.

Any simplification process, how-
ever, usually veils the theory that  

underlies it. This is precisely what, 
in my opinion, usually happ e n s 
whenever a n undergraduate stu-
dent tries to match or relate the theo-
retical side of the problem, sum-
marized in the extent formulae of  
TL theory, to its prac-
t i ca l  side,  namely, 
the chart-based geo-
metrical solution of 
electromagnetic prob-
lems [4]. The student 
do e s  not  p e r c e ive 
such relat ionsh ips, 
l e a v ing the theory 
apart, because doing 
so is considered use-
less when compared 
to the powerful chart. 
After years of lectur-
ing on this subject, 
we have turned to 
very simple linear algebra ideas 
to fill this gap in such a way that 
the everlasting search for simplic-
ity demanded by students and the 
teacher’s aim to transmit the pro-
found meaning of a subject can be 
simultaneously satisfied.

An Introductory Example
The evolution of a pendulum in a loss-
less medium for low oscillations and 

the voltage in a lossless TL in the 
microwave regime are ruled by the 
same ordinary differential equation. 
W h i l e  ( ) ( )x t x t 0+ =p  governs,  in 
normalized units, the former, the lat-
ter is described b y  ( ) ( ) ,v z v z 02b+ =p  

where b is the constant 
phase [5], [6], [7]. The 
role of time t and dis-
placement x(t) from 
the equilibrium posi-
tion [see Figure  1(a)] 
is replaced by the line 
length z and voltage 
v(z) so that all results 
and properties, such as 
periodicity and phase 
difference between the 
solutions, can be ex-
trapolated from one 
scenario to the other 
[8]. This is particularly 

useful when it comes to teaching, where 
the simplicity of the pendulum example 
facilitates the comprehension of the 
propagation phenomenon in the loss-
less TL. This occurs, for instance, when 
one analyses a particular solution of the 
pendulum, which, in its easiest form, 
is ( ) ( )sinx t t=  and ( ) ( ) ( ),coss t x t t= =o  
where s(t) is the pendulum speed.

Taking into account Euler’s formula, 
the solution can be expressed in matrix 

Julio Sánchez-Curto (julsan@tel.uva.es1) 
is with the Department of Signal Theory 

and Communications and Telematics 
Engineering, University of Valladolid, 

Valladolid 47011 Spain.

Digital Object Identifier 10.1109/MMM.2022.3211598

Date of current version: 1 December 2022

The student does 
not perceive such 
relationships, 
leaving the 
theory apart, 
because doing 
so is considered 
useless when 
compared to the 
powerful chart.
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form as a linear combination of two 
complex exponentials:
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They represent two turns with the same 
angular velocity but in opposite direc-
tions. As Figure 1(b) and (c) show, 
clockwise (blue) and counterclockwise 
(red) turns are combined so that their 
sum for each t gives the displacement 
and speed, respectively.

Although (1) may merely seem 
an alternative way of representing 
the solution, such a decomposition, 
however, lies at the core of the com-
plex analysis of TLs in the micro-
wave regime. In fact, the complex 
exponent ials of (1) resemble the 
incident and reflected voltage waves 
that, propagating in opposite direc-
tions, play an essential role in the 
complex analysis of lossless TLs. In 
the rigorous search for a result like 
(1), one must turn to linear algebra, 
as described in the next section.

The Linear Algebra Approach
The telegrapher equations [9], [10], in 
their simplest form, describe the evo-
lution of voltages and currents in loss-
less TLs under sinusoidal steady state
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w h e r e  ( )v zo  a n d  ( )i zo  d e n o t e  t h e 
derivatives of the voltage and cur-
rent phasors along the line z. In (2), 

~  is the angular frequency; L and C 
are the inductance and capacitance 
per unit length, respectively; and A 
is a 2 2#  complex matrix that gives 
the evolution of v(z) and i(z) in the 
TL [11], [12]. Equation (2) is usually 
transformed into a Helmholtz-type 
wave equation [5], [6], [7] whose solu-
tions perfectly describe the propaga-
tion phenomenon inside the TL. We 
instead preserve the matrix form anal-
ysis [11], [12] because it is not these 
well-known solutions but, rather, the 
decomposition of A that really mat-
ters here.

A little linear algebra shows that A 
decomposes as AP PD=  [13], where
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In (3), j j LCc b ~= =  and Z LC0
1= -  

are the propagation constant and line 
impedance, respectively. While !c  rep-
resents the eigenvalues, the columns of 
P are the eigenvectors of the system. 
For this problem, however, we define 
M P 1= -  so that ,A M DM1= -  and one 
can get the commutative diagram pre-
sented in Figure 2, where C denotes 
the set of complex numbers.

Figure 2 suggests that, instead of 
solving the TL in terms of voltage and 
current (through A), the process can 
be carried out in terms of D, where 
the eigenfunctions of the system are 
the incident ( )v z+  and reflected ( )v z-  
voltages in the line. Following the 

commutative diagram of Figure 2, one 
can express not only the general solu-
tion of the lossless TL,
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but also its ABCD parameters,
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as a linear combination of the matrixes 
presented in (3).

Example: The Boundary 
Conditions
Figure 2 also provides any student a 
systematic way of calculating the par-
ticular solution of (4) when the bound-
ary conditions at the load and generator 
are imposed. Since they are expressed 
in terms of Ohm’s law relating volt-
ages and currents, they must be trans-
formed into the eigenfunctions domain 
through M, as the vertical arrows in 
Figure 3 demonstrate. Figure 3(a) rep-
resents a lossless TL loaded with an 
antenna whose impedance at a given 
frequency is ZL  so that the boundary 
condition at z 0=  reads ( ) ( ).v Z i0 0L=  
Following Figure 2, one gets
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M M –1

D

A

Figure 2. The commutative diagram for 
solving (2). The colors are consistent with 
those of Figure 4.

x (t)

x (t) s(t)

1/2 1/2t = 3π/2
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ℑ ℑ
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(a) (b) (c)

Figure 1. (a) The pendulum for low oscillations. The time evolution of the complex 
exponentials to give (b) x(t) and (c) s(t).
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where the reflection coefficient at 
the load Lt  represents the boundary 
condition expressed in terms of the 
eigenfunctions.

This procedure is also valid for the 
boundary condition at the generator, 
as Figure 3(b) illustrates. A power gen-
erator oscillating at ~  with an internal 
impedance Zg  and providing a sinu-
soidal signal of amplitude Vg  is con-
nected to the line so that the boundary 
condition at the line input z l=-  reads 

( ) ( ).V i l Z v lg g= - + -  The incident volt-
age wave ( )v l-+  can be calculated fol-
lowing the same steps:
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so (4) is fully characterized.

TL Formulae in Four Arrows
Leaving aside the mathematical side 
of the problem, we turn to Figure  2 
because it resembles the three-step 
procedure of Figure 4(a) that illustrates 
how the calculation of the input 
impedance Zin  of a loaded TL is not 
carried out in terms of impedances 
but in terms of the reflection coef-
ficient. The well-known geometrical 
solution to this problem is illustrated 
in Figure 4(b), where colors have been 
chosen to emphasize the relationship 
between both figures. While the ver-
tical arrows of Figure 2 map voltages 
and currents into the eigenfunctions 
and vice versa, their corresponding 
counterparts in Figure 4(a) map their 
ratios, i.e., impedances into reflec-
tion coefficients and vice versa.

The relationship between both map-
pings can be formally established when 
one takes into account the homeomor-
phism of the linear group of invertible 
2 2#  complex matrixes into the set 
of Möbius transformations [14], [15]. 
In other terms, one can associate an 
invertible 2 2#  complex matrix
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onto the Möbius transformation

 cx d
ax b
+
+  (9)

where x is a complex variable and 
.ad bc 0!-  Since each matrix in (3) is 

nonsingular, we get, by mere inspec-
tion, the result shown in the right col-
umn of Table 1.

We have preserved the conven-
tional notation for impedances and 
reflection coefficients (Z and )t  in the 
right column of Table 1 so that any 
student can recognize, at first sight, 

the formulae involved in TL complex 
analysis. While (11) and (13) account 
for the generalized reflection coef-
ficient and impedance, respectively, 
(10) and its explicit inverse, (12), are 
the transformations that originate the 
Smith chart. Each equation at the right 
column of Table 1 is fully equivalent to 
its corresponding matrix, so each col-
ored arrow or point in Figures 2, 4(a), 
and 4(b) can now be associated to a 
complex function. The TL analysis for-
mulae and the chart-based solution of 
Figure 4(b) are simply two sides of the 

TABLE 1. The matrixes resulting from the diagonalization of A (left column) and 
their corresponding functions in the complex analysis of TLs (right column).

Matrixes Involved in the Solution of (2)
Complex Functions Involved in the 
Calculation of Zin in Figure 4
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l
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v (0)
i(0)

ρL =
ZL – Z0

ZL + Z0

(a) (b)

Figure 4. The (a) calculation of Zin based on the reflection coefficient and (b) its 
geometrical solution.
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Figure 3. The boundary conditions at the (a) load and (b) generator.
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same coin, which constitutes the main 
idea of this work.

Conclusions
We have presented a complementary 
approach to the complex analysis of 
TLs, based on the diagonalization 
of the 2 2#  complex matrix inher-
ent to the telegrapher equations. The 
analysis is summarized in the four 
arrows of a commutative diagram that 
allows any undergraduate student 
to identify each complex function of 
TL analysis with its equivalent action 
on the Smith chart, thus bringing 
together the theoretical and practical 
sides of the problem. This work can 
also be applied to an analogous sce-
nario, which is usually taught in any 
course in electrical engineering, i.e., 

the normal incidence of plane waves 
at planar interfaces separating two 
homogeneous media.

References
[1] S. A. Schelkunoff, “Conversion of Maxwell’s 

equations into generalized Telegraphist’s 
equations,” Bell Syst. Tech. J., vol. 34, no. 5, pp. 
995–1043, Sep. 1955, doi: 10.1002/j.1538-7305. 
1955.tb03787.x.

[2] P. H. Smith, “Transmission line calculator,” 
Electronics, vol. 12, no. 1, pp. 29–31, 1939.

[3] P. H. Smith, “An improved transmission line 
calculator,” Electronics, vol. 17, no. 1, p. 130, 
1944.

[4] A. R. Townsend, The Smith Chart and its Appli-
cations. Rijeka, Croatia: SciTech, 1995.

[5] R. A. Chipman, Theory and Problems of Trans-
mission Lines. New York, NY, USA: McGraw-
Hill, 1968.

[6] R. E. Collin, Foundations for Microwave Engineer-
ing, 2nd ed. New York, NY, USA: Wiley, 2001.

[7] D. M. Pozar, Microwave Engineering. Hoboken, 
NJ, USA: Wiley, 2005.

[8] H. Poincaré, Science and Hypothesis. New 
York, NY, USA: The Walter Scott Publish-
ing, 1905.

[9] W. Thompson, Mathematical and Physical Pa-
pers, vol. II. Cambridge, U.K.: Cambridge Univ. 
Press, 1884.

[10] O. Heaviside, Electromagnetic Theory, vol. I. 
New York, NY, USA: Dover, 1955.

[11] S. O. Rice, “Steady state solutions of trans-
mission line equations,” Bell Syst. Tech. J., vol. 
20, no. 2, pp. 131–178, Apr. 1941, doi: 10.1002/
j.1538-7305.1941.tb03599.x.

[12] L. A. Pipes, “Direct computation of trans-
mission matrices of electrical transmission 
lines: Part I,” J. Franklin Inst., vol. 281, no. 4, 
pp. 275–292, Apr. 1966, doi: 10.1016/0016-
0032(66)90224-9.

[13] V. I. Arnold, Ordinary Differential Equations. 
Cambridge, MA, USA: MIT Press, 1998.

[14] T. Needham, Visual Complex Analysis. Lon-
don, U.K.: Oxford Univ. Press, 1997.

[15] L. V. Ahlfors, Complex Analysis. New York, 
NY, USA: McGraw-Hill, 1978.

 

Transform lives 
Bring the promise of technology — and  
the knowledge and power to leverage it, to  
people around the globe. Donate now to the  
IEEE Foundation and make a positive impact  
on humanity.

· Inspire technology education

· Enable innovative solutions for social impact

· Preserve the heritage of technology

· Recognize engineering excellence

Discover how you can do a world of good today. 
Learn more about the IEEE Foundation at ieeefoundation.org.  
To make a donation now, go to ieeefoundation.org/donate.

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on January 16,2023 at 17:30:58 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1002/j.1538-7305.1955.tb03787.x
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03787.x
http://dx.doi.org/10.1002/j.1538-7305.1941.tb03599.x
http://dx.doi.org/10.1002/j.1538-7305.1941.tb03599.x
http://dx.doi.org/10.1016/0016-0032(66)90224-9
http://dx.doi.org/10.1016/0016-0032(66)90224-9

