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Abstract
This paper describes the problems associated with the implementation of a real-time 
optimization (RTO) decision support tool, for the operation of a large scale hydro-
gen network of an oil refinery. In addition, a formulation which takes into account 
the stochastic uncertainty of hydrogen demand, due to hydrocarbons quality change, 
is described and further studied, focusing on its utility in the decision-making pro-
cess of operators. An integrated robust data reconciliation, and economic optimiza-
tion, considering plant-wide uncertain parameters is presented and discussed. More-
over, stochastic uncertainty in hydrogen demand is assessed for its inclusion within 
the RTO framework. A novel approach of the decisions stages at hydrogen produc-
ers and consumers is proposed, which supports the formulation of the problem as 
a two-stage stochastic non-linear program. Representative results are presented and 
discussed, aimed at assessing the potential impact in the hydrogen management 
policies. For this purpose, the value of the stochastic solution, perfect information, 
and expectation of the expected value are analyzed. Complementarily, a risk-averse 
formulation is presented (value-at-risk and conditional-value-at-risk) and its results 
compared against the formulation without risk considerations. Finally, some atten-
tion is given to future directions of this decision support tool, based on these work 
contributions, including the importance of the decision makers’ participation in the 
analysis of the potential impact of risk-averse results.
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1  Introduction

Process optimization is one key component in order to achieve the level of efficiency 
that is required today in process plants. Among the many different ways in which 
optimization can be used in the management and control of a plant, operating it in 
the best possible way is one of the most challenging and, at the same time, reward-
ing problems because of its complexity and impact on the efficiency and results of 
the company.

Decisions about the production and operation of a process plant are organized 
hierarchically in a set of layers, as in Fig. 1 by Darby et al. (2011). This is a simpli-
fied schematic not covering other important features, but represents the main ele-
ments for the purpose of the paper.

Basic control is in charge of keeping safety and stability of the plant under con-
trol, implementing the control room operators’ or upper layers decisions. The Model 
Predictive Control (MPC) layer targets improving control by considering the inter-
actions, disturbances and operation constraints associated to process units or small 
plants. Within the MES/MOM layer, the main element for the purpose of this paper 
is Real Time Optimization (RTO), which aims at computing the operation points 
of the process units that optimize production according to a certain criterion while 
satisfying process constraints. A RTO system normally uses large non-linear models 
covering a whole plant, section or complex process unit maximizing or minimizing a 
target limited to that scope. At this point, besides the “local” optimization of process 
units, RTO has to consider the interactions between the different plants and relevant 
process units that compose a process factory. If not computed by the RTO layer, 
the variables associated to the global functioning are normally decided by the plant 
managers according to experience or heuristics, but these decisions are difficult to 

Fig. 1   Hierarchical decision layers for process control and operation
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take due to the complexity of the problem, lack of information or adequate models, 
affecting negatively the plant performance.

Of course, at the ERP level, the production planning tools may generate global 
targets for the different sections of a plant, but these are “averaged” targets to be 
taken as references for several days or weeks, that are not useful for real-time opera-
tion where, due to the variability of products, external disturbances, dynamic deci-
sions are required in order to avoid creating bottlenecks, violating constraints or 
risking the safe operation of the plant, while being as close as possible to the opti-
mum operating point of the whole plant.

The standard architecture of Fig.  1, with an RTO layer that uses non-linear 
steady-state models to generate fix targets for the MPC for periods of the order of 
hours does not manage properly the dynamic aspects above mentioned. Alterna-
tively, the RTO and MPC layers can be combined in an economic MPC or optimal 
dynamic operation problem as in Engell (2007) and Gonzalez et  al. (2001). This 
approach solves the inconsistency problem between layers that may appear due to 
the use of different models in RTO and MPC, and it is well stablished for continuous 
processes, but requires solving large-scale dynamic optimization problems in long 
computation times in order to allow for real-time implementation, which may be a 
significant obstacle for its implementation.

This paper proposes another way of considering the joint operation of large-scale 
RTO with MPC, and illustrates the methodology in a case study corresponding to 
the hydrogen network of an oil refinery involving the joint operation of 18 plants, 
first introduced by de Prada et al. (2017), discussing its implementation and results. 
In addition, uncertainty in the hydrogen demand is incorporated in the nonlinear 
optimization problem as an extension of the deterministic RTO (with and without 
risk considerations), analyzed and compared against deterministic results. Further-
more, particular attention is given to discussing the advantages and shortcomings 
of the two-stage stochastic formulations presented, i.e. risk-neutral and risk-averse.

The paper is organized as follows. After the introduction, Sect. 2 describes the 
hydrogen network under consideration and the formulation of the optimization prob-
lem. Then, Sect. 3 presents the architecture of the system implemented in the refin-
ery and discuss some results. Next, Sect. 4 is devoted to formulate and discuss the 
stochastic problem considering two alternative aims, risk-neutral and risk-averse. 
The paper ends with conclusions and references sections.

2 � Hydrogen network

2.1 � Process description

Hydrogen is used in oil refineries with two main purposes: converting heavy hydro-
carbons into lighter ones in order to improve the profitability of the business, and 
removing sulphur from hydrocarbons in order to comply with environmental regu-
lations. Because of that, it has become one key utility in the operation of the refin-
eries. Hydrogen is obtained either from an external supplier or internally from 
steam reforming plants, as well as a sub-product from the platformer plants used to 
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increase the octane number of gasolines and then it is distributed to the consumer 
plants through pipelines forming a complex network. A general overview of hydro-
gen supply chain for general purposes is explored by Ochoa Bique and Zondervan 
(2018).

In the particular refinery under consideration the network involves 18 plants: two 
producers of fresh hydrogen, two platformer plants and 14 consumer plants, most of 
them hydrodesulphurizers connected by means of several headers that operate at dif-
ferent pressures and hydrogen purities as in Fig. 2. Notice that a consumer plant can 
be fed from different sources. 

A simplified schematic of a typical hydrodesulphuration plant can be seen in 
Fig. 3. The high sulphur hydrocarbon (HC) feed is mixed with treatment gas (typi-
cally around 85–90% hydrogen content, and high pressure) coming from different 
sources (high and low purity headers, HPH and LPH respectively). This cold mixed 
stream is heated to reaction temperature, around 300–350  °C, by heat exchang-
ers and a furnace (load heating subsystem, LHS) before going into the reactor. 
This untreated hot stream reacts on the catalyst fixed bed of the reactor, where the 
actual desulphurization and other side reactions take place. Due to exothermicity of 
the reactions, the outlet stream is used to preheat the cold stream load in the heat 
exchangers within the LHS. The next stage of the process is the separation of gas 
and liquid, for this purpose the high pressure separator (HPS) is fed with the cooled 
reactor outlet, and produces two outlets:

•	 High pressure sour gas (rich in hydrogen sulphide),
•	 Medium or low pressure mixed gas and HC.

The mixed stream goes into a stripper to remove the remaining gases, which 
typically go to fuel gas (FG) after some gas treating aimed at absorbing hydrogen 

Fig. 2   Schematic of the hydrogen network with producer (grey boxes) and consumer (light grey boxes) 
plants connected by several headers, among them H4 (red), H3 (light purple) and LPH (blue). Source: 
Gomez (2016)
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sulphide. The liquid outlet (treated HC) at this stage is ready to be cooled and 
dried to be pumped into the blending system or stored in tanks.

In the high pressure circuit, gas is recycled back through a compressor, after 
being sweetened in a gas absorber (hydrogen sulphide removal). In addition, high 
pressure gas can be fed into a permeation membrane to purify its hydrogen (H2) 
content, or purged to the LPH (circa 5% less than treatment gas, e.g.: 75–85%).

One important aspect of the operation is the fact that preserving catalyst lifecy-
cle requires hydrogen excess at all times, regardless of the demand. Since hydro-
gen is a product that is very difficult to store and the plants have variable hydrogen 
demand according to the type and flow of the hydrocarbons being processed, the 
producer plants always generate more hydrogen than what is consumed in order 
to guarantee that enough hydrogen is available under any circumstance. This pol-
icy is aimed at protecting catalysts, which are not only an expensive material but 
also require a plant shutdown to be replaced. Thereby, minimum H2 purity figures 
are operational constraints, subjected to change over time (e.g.: start of run, or 
end of run) mainly due to catalyst and load quality conditions. All excess gases 
across the network end up in the fuel gas header (basic pressure control at plant 
level), which complemented with natural gas and liquid petroleum gas (LPG) is 
used to fuel the gas burners plant-wide. As hydrogen is expensive to produce, a 
good management of the network should coordinate the operation of all plants, 
matching demand and production in order to minimize losses of hydrogen to FG.

Another key point related to the operation of the reactors is purity manage-
ment. As mentioned before, the gas recycled from the separation units (HPS) 
has a lower purity than the treatment gas fed to the reactor, but its purity can 
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Fig. 3   Simplified schematic of a generic hydrodesulphuration (HDS) plant. HPH high purity gas header, 
LPH low purity gas header, HC liquid hydrocarbon, MU make-up, FG fuel gas, HPS high pressure gas/
HC separator, LPS low pressure gas/HC separator
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be increased using permeation membranes or, after being sent to LPH, reused in 
other plants either directly or mixed with fresh hydrogen to increase its purity. As 
a result, the hydrogen network operates with several headers at different purities 
and pressures as represented in the simplified schematic shown in Fig. 4, which 
displays two producer units with their corresponding headers, supplying hydro-
gen to three consumer plants that deliver or consume recycled gas from the LPH, 
and may also send low purity gas excess to the FG network by it local pressure 
control valve.

Proper management of the network requires deciding in real-time, accord-
ing to the hydrogen demands from the reactors and variable hydrogen flows gen-
erated by the platformer plants, how much fresh hydrogen should be produced by 
each producer plant, and how to distribute the hydrogen through the network and 
internally in the consumer plants so that the losses to FG, or in general costs, are 
minimized. In addition, the operation of the network has to consider as the most 
important economic target the maximization of the hydrocarbon loads processed in 
the hydrodesulphurization plants, which may be limited by the hydrogen available 
and the production aims stablished by the planning of the refinery for the period 
under consideration. Notice that reducing losses of hydrogen to FG may increase the 
hydrocarbon processing if hydrogen is the limiting factor, which provides additional 
value to the optimal management of the network. Of course, optimal decisions must 
satisfy all process constrains imposed by the equipment, operation, safety, targets or 
quality.

2.2 � Models and data reconciliation

Optimization of the complex system requires proper network and plant models vali-
dated against process data. One of the main obstacles in developing these models is the 
lack of reliable information about many streams and compositions besides the nature of 

Fig. 4   Schematic showing the different types of headers found in a hydrogen network: high purity head-
ers (blue and green), low purity header (brown), fuel gas header (black)
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hydrogen. Most of the hydrogen flow measurements are volumetric ones that must be 
compensated using pressure, temperature and molecular weight of the stream to obtain 
mass flows. Nevertheless, hydrogen purity measurements are not always available and, 
even when it is measured, the molecular weight of the stream is unknown and unreli-
able. This is due to the fact that the gas stream contains impurities (undesired light HC 
of various sources) of unknown and changing molecular weight much larger than the 
one of hydrogen (mainly methane and ethane), which is only 2 (g/mol). For example, 
a stream with purity 90%, where one half of the impurities change composition, for 
instance from methane to propane, can change the molecular weight of the stream in 
41%. Notice that besides flows and compositions, other important variables, such as 
hydrogen demand in the reactors, are not measured and change over time with the com-
position of hydrocarbons being processed.

This means that, before any optimization can be performed, a procedure to obtain 
reliable information from the plant using the plant measurements should be imple-
mented. Data reconciliation can be used for this purpose as it offers a way of estimating 
the values of all variables and model parameters coherent with a process model and as 
close as possible to the measurements. Data reconciliation is formulated as a large opti-
mization problem searching for the values of variables and parameters that satisfy the 
model equations and constraints and that, simultaneously, minimize a function of the 
deviations (e) between model and measurements, properly normalized.

In our case study, a first principles model of the hydrogen behavior in the network and 
associated plants was available from previous works by Sarabia et al. (2012) and Gomez 
(2016). This model is based on mass balances of hydrogen (H2) and light ends (considered 
altogether as a single pseudo-component, LIG) at all nodes (N) of the network as in the 
pipelines, headers, and units as in (1a–1d), where F stands for gas flows, X are hydrogen 
purities, and MW refers to molecular weights. Each k node has outlets i and inlets j streams.

In addition, the model incorporates other first principle and reduced order equa-
tions for reactors (2a–2e), membranes (3a–3e), separation units (4a–4f), compressors 
and headers (1a–1d). Reduced order models are used for permeation membranes fitting 
their parameters to historical plant data to determine explicitly (3a), following previous 
works methodologies (Galan et al. 2018; de Prada et al. 2017; Gomez 2016). Table 1 
presents a description of all variable and subscripts, while engineering units used in 
this study are provided in Table 2.

At all nodes N within the network:

(1a)
∑
i,out

Fk,i =
∑
j,in

Fk,j ∀k ∈ N

(1b)XH2,k⋅

∑
i,out

Fk,i =
∑
j,in

XH2,k,j⋅Fk,j ∀k ∈ N

(1c)MWk⋅

∑
i,out

Fk,i =
∑
j,in

MWk,j⋅Fk,j ∀k ∈ N

(1d)100⋅MWk = MWH2⋅XH2,k + (100 − XH2,k)⋅MWLIG,k ∀k ∈ N
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At all reactors r within the network:

(2a)Fin,r = Fout,r + RDH2,r − RDLIG,r

(2b)Fin,r

Xin,r,H2

100
= Fout,r

Xout,r,H2

100
+ RDH2,r

(2c)Fin,rMWin,r = Fout,rMWout,r + RDH2,rMWH2 − RDLIG,rMWLIG,r

(2d)RDH2,r = HCin,r⋅rdH2,r

Table 1   Descriptions of variables and subscripts

a For simplicity these pressure units are considered equivalent, actual conversion is: 1 kg/cm2 ↔ 0.981 bar

F Gas flow, in Nm3/h
X H2 or LIG fraction in a gas stream, in %vol
MW Molecular weight, in kg/kmol
RD Reactor demand (RDH2) or generation (RDLIG), in Nm3/h
G Mixed gas and liquid stream, in kmol/h
HC Liquid hydrocarbons flow, in m3/h
rd Specific demand (rdH2) or generation (rdLIG), in Nm3H2·(m3HC)−1

ksolse,gasHC Total gas solubility in hydrocarbons at separator se, in Nm3/m3HC
ksol

se,H2LIG
Relative H2/LIG gas/liquid solubility coefficient. Non-dimensional fraction

ksolse,MWLIG MWLIG gas/liquid solubility coefficient
Y Total molar fraction of a gas and liquid stream, in %
ρ Density of a liquid stream, in kg/m3

P Manometric pressure, in kg/cm2 or bara (1 bar ↔ 100 kPa)
T Temperature, in °C
k A node within the network
r A reactor within the network
in The variable represents an inlet
out The variable represents an outlet
o The purified gas of a permeation membrane
pg The gas purge of a permeation membrane
z A purification membrane within the network
se A separator within the network
d Orifice plate design value
mea Measured value
rec Reconciled value

Table 2   Engineering units used, unless explicitly stated otherwise

Liquid flow Gas flow Gas purity Molecular weight Pressure Temperature Time Cost/profit

m3/h Nm3/h %vol kg/kmol kg/cm2g °C h Euros/h
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At all permeation membranes z within the network:

At all separators (high and low pressure) se within the network:

It must be noticed that, further details such as operation constraints (e.g.: com-
pressors’ capacities and constraints on pipelines), and actual process units’ flow 
diagrams are confidential, thereby not available for disclosure. However, those 
are incorporated into the model and its constraints appropriately.

Taking into account the much faster dynamics of the hydrogen compared to the 
dynamics of the reactors, the hydrogen distribution model is static and contains 

(2e)
RDLIG,r = HCin,r⋅rdLIG,r

∀r ∈ Reactors

(3a)Fin,z = Fo,z + Fpg,z

(3b)Fin,z

Xin,z,H2

100
= Fo,z

Xo,z,H2

100
+ Fpg,z

Xpg,z,H2

100

(3c)Fin,zMWin,z = Fo,zMWo,z + Fpg,zMWpg,z

(3d)Xo,z,H2 = a
Fpg,z

Fin,z

+ b⋅Xin,z,H2 + c

(3e)
MWin,z,LIG = MWo,z,LIG

∀z ∈ Permeation membranes

(4a)ksolse,gasHC =
22.415⋅Gout,se

(
Yout,se,H2 + Yout,se,LIG

)

Gout,seYout,se,HC

(
MWHC

�HC

)

(4b)ksolse,H2LIG =
Xout,se,H2

Yout,se,H2

⋅

Yout,se,LIG

Xout,se,LIG

(4c)ksolse,MWLIG =
MWout,se,LIG

MWGout,se,LIG

(4d)Gin,se

(
100 − Yin,HC

)
= Fout,se + Gout,se

(
100 − Yout,se,HC

)

(4e)Gin,seYin,se,H2 = Fout,seXout,se,H2 + Gout,seYout,se,H2

(4f)

Gin,se

(
100 − Yin,HC

)
MWGin,se = Fout,seMWout,se + Gout,se

(
100 − Yout,se,HC

)
MWGout,se

∀se ∈ Separators
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flows (F), purities (XH2 and XLIG), molecular weights of hydrogen and light ends 
(MWH2 and MWLIG, respectively) of all streams and hydrogen consumption in the 
reactors as main variables.

For the sake of clarity, the deterministic model of the process network refers to 
Eqs.  (1a–1d, 2a–2e, 3a–3e, 4a–4f) (or 1–4 for short), and other equations, which 
are undisclosed for confidentiality reasons. Altogether represent the full plant math-
ematical model used in this work.

The data reconciliation problem requires a certain degree of redundancy in the 
measurements and is formulated as the following Non-Linear Programming (NLP) 
problem:

s.t.
process network model (1–4)
operational and range constraints

where

The above NLP minimizes the function (5a) of the errors ej between the meas-
ured flows Fj,mea and purities Xm,mea, and the same magnitudes computed with the 
model under the links imposed by the model (1–4) and other operational and range 
constraints. The coefficients β represent the compensation factors, and the variables 
ε are slack variables to ensure feasibility in the range constraints, while Reg are reg-
ularization terms to avoid sharp changes. Index i expands to all streams (S) across 
the network model, while indices j and m refer to plant measurements within set M. 
Notice that instead of the common sum of squares of the errors, a robust M-estima-
tor (a.k.a.: maximum-likelihood type estimators) as the Fair function has been used, 
which is similar in shape to the sum of squared errors for small values of the error 
but grows slower for larger ones limiting the effect of gross errors in the data (Özy-
urt and Pike 2004; Huber 2011; Arora and Biegler 2001; Nicholson et al. 2013).

(5a)min
Fi,Xi,MWi,�i

�
j∈M

�jc
2

⎡
⎢⎢⎣

���ej
���

c
− log

⎛
⎜⎜⎝
1 +

���ej
���

c

⎞
⎟⎟⎠

⎤
⎥⎥⎦
+
�
i∈S

�i�
2
i
+
�
k∈M

�kRegk

(5b)Fi,min − �Fi ≤ Fi ≤ Fi,max + �Fi�Fi ≥ 0

(5c)Xi,min − �Xi ≤ Xi ≤ Xi,max + �Xi�Xi ≥ 0

(5d)MWLIG,i,min − �MWi ≤ MWLIG,i ≤ MWLIG,i,max + �MWi�MWi ≥ 0

(5e)ej = �j
(
Frec,j − �j⋅Fj,mea

)
j ∈ M

(5f)em = �m
(
Xrec,m − Xm,mea

)
m ∈ M

(5g)�j =

√
Td + 273(

Pd + 1
)
⋅MWj

√√√√
(
Pj + 1

)
⋅MWd

Tj + 273
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The data reconciliation problem is a large-scale NLP that is formulated and 
solved with a simultaneous approach in the General Algebraic Modeling System 
(GAMS) using IPOPT (Wächter and Biegler 2005) as the optimization algorithm. 
The implementation involves more than 4400 variables and 4700 equality and ine-
quality constraints. It takes less than five Central Processing Unit (CPU) minutes in 
a PC with i7 processor and 8 Gb RAM, giving robust results against gross errors and 
helping to detect faulty instruments.

2.3 � Network RTO

Once a sensible model and reliable corrected measurements are available, one can 
formulate the network optimization problem (6) as finding the production and redis-
tribution of H2 in the network and the value of the hydrocarbon loads to the con-
sumer plants that maximizes the value associated to the loads taking into account 
the cost of generating hydrogen, which corresponds to the cost function:

where p represent prices HC are hydrocarbon loads, F fresh hydrogen and R deals 
with the compression cost of the recycled one.

This function is maximized respecting all constraints and without changing the 
way the reactors are operated, that is:

•	 Maintaining the current specific consumption of H2 (rdH2), LIG generation 
(rdLIG) and their properties (purity and molecular weight) at each reactor,

•	 Maintaining solubility coefficients at separators (ksolgasHC, ksolH2LIG, ksolMWLIG) 
and its properties (purity and molecular weight).

These values are estimated every 2 h from the data reconciliation step and are 
expected to be the same in the (near) future, if there is no change in hydrocarbon 
feed quality.

In the optimization, besides the network model, the main constraints refer to the 
process operation (e.g.: ranges, H2/HC, compressors capacity and maximum purity) 
and refinery planning specifications. Main decision variables include production of 
fresh hydrogen, feeds to consumer plants, hydrogen flows and recirculation, purges, 
purities and membranes operation.

The RTO is solved as an NLP problem in the GAMS system. It involves nearly 
2000 variables and more than 1800 equality and inequality constraints and is solved 
with a simultaneous approach and the IPOPT algorithm in less than 1  min CPU 
time.

(6)max
HC1,…,4,FH2,1,…,2,R1,…,4

4∑
i=1

(
pHCiHCi − pRiRi

)
−

2∑
j=1

pH2FH2,j
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3 � System architecture for optimization

The data reconciliation and network RTO are implemented according to the archi-
tecture displayed in Fig. 5.

Data and measurements from the hydrogen network are stored regularly in the 
real-time information system of the refinery (PI system). Values of each of them 
are read every 2 h from the PI system to be processed in the DR-RTO application 
which resides in a dedicated PC. The application is composed of several modules as 
shown in the left hand side of Fig. 5. The data acquisition module reads 171 flows 
and 18 purity measurements, plus other variables and configuration parameters from 
the PI system (temperatures, pressures, valve openings, etc.) totaling around 1000 
variables, averaging them in 2-h periods to smooth the effects of transients and dis-
turbances. Data treatment is a critical component that contains a set of rules dedi-
cated to detect faults and information inconsistences in the raw data and decides 
which options, variable ranges, etc. are the most adequate ones in the mathematical 
formulation of the problems. In addition, this module detects when a plant is out 
of service or a hydrogen header has modified its connectivity, such that its associ-
ated equations should be removed or changed in the network models. To implement 
this variable structure operation, the models are formulated as a superstructure that 
includes binary variables such that, according to the analysis of the data treatment 
module, the model can be adapted automatically to the state and configuration of the 
plants and headers.

Then, the treated data and constraints are sent to the data reconciliation module 
that solves the corresponding optimization problem and provides updated and relia-
ble information and parameters to the network optimization module (named as Opti-
mal Redistribution in Fig. 5). Finally, the information from the data reconciliation 
(DR) and the network optimization are used to compute some Resource Efficiency 

Fig. 5   Schematic of the system’s architecture displaying the DR-RTO module on the left hand side, the 
PI system in the center and process and other control and planning elements on the right hand side
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Indicators (REIs), and all of them are sent back to the PI system, where they are 
available to all potential users. Further details of REIs implementation and their use-
fulness for decision support in refinery hydrogen network are presented by Galan 
et al. (2017). A detailed description of REIs and their role in real-time monitoring 
and optimization in the process industry is covered by Krämer and Engell (2017), 
while comprehensive guide for REIs development is presented by Kujanpää et  al. 
(2017).

A first benefit of the system is providing improved process information and, in 
particular:

•	 An indication of possible faulty instruments
•	 Reliable balances of hydrogen.
•	 Values for unmeasured quantities (purities, molecular weights, hydrogen con-

sumption,…) not available previously.
•	 Data for computing REIs that allow better monitoring of the operation of the net-

work.

Regarding the implementation of the solutions of the optimizer, ideally, the opti-
mal values calculated should be sent as set-points to the network control system, 
either directly to the flow controllers or following the traditional architecture as 
in Fig. 1. Nevertheless, the static nature of the RTO and the low frequency of its 
execution brings several problems as the implementation of the optimal values has 
to be applied to the process taking into account the time evolution of variables. In 
particular, HC loads and hydrogen production have to be changed dynamically at 
a higher frequency to balance hydrogen production and consumption. In the same 
way, due to the presence of disturbances, changing aims, etc., constraints’ fulfilment 
requires dynamic actions to be performed at a higher rate, and changes in hydrogen 
flows may interact among them so that a proper implementation of the RTO solution 
would require multivariable control to take care of the interactions. Because of that, 
a different approach has been considered.

3.1 � Implementing network optimization in real‑time

A direct way of incorporating dynamics into the system, solving simultaneously 
the problem of possible inconsistencies between the non-linear RTO model and 
the linear one typically used in the MPC layer, is to formulate a single integrated 
dynamic optimization problem as mentioned in the introduction. Nevertheless, it is 
not realistic maintaining and operating in real-time a dynamic data reconciliation 
and dynamic RTO system involving 18 plants due to its large scale.

A different alternative, somewhere in the middle between sending set-points from 
a RTO to a MPC and direct dynamic optimization with economic aim, was consid-
ered and implemented in the refinery. For implementation, it takes advantage of the 
fact that some commercial MPCs, e.g. DMC+, are actually composed of two lay-
ers: a Dynamic Matrix Controller (DMC) to compute control actions, and a local 
optimizer on top that, using Linear Programming (LP) and sharing the same linear 



1174	 A. Galan et al.

1 3

dynamic models as the DMC, computes on-line targets for the multivariable control-
ler minimizing a user defined economic function.

The methodology is represented in Fig.  6, and basically consists of analyzing 
the network RTO solutions and extract from them optimal policies that are consist-
ently recommended by the optimizer. This means, understanding the logic behind 
the solutions and identifying variables that should be maximized or minimized to 
achieve an overall network optimal management. Nonetheless, variable specific set-
points depend on the process constraints or planning specifications. Therefore, the 
decision-making process, rather than being automatically translated downstream in 
the control pyramid, provides operation directions to the optimization layer of the 
DMC. These policies, or directions, represent targets (variables), which are maxi-
mized or minimized in the LP layer of the DMC considering controlled and manipu-
lated variables’ specific weights. These weights reflect the priorities and costs of 
the steady state process. The LP determines the optimal values compatible with the 
actual process model, process state and constraints and generates the corresponding 
set points to the DMC controller, which, finally, taking into account systems dynam-
ics and interactions, will compute current and future hydrogen and hydrocarbon set 
points to be given to the individual low level flow controllers of the DCS of the 
control room. A comprehensive description and discussion of the integration of the 
RTO and DMC in this process network is addressed by de Prada et al. (2017).

In the case considered, the optimal policies identified were:

•	 Losses from the HPS of a plant to fuel gas, required to avoid LIG accumulation, 
should be made at the lowest hydrogen purity compatible with the one required 
at the reactor input and the H2/HC minimum ratio, but the LPH purity should be 

Fig. 6   Schematic representing the methodology for on-line implementation of RTO policies
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maximized to increase hydrogen re-use. It must be noticed that, the higher the 
purity in the LPH, the more utilization of that gas for the process units.

•	 The hydrogen unbalance in the network, that is, hydrogen generated minus 
hydrogen consumed in the reactors, reflects in the LPH pressure, so losses to fuel 
gas from this header should be minimized with a minimum to guarantee unsatu-
rated operation of the pressure controller. This is a typical operational constraint, 
basically linked to the pressure valve controller.

•	 Maximization of the hydrocarbon load to the consumer plants, which is the most 
important target, and can be made until either maximum hydrogen capacity is 
reached or another technical constraint is active.

•	 Sending higher purity hydrogen (H4) to LPH should be minimized as purity 
degrades.

The system was implemented at the refinery shown in Fig. 5, but with the DMC 
controlling only the six most important plants from the hydrogen use point of view 
as a compromise between maintenance and development costs and potential benefits 
as in Fig. 7. A detailed description of the validation process of this deployment is 
addressed by Galan et al. (2018), and de Prada et al. (2017) present an analysis of 
the integration of the RTO and MPC applications in this case study. 

The DMC controller manages two hydrogen producers (H3, H4) and four con-
sumer plants (G1, G3, G4, HD3) and was developed and implemented by the refin-
ery team. It is based on linear models obtained by identification using data from 
step-tests that forms a dynamic matrix involving 12 manipulated variables and 29 
controlled ones. The main manipulated variables refer to the set points of hydro-
carbon loads to the consumer units, fresh hydrogen production, hydrogen feed to 
the consumers from the high purity header, and supply of hydrogen from one of the 
platformer plants. The main controlled variables are hydrogen partial pressure in the 

Fig. 7   Diagram of the DMC controlling the operation of two hydrogen producers H3 and H4 and four 
consumers G1, G3, G4 and HD3, with the main controlled hydrogen flows and HC loads
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reactors of the consumer plants, losses to fuel gas from the LPH (valve opening), 
recycle purity and HP losses to FG from some plants, hydrocarbon loads and valve 
openings to avoid control saturation.

The cost function at the LP layer combines four targets that together synthesize 
the solution of the RTO:

Fig. 8   Evolution of optimum (orange) and reconciled (blue) plant-wide figures over ten days. Top: 
hydrogen sent to FG header (%reference). Bottom: total hydrocarbons processed (%reference)
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•	 Maximize hydrocarbon loads to the consumer plants
•	 Minimize losses from the LPH to FG.
•	 Minimize hydrogen purity in the recycles of the consumer plants.
•	 Minimize hydrogen transfers from higher to lower purity headers.

The corresponding variables are linked to the manipulated variables through the 
linear process model, so that the optimization problem is linear and can be solved 
in a short time. The LP/DMC runs with a sampling time of 1 min, giving consistent 
results for many months. In parallel, the network RTO is executed every 2 h being 
operated as a DSS for the whole network and allowing the supervision of the DMC 
application. As an example of results, Fig. 8 (bottom) presents the total optimal and 
actual hydrocarbon load to the HDS plants for a period of ten days, showing good 
performance. However, in the same time window it is seen still a gap in the H2 sent 
to FG when comparing the reconciled value to the optimal (Fig. 8, top). This gap 
is mainly explained by the fact that, the purification membranes across the network 
are operated manually and are out of the scope of the DMC, though considered in 
the RTO. These results showcase the importance of the optimal operation of puri-
fication membranes at network level (ideally automated), and their impact in the 
economy of the process. A thorough discussion of this finding is addressed by Galan 
et al. (2018).

4 � Two‑stage stochastic (TSS) optimization

In Fig. 8 (top and bottom), is seen that the optimal conditions change significantly 
over time. In fact, the refinery is subjected to potentially large changes every two to 
three days when it receives new crude oil from ships, not to mention new production 
targets imposed by market demands.

In this section, uncertainty in the hydrogen demand at reactors is considered in 
the decision-making process explicitly. For this purpose, network dynamics consid-
erations are proposed such that, slower plants’ (low frequency dynamics) variables 
are to be decided ahead of time (here-and-now decisions), compared to faster plant’s 
(high frequency dynamics) variables. For instance, set-point changes on production 
units (i.e.: H3 and H4) typically take around 2 h to actually impact in the consumer 
unit. Thereby, actual gas demand at reactors should have been met and produced at 
hydrogen units 2 h earlier than actual consumption. Otherwise, an excess or defect 
in hydrogen demand, along with its economic consequences, is faced. Based on 
this sequence, it is possible to formulate a two-stage stochastic framework for the 
hydrogen network management problem with uncertain parameters. This approach 
is introduced and analyzed by Gutierrez et al. (2018) in a previous work over this 
case study.

Changes in the crude oil reflect in changes in the hydrogen consumption of the 
reactors of the HDS plants that are difficult to predict, creating transients where the 
performance of the network may suffer degradation. One may wonder if incorporat-
ing this uncertainty explicitly in the decision making process would improve signifi-
cantly the results obtained.



1178	 A. Galan et al.

1 3

At the RTO level, this is done updating the model and network information at 
regular intervals by means of data reconciliation. Nevertheless, it is well known 
that, even with data reconciliation, if the model has structural errors the optimum 
computed with the model may not correspond to the real process optimum. Alterna-
tively, we can consider different possible values of the uncertain variables and opti-
mize considering the worst case, following a robust optimization approach (Ben-Tal 
and Nemirovski 2002). This option chooses the values of the decision variables that 
guarantee fulfilment of all constraints in all scenarios, but provides very conserva-
tive solutions as they are fitted to the worse case. Another alternative approach may 
be multi-stage stochastic optimization, which takes into account that some decisions 
that influence the future behavior of the process have to be made at current time 
(here-and-now) without knowing the value of the uncertain parameters (e.g.: H2 
demand at reactors) but, in the future, new information can be available that reveals 
the value of the uncertainty, so that particular correction actions (recourse) can be 
made in the future according to the specific scenario that may take place.

The concept is illustrated in Fig.  9, where a scenario tree is represented for a 
two-stage stochastic model. On the left hand side (a) the system has a state x at 
time t0 and a decision u0 (with some variables known as first-stage ones) has to be 
made considering all possible values ξi of the uncertainty, a scenario is defined as 
the arc between nodes. After applying u0, the system will evolve in t1 to different 
states depending on the specific value of ξi, but if this value were know at t1, we 
could compute a specific optimal decision u1(ξi) for each value of ξi in the period of 
time starting at t1 for the remaining variables (recourse variables), as in Fig. 9b. This 
section studies the value of the stochastic approach applied to the hydrogen network 
in order to evaluate the interest of its implementation.

4.1 � Formulation of the TSS problem

Main elements in the formulation of the optimal management of the hydrogen net-
work as a two-stage stochastic optimization problem are: the identification of the 
uncertainty source, the scenarios definition with their likelihood of realization, and 

Fig. 9   Schematic of the main concepts behind two-stage stochastic optimization and scenario tree repre-
sentation
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selection of meaningful first and second stage variables. Regarding the objective 
function, the simplest approach is to formulate the deterministic equivalent problem 
(DEP) of the minimization as in (7a–7f). A detailed discussion on alternative formu-
lations of TSS problem could be found in Birge and Louveaux (2011).

where (·)F refers to variables or functions in the first stage and (·)S denotes the ones 
in the second stage, while the decision variables are denoted as u and the remaining 
variables as x. The uncertainty is represented by the parameters ξi that can take val-
ues within a set Ξ according to a certain discrete probability distribution, for which 
the probability of occurrence (π(ξi)) is known (7b). This set is discrete and finite 
with n elements, (i.e.: ξi, i = 1,2,3,…,n of elements is considered). These n elements 
constitute the scenarios that will represent the uncertainty realizations. In the objec-
tive function the sum over all scenarios i represents the expected value of the objec-
tive function over the second stage variables (7b).

The cost function is composed of two terms: The first one, JF, is the cost in the 
first stage which depends on the first stage decisions uF. These are decisions that are 
taken and applied at current time without knowing the particular realization of the 
uncertainty ξ and will be maintained over the time horizon covered by the optimi-
zation problem. Consequently, they are the same for all values of ξi. Nevertheless, 
we can correct the effects of the uF decisions once the value of the ξi parameters 
are revealed, using the recourse variables uS(ξ) that take a particular value for each 
realization of the uncertainty (ξi). The second term of the cost the weigthed summa-
tion over all the scenarios with corresponding probabilities πi, represents the effect 
of these second stage corrections on the total value of the cost function, which also 
depend on the uF decisions.

The variables of the problem have to satisfy the constraints imposed by the model 
h(.) and additional inequality constraints g(.) in every stage for all possible scenarios 
considered (n). In (7), the corresponding equations, that depend on the stochastic 
parameter ξ, should be interpreted as being satisfied with probability one.

(7a)min
uF,uS(�i)

JF
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4.1.1 � Uncertainty source description

Hydrogen gas in a refinery is basically a utility, for it is demanded and consumed 
in process units and it should be enough to satisfy the process requirements at all 
times. The deterministic problem tackles the optimal hydrogen management prob-
lem assuming that hydrogen demand of each plant is to be calculated exactly using 
the results of the DR problem. However, this concept does not hold when the refin-
ery is facing crude oil changes, which typically imply hydrogen demand swings as 
well. In these situations, predictions of hydrogen demand at the plant level are usu-
ally inaccurate due to the fact that hydrocarbon cuts properties may be estimated 
with large errors, which make them the main source of uncertainty. Figure 10 pre-
sents a simplified oil refinery schematic representing the different intermediate cuts 
fed to hydrogen consumer units (i.e.: HDS, HDT, HDC), which will be impacted 
by changes in the hydrocarbon properties and ultimately lead to hydrogen demand 
changes. Therefore, a scenario tree representation is applicable in this context as 
seen in Fig.  9. In addition, in most case hydrogen demand affects all consumers 
in the same direction (i.e.: increase or decrease) as a consequence being fed by a 
unique crude oil source (see Fig. 10). It must be present that refinery hydrogen net-
works are very specific due to all the features described before. Other gas networks 
case studies available in literature, such as the one by Li et al. (2017) for natural gas 
networks, may differ in most of the assumptions and features, though the stochastic 
approach still holds in all.

Fig. 10   Simplified schematic of an oil refinery, identifying the main intermediate cuts fed to process 
units. CDU crude distillation unit, VDU vacuum distillation unit, HDS hydrodesulphurization unit, HDC 
heavy oil desulphurization unit. FCC fluidized catalytic cracking, CR catalytic reforming, MX merox 
sweetening, LPG liquefied petroleum gas, Kero kerosene, LN/HN light and heavy naphta, respectively, 
AR atmospheric residue, VR vacuum residue, Gas gasoline, Jet aviation jet fuel, GO commercial gasoil, 
FO fuel oil, AS asphalt. 1Major hydrogen consumer
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4.1.2 � Scenarios definition

Given different potential hydrogen demands at plant level is possible to link those to 
a probability of occurrence (π(ξi)), which will be revealed only after the first stage 
decisions are due. Therefore, each scenario is identified with a likelihood of reali-
zation of a hydrogen demand at plant level. It should be borne in mind that this 
idea narrows down the search for first and second stage variables, since the former 
remain equal at all scenarios.

4.1.3 � First and second stage variables

As a consequence of the network dynamics, explained in Sect. 2, hydrogen produc-
tion decisions at generation units (i.e.: H3 and H4) precede actual plant demand at 
consumer units by around 2 h. In other words, hydrogen demand at any given time 
should be met by the hydrogen production rates of the past 2 h. However, consumer 
plants have much faster dynamics and cope with most of the changes in feed qual-
ity within minutes. Due to the fact that the uncertainty source is from feed quality, 
which in turn reflects into hydrogen demand at the plant level, scenarios affect all 
consumer plant variables and headers. Additionally, hydrogen production has to be 
set 2 h before it is actually demanded. Therefore, in the TSS formulation the first 
stage variables are all related to the hydrogen production units, H3 and H4. The rest 
of the network variables are all subjected to scenarios hence defined as recourse or 
second stage variables.

4.1.4 � Problem statement

Given the hydrogen network of an oil refinery, with production and consumption 
of hydrogen, and hydrocarbons processed in consumer plants. The problem is to 
determine the hydrogen production rate at time t0 of each producer, such that plants 
demands’ are satisfied for all possible scenarios, complying with operational restric-
tions. The objective is to maximize the expected profit of the network operation (8), 
considering hydrogen production costs and revenues from hydrocarbon processing 
at all scenarios.

Here the process model and constraints are the same as in the deterministic case 
(i.e.: h(·) and g(·)), but evaluated for every scenario (7b–7f), which largely increases 
the number of variables and equations. The first stage cost (JF) corresponds to the 
production cost of fresh hydrogen, while the second stage (JS) includes the expected 
value of the hydrocarbons processed and the cost of the hydrogen recycles. The aim 
is to maximize the hydrocarbon load (HC) to consumer plants, minimize the use of 

(8)
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fresh hydrogen generated in the steam reforming plants (FH) and minimize the inter-
nal recycles of hydrogen (R) in the consumer plants, considering all possible values 
of the uncertainty. uS refers to the remaining variables of the model.

This TSS formulation is known as deterministic equivalent problem (DEP) since 
it is solved as a single monolithic optimization problem over all the scenarios.

4.2 � Evaluation of the value of the stochastic solution

4.2.1 � Scenarios assessed

In particular, a formulation with nine scenarios is presented as case study in this 
paper. Table  3 displays details of scenarios conditions, which represent feasible 
transitions towards a higher hydrogen demand resulting from higher sulphur con-
tent crude oil. In fact, the key representation of these scenarios in the model is by 
multiplying (2d) and (2e) by their corresponding change coefficient at each scenario 
(9a–9b). The rest of the model equations remain unchanged, except for the addition 
of the scenario dimension to each second stage variable. It is assumed that other 
realizations are negligible. Therefore, these nine scenarios represent all meaningful 
ξi, such that the probability of occurrence (π) of the sum of all equals one (10). All 
values are presented in per one units (e.g.: 1.1 implies 10% increase).

4.2.2 � Typical stochastic formulations

The two-stage stochastic programming problem where the first and second stage 
variables are considered together resulting in the deterministic equivalent (7), can 
be interpreted as the recourse problem (RP). In the RP the first stage variables are 

(9a)RDH2,r,� = HCin,r,� ⋅

(
rdH2,r⋅H2DEM,�

)
r,�

(9b)
RDLIG,r,� = HCin,r,�⋅

(
rdLIG,r⋅LIGGEN,�

)
r,�

∀� ∈ �

(10)
9∑
i=1

�
(
�i
)
= 1

Table 3   Scenario specific hydrogen demand (H2DEM(Si)), light ends generation (LIGGEN(Si)) and prob-
ability of occurrence (π(Si)), for each scenario (Si). H2DEM(Si), LIGGEN(Si) and π(Si) values are presented 
in per one fractions

S1 S2 S3 S4 S5 S6 S7 S8 S9

H2DEM 1 1.1 1.2 1 1.1 1.2 1 1.1 1.2
LIGGEN 1 1 1 1.1 1.1 1.1 1.2 1.2 1.2
π 0.36 0.15 0.09 0.15 0.0625 0.0375 0.09 0.0375 0.0225
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decided taking into account all possible scenarios, which enlarges the problem as 
much as scenarios are evaluated. A simplified approach is to consider each scenario 
separately, assuming the information on the each will be certain once the decision 
is to be made. Therefore, “perfect information” is assumed for each scenario and 
computing them separately and weighting the cost function by the corresponding 
π(ξi) represents the best theoretical outcome in the long run (PI, a.k.a: wait-and-
see). Finally, a second simplification neglects the randomness of the uncertainty and 
assumes it equal to its weighted average. As a consequence, the realizations of the 
second stage variables are fixed and the optimization problem becomes a regular 
deterministic problem, which determines the first stage variables. However, in real-
ity the second stage will reveal all the scenarios in the long run, and at that point 
one will have to cope with the actual hydrogen demand and previously set hydrogen 
production. This solution is named the expectation of the expected value problem 
(EEVP), and is a usual simplification of the TSS problem. A thorough discussion 
of these approaches and their value in addressing a real-world optimization problem 
considering stochastic uncertainty, including several examples, is provided by Birge 
and Louveaux (2011).

It is usually interesting to assess whether the two-stage programming stochastic 
offers an advantage over the two simplified approaches. For this purpose, Birge and 
Louveaux (2011) proposed the so called value of the stochastic solution (VSS) that 
is used in this study, as well as the expected value of perfect information (EVPI). 
The former quantifies the gain in the objective function resulting from consider-
ing the randomness of the uncertainty (i.e.: RP), versus its weighted average (i.e.: 
EEVP). The formula is presented in (11). The latter (12) compares the RP against a 
theoretical case where demand is certain and known beforehand (i.e.: PI), although 
this is not realistic.

4.2.3 � Case‑study results

Considering actual plant data from a DR solution (discussed in Sect. 2.2), the TSS 
solutions for the RP, EEVP and PI problem are shown in Table 4. The problem RP 
involved 15,958 variables and 14,925 constraints, and required 76.38 CPU seconds 

(11)VSS = RP − EEVP

(12)EVPI = PI − RP

Table 4   Results of the implementation of the TSS formulation over the typical stochastic assumptions, 
i.e.: perfect information (PI), recourse problem (RP), expectation of the expected value problem (EEVP)

These are used to calculate EVPI and VSS as suggested by Birge and Louveaux (2011)
a Percentage w.r.t. EEVP

PI RP EEVP EVPI VSS

K€/h K€/h K€/h K€/h %a K€/h %a

737.176 735.936 725.014 1.240 0.17 10.923 1.51
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(Intel® Core™ i7 2.50 GHz and 16.0 GB of RAM). In terms of computational effi-
ciency the results are suitable for the online application. Moreover, typical tech-
niques of decomposition (see for reference: Li et  al. 2012; You and Grossmann 
2013) were dismissed as alternative formulations due to the satisfactory results of 
the monolithic RP formulation. In addition, the EVPI and VSS are presented in the 
same table to analyze the value of considering uncertainty explicitly. Due to con-
fidentiality reasons, representative but fictitious prices of hydrogen costs and HC 
loads are used in this study.

It is interesting to notice that with an EVPI of less than 1% it does not seem to 
be worth investing in additional information from hydrogen demand or light ends 
generation of the network. It should be considered that, more information it almost 
surely, requires equipment investment to undertake better analysis at the refinery 
laboratory or allocate more resources to the hydrocarbon cuts’ properties predic-
tions. However, the VSS shows an improvement of circa one order of magnitude 
compared to the EVPI, which is due to the incorporation of the stochastic uncer-
tainty in the whole decision-making process from the beginning. In other words, if 
the uncertainty is estimated when deciding how much hydrogen should be produced 
and then corrected once the uncertainty reveals (i.e.: EEVP), the objective function 
is around ten k€ per hour worse than considering the uncertainty from the first stage 
(i.e.: RP). That is the “price” of simplifying the uncertainty when deciding on the 
hydrogen production, and neglecting the stochastic nature of hydrogen demand and 
LIG generation.

The same analysis applies when HC loads of EEVP and RP solutions are com-
pared. For example, if the major hydrogen consumer is analyzed (i.e.: HD3) it could 
be seen how in most of the scenarios the RP outperforms EEVP (Fig. 11). The most 
favorable results for EEVP are at scenarios S1, S4 and S7, where HD3 maximum 
load capacity is reached. The rest of the scenarios require HC load to be below 
HD3 maximum to cope with hydrogen demands. However, RP is capable of meet-
ing hydrogen demand at all scenarios without sacrifice of HC load. This translates 

Fig. 11   RP and EEVP solutions for HC loads of process unit HD3
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directly to the objective function, where HC loads weight around 1000 times more 
than hydrogen production in volume (8).

In addition, RP solution improves LPH purity at all scenarios, except for S7 
(Fig. 12), which translates into more effective usage of recycled gases across the net-
work contributing to economy of the process network. The particularity seen at S7 is 
related to the efficiency in the LPH purity management. This underpins in the concept 
that it only makes sense to hold high purity if that is required to satisfy H2 demand 
at reactors, for instance HD3 in this case. In other words, once the network demand 
has been met the best decision is to save hydrogen production costs. That is exactly 
the case of scenario S7, where H2 demand itself has not changed, only LIG generation 
(see Table 3). By not considering the stochasticity of the uncertainty the EEVP solution 
shows higher LPH purity (unnecessarily), impacting in the production costs negatively.

4.3 � Considering risk in the decision making process

The previous approach holds when the decisions do not take into account the risk 
associated to the objective function, a.k.a. risk-neutral. Therefore, in the long run the 
expected valued is maximized regardless of the shape of the probability distribution 
of the objective function. This sub-section analyzes the formulation and results of 
applying a TSS approach with a risk measure as objective function.

4.3.1 � Conditional value‑at‑risk

First of all, it is important to present the definition of value-at-risk (VaR) as in (13). 
This risk measurement simply defines a value ω which is the least value of the ran-
dom variable Ξ, where the likelihood is less than a confidence level 1 − α. Another 
popular risk measure is the conditional value-at-risk (CVaR) defined as in (14), 

Fig. 12   Low purity header hydrogen purity at scenarios S1–S9 applying RP and EEVP
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which is actually more useful in optimization for its convexity and other properties 
such as subadditivity (Pflug 2000). Equation (15) shows how CVaR and VaR relate 
to each other, being trivial to see that CVaR is greater than VaR. More details on the 
characteristics of VaR and CVaR can be found in Rockafellar and Uryasev (2000, 
2002) and Pflug (2000).

(7b–7f)
(9a–9b)
A practical formulation of the CVaR objective function is presented in (16a–16c), 

the full deduction is illustrated by Artzner et al. (1999). Table 5 shows the results for 
CVaR and VaR considering the same scenarios presented for RP at two confidence 
levels 1 − α (99% and 95%), and risk-neutral. Notice that in this case the hydrogen 
problem is formulated as a minimization problem instead of a maximization as in 
the previous examples. This is only for practicality of formulation for the CVaR, and 
does not affect the reasoning behind the analysis.

(13)VaR1−�(J(�))
def
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�∈ℝ
{�|P(J(�) ≤ �) ≥ 1 − �}
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uF, uS(�), x(�)

)]
⇔ min

uF ,uS(⋅),�
�
[
� + �−1�(�)

]

(16b)
s.t.

J
(
uF, uS(�), x(�)

)
− � ≤ �(�) ∀� ∈ �,

(16c)�(�) ≥ 0∀� ∈ �,

Table 5   Results of CVaR, 
VaR and hydrogen plant H4 at 
confidence levels 95% and 99%

a Percentage over total production capacity
b Intel® Core™ i7 2.50 GHz and 16.0 GB of RAM
c Risk-neutral solution (i.e.: α = 1), RP solution
d Not applicable

Confi-
dence 
(1 − α)

CVaR1−α VaR1−α H4 Time

% K€/h K€/h Nm3/h %a CPUb s

95 735.88 735.88 37,884.06 86.10 71.46
99 735.88 735.88 37,884.06 86.10 43.74
0c NAd NAd 37,066.68 84.24 0.92
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According to Table 5 it could be deemed that changing risk from a confidence of 
95–99% changes very little the detriment in profit for the process, CVaR and VaR in 
all cases. Moreover, the same change of confidence level (95–99%) shows a negligi-
ble impact in the hydrogen production at H4, although it is around 800 Nm3/h (about 
2%) higher than the RP solution, see Table 5. In other words, decreasing by 5% the 
risk of the network profit will be almost indistinguishable in terms of extra hydro-
gen production. It must be borne in mind that, HC load to hydrogen consumer is at 
its maximum in all scenarios and confidence levels considered, therefore improve-
ment of profit in scenarios should come from better hydrogen distribution and 
fresh hydrogen saving from H4. Certainly, this solution is case specific and greatly 
depends on the actual hydrogen demand circumstances.

An interesting point of view is to compare profit at each scenario for CVaR and 
risk-neutral (i.e.: RP) solutions. Figure 13 presents those results. It is important to 
highlight that considering risk (99 and 95% of confidence level) presents a more 
stable profit across scenarios, at the price of being less on average than the RP. In 
particular, scenarios six and nine are the ones that RP profit is less than CVaR prof-
its. In the rest, RP profit is greater than CVaR profit. It must be borne in mind that, 
these figures are illustrative for the analysis, and not real in terms of profit amounts. 
Furthermore, the difference between profits is still very narrow and long term results 
should be analyzed for delivering a more robust discussion regarding the actual sig-
nificance of these figures within the refinery business context. Certainly, the view-
point and contribution of decision-makers, such as line managers, and business 
managers, is deemed of key importance in order for that analysis to be meaningful 
with respect to business impact for a certain risk level.

In overall, the minimization of the weighted average cost of all scenarios con-
sidered in the RP does not stop the results obtained in a particular scenario to differ 
significantly from the optimized average, as the formulation does not include any 
constraint on the spread or variance of that cost function. To avoid this situation, a 

735

735.2

735.4

735.6

735.8

736

736.2
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Fig. 13   Profit results over scenarios for RP (risk-neutral), CVaR0.05 and CVaR0.01
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measure of the risk of obtaining a cost function significantly worse than the average 
can be use as objective function instead. However, this so called risk-averse solu-
tion comes at the price of lower expected profit in the long run, as it was mentioned 
before (see Fig. 13).

5 � Conclusions

This paper presents the optimization and control system of a hydrogen network in 
an oil refinery of the Repsol group. It combines data reconciliation and RTO with 
the implementation of the optimal policies in a commercial DMC+ control system. 
The optimal policies appear as a set of targets to maximize or minimize within con-
straints in the LP layer of the DMC+ and are extracted from the analysis of the 
process and the optimization results proposed by the RTO. This way of implement-
ing RTO has proven to be very effective and allows dealing with dynamics and dis-
turbances as it is executed in real-time with the sampling time of the DMC predic-
tive controller. In addition, the familiarity of the personnel with the DMC interface 
facilitates the adoption and use of the system and, being based on the DMC models, 
avoids the possible incoherencies with the ones of the RTO.

In addition this paper studies the advantages of incorporating uncertainty explic-
itly in the decision making process as a way to deal with the unknown and variable 
hydrogen demands created by the processing of different crudes. For this purpose, 
several scenarios were defined and Two-stage stochastic optimization was applied 
to the problem of optimal hydrogen distribution. On order to evaluate the improve-
ment, two indexes were considered, the Expected Value of Perfect Information, 
EVPI, and the Value of Stochastic Solution, VSS. The former suggests that little 
gain is obtained by improving the knowledge on the quality (hydrogen demands) of 
the hydrocarbon loads being processed, but the VSS indicates that it may be worth 
to use the Two-stage stochastic optimization in the RTO. Although the results pre-
sented are for a particular 2-h period of time, similar conclusions are obtained when 
studying larger time periods. Finally, the use of an alternative objective function, 
risk of having a value of the cost function far from what expected, instead of the 
expected value over all scenarios was considered. More specifically, the Conditional 
Value-at-Risk, CVaR, was used. The results show a decrease in the cost function as 
expected. If the risk factor compensates this, is something that will require a deeper 
analysis, engaging business decision-makers at different levels in the organization in 
order for it to be representative of the actual business impact.
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